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ABSTRACT

We propose a scale-space based approach to non-rigid small animal
image registration. Scale-space theory is based on generating a fam-
ily of images by blurring an image with Gaussian kernels of increas-
ing width. This approach can be used to extract features at varying
levels of detail from an image. We define the scale-space feature vec-
tor at each voxel of an image as a vector of intensities of the scale-
space images at that voxel. We generate scale-space images of the
target and template images, and extract their corresponding scale-
space feature vectors at each voxel. The extracted feature vectors
are aligned using mutual information based non-rigid registration to
simultaneously align global structure as well as detail in the images.
We represent the displacement field in terms of the discrete cosine
transform (DCT) basis, and use the Laplacian of the displacement
field as a regularizing term. The DCT representation of the displace-
ment field simplifies the Laplacian regularization term to a diagonal,
thus reducing computational cost. We apply the scale-space regis-
tration algorithm on mouse images obtained from two time points
of a longitudinal study, and compare its performance with that of
a hierarchical multi-scale approach. The results indicate that scale-
space based registration gives better skeletal as well as soft tissue
alignment compared to the hierarchical multi-scale approach.

Index Terms— Image registration, non-rigid registration, mu-
tual information, scale-space, small animal registration.

1. INTRODUCTION

Longitudinal and inter-subject studies are often performed in small
animal imaging in order to study changes in mouse anatomy and
function over a period of time, or across populations. Changes in
animal posture, tissue growth, organ movement and other anatom-
ical changes during longitudinal studies require non-rigid registra-
tion of the acquired images for accurate analysis. Normalization
of anatomical variability across populations in inter-subject studies
also requires non-rigid registration. Several non-rigid registration al-
gorithms have been developed, most of which have been applied to
brain registration. A review of these methods can be found in [1],
[2]. The registration of small animal images is challenging because
of the presence of rigid structures like the skeleton within non-rigid
soft tissue. It has been observed that though the existing non-rigid
registration algorithms have been applied successfully to brain imag-
ing, these methods do not perform well for small animal registration
[3] -[5].

In [3] and [4] mouse registration was performed using piece-
wise rigid registration of anatomical structures, which were defined
in a segmentation step prior to registration. In [5] a fully automated
method was proposed for whole body registration, where they first
aligned the skeleton using a point based method, after which they
imposed stiffness constraints at the skeleton to align the whole body

images using intensity based non rigid registration with mutual in-
formation as the similarity metric.

In this paper, we describe a Gaussian scalespace theory based
approach to simultaneously align global structure such as overall
shape, as well as detail such as the skeleton, in small animals. Scale
space theory provides a framework for the analysis of images at dif-
ferent levels of detail [6]. It is based on generating a one parameter
family of images by blurring an image with Gaussian kernels of in-
creasing width (the scale parameter), and analyzing these blurred
images (the scale-space images) to extract structural features, which
can be used in image registration [7]. We extract scale-space feature
vectors at each voxel of the target and template images that are to be
registered. We define the scale-space feature vectors at each voxel
of an image as a vector of the intensities of its scale-space images
at that voxel. We align the scale-space feature vectors with the goal
of finding a common mapping that aligns the fine structure that ap-
pears in the images at lower scales, as well as the global structure
that remains in the images at higher scales. We do not explicitly
impose any rigidity constraints near the skeleton. We use mutual
information (MI) as a similarity metric between the target and tem-
plate images since it measures the similarity between distributions of
intensities rather than actual values of intensities in the image, thus
being more robust to intensity differences in these images [8]. This
multi-scale approach has the additional advantage of having a cost
function that is less prone to local minima [2], and hence is able to
perform large non-linear deformations accurately.

We parameterize the displacement field using the DCT basis,
and use the Laplacian of the field as a regularizing term. The DCT
bases are eigen functions of the discrete Laplacian, so using the DCT
representation of the displacement field in conjunction with Lapla-
cian regularization simplifies the regularization term to a diagonal
matrix. Moreover, the DCT basis gives an efficient representation of
the displacement field, allowing us to represent the field using only a
few coefficients. Fast implementations of DCT are readily available,
and can be used to further reduce the computation time.

In this paper, we apply the scale-space registration algorithm to
CT images from a longitudinal mouse study. We compare the results
of this scale-space approach with those obtained by a hierarchical
multi-scale approach that is commonly used in brain registration,
where images at each scale are aligned hierarchically, starting at the
highest scale and ending at the lowest scale.

2. METHODS AND RESULTS

2.1. Mutual information based non-rigid registration

Let i1(x) and i2(x) represent the intensities of target and template
images respectively at position x. Let the transformation that maps
the target to the template be T (x) = x − u(x), where u(x) is the
displacement field.
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Let the feature vectors extracted from the target and template
images at voxel x be i1(x) and i2(x) respectively. These can be
considered as realizations of the random vectors I1 and I2. Let Ns

be the number of features in each feature vector such that I1 =
[I1

1 , I2

1 , · · · , INs

1
]T , where I

j
1
is the random variable correspond-

ing to feature j of the target image. Then, the mutual informa-
tion between feature vectors of the target and deformed template,
Du(I1, I2) is defined as [9],

Du(I1, I2) =

∫
pu(I1, I2) log

pu(I1, I2)

p(I1)pu(I2)
dI1dI2. (1)

A differentiable estimate of the density can be obtained using Parzen
windows given by [10],

pu(I1, I2) =
∑
x

φ

(
I1 − i1(x)

ρ

)
φ

(
I2 − i2(x− u(x))

ρ

)
,

(2)
where φ is a Gaussian window and ρ determines the width of the
window.

We use the Laplacian of the displacement field as a regularizing
term. The objective function is given by

max
u

Du(I1, I2)− μ
∣∣∣∣∇2

u(x)
∣∣∣∣2 , (3)

where μ is a hyperparameter that controls the weight on the regular-
izing term.
For simplicity, we assume independence between features so that MI
between the feature vectors simplifies to the sum of MI between the
individual features.

Du(I1, I2) =

Ns∑
j=1

Du(Ij
1
, I2

j). (4)

2.2. Scale-space feature vectors

We use a Gaussian scale-space theory based approach to define fea-
ture vectors that are extracted from the images. We generate images
at different scales by blurring the target and template with Gaus-
sian kernels of increasing widths. Let the width of the Gaussian
kernel at each scale be σj , j = 1, 2, · · · , Ns, such that σj > σk

for j > k. Let the smoothing kernel at scale j be represented by
Sj(x). We define the scale-space based feature vector as i1(x) =
[i1(x)1, i1(x)2, · · · , i1(x)Ns ], where i1(x)j is the intensity of the
target image at scale j and position x, and is given by,

i1(x)j = Sj(x) ∗ i1(x). (5)

In this paper, we use Ns=2, where the first scale corresponds to
no smoothing and σ2 = 3. A coronal slice of a mouse image at these
scales is shown in Fig. 1.

We generate the feature vector of the deformed template i2(x−
u(x)) by first applying the displacement field to the original tem-
plate, and then generating the scale-space images of that deformed
image. So the feature i2(x− u)j is given by,

i2(x− u)j = Sj(x) ∗ (i2(x− u)). (6)

We observed that this performs better than deforming the origi-
nal scale-space images of the template. This could be because in our
approach, we are retaining the original relationship between intensi-
ties as a function of position in the template image while computing
i2(x − u(x)), and then computing the similarity metric between

Fig. 1. Coronal slice of scale-space images of a mouse for Ns = 2,
with scale 1 corresponding to no smoothing (left) and σ2 =3 (right).

target and a linear transformation (smoothing) of the deformed tem-
plate. In contrast, applying the displacement field to the original
scale-space images will mean that we are computing the similarity
metric between the target and a new function (Sj ∗ i2)(x−u) of the
template. Though generating the scale-space feature vectors at every
iteration increases the computation, we take this approach for better
accuracy.

2.3. Displacement field and regularization

The displacement field u(x) can be represented in terms of the DCT
basis. Let bi(x) and βi(x), i = 1, 2, · · · , Nb represent the DCT
basis vectors, and the DCT coefficients respectively. Then, the dis-
placement field is given by,

u(x) =

Nb∑
i=1

βibi(x) = B(x)β, (7)

where B(x) = [b1(x),b2(x), · · · ,bNb
(x)], and the coefficient

vector β = [β1, β2, · · · , βNb
]T .

The DCT basis vectors are eigen functions of the discrete
Laplacian. Let L be the discrete Laplacian matrix and γi, i =
1, 2, · · · , Nb be the eigen values of L corresponding to the basis
bi(x). Then,

Lu(x) = L

Nb∑
i=1

βibi(x) =

Nb∑
i=1

γiβibi(x) (8)

Hence, the discrete approximation of the norm of the Laplacian,∣∣∣∣∇2
u(x)

∣∣∣∣2 is given by,

||Lu(x)||2 =

Nb∑
i=1

γi
2
βi

2
. (9)

Thus we save the computation cost of the matrix vector multi-
plication required by the left hand side of Equation 9, by reducing
it to the vector norm on the right hand side. Additionally, since the
DCT gives a sparse representation, we can model the displacement
field with Nc < Nb coefficients to reduce computation time further.
Finally, the objective function is given by

max
β

Ns∑
j=1

DBβ(Ij
1
, I2

j)− μ(

Nc∑
j=1

γj
2
βj

2). (10)
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Fig. 2. Sagittal slice of target (left) and template (right) mouse im-
ages.

We optimize this objective function using a gradient descent algo-
rithm with Armijo line search [11].

2.4. Results

We use CT images from a longitudinal mouse study. We use two
time points of that study that are two months apart. The CT im-
ages were acquired using the microCT system at a resolution of
0.2 × 0.2 × 0.2 mm. We first perform a MI based rigid registra-
tion on the two images using the RView software [12]. The rigidly
registered images are shown in Figure 2. It can be seen that there
are considerable differences in the skeleton, soft tissue, and over-
all shape of the images. We downsampled the CT images to size
128× 128× 64, corresponding to a resolution of 0.4× 0.72× 0.51
mm to reduce computation. We used these downsampled images as
the target and template images in the non rigid registration algorithm.
We use two scales to form our feature vectors- the unsmoothed im-
age, and the image smoothed by a Gaussian kernel of size [7x7x7]
and width σ = 3. We use Nc = 30 DCT bases and μ = 5e − 6.
We first perform the non-rigid registration at only the higher scale
(σ = 3), and we use this to initialize the scale-space non rigid reg-
istration. Registration at only the lower scale (unsmoothed images)
gave a local minimum that would not be a good initialization.

We compare the scale-space registration results to those of hi-
erarchical multi-scale registration. We used the same number of
DCT bases and the same scales as the scale-space registration, with
μ = 2e − 5. We first registered the smoothed images, and used
the resulting displacement field to initialize the registration for the
unsmoothed images. The overlay on the target image of the tem-
plate image, and images registered using both approaches are shown
in Fig. 3. We applied the displacement field resulting from both
registration algorithms to the higher resolution (0.2 mm) images for
display purposes. The displacement field obtained from the scale-
space registration is shown in Fig. 4, for the coronal and sagittal
slices shown in Fig. 3

It can be seen that the scale-space non-rigid registration algo-
rithm gives better skeletal, limb, and soft tissue (such as liver and
heart) alignment than the hierarchical multi-scale algorithm.

3. DISCUSSION

We used a scale-space theory based approach for non-rigid mouse
registration using mutual information. We used the DCT basis to ef-

Fig. 3. Comparison of registered images: Coronal and sagittal views
of overlay on target image of template (top row), hierarchical multi-
scale registered image (middle row), and scale-space registered im-
age (bottom row).
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Fig. 4. Displacement field obtained from scale-space registration

ficiently represent the displacement field, as well as to simplify the
Laplacian regularization term. We generated the scale-space feature
vectors at each iteration after applying the displacement field to the
original images, since this approach gave better accuracy. We ap-
plied this algorithm to CT images of a mouse in a longitudinal study.

By using images at different scales simultaneously, we obtained
better alignment of the global structure such as the overall shape of
the mouse as well as improved alignment of detail such as the skele-
ton, compared to the hierarchical multi-scale approach. It is encour-
aging to see that using this approach, we are able to get skeletal and
soft tissue alignment simultaneously. In this study, we used only
two scales to define the feature vectors for the target and template
images. We believe that using more scales will give better perfor-
mance. Though the results presented are for images of the same
modality, we expect similar performance for multi-modality small
animal studies as well, since mutual information is robust to inten-
sity differences in the images to be registered. We plan more valida-
tion studies with longitudinal as well as inter-subject multi-modality
data.
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