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ABSTRACT

Atlases are normalized representations of anatomy that can provide a standard coordinate system for in vivo
imaging studies. For Optical Bioluminescence Tomography (OBT) in small animals, the animal’s surface to-
pography can be reconstructed from structured light measurements, but internal anatomy is unavailable unless
additional CT or MR images are acquired. We present a novel method for estimating the internal organ structure
of a mouse by warping a labeled 3D volumetric mouse atlas with the constraint that the surfaces of the two
should match. Surface-constrained harmonic maps used for this bijective warping are computed by minimizing
the covariant harmonic energy. We demonstrate the application of this warping scheme in OBT, where scat-
tering and absorption coefficients of tissue are functions of the internal anatomy and hence, better estimates
of the organ structures can lead to a more accurate forward model resulting in improved source localization.
We first estimated the subject’s internal geometry using the atlas-based warping scheme. Then the mouse was
tessellated and optical properties were assigned based on the estimated organ structure. Bioluminescent sources
were simulated, an optical forward model was computed using a finite-element solver, and multispectral data
were simulated. We evaluate the accuracy of the forward model computed using the warped atlas against that
assuming a homogeneous mouse model. This is done by comparing each model against a ‘true’ optical forward
model where the anatomy of the mouse is assumed known. We also evaluate the impact of anatomical alignment
on bioluminescence source localization.
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1. INTRODUCTION

Anatomical atlases are useful tools for molecular studies involving modalities that do not image anatomical struc-
ture, e.g. Positron Emission Tomography (PET) and Optical Bioluminescence Tomography (OBT).1 Functional
images can be overlaid on the atlas for visualization and quantitation with respect the underyling anatomy. For
OBT in small animals, where the objective is to estimate the 3D distribution of a bioluminescent source in the
animal volume from optical signal measurements on the animal surface, knowledge of internal organ geometry
is also important for the accurate modeling of light propagation through tissue.2, 3 This is because the opti-
cal properties of tissue, such as the reduced scattering coefficient µ′

s and the absorption coefficient µa, vary in
different tissue types, and misalignment of internal organs may lead to source localization errors.4

Before it can be used for these purposes, the atlas must first be aligned with the anatomy of the individual
animal being studied. Unfortunately, anatomical information is generally not available in an optical system
unless CT or MRI images are also acquired.5 However, limited anatomical information in the form of the mouse
surface topography can be estimated by projecting a structured light pattern onto the animal and using a phase
unwrapping algorithm.6 Here we explore the use of a mouse atlas (e.g. the Digimouse1) for which the anatomy
and optical properties are well defined. This atlas is warped to match the shape of the individual mouse using
surface constraints. We note that deformable atlases have been previously used for estimating internal anatomy
in OBT studies. However, the registration procedure in that case was carried out using a CT image of the mouse
being studied.7
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Rigid and nonrigid registration approaches performing volumetric warping can use landmark points, curves
and surfaces as additional constraints in combination with intensity-based matching.8–14 These methods combine
landmarks, curves14 and image matching13 in a large deformations framework ensuring generation of diffeomor-
phisms.15–17 Registration methods such as HAMMER18 incorporate geometric as well as intensity information
for alignment. In contrast, nonrigid alignment of volumes in the absence of internal intensity values and based
on only surface information is a more ill-posed problem due to the potential for anatomical variability within
the subject. Our goal in this paper is to investigate whether such a procedure can lead to useful alignment
of the atlas, producing improvements in the forward model for OBT compared to the standard homogeneous
assumption. We use a harmonic mapping based method to perform volumetric registration between the atlas
and a subject mouse based only on the animal shape. The warping transformation is then applied to the atlas
to produce an estimate of the internal anatomy of the subject.

The variation with wavelengths in the optical properties of different tissues can be used to reduce the ill-
posedness of the OBT inverse problem.3, 19 Consequently, the use of multispectral data for image reconstruc-
tion tends to yield better deep source reconstruction results compared to those obtained using achromatic or
monochromatic data. Commercial systems are available (e.g. Xenogen Corporation’s IVIS 200) that use passive
wavelength filters for multispectral data collection. Furthermore, mirror systems like the one described in3 can
be used in conjunction with commercially available systems for tomographic optical data collection. For this
study, we simulate multispectral tomographic data similar to that generated using the mirror setup and the IVIS
200 described by Chaudhari et al.3

In this paper we first describe the surface and volumetric registration method using harmonic maps for
registering two mouse volumes. We also describe a procedure for generating the multispectral OBT forward
model using the organ boundaries generated by the warping scheme described here. We show comparisons
between the volumetric registration approach presented here and a rigid registration method.20 This is done by
computing dice coefficients that are indicators of organ overlap.21 Further, we compare optical reconstruction
results for representative sources placed in the kidneys, stomach, lungs, heart and brain using our atlas-based
inhomogeneous forward model in comparison to a homogeneous forward model.

2. SURFACE AND VOLUME ALIGNMENT

We assume that the surface of the mouse being studied is available. The registration of the Digimouse atlas to
the subject is done in two steps. First we align the two surfaces, i.e. we define a one to one mapping between
the two surfaces. We then compute a volumetric map between the two volumes while retaining the surface
correspondence.

2.1. Surface Alignment

As an initialization for the volumetric registration procedure described next, the surfaces of the two mouse
volumes need to be aligned. To do this we use the intrinsic thin-plate spline based surface registration method
described by Joshi et al.,22 which produces a bijective point correspondence between the two mouse surfaces
by aligning 2D coordinate systems defined on both surfaces. This is achieved by first mapping each of the
two surfaces to two unit squares, each square representing one half of the mouse surface, with the boundary
corresponding to the midsagital plane. We then align surface landmarks by computing a coordinate deformation
field that aligns the landmark coordinates. The deformation is regularized using the thin-plate bending energy
computed with respect to the intrinsic geometry of the surfaces using a covariant bi-harmonic equation. We refer
the reader to Joshi et al.22 for a detailed description of this method. Landmarks on the surface must be defined
by the user and in the examples shown later included curves drawn along each limb.

2.2. Volume Alignment

The surface registration procedure sets up a point to point correspondence between the subject and the template
mouse surfaces. We then need to extrapolate this correspondence from the surface of the mice to the entire
volume to produce a one-to-one map. 3D harmonic maps are attractive for this purpose due to their tendency
to be bijective if the boundaries (surfaces) are mapped bijectively.



Given two 3D manifolds M and N representing mouse volumes, with boundaries ∂M and ∂N representing
the corresponding surfaces, we want to find a map from M to N such that ∂M , the surface of M , maps to ∂N ,
the surface of N . Let u : M → N be a C∞ map from a 3D Riemannian manifold (M, g) to a 3D Riemannian
manifold (N, h) where g and h are Riemannian metrics for M and N respectively. Let (x1, x2, x3) and (y1, y2, y3)
be local coordinates for x and u(x) respectively. The mapping energy in coordinate form23 is given by:

E(u) =
1

2

∫

M

3
∑

i,j=1

3
∑

α,β=1

gij(x)hαβ(u(x))
∂uα(x)

∂xi

∂uβ(x)

∂xj
dµg, (1)

where the integration is over the manifold M with respect to the intrinsic measure dµg induced by its Riemannian
metric g. A harmonic map from (M, g) to (N, h) is defined to be a critical point of the mapping energy E(u).

To compute an optimal mapping for the surface as well as the interior, we allow the surface M to flow within
the surface of N when computing the map. The only constraints placed on the surfaces are that the maps are
aligned at a set of user defined landmarks. This less restrictive surface mapping constraint cannot be formulated
directly in the ambient Euclidean 3D space since there is no analytical expression for the surfaces, although
this could be accomplished without parameterizing the surface using a level set approach.24, 25 Here we use an
intermediate representation for the manifolds which allows us to enforce the boundary matching constraint while
allowing one boundary to flow within the other. This is achieved by first mapping the subject volume to the
unit ball.

We find the map v from the manifold N to the unit ball B(0, 1) using a method described in Wang et al.26

(Figure 1). This map is bijective and therefore we can treat the unit ball B(0, 1) as an alternative representation
(N, h) of the manifold N , with associated metric h. It has an advantage over the Euclidean space (N, I) that
the surface ∂N lies on the sphere (I represents the identity metric for the Euclidean space). Now instead
of needing to directly compute the harmonic map u : (M, I) → (N, I), we instead find the harmonic map
ũ : (M, I) → (N, h) ≈ B(0, 1) subject to the constraint that the surface ∂M maps to the spherical boundary
of the unit ball, as illustrated in Figure 1. The final harmonic mapping from u : (M, I) → (N, I) can then be
computed as u = v−1 ◦ ũ as illustrated in Figure 1 (a).

The harmonic mapping problem now becomes:

ũ = arg min
γ
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subject to ‖ũ‖2 = 1 for s ∈ ∂M , the surface of M . Note that this constraint allows the surface map to flow
within the spherical boundary.

2.2.1. Initialization Procedure

Because the minimization problem is nonlinear, it is important to have a good initial estimate of the map ũ in
order to achieve convergence in a reasonable amount of time. We therefore generate an initial estimate ũ0 of
ũ by also computing a map of the second manifold (M, I) to the unit ball, just as we do for the first manifold
(N, I) (Figure 1 (b)). To compute mappings of mouse volumes to the unit ball, we first compute a mapping
of the surfaces to the unit sphere with curve landmark alignment as described in Section 2.1. The interior of
each manifold is mapped to the unit ball by computing volumetric harmonic maps. Thus, our initialization
method generates a bijective initial map, which is not necessarily harmonic, by first aligning two surfaces using
the surface matching process. Using these surface maps as constraints, we then map M and N to the unit ball to
provide, respectively, the manifold (N, h) and an initial estimate ũ0 of the desired map ũ from (M, I) to (N, h).
The initial map obtained in this manner is smooth and bijective. With this initialization, we then compute
the 3D harmonic map by minimizing (2) to obtain the desired harmonic map. The initialization procedure is
illustrated in Figure 1 (b).

We now describe the procedures by which we produce harmonic maps from M and N to the unit ball, and
the subsequent refinement of ũ0 to ũ that minimizes the harmonic energy of the map from M to N . In the



(a) Schematic (b) Initialization

Figure 1. (a) Illustration of our general framework for surface-constrained volume registration. We first compute the
map v from manifold (N, I) to the unit ball to form manifold (N, h). We then compute a map ũ from (M, I) to (N, h).
The final harmonic map from (M, I) to (N, I) is then given by u = v−1

◦ ũ. (b) The initialization for the mapping
procedure. First we generate flat square maps of the two mice. Each mouse is bisected along a midsagital plane and
each half mapped to a unit square. We then map the squares corresponding to each half of the mouse to a unit disk and
project the disks onto the unit sphere. We then generate a volumetric map from each mouse to the unit ball. Since all
these maps are bijective, the resulting map gives us a bijective point correspondence between the two mice. However,
this correspondence is not optimal with respect to the harmonic energy of maps from the first mouse to the second, but
is used as an initialization for minimization of (2)

special case when (M, g) and (N, h) are 3D Euclidean manifolds, hαβ = δβ
α, gij = gij = δ

j
i , the Kronecker delta,

or identity tensor, for α, β, i, j ∈ 1, 2, 3, and the mapping energy simplifies to

E(u) =

∫

M

|∇u|2dV (3)

where ∇ is the usual gradient operator in 3D Euclidean space and dV is the volume integral.26 In order to map
the mouse volume M to the unit ball, we minimize this energy subject to the constraint that the surface of M

maps to the surface of the unit ball using the point-to-point correspondence defined by the flat mapping obtained.
This problem is solved using numerical integration over the voxel lattice and finite differences to approximate
the gradients in (3). We minimize the resulting function using conjugate gradients.

2.2.2. Harmonic Mapping Between the Two Mouse Volumes

The aforementioned procedure is applied to both mouse volumes M and N to generate maps to the unit ball
B(0, 1) (Figure 1). The mapping of the Euclidean coordinates in M to the unit ball provides the initial estimate
ũ0 of the harmonic map ũ. We then refine this map by minimizing the harmonic energy in (2) from (M, I)
to (N, h), the unit ball representation of N . Again, the problem is solved using numerical integration and
finite difference operators, in this case accounting for the metric h when computing these derivatives. In this
mapping, the location of the landmark curves in M are constrained using their initial mappings ũ0 computed
when flattening and matching the surfaces. Other points within the mouse are allowed to move freely to minimize
the harmonic energy, subject to the constraint that all points on the surface map to ‖ũ‖2 = 1, which is achieved
by adding a penalty function to the discretized form of (2).

The harmonic mapping procedure is implemented in the following steps:

1. Align the surfaces of both the mice M and N .

2. Map the unit squares to unit disks by the transformation (x, y) → ( x√
x2+y2

, y√
x2+y2

) and then project

them onto two hemispheres using (x, y) → (x, y,±
√

x2 + y2).



3. Using this mapping of the surface to the unit sphere as the boundary condition, generate a volumetric
harmonic map of M and N to the unit ball B(0, 1) as described previously.

4. Compute the metric h associated with the unit ball B(0, 1) coordinates of N .

5. Minimize (2) holding the matched landmarks fixed, and letting the surface ∂M slide along the unit spherical
boundary of the unit ball.

6. Compute the deformation vector field u(x)− x where u = v−1 ◦ ũ and apply this to map mouse volume M

to mouse volume N .

3. FORMULATION OF THE MULTISPECTRAL OBT FORWARD MODEL

In order to solve the inverse problem in OBT for the bioluminescent source distribution (q), one has to solve
the forward problem first. The forward problem is to predict the photon fluence (b) on the boundary ∂Ω of
the animal volume Ω, given the distribution of the bioluminescent source (q) and the tissue optical properties.
The reduced scattering coefficient µ′

s (r, λ), the absorption coefficient µa (r, λ), and the refractive index η (r, λ)
are all functions of the 3D location r in tissue, and of wavelength λ. In the near-infrared (NIR) region of the
electromagnetic spectrum, the reduced scattering coefficient is much larger than the absorption coefficient, and as
a consequence, the diffusion approximation to the radiative transport equation is used.27 The diffusion equation
for the animal geometry is solved by tessellating the volume, assigning optical properties based on the warping
results to the tessellation elements and using a finite element method (FEM).28 If we assume n possible source
locations inside the animal and m detector locations on the surface then the measured data b(λ) can be modeled
as:

b(λ) = A(λ)q (4)

where A(λ) ∈ R
m×n is the monochromatic forward model at wavelength λ and q ∈ R

n is the source distribution.
Assume that optical data are collected in h spectral bins over the wavelength range of interest. The multispectral
forward model Amult is formed by concatenating the individual weighted monochromatic forward models for each
wavelength.3 The measurements bmult are concatenated similarly to obtain a system of the form

bmult = Amultq (5)

where
bmult =

[

bT (λ1) bT (λ2) · · · bT (λh)
]T

,bmult ∈ R
hm

and
Amult =

[

s(λ1)AT (λ1) s(λ2)AT (λ2) · · · s(λh)AT (λh)
]T

,Amult ∈ R
hm×n.

Here s = [ s(λ1) s(λ2) . . . s(λh)]T , s ∈ R
h represents the emission spectrum of the bioluminescent source

for h wavelength bins. Eq. 5 can be solved using the regularized pseudo-inverse method.

4. RESULTS AND DISCUSSION

4.1. Validation of Surface Based Registration

By applying the harmonic warping scheme, we can map a labeled atlas to any subject in a one-to-one manner.
This allows us to estimate the internal anatomy of the subject from the labeled anatomy of the atlas mouse.
Although estimation of anatomy based only on the surface information is inevitably inaccurate, it can align
major anatomical features approximately and thus help in estimation of organ locations. This can lead to a
a more accurate forward model and can potentially help in improving accuracy of the source reconstruction.
To validate this claim, we adopted the following methodology. As an atlas we have a manually labeled mouse
volume and the corresponding CT data.1 We obtained a CT scan of a second mouse (the ‘subject’) and used
the Automated Image Registration (AIR)29, 30 software with a 5th order polynomial warping to carry out an
intensity based registration of the subject image volume and the atlas image volume. Organ labels from the
atlas were then transferred to the subject using the deformation vector field computed by AIR. We call these
the ‘true labels’ for the subject.



Figure 2. Example of surface constrained harmonic mapping. (a) Labeled atlas volume; (b) labeled subject volume; (c)
registration of atlas to subject using surface constrained harmonic mapping. Note that the surface matches that of the
subject.

Table 1. Comparison of Dice coefficients

Organs Rigid Registration Harmonic Mapping
Brain 0.6612 0.7047
Liver 0.6194 0.6508
Kidney 0.3779 0.4363
Lungs 0.3695 0.4871
Heart 0.4610 0.4673
Bladder 0.3839 0.3632
Skeleton 0.1339 0.1572
Stomach 0.4488 0.4957
Spleen 0.1862 0.2208
Pancreas 0.1410 0.1736
Mouse Interior 0.6599 0.8241

A triangulated surface representation of the subject mouse was obtained using the BrainSuite software.31

The surface consisted of 397,767 triangles. 4 constraint curves delineating the limbs of the animal were marked
on the mouse and atlas surfaces using the curve tracing module of BrainSuite. A harmonic map from the atlas
to the subject was then computed using only surface information. The organ labels from the atlas were then
transferred to the subject using the computed harmonic map. We denote these as the ‘estimated labels’ for the
subject.

The accuracy of registration was quantified as the overlap between ‘true’ and ‘estimated’ labels using Dice

coefficients. The Dice coefficient measures the intersection of any two sets S1 and S2 and is defined as 2|S1∩S2|
|S1|+|S2|

where | · | denotes size of the set or equivalently the number of voxels in each labelled organ.21 A comparison of
the Dice coefficients for our harmonic mapping method and for rigid registration, again using surface information
only, is shown in Table 4.1. The table indicates clear improvements in alignment of structures using our harmonic
method when compared to the rigid registration approach. While the rigid registration does not accurately match
the two surfaces, the harmonic mapping does. However, even when the surfaces are aligned, the corresponding
deformation of the interior volume is ambiguous so that our regularized harmonic mapping has limited accuracy.



4.2. OBT Forward Model and Reconstruction

The volume of the subject was tessellated into 471,974 tetrahedrons and 79,670 nodes using the delaunay tetra-
hedralization method. Tissue labels from the warped atlas were transferred to the corresponding tetrahedrons
in the space of the subject and optical properties were assigned element-wise to 11 tissue types (brain, liver,
kidneys, lungs, heart, muscle, bladder, skeleton, stomach, spleen, and pancreas) based on published results.2

7,530 sources were defined inside the animal volume with a grid spacing of 1.6 mm and multispectral data were
simulated at 2,530 surface nodes. The bioluminescent source is assumed to have the emission spectrum of firefly
luciferase.32 The multispectral optical forward model for the warped atlas (W) was assembled for six 20 nm-wide
wavelength bands between 560 nm and 660 nm using an efficient finite-element solver. The forward model (H)
corresponding to the homogeneous mouse volume was generated by assigning muscle optical properties to all
internal organs. To evaluate the accuracy of the two forward models, a ‘true’ model (T) was computed. This
was done using the internal organ structure for the subject. We present correlation results between T and W,
and between T and H for representative sources located in 5 internal organs (kidneys, stomach, lungs, heart
and the brain). Further, we analyze localization errors for the representative sources when W or H are used for
inversion instead of T. The inversion in all cases was carried out using an L2 regularized pseudo-inverse.33

4.3. Correlation Analysis of Optical Forward Fields

In order to evaluate the accuracy of the forward solution, we computed the correlation coefficients between the
true model T and the warped atlas W, and those between the T and the homogeneous animal volume forward
model H. The correlation coefficients between T and W were computed for all source locations for every surface
node. The average of these coefficients was R = 0.98 as against that between T and H which was R = 0.95.
We also compared the models by computing correlations across the set of surface nodes for representative source
locations. Table 4.3 shows the organs in which the sources were located and the corresponding average correlation
coefficients. Both the detector and source correlation studies indicate that the forward model computed from
warped labels W is closer to the true forward model T than the homogeneous mouse forward model H and
provides a better approximation. Consequently, we expect improved reconstruction results when solving the
OBT inverse problem using W in place of the homogeneous model H.

Table 2. Correlation coefficients computed for representative sources in internal organs across all surface nodes

Organ # of sources Warped Homogeneous
Kidney 841 0.98 0.96
Stomach 437 0.93 0.95
Lungs 1044 0.98 0.93
Heart 565 0.99 0.96
Brain 1008 0.94 0.94

4.4. Localization Accuracy using the Warped and Homogeneous OBT Forward Models

In the absence of noise, the regularized pseudo-inverse gives accurate reconstruction results if the true forward
model is used for data generation and source reconstruction and the regularization parameter α is small. If the
model is anatomically perturbed, as is the case here when using the warped atlas or the homogeneous model, this
solution becomes distorted and a larger α value needs to be chosen. As the regularization parameter is increased,
the resolution drops and, for sufficiently large α, reconstructed distributions tend to be superficial. For the
studies presented here we empirically selected an optimal value for α to approximately optimize performance
for both H and W keeping a fixed value for all studies. Table 4.4 shows the percentage of sources accurately
reconstructed using the true animal geometry to generate the data, and the warped and homogeneous forward
models for inversion. We define the localization error as the spatial distance between the maxima of the smoothed
reconstructed solution and the true source location. These results indicate a higher percentage of sources are
accurately reconstructed using the warped model W although the differences are smaller than we might have
expected based on the earlier comparison of Dice coefficients.



Table 3. Table shows the percentage of sources that were accurately reconstructed within 1.6 mm (one grid spacing) of
the original source location.

Organ Kidney Stomach Lungs Heart Brain
# of sources 841 437 1044 565 1008

Warped 76 58 81 87 54
Homogeneous 71 57 71 85 53

Figure 4.4 shows a simulation study conducted for a tumor located deep in the mouse. The reconstructed
distribution using the homogeneous mouse forward model tends to be deeper in tissue than the true location. This
can be attributed to the variation in optical properties for different tissue types in that region. Reconstruction
results using the warped model show more accurate localization in this case. These results indicate that in some
cases it may be advantageous to use the warped atlas rather than a homogeneous model although the results
shown in Table 4.4 indicate that the fraction of sources where localization is substantially improved may be
relatively small.

Figure 3. OBT reconstructions for a tumor located deep in the mouse: (a) shows the original source location, (b) shows
the 3D reconstructed distribution using the warped model and (c) shows the reconstructed distribution for the source
using the homogeneous model

5. CONCLUSION

We have developed a novel volumetric warping scheme with surface and landmark constraints and applied it to
atlas-based bioluminescent source reconstruction in OBT. Analysis of correlation coefficients between the data
from the warped, homogeneous and the true models showed warping by the method presented here yielded a more
accurate photon transport model than the one obtained by assuming the mouse to be homogeneous. Simulation
results of localization error show small but consistent improvements in localization accuracy compared to the
homogeneous model. Consequently in general use we might expect this approach to lead to some improvement in
overall accuracy of the reconstructed images, although clearly, direct access to anatomical images of each subject



would result in further improvements. A potentially more powerful application of this approach is in longitudinal
studies in which functional images are acquired over time but only a single anatomical image is acquired. The
warping procedure described here could be used to realign this anatomical image each to each of the functional
studies using surfaces obtained with structured light methods.
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