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ABSTRACT

3D volumetric registration of brain images is particularly
challenging in cortical regions due to their high complexity
and folding. Here we develop a new combined algorithm for
surface and volume registration of brain MR images. Our
method proceeds in 3 steps: First, we segment the cortices
and use the Freesurfer registration algorithm to obtain a map
between cortical surfaces. This matching is extended to the
whole brain volume by computing an harmonic map between
the brain manifolds such that their surfaces remain aligned.
Finally, the registered images from the first two steps are
used as input to a 3D Riemannian fluid algorithm in order
to obtain an accurate matching of the subcortical structures.
The results show significant improvement over using fluid
registration alone.

Index Terms— brain, image analysis, Magnetic Reso-
nance Imaging, image registration

1. INTRODUCTION

The accurate non-linear matching of brain images is of great
importance in medical imaging and neuroscience. Applica-
tions include the alignment of images from different subjects,
time points or modalities, the comparison of brain anatomy
between healthy and diseased populations, brain growth in
childhood and adolescence [22] and genetic influences on
brain structure [23].

Non-linear image registration consists of deforming
a template imageT to match a study imageS. Typi-
cally, a displacement vector field~u(~r) is found such that
|T (~r − ~u) − S(~r)| is minimized, thus aligning geometrical
features of the images. Herer is the voxel location. The
anatomical correspondence between images is determined
either from intensity-based comparisons between the images,
for instance the mean square intensity difference between im-
ages, or mutual information, or from common features such
as anatomical landmarks. These correspondences are used to

drive the registration. At the same time, a regularizer is used
to constrain the transformation and ensure that the deforma-
tion is smooth, or has several desirable properties that may
required by the problem at hand such as inverse-consistency,
or invertibility.

One common way to select a regularizer is to assign a
continuum mechanical law to the deforming image medium.
For instance, in elastic registration [8], the image is regarded
as embedded in an elastic medium. A force is applied based
on the chosen similarity function that pulls the template into
agreement with the study, while elastic forces attempt to re-
store it to its original shape. Elastic registration works very
well in cases where small deformations are needed, for in-
stance in longitudinal studies where the same subject is com-
pared at two time points and only small changes are expected.
However, large deformations can induce shearing or tearing
of the elastic medium. As a result, when there are substan-
tial differences between the two images, other methods are
used instead. In fluid registration [6], for instance, the im-
age is treated as embedded in a viscous fluid that follows a
linearized version of the Navier-Stokes equation, with a ve-
locity field that is the time derivative of the deformation field
~v(~r, t) = d~u(~r,t)

dt
. The template image is flowed onto the study

image, while the driving force is again generated from a simi-
larity function. The fluid flow allows large deformations with-
out shearing or tearing the image.

More recently, in [17], a new elastic regularizer was
proposed. The regularization is done on the matricesΣ =

(∇~(u)+I)T (∇~u+I), which characterize the local changes in
shape and volume due to the registration. HereI is the iden-
tity matrix. As theΣ’s are positive-definite symmetric ma-
trices, the computations are performed in the Log-Euclidean
framework [1], which allows analytical computations on the
manifold ofΣ’s. We developed a fluid version of this method
in [5], where the rate of change ofΣ was regularized instead.

However, algorithms such as fluid registration that at-
tempt to register whole brain volumes usually give poor
results on the cortex, due to the high complexity and variabil-



ity of cortical surfaces. Thus, when good cortical registration
is required, comparisons are often made by segmenting them
and matching the segmented surfaces. The registrations are
generally performed by first transforming the cortical sur-
faces to some intermediate and more regular surface such as
the plane or sphere, though some recent algorithms have been
developed to register the cortical surfaces directly [20].Typ-
ically, sets of sulci or gyri are that are common to all normal
brains are used as landmarks to guide the transformation [23].

In [11], a new algorithm was designed that combines both
surface and volume registrations. First, the cortical surfaces
are parametrized and aligned using traced sulci as landmarks.
A constrained harmonic mapping is then used to extend this
correspondence to the whole brain volume. Finally, an elastic
registration is performed to align the subcortical structures.

The algorithm in [11] gives very accurate matching near
the cortex. However, as the volume registration uses an elastic
regularizer, it is not ideal for matching subcortical structures
when large deformations are needed. Here we improve on the
algorithm in [11] by substituting the elastic volume registra-
tion with the Riemannian fluid algorithm from [5]. More for-
mally, our combined algorithm addresses the following prob-
lem: produce a one-to-one mapping between two brain vol-
umes such that (1) subcortical structures and sulcal landmarks
are aligned and (2) there is also a smooth one-to-one corre-
spondence between the cortical surfaces of the two volumes.
Equivalently, given 3D manifoldsM andN representing the
two brain volumes, with boundaries∂M and∂N represent-
ing their respective cortical surfaces, we find a map fromM
to N such that∂M , the surface ofM , maps to∂N , the sur-
face ofN , and the intensities of the images in the interior of
M andN are matched as far as possible. In addition, the map
satisfies a surface matching constraint so that the surface∂M
maps onto∂N . The boundaries,∂M and∂N , are assumed to
have a spherical topology.

We validate our new combined algorithm using MR im-
ages from healthy control adult subjects.

2. METHOD

2.1. Surface-Volume registration

Intensity-based volume registration methods can align sub-
cortical structures well, but the variability in sulcal folding
patterns typically results in misalignment of the corticalsur-
face. Conversely, surface-based registration using sulcal fea-
tures can produce excellent cortical alignment but the map-
ping between brains is restricted to the cortical surface. The
algorithm in [11] uses sulci as landmarks for cortical registra-
tion. However, for large data sets, this method is prohibitive
as the landmarks need to be hand traced. Here instead, we
used Freesurfer [7] to perform the alignment of the cortical
surfaces. The registration was done to another subject from
the same dataset for which the cortex was extracted to serve

as the target surface. We then use a constrained harmonic
mapping from [11] to extend this surface correspondence to
the entire cortical volume.

We solve the mapping problem in three steps:

1. Surface matching, which computes a map between∂M
and ∂N , the cortical surfaces of the two brains. We
used Freesurfer to perform this alignment.

2. Extrapolation of the surface map to the entire enclosed
cerebral volume such that the cortical surfaces remain
aligned. This is done by computing a harmonic map
u from M to N with a surface matching constraint.
The map is computed using an intermediate unit ball
space. Lethαβ denote the metric ofN associated with
the unit ball mapping ofN . Then the harmonic map
u : M → N can be computed by minimizing the map-
ping energy:

E(u) =
1

2

∫
M

3∑
i,j=1

3∑
α,β=1

hαβ(u(x))
∂uα(x)

∂xi

∂uβ(x)

∂xj
dµg,

(1)
The harmonic mapu computed by minimizing the
mapping energy defines a diffeomorphism between
subject and target volumes such that the sulcal fold-
ing patterns register. The details of this method are
described in [11]

3. Refinement of the harmonic map on the interiors ofM
and N to improve intensity alignment of subcortical
structures. For this we use the Riemannian fluid ap-
proach described in [5]. An outline of the method is
described in the following section.

2.2. Volume registration

In fluid registration, the matching is performed in a series of
time steps,dt. The velocity~v(~x, t) (the time derivative of the
displacement field~u = d~v/dt) is computed at each timet and
voxel~x from:

d~v(~x, t)

dt
= ∇Cost + ∇Reg(~v, t) − v (2)

whereCost denotes the similarity cost function andReg is
the regularizer.~v is integrated over time to obtain the final
displacement field~u.

In Riemannian fluid registration, the regularization is per-
formed on the matrix logarithm of the rate of strainΣv =
(∇~v + I)T (∇~v + I):

RegRiem(~v, t) =

∫
µ

4
Tr(log(Σ2

v))+
λ

8
Tr(log(Σv))2. (3)

The coefficientsµ andλ are the parameters of the fluid (sim-
ilar to the Lamé coefficients) and are chosen by the user.



RegRiem is the fluid equivalent of the Riemannian elastic
regularizer from [17], which is found by replacingΣv by Σ
in Eq. 2. The deformation tensorsΣ = (∇~u + I)T (∇~u + I)
characterize the local shape and volume deformation. These
tensors live on the curved manifold of positive-definite, sym-
metric matrices. Taking the matrix logarithm ofΣ transports
it to the tangent plane at the origin of the manifold, which is
a flat space in which simple computations can be performed
[1].

We chose an intensity-based similarity measure, that is,
the gradient of the difference in intensity between the tem-
plateT and the studyS:

∇Cost(~x, ~u(~x, t)) = −[T (~x − ~u(~x, t)) − S(~x)]∇T |~x−~u(~x,t)

Details of the implementation may be found in [5].

2.3. Data

We used a dataset of MR images from healthy adult sub-
jects. Our images were collected using a 4 Tesla Bruker Med-
spec whole body scanner (Bruker Medical, Ettingen, Ger-
many) at the Center for Magnetic Resonance (University of
Queensland, Australia). Three-dimensionalT 1-weighted im-
ages were acquired with a magnetization prepared rapid gra-
dient echo (MP-RAGE) sequence to resolve anatomy at high
resolution. Acquisition parameters were: inversion time (TI)
/repetition time (TR) /echo time (TE) = 1500 / 2500 / 3.83
msec; flip angle= 15o; slice thickness= 0.9 mm with a
256x256x256 acquisition matrix.

Extracerebral (non-brain) tissues were manually deleted
from the MRI images using the 3D interactive program Dis-
play (Montreal Neurological Institute, McGill University,
Canada). All scans were then aligned to the ICBM53 tem-
plate using 9-parameter registration (i.e., translational and
rotational alignment, allowing scaling in 3 independent di-
rections) found in theFMRIB’s Linear Image Registration
Toolbox,FLIRT [10].

2.4. Non-linear Registration

For each image in the data set, we obtained an initial dis-
placement field~u0, and an initial registered image from the
harmonic mapping algorithm described in sec. 2.1. The reg-
istered image was used as input for the 3D Riemannian fluid
algorithm from sec. 2.2. The final displacement field was
obtained by concatenating the displacements from the sur-
face and 3D non-linear registration steps. In our implemen-
tation, the final displacements were computed from the com-
mon template to each image in the data set, while the regis-
tered image was the result of transforming each subject into
the template, thus allowing all comparisons to be made in the
common space.

3. RESULTS

In Fig.1, we compare the results of our combined registration
algorithm with those of using the Riemannian fluid registra-
tion alone, without surface constraints. Subcortical regions
are well registered with both algorithms. However, the com-
bined algorithm far outperforms the 3D Riemannian registra-
tion in cortical areas.

Fig. 1. Comparison of the results of the combined algorithm
to those of the 3D Riemannian algorithm with no surface con-
straints. Registration results are shown mapping one subject
to a template for sagittal (left column), coronal (middle col-
umn) and horizontal (right column) slices. The top row is the
moving image and the second row the fixed target image. The
last two rows show the results of the registration for the volu-
metric (third row) and combined (fourth row) algorithms; the
fourth row shows accurate cortical and subcortical registra-
tion.

4. DISCUSSION

We investigated the a new combined algorithm for the reg-
istration of brain MR images. Our algorithm was tested on
a data set of MZ and DZ twins, and showed significant im-
provement over using fluid registration alone, particularly in
the vicinity of the cortex.

There are several ways to achieve a good registration over
the whole brain volume, including the cortical surface. The
simplest one, which we investigated here, is to use a cortical
surface registration to obtain an initialization for a 3D regis-



Fig. 2. Deformation of a regular grid from the registration

tration. In that case, as we showed here, the matching con-
verges to better local minimum compared to the one found
from the fluid registration alone. However, as the cortex is al-
lowed to move during the fluid registration, it can potentially
reduce the accuracy of the matching found from the cortical
matching algorithm. Thus, as an alternative, one could choose
instead to re-introduce the cost function from the first cortical
matching algorithm into the volume registration, either asa
hard constraint or with a Lagrange multiplier. As the match-
ing was already quite good with the first method, this second
method was not pursued here, though it would be an inter-
esting extension of this work. Finally, in cases where both
the above methods fail, a third option would be to force the
displacements from the Riemannian fluid algorithm to match
those found from the cortical mapping.
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