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Abstract. Volumetric registration of brain MR images presents a chal-
lenging problem due to the wide variety of sulcal folding patterns. We
present a novel volumetric registration method based on an intermediate
parameter space in which the shape differences are normalized. First, we
generate a 3D harmonic map of each brain volume to unit ball which is
used as an intermediate space. Cortical surface features and volumetric
intensity are then used to find a simultaneous surface and volume regis-
tration. We present a finite element method for the registration by using
a tetrahedral volumetric mesh for registering the interior volumetric in-
formation and the corresponding triangulated mesh at the surface points.
This framework aligns the convoluted sulcal folding patterns as well as
the subcortical structures by allowing simultaneous flow of surface and
volumes for registration. We describe the methodology and FEM imple-
mentation and then evaluate the method in terms of the overlap between
segmented structures in coregistered brains.

1 Introduction

Inter-subject studies for detecting systematic patterns of brain structure and
function in human populations require that the data first be transformed to
a common coordinate system in which anatomical structures are aligned [1, 2].
Similarly, inter-subject longitudinal studies or group analyses of functional data
also require that the images first be anatomically aligned. Such an alignment
is commonly performed either with respect to the entire volumetric space or is
restricted to the cortical surface [3–7]. While volumetric approaches [8–10] per-
form well at aligning the interior of the brain e.g. subcortical structures, they
often fail to align the folding patterns of the sulcal anatomy [11]. On the other
hand, surface based registration techniques align the sulcal folds, but they do
not define a volumetric correspondence between points in the interior. In order
to overcome the shortcomings of these two types of methods, approaches have
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been developed recently to combine surface and volume registration [12, 13]. In
these methods surface registration is performed first and then used to constrain
the full volumetric registration. In contrast to these methods, we present a novel
framework in which both surface and volume registrations are performed simul-
taneously. This is achieved by using an intermediate unit ball parameter space
in which the shape differences in the two brain volumes are normalized.

The motivation for using an intermediate parameter space for volumetric reg-
istration is derived from surface registration approaches in which the challenging
problem of normalizing large folding pattern differences is solved by mapping the
surface to a flat space such as a sphere [14, 5, 15] or a square [3]. We extend this
idea to volume registration where we first generate a harmonic map of the two
volumes to a unit ball and thus generate an initial diffeomorphism between be-
tween two volumes exhibiting very different folding patterns on their surfaces.
The point correspondence defined by this initial mapping is further refined by
using additional information in the form of intensity values and surface curva-
ture information. This approach presents a unified framework in which surface
and volume data can be combined together for their joint registration.

2 Methods

2.1 Problem Statement and Formulation

Given two 3D manifolds Ω1 and Ω2 representing subject and target brain vol-
umes, with boundaries ∂Ω1 and ∂Ω2 representing corresponding cortical sur-
faces, we want to find a map from Ω1 to Ω2 such that ∂Ω1, the surface of Ω1,
maps to Ω2, the surface of Ω2, and the intensities of the images in the interior of
Ω1 and Ω2 are matched. The boundaries, ∂Ω1 and ∂Ω2, representing the cortical
surfaces of the two brain volumes are assumed to have a spherical topology. We
perform this registration in the following steps:

– The two surfaces ∂Ω1 and ∂Ω2 are flattened and are mapped to spheres.
– The interior volumes of the two brains Ω1 and Ω2 are mapped to the interior

of unit balls by 3D harmonic maps.
– The induced mapping from subject brain Ω1 to Ω2 is refined by minimizing

a cost function with intensity matching and surface curvatures matching
terms.

Parameterization-based methods are commonly used for surface registrations
especially for registration of the cortical sheet because the intermediate flat
space, either a square or a sphere, provides a convenient common space in which
structural and functional surface data can be used for performing the alignment.
The large-scale differences are normalized in this representation and so the regis-
tration problem is simplified to some extent. The disadvantage of this approach
is that the metric distortion that takes place during the flat mapping can affect
the registration results in locations where the Jacobian of the map is not close
to unity. However this can be accounted for by weighting the cost function by
the determinant of the Jacobian for the transformation from subject brain to
the target brain.



2.2 Surface-Volume Parameter space

In this section we describe the unit ball parameter space [16–18] used for simul-
taneous surface and volume registration. As a first step, the cortical surfaces
of subject and target denoted by ∂Ω1 and ∂Ω2 are mapped to unit balls [19].
We choose the unit ball as a parameter space because the harmonic maps from
brain to the ball are known to be diffeomorphic [18]. To compute mappings of
the brain manifolds to the unit ball, we first compute a mapping of the brain
surface to the unit sphere. To map the interior of the manifold to the interior of
the unit ball B(0, 1), the mapping energy

E(v) =

∫

Ωi

‖∇v‖2dV, i = 1, 2 (1)

is minimized to get v with the constraint that the surface ∂N maps to the unit
sphere, the boundary of B(0, 1). Here ∇ is the usual gradient operator in 3D Eu-
clidean space and dV denotes the volume integral. This mapping is performed for
both the brains Ω1 and Ω2. The minimization is performed by using numerical
integration over the voxel lattice and finite differences to approximate the gradi-
ents. The resulting discretized cost function is minimized by conjugate gradient.
The result of this minimization is a harmonic map to the unit ball. This map is
known to be diffeomorphic [18]. The one-to-one point correspondence between
the brain volume and the unit ball is then used to map the intensity data to
the interior of the unit ball and the curvature data to the spherical boundary of
the ball (see Fig. 2). In this manner we generate harmonic maps v1 and v2 from
subject and target brains to the unit ball.

2.3 Generation of the Tetrahedral Mesh

We applied TetGen [20] to create a standard unit ball using using 2, 663, 731
tetrahedrons and 81, 920 triangles (see Fig. 1) on its surface. The mapped inten-
sity volumes and curvature maps for the two brains were resampled to the nodes
of the tetrahedral mesh, representing the common parameter space, by using
linear interpolation. The resampled image intensities and curvatures as shown
in figure 2 are used in the subsequent sections for the registration. We denote
the resampled intensities are denoted by I1 and I2 and curvatures by Ic

1 and Ic
2 .

2.4 Cost Function

In order to register the surface and volume data of the brain, a dissimilarity
cost function is minimized. We develop a cost function for registration with four
terms designed to control different requirements of the registration warp:

– We want the intensity across the two brain volumes to match
– We want the curvature on the surface of the brains to match
– The deformation from one brain to the other should be smooth
– The Jacobian of the transformation should be non-negative



Fig. 1. Mapping of (a) the surface curvature to the unit sphere and (b) MRI intensities
to the interior of the unit ball.

Let x = (x1, x2, x3) denote 3D coordinates of the subject, y = (y1, y2, y3) de-
note 3D coordinates of the target and z = (z1, z2, z3) denotes the 3D coordinates
of the unit ball.

Intensity and Curvature Mismatch The intensity mismatch term is com-
puted with respect to the target coordinates. Let U denotes the unit ball. There-
fore we define a intensity mismatch cost:

C1(u) =

∫

U

(I1(x+ d(x)) − I2(x))
2
dV (2)

where the integration is over the whole brain volume V . The mapping from
subject to target u is u(x) = x+ d(x). Similarly, for curvature,

C2(u) =

∫

∂U

(Ic
1(x+ d(x)) − Ic

2(x))
2
dS (3)

where the integration is over the whole brain surface ∂Ω1.

Smoothness of the Deformation We want the displacement vector field
from the subject brain to the target be smooth. This is done by penalizing the



displacement by an elastic energy, i.e., C3(d) corresponding to deformation d

[13, 21]:

C3(d) = f = −div
[

(I + ∇d) Ŝ
]

Ŝ : Ω → R
3, (4)

where Ŝ denotes the second Piola-Kirchoff stress tensor defined by Ŝ = λTr (Ĝ)I + 2µĜ
with Ĝ = 1

2

(
∇dT + ∇d+ ∇dT∇d

)
representing the Green-St. Venant strain

tensor. The coefficients λ and µ are Lamés elastic constants. Commonly, these
coefficients are used in formulae for computing the Young’s modulus Y = µ 3λ+2µ

λ+µ

and the Poisson ratio ν = λ
2(λ+µ) . Linearization of (4) using Fréchet derivatives

leads to
C3(d) = −div(S), (5)

where, S = λTr(G)+2µG is the linearized stress tensor and G = 1
2

(
∇d+ ∇dT

)

is the linearized strain tensor [13]. The elasticity operator C3 is discretized by
using a finite element method as described in the Appendix. In brief, the equilib-
rium equation in (5) is formulated by applying a variational principle for energy
minimization, that leads to a quadratic form dTKd, where d = [d1, d2..., dN ]T

is the vector of displacements at N nodes in the tetrahedral mesh. The matrix
K discretizes the elastic energy operator and is defined in the Appendix. The
discretized elastic energy becomes:

C3(d) = dTKd. (6)

Non-positive Jacobian We want the transformation to be non-singular and
hence we would like to have a large penalty on negative and small Jacobian. We
use the chain rule to compute the Jacobian

D(u)|x = D(v−1 ◦ ũ)|x = D(v−1
2 )|v1(x) ◦D(ṽ1)|x (7)

whereD denotes the derivative operator. Therefore, its determinant is calculated
as

|D(u)|x| =
∣
∣D(v−1

2 )|v1(x)

∣
∣ |D(v2)|x| (8)

=
∣
∣D(v2)|v1(x)

∣
∣
−1

|D(v2)|x| (9)

the associated cost function can be calculated

C4(u) =

∫

(1 − sgm(|D(u)|x|))
2dV (10)

where sgm(x) = 1
1+e−t . This cost function penalizes small and negative Jacobians

and thus reduces the probability of folding in the registration maps.

3 Volume Image Displacement Vector Field

The key to the function minimization is computing derivatives of the intensity
difference cost function (eq. 2) on the tetrahedral mesh inside of the unit ball, and



Fig. 2. Schematic of our method. The intermediate unit ball is used as a common space
for volumetric registration.

curvature difference cost function (eq. 3) on the triangulated mesh of the sphere.
Here we show the discretization of the intensity image for the tetrahedral mesh
using finite elements. Discretization of the curvature image on the triangulated
mesh is performed similarly, except that in case of surface, the vector field on
the sphere is constrained to be tangential to the sphere.

3.1 Tetrahedral mesh image similarity cost function

The intensity dissimilarity cost function (eq. 2) for a tetrahedral mesh is given
by:

C(d1, d2, d3) =

∫ ∫ ∫

[I1(z1 + d1(z), z2

+ d2(z), z3 + d3(z)) − I2(z1, z2, z3)]
2dz1dz2dz3

Let I1(z1 + d1(z), z2 + d2(z), z3 + z3(z)) =
∑

j∈V Î
j
1φj(z1, z2, z3) where V

is the set of vertices and φj(z1, z2, z3) denotes piecewise linear interpolating

basis functions [22], Îj
1 is the warped subject image I1(z1 + d1, z2 + d2, z3 + d3)

interpolated at the set of vertices and I2(z1, z2, z3) =
∑

j∈V I
j
2ψj(z1, z2, z3) where

I
j
2 is I2(z1, z2, z3) interpolated at the vertex points. Also let d1(z1, z2, z3) =

∑

j∈V z
j
1ψj(z1, z2, z3), d2(z1, z2, z3) =

∑

j∈V d
j
2ψj(z1, z2, z3) and d3(z1, z2, z3) =

∑

j∈V d
j
3ψj(z1, z2, z3).

Therefore the intensity dissimilarity cost function becomes

C(d1,d2,d3) =

∫ ∫ ∫



∑

j∈V

(
ˆ
I

j
1 − I

j
2)ψj(z1, z2, z3)





2

dz1dz2dz3



Fig. 3. (a) Displacement field on the surface overlaid on the curvature map, (b) volu-
metric displacement field (c) cost function as a function of iteration number.

We minimize the intensity difference cost function by using gradient descent.
Therefore the gradient of the cost function needs to be calculated. The derivative
with respect to one coordinate is given by:

∂C

∂dk
1

=

∫ ∫ ∫
∑

j∈V

2(
ˆ
I

j
1 − I

j
2)ψj(z1, z2, z3)

∂I1(z1 + d1(z), z2 + z2(z), z3 + d3(z))

∂(z1 + dk
1)

∂(z1 + d1(z))

∂(dk
1)

dz1dz2dz3

=

∫ ∫ ∫
∑

j∈V

2(
ˆ
I

j
1 − I

j
2)ψj(z)

∂I1(z1 + d1(z), z2 + d2(z), z3 + d3(z))

∂(z1 + dk
1)

ψk(z)dz1dz2dz3

= 2
∑

j∈V

(∫

z

ψj(z)ψk(z)dz1dz2dz3

)

W j ,

where W j indicate the rest of terms. Derivatives with respect to coordinates
u

j
2 are found similarly. The terms in the integral have a closed form for the

tetrahedral mesh and are given by:

∫

z1,z2,z3

ψj(z1, z2, z3)ψk(z1, z2, z3)dxdydz =

{

20
∑

t∈Tjk
Vt j = k

10
∑

t∈Tjk
Vt j 6= k

where Tjk denotes a set tetrahedrons with vertices j and k [22]. The cost function



Fig. 4. MR intensity images in the tetrahedral mesh of the unit ball space for subject,
target and warped subject.

C(d) = C1(d) + C2(d) + C3(d) + C4(d) is minimized by using steepest descent.
The point correspondence between the two brains induced in their unit-ball
representations is then applied to the 3D volumes to find a displacement field in
3D using linear interpolation.

4 Implementation and Results

Assuming T1 weighted MR images of the subject and the target brains, the
method assumes extracted cortical surface and pial surface, as well as, the brain
masks corresponding to the subject and target brains. Here we used a com-
bination of BrainSuite [23] and FreeSurfer [5] for surface extraction, spherical
mapping and computation of the curvature. This spherical representation was
then used as described in Sec. 2.3 for generating a volumetric harmonic map.
This sequence of operations is performed for both target and subject brains to
generate a unit ball representation of the two brains. The registration of the
two unit ball representations of the brains is then performed and the mapping
induced by this intermediate unit ball space is applied to the 3D volumes. The
registration results are shown in Fig. 4. For validating our method we used man-
ually labeled brain data from IBSR database at the Center for Morphometric
Analysis at Massachusetts General Hospital. These data include volumetric MR
data and hand segmented and labeled structures. We then applied the HAM-
MER software and our method. HAMMER is an automated method for volume
registration which is able to achieve improved alignment of geometric features
by basing the alignment on an attribute vector that includes a set of geometric
moment invariants rather than simply the voxel intensities. To evaluate accu-
racy, we computed the Dice coefficients [24] for each subcortical structure, where
the structure names and boundaries were taken from the IBSR database. The
method was implemented in Matlab and in a current non-optimized implemen-
tation takes 8 hours to perform a total of 100 iterations of gradient descent on
a Pentium IV 3.2GHz desktop workstation. We performed 100 iterations of gra-



Fig. 5. MR intensity images as well as subcortical labels for subject, target MR and
warped subject.

dient descent. Reduction of the cost function with iteration number is shown in
Fig. 3(c). Dice coefficients averaged over all structures show a small improvement
compared to HAMMER. More importantly, the resulting registration has one to
one correspondence between all points on the cortical surface and should have
improved sulcal alignment due to the curvature matching term in our cost func-
tion. A more detailed validation will quantify performance in terms of volumetric
and surface alignment.

Table 1. Comparison of Dice coefficients

Subcortical Structure HAMMER Our Method

Left Thalamus 0.7365 0.8463
Left Caudate 0.5820 0.6912
Left Putamen 0.5186 0.7700
Left Hippocampus 0.6837 0.8918
Right Thalamus 0.8719 0.8291
Right Caudate 0.8107 0.6474
Right Putamen 0.6759 0.7862
Right Hippocampus 0.5974 0.8188

Average dice coeffs 0.7658 0.7920

5 Discussion and Conclusion

We presented a parameterization-based framework for registration in which
surface-based and volumetric features can be combined together for registration.



We used MR intensity as a volumetric features and curvature as surface-based
feature. For multimodality images, additional volumetric features can be used if
available. By mapping the two brains to the unit ball and performed the registra-
tion in the parameter space, instead of the 3D space, the sulcal folding pattern
differences between the two brains are normalized. This framework also allows
for the surfaces to flow while internal MR intensity values register. Note that
our method is limited to brain representations with a genus zero surface which
might not be the case for abnormal anatomy, e.g. when legions are present. In
such cases, a mask could be used for the brains with abormalities, with cost
function modified appropriately to exclude the differences in the masked region.
The method presented aligns cortical surface as well as subcortical structures
accurately in the volumetric space by performing their simultaneous alignment.*

Appendix

The solution to the elastic energy minimization problem in section 2.4 is obtained
by finite element method. We use tetrahedral elements in order to perform the
volumetric discretization of the elastic energy. The objective is to get the dis-
placement field at every point in the unit ball. The 3D unit ball is divided into
tetrahedral elements such that every point in the space lies inside exactly one
tetrahedron. We denote the 3 spatial coordinates by x, y, z for simplicity. We
assume that the displacement field d(x, y, z) is piecewise linear. i.e., if the point
is inside tetrahedron, then

d(x, y, z) = ai
0 + ai

1x+ ai
2y + ai

3z, (11)

for some coefficients ai
0, a

i
1, a

i
2, a

i
3. Therefore, for the tetrahedron i with nodes

(xi
1, y

i
1, z

i
1), (x

i
2, y

i
2, z

i
2), (x

i
3, y

i
3, z

i
3) and (xi

4, y
i
4, z

i
4), we can write expressions for

u in matrix form as:







d(xi
1, y

i
1, z

i
1)

d(xi
2, y

i
2, z

i
2)

d(xi
3, y

i
3, z

i
3)

d(xi
4, y

i
4, z

i
4)







=







1 xi
1 y

i
1 z

i
1

1 xi
2 y

i
2 z

i
2

1 xi
3 y

i
3 z

i
3

1 xi
4 y

i
4 z

i
4







︸ ︷︷ ︸

M







ai
0

ai
1

ai
2

ai
3






. (12)



Therefore, the derivative operators for a tetrahedral element el are given by

Del
x =

1

|M |







z3y4 − y3z4 + y2z4 − y4z2 − y2z3 + y3z2
y3z4 − z3y4 − y1z4 + y4z1 + y1z3 − y3z1
z2y4 − y2z4 + y1z4 − y4z1 − y1z2 + y2z1
y2z3 − z2y3 − z3y1 + z1y3 + y1z2 − z1y2







T

, (13)

Del
y = −

1

|M |







z3x4 − x3z4 + x2z4 − x4z2 − x2z3 + x3z2
x3z4 − z3x4 − x1z4 + x4z1 + x1z3 − x3z1
z2x4 − x2z4 + x1z4 − x4z1 − x1z2 + x2z1
x2z3 − z2x3 − z3x1 + z1x3 + x1z2 − z1x2







T

, (14)

Del
z =

1

|M |







y3x4 − x3y4 + x2y4 − x2y4 − x2y3 + x3y2
x3y4 − y3x4 − x1y4 + x4y1 + x1y3 − x3y1
y2x4 − x2y4 + x1y4 − x4y1 − x1y2 + x2y1
x2y3 − y2x3 − y3x1 + y1x3 + x1y2 − y1x2







T

, (15)

and,

Dx =
∑

el

r(Del
x ), Dy =

∑

el

r(Del
y ), Dz =

∑

el

r(Del
z ), (16)

where r is a resizing function that keeps track of indices of the individual nodes in
the whole mesh. This kind of re-indexing is commonly done in FEM techniques
[22]. Let the matrices L,LW and K be defined as

L =











Dx 0 0
0 Dy 0
0 0 Dz

Dy Dx 0
0 Dz Dy

Dz 0 Dx











, (17)

LW =











(1 − ν)Dx νDy νDz

νDx (1 − ν)Dy νDz

νDx νDy (1 − ν)Dz
1−2ν

2 Dy
1−2ν

2 Dx 0
0 1−2ν

2 Dz
1−2ν

2 Dy
1−2ν

2 Dz 0 1−2ν
2 Dx











, (18)

K =
Y

(1 + ν)(1 − 2ν)
LTLW . (19)

Let the x, y, z components of the displacement (Ux, Uy, Uz) at nodal points
is arranged in a column U = [Ux, Uy, Uz]

T . Then the elastic energy, without any
external forces, is given by

Eelastic(U) = UTKU. (20)
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