
An Invariant Shape Representation Using
the Anisotropic Helmholtz Equation

A.A. Joshi1, S. Ashrafulla1, D.W. Shattuck2, H. Damasio3, and R.M. Leahy1,�

1 Signal & Image Processing Institute, Univ. of Southern California, Los Angeles, CA
2 Laboratory of Neuro Imaging, Univ. of California, Los Angeles, CA

3 Brain and Creativity Institute, Univ. of Southern California, Los Angeles, CA

Abstract. Analyzing geometry of sulcal curves on the human cortical
surface requires a shape representation invariant to Euclidean motion.
We present a novel shape representation that characterizes the shape of
a curve in terms of a coordinate system based on the eigensystem of the
anisotropic Helmholtz equation. This representation has many desirable
properties: stability, uniqueness and invariance to scaling and isometric
transformation. Under this representation, we can find a point-wise shape
distance between curves as well as a bijective smooth point-to-point cor-
respondence. When the curves are sampled irregularly, we also present
a fast and accurate computational method for solving the eigensystem
using a finite element formulation. This shape representation is used
to find symmetries between corresponding sulcal shapes between corti-
cal hemispheres. For this purpose, we automatically generate 26 sulcal
curves for 24 subject brains and then compute their invariant shape rep-
resentation. Left-right sulcal shape symmetry as measured by the shape
representation’s metric demonstrates the utility of the presented invari-
ant representation for shape analysis of the cortical folding pattern.

1 Introduction

The human cerebral cortex is a highly convoluted sheet with rich and detailed
folding patterns. Sulci are fissures in the cortical surface which are used fre-
quently as anatomical landmarks. The geometry of these cortical landmarks is
used for registration as well as the study of disease progression [10], aging [12]
and brain asymmetry [1]. However, these approaches do not use the shapes of
sulci but instead features such as length, depth and 3D location.

Quantification, matching, and classification of the shape of curves is a chal-
lenging problem with a long history. Spectral graphs [3] use graph theory to
attempt to match two curves. In addition, geometric features such as areas of
enclosed regions [21] have been used for curve representation. Recent methods
use the distributions of distances from all points on a curve to a reference point;
the most popular is the shape context [9].
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PDE based models such as elastic matching [19] LDDMM [5], conformal repre-
sentation [16], bimorphisms [20] use locally smooth deformation models for curve
registration. In general, these methods find transform parameters and then cal-
culate a distance on the final fit [2]. However, it is unclear whether they capture
both the local and the global features of a curve.

In order to address these issues in the context of sulcal pattern analysis, we
present a novel model for shape analysis of 1D curves based on an extension
of the Global Point Signature (GPS) [13,14]. The GPS representation for 2D
surfaces uses the eigensystem of the Laplace-Beltrami operator. We first review
our method for labeling the cortical surface automatically and for generating
sulci on a population of cortical surfaces. We next present a novel invariant 1D
curve representation based on the extension of GPS to 1D curves. For consis-
tency of terminology with the shape analysis literature, we refer to our novel
representation as the GPS representation of curves. 1D curves are represented
using the eigensystem of an anisotropic Helmholtz equation where curvature is
used as the anisotropy term. This representation also defines a metric in the em-
bedded space of the representation - admitting a local measure of shape distance
for curve matching. Finally, we present the results of applying our methodology
towards analysis of sulcal shape symmetry between left and right brain hemi-
spheres.

2 Sulci Generation

We briefly review our method for automatic generation of sulci on a subject’s
cortical surface, described in more detail in [7]. We assume as input a triangu-
lated mesh approximating the cortical surface. We use BrainSuite [17] to extract
the cortical surface meshes from T1-weighted MRI volumes for an atlas and for
the subject. We then identify sulcal landmarks on the cortex automatically. We
compute a one-to-one correspondence between the atlas surface and the subject
surface in two stages: (i) the surface of each cortical hemisphere is parameter-
ized to a unit square, and (ii) a vector field is found within this parameterization
that aligns curvature of the atlas surface to curvature of the subject surface. We
parameterize the cortical surfaces by modeling them as an elastic sheet and then
solving the associated linear elastic equilibrium equation using finite elements.
We constrain the corpus callosum to lie uniformly on the boundary of the unit
square. The elastic energy minimization yields flat maps of each cortical hemi-
sphere to a plane (Fig. 1). Multiresolution representations of curvature for the
subject and atlas are calculated and then aligned by minimizing a cost function
with elastic energy as a regularizer. This step reparameterizes the cortical hemi-
sphere surfaces, establishing a one-to-one point correspondence between subject
and atlas surfaces.

For this study we registered N = 24 T1-weighted MRI volumes. For the
atlas, a set of 26 sulcal curves per hemisphere were traced interactively in Brain-
Suite [17] using the protocol described in [11]. Using the point correspondence
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established above, these sulci are transferred to the subject surface. The loca-
tions of the estimates are subsequently refined using geodesic curvature flow on
the cortical surface as described in [7]. The refinement uses a level set based
formulation of flow on non-flat surfaces with the sulci as the zero level sets. The
resulting PDE is discretized on a triangulated mesh using finite elements. After
this refinement, we have 26 sulci on each of N = 24 cortical surfaces. We note
that other methods for sulcal set generation [18] can also be used.

Fig. 1. (a) Automatic atlas to subject registration and parameterization of cortical
surfaces and sulcal curves; and (b) geodesic curvature flow refinement of sulcal curves

3 Shape Representation Using GPS Representation

In this section we introduce a coordinate system to represent a 1D curve. Spec-
tral theory provides the basis to study the eigenspectrum of the sulcal curves.
Motivated by spectral theory and corresponding work on 2D surfaces [14,13], we
model the 1D curves as inhomogeneous vibrating strings. Their harmonic be-
havior is governed by the 1D Helmholtz equation. To characterize the shape of
the curve C, we use its curvature κ(s) to introduce anisotropy into the governing
equation: {

∂
∂s κ(s) ∂

∂sΦi(s) = λiΦi(s)
Φi(s)|∂C = 0

, ∀s ∈ C (1)

where ∂C is the set of the endpoints of the curve C. Denote the eigenfunctions
of this equation by Φi with eigenvalues λi ordered by magnitude. We define the
embedding manifold in the spectral domain by the map:

GP S(p) =
(

1√
λ1

Φ1(p), 1√
λ2

Φ2(p), 1√
λ3

Φ3(p), . . .
)

.

Each point of the curve is embedded into an infinite dimensional space. We
cannot use the 1D Laplacian directly for this purpose because 1D shapes always
have a trivial intrinsic geometry. However, due to the fundamental theorem of
curves (two unit-speed plane curves that have the same curvature and torsion
differ only by a rigid transformation), curvature and torsion define the curve
uniquely up to a rigid transformation. Furthermore, the curve can be recovered
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Fig. 2. (a) Inferior frontal sulcus highlighted in red; (b) first four color coded GPS
coordinates; (c) GPS representation of a sulcus plotted from end to end

from the embedding by first recovering the curvature and torsion, and then using
the Frenet-Serre formulas [4]. For curves in 3D space, this requires curvature
and torsion. The embedding defined above is based on curvature alone because
the sulcal curves analyzed in this paper had negligible torsion. The following
properties also apply to this representation:

1. GPS coordinates are isometry invariant as they depend only on derivatives
and curvature, which are ony dependent on shape.

2. Scaling a 1D curve manifold equally scales curvature. Therefore, normalizing
the eigenvalue produces scale invariance (as well as position invariance, as
mentioned earlier).

3. Shape changes result in continuous changes in a curve’s spectrum. Conse-
quently the representation presented here is robust.

4. In the embedding space, the inner product is given by the Green’s function
due to the identity: G(x1, x2) =

∑
i

Φi(x1)Φi(x2)
λi

. Thus the GPS representa-
tion encodes local and global shape information. Additionally, the metric is
Euclidean.

An example of this representation for a sulcal curve is shown in Fig. 2.

4 Discretization Using Finite Element Method

Sulcal curves are often sampled non-uniformly, so we use a finite element method
to discretize the eigenvalue problem in Eq. 1. Let Φ(s) =

∑
i φiei(s) be an

eigenfunction and η(s) =
∑

i ηiei(s) be a ‘test function’ represented as weighted
sums of linear elements. The eigenvalue problem from Eq. 1 is:(

∂

∂s
κ(s) ∂

∂s

)
Φ = λΦ

=⇒
ˆ (

∂

∂s
κ(s) ∂

∂s
Φ(s)

)
η(s)ds = λ

ˆ
Φ(s)η(s)ds

=⇒
ˆ

κ(s) ∂

∂s
Φ(s) ∂

∂s
η(s)ds = λ

ˆ
Φ(s)η(s)ds
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where the latter follows using integration by parts. Substituting the finite element
model we get:

∑
i

∑
j

φiηjκij

ˆ
∂

∂s
ei(s) ∂

∂s
ej(s)ds = λ

∑
i

∑
j

φiηj

ˆ
ei(s)ej(s)ds

κSφ = λMφ (2)

where κij represents (κi + κj)/2: the average of curvatures calculated at points
i and j.

For the 1D case with linear elements, the element-wise mass matrix is given by

Mel =
[

(κijdij)/3 (κijdij)/6
(κijdij)/6 (κijdij)/3

]
for element el corresponding to the edge between

nodes i and j. Similarly, the element-wise stiffness matrix is given by Sel =[
1/dij −1/dij

−1/dij 1/dij

]
using linear finite elements [15].

The matrix equation in Eq. 2 is a generalized sparse eigenvalue problem that
can be solved using standard methods, such as the QZ method that is a part of
the Matlab function eigs. The point-wise curvature of the curve κi is computed
using the Frenet frame [4].

5 Shape Matching

In brain image analysis, a matching technique is required to analyze sulcal vari-
ation across a population. In this section, we describe a method for finding such
a matching using GPS coordinates. Later, we match left vs right hemispherical
sulci to investigate asymmetry between hemispheres.

Let GP S1 and GP S2 denote the GPS coordinates for the two sulcal sets. Our
goal is to find a reparameterization function ψ such that the matching energy
E(ψ) is minimized.

E(ψ) =
ˆ

||(GP S1(s) − GP S2(s + ψ(s))||2ds (3)

where ψ is represented in terms of b-spline basis functions [15]. Minimization of
the cost function results in a 1-1 point correspondence between the two curves
(Fig 3). Once the optimal ψ is found, the local shape difference at point s is
given by ||(GP S1(s) − GP S2(s + ψ(s))||.

For the purpose of mapping symmetry, we compute (a) the point-wise GPS
distance between corresponding sulci from one hemisphere to the other, for all
subjects; (b) the point-wise GPS distance between corresponding sulci for the
same hemisphere in two different subjects. We define a measure of symmetry
Symm = −log(mean(a)

mean(b) ). The measure Symm ranges from 0 to ∞. We then use



612 A.A. Joshi et al.

Fig. 3. Three representative sulci from left and right hemispheres and the point cor-
respondence between them

a non-parametric Mann–Whitney–Wilcoxon test between statistics (a) and (b)
at α = 0.05, correcting for multiple comparisons, with the false discovery rate
(FDR).

6 Results

We performed symmetry detection on data from 24 subjects, divided into two
cohorts of 12 subjects [11]. The first cohort was scanned at the Dornsife Cogni-
tive Neuroscience Imaging Center using a 3T Siemens MAGNETOM Trio scan-
ner. The second cohort was scanned at the University of Iowa using thin-cut
MR coronal images obtained in a General Electric Signa Scanner operating at
1.5 Tesla. We applied the BrainSuite surface extraction sequence followed by
sulcal set generation as outlined in Sec. 2. This produced 24x2 cortical sur-
face hemisphere representations with 26 sulci each. The sulci were denoised
by fitting a 12th order polynomial with the degree of the polynomial was se-
lected using L-curve analysis and selecting the maximum degree necessary for
all curves. Next, the GPS coordinate representation was formed as described in
Sec. 3 and Sec. 4. The symmetry between the sulci was then estimated using
the method in Sec 5. The results of the symmetry mapping are shown in Fig.
4. It is interesting to note that the post- and pre-central sulci, together with
the posterior segment of the superior temporal, the transverse temporal, the
middle temporal and the inferior occipital sulci in the dorso-lateral view, show
the maximal amount of left/right asymmetry; on the mesial view the collat-
eral, the supraorbital, the occipito-parietal and long stretches of the cingulate
sulci are also extremely asymmetric. It is not surprising to see the cingulate
sulcus (visible in the depth of the mesial view) show a great extent of relative
symmetry. Reports of brain asymmetry usually focus on the Sylvian fissure
but our data suggest that other asymmetries may be worth investigating to
determine if they are indeed comparable to the well confirmed Sylvian fissure
asymmetry.

It would be interesting to apply other shape representation approaches for the
problem of finding sulcal shape symmetry. In this work, we tried a simple affine
curve matching approach [6] that finds an optimal affine transform to minimize
distance between curves but but we did not find significant asymmetries with
this affine approach.
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Fig. 4. Shape symmetry measure of the sulci plotted on a smooth representation of an
individual cortical surface. The black regions on the curves indicate that a significant
symmetry was not found for those points.

7 Discussion and Conclusion

We have presented a novel invariant shape representation using the eigensystem
of the anisotropic Helmholtz equation. This representation also has an interesting
physical interpretation in terms of vibrating strings. Because our representation
depends only on shape and not on the Euclidean embedding of the shape, it is
invariant to Euclidean transformations. As opposed to surface-based measures
[8,5] in which sulcal shape differences are confounded by the shape of the cortical
sheet surrounding the sulcal fold, we model sulci as curves as opposed to folds
on surfaces. The invariant representation therefore provides information that is
complementary to surface-based shape analysis. The properties listed Sec 3 make
the presented GPS representation for curves an attractive alternative over the
existing methods [20,16,9,19], although a thorough comparison is still required.

One potential drawback of our method is that errors in automatically gener-
ated sulci can lead to inaccurate input when generating the GPS representation.
We are in the process of validating the sulcal generation method in a more exten-
sive manner on a larger data-set; initial validation is promising. It is important
to note that, if required, the BrainSuite software allows for semi-automatic in-
teractive corrections of the sulci to reduce inaccuracies.

This model has a variety of potential applications in computer vision as well
as brain image analysis. Many of the existing methods for brain morphometry
focus on point-wise features such as 3D location, curvature, thickness, deforma-
tion, and image intensity. Conversely, the framework we have presented directly
captures the geometric shape of the folding pattern. As a result, we can study the
cortical folding pattern quantitatively for a variety of neuro-developmental con-
ditions (e.g. autism) and other neurological conditions characterized by changes
in sulcal patterns.
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