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Thin Plate Bending Energy in Euclidean space

Bending Energy in non-Euclidean space

Calculations of covariant derivatives

Pattern classification in the intrinsic geometry
We present a scheme for pattern classification scheme that considers the intrinsic 
geometry of the cortical surface of the cortical surface. Our approach uses the heat 
kernel to replace the Gaussian distribution so that a probability density function on 
the surface can be defined by analogy to heat propagation on a surface. 

Conclusion
We have presented a unified framework for analyzing cortically constrained 
functional data from multiple subjects where the analysis is performed in the 
intrinsic geometry of the surface. This allows us, for example, to compute the 
mean with respect to a cluster of points, such that the mean also lies in the 
surface. We have illustrated this framework by applying the analysis to produce 
functional parcellation of somatosensory cortex based on (simulated) MEG 
source localizations across multiple subjects. The method is currently limited to 
isotropic distributions and to point-wise analysis, but the idea of using the 
intrinsic heat equation, and kernels of covariant differential operators in place of 
the Gaussian distribution generalizes to the development of multivariate 
statistical analysis tools for data constrained to Riemannian manifolds.

Heat equation in Euclidian space               Heat equation on the cortical surface
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Figure 3: (a) The heat kernel computed using Laplacian in the (u,v) parameter space, 
(b) The heat kernel computed using the Laplace-Beltrami operator on the cortical surface
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Figure 4: (a)(b) The figures show heat kernels estimated to fit the two datasets for MEG
Somatosensory data (c) shows the ML classifier for left hemisphere plotted in the 
parameter space (d) The classifier on the cortical surface. Red and blue regions show the 
two decision regions
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Just as we can characterize an isotropic Gaussian distribution in the Euclidean 
plane through its mean and standard deviation, so we can characterize 
distributions on the surface through mean and variance-like parameters that 
characterize the ‘center’ of the heat kernel and the ‘time' at which it is observed. 
For isotropic distributions the corresponding heat kernel       on a Riemannian 
manifold can be completely specified by two parameters:  , the location of the 
initial impulse, and the time  . Parameters    and   play the role of the mean and 
variance in the Gaussian case. Thus the probability of finding a sample at    is 
modeled as                            . To use this scheme for classification of two clusters 
of points, we first compute ML estimates of the parameters      and           for the 
two clusters. We illustrate the technique presented above for classification of point 
localizations of S1 somatosensory regions. 
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Introduction
We present a framework for registering and analyzing functional neuroimaging 
data constrained to the cortical surface of the brain. We assume as input a set of 
labeled data points that lie on a set of parameterized topologically spherical 
surfaces that represent the cortical surfaces of multiple subjects. To perform 
analysis across subjects, we first co-register the coordinates from each surface 
to a cortical atlas or canonical template using labeled sulcal maps as constraints. 
We then present a method for performing statistical analysis of points on this 
atlas surface which replaces the Gaussian function by the heat kernel. We 
demonstrate the utility of this framework in the development of a maximum 
likelihood classifier for parcellation of somatosensory cortex in the atlas based on 
current dipole fits to MEG data, simulated to represent a somatotopic mapping of 
S1 sensory areas in multiple subjects.

Surface extraction and parameterization
We first extract a mask for the cortical surface from an MRI volume using the 
Brainsuite software [1]. The topology of the mask is corrected automatically using 
a graph-based approach and tessellated to produce a genus zero surface. We 
then use a p-harmonic functional minimization scheme [2] to map the each 
cortical hemisphere onto the unit square. The result is a bijective mapping 
between each hemisphere and the unit square in which the interhemispheric 
fissure is constrained to map to the boundary of the unit square. This allows us to 
calculate partial derivatives across the boundary and explicitly model continuity 
between the two cortical hemispheres. 

Figure 1: (a) Cortical hemisphere, (b),(c) p-harmonic maps of left and right hemispheres. 
The arrows indicate connectivity of the two hemispheres.

TPS warping in the intrinsic geometry
Having parameterized the cortical surfaces of the subject and atlas, we align the 
coordinate systems between the subject and atlas such that a set of hand-
labelled sulci are brought into register. The alignment uses a set of interactively 
labelled sulci, sampled uniformly along their lengths, as a set of point constraints. 
We use the thin-plate spline bending energy on the atlas surface as a 
regularizing function for the deformation field. We minimize the bending energy 
with respect to the intrinsic geometry of the 3D surface rather than the parameter 
space itself, using a covariant PDE approach [3].  To do this, we solve the 
biharmonic equation using covariant derivatives to obtain a thin-plate spline warp 
from subject to atlas coordinates.

Figure 1: (a) sulcal curves marked on the cortical surface, (b) smoothed cortex with sulcal
curves, (c) flattened hemisphere, (d) maps for one hemisphere showing sulcal curves for two 
subjects before re-parameterization/alignment, (e) alignment of the sulcal curves after thin 
plate spline based warping, (f) mapping of the deformation field that aligns one cortex to the
other mapped back onto a smoothed representation of the cortex (color indicates magnitude 
of deformation and arrows the direction).
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