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ABSTRACT

Cortical surface parameterization has several applications in
visualization and analysis of the brain surface. Here we pro-
pose a scheme for parameterizing the surface of the cerebral
cortex. The parameterization is formulated as the minimiza-
tion of an energy functional in the ��� � norm. A numerical
method for obtaining the solution is also presented. Brain
surfaces from multiple subjects are brought into common
parameter space using the scheme. 3D spatial averages of
the cortical surfaces are generated by using the correspon-
dences induced by common parameter space.

1. INTRODUCTION

The surface area of the gray matter of the cerebral cortex
is approximately ���
	�� cm 
 [8]. 60-70% of the surface area
is buried in sulcul folds and creases. There is considerable
variability in the size, location and extent of the sulci and
gyri across human subjects. Bringing multiple brain sur-
faces into a common coordinate system is helpful in study-
ing variability of these sulcal patterns across subjects, for
integrating and averaging functional data across subjects,
and in studying patterns in cortical development over time.
Since the cortex can be modeled as a convoluted sheet with
spherical topology, it is natural to parameterize it using spher-
ical coordinates [7, 9].

Eck et al. [3] and Kanai et al. [4] model a triangulated
surface as a configuration of springs with one spring placed
along each edge of each triangle. The resulting energy func-
tional, the harmonic energy, is shown to be a quadratic form
and is minimized using gradient descent to transform the
surface into a planar disk.

Desbrun et al. [5] propose a parameterization technique
which uses cotangent of angles in the given triangulation.
The resulting energy functional (Tuette energy) is argued to
be a measure of angle distortion and its minimization leads
to a new parameterization.

Haker et al. [2] presented a method for conformally

mapping the cortical surface to a sphere. Their method uses
the Laplace-Beltrami operator and the fact that for a confor-
mal map, the Laplace-Beltrami operator calculated on the
parameterization function is zero everywhere on the sur-
face. Though these methods ensure a perfectly conformal
map, the stereographic projections involved can introduce a
large amount of length and area distortion.

Circle packing was introduced as a quasi-conformal pa-
rameterization method in [1]. Analytic surfaces can be ap-
proximated by circle packing, but the surface packing method
considers only the connectivity and not the geometry of the
surface [12, 10].

In this paper, a parameterization technique for the cor-
tical surface based on p-harmonic energy minimization is
discussed. We argue that since higher order norms result
in smoother solutions, the resulting maps are smoother and
more uniform. The problem is formulated and solved using
Finite Elements.

2. MATHEMATICAL FORMULATION

The parameterization of an arbitrary surface, tesselated us-
ing a set of triangles, can be viewed as an assignment of
complex numbers or vectors in ��
 to each vertex in the tri-
angulation. We assign a complex number to every point in
the triangulation in such a way that the resulting p-harmonic
energy is minimized. Let � be a submanifold of ��� of di-
mension 2. We define ����������
 to be a function such
that the p-harmonic energy functional is minimized.

The p-harmonic energy functional is defined as��� � !#"%$ � "'&�( � (1)

Here � is the unknown vector valued function defined
over the given surface. The operator

$
represents the co-

variant derivative which can be viewed as the gradient with
respect to the local coordinate system as discussed later.

We can see that if no constraints are imposed, then the
minimization will result in � � � everywhere. Thus, appro-



priate constraints need to be imposed to find a non-trivial so-
lution. Here we constrain the mapping of the inter-hemispheric
fissure.

For � �*) the energy functional
� �

is equivalent to the
Dirichlet energy described in the conformal mapping litera-
ture. However if we impose more than two point constraints
on the minimization, the resulting map will not be confor-
mal. Eells-Sampson [13] prove the existence of � -harmonic
maps in the case when the target manifold is a subset of ���
that has non-positive sectional curvature. The disk in �+

has these properties.

We write the energy functional as the sum of two en-
ergy functionals such that the corresponding arguments are
scalars, ���,� !-".$0/1" & ( �32 !-".$546" & ( �
where � �87 /+9:4<;>= . Since

/
and
4

can be chosen indepen-
dently, we can write,?A@CBD � � � ?A@CBD ! ".$ � " & ( �� ?A@CBE ! ".$0/F" & ( �2 ?A@CBG !-"%$546"'&H( �

Therefore, this minimization can be performed by min-
imizing over the two real valued functions separately. Here
we demonstrate minimization of one real-valued function
using finite elements; minimization of the other is done in
exactly the same way other than the constraints applied when
mapping the inter-hemispheric fissure.

3. FINITE ELEMENT FORMULATION

The above real-valued functions are defined on the continu-
ous domain which we discretize using finite elements. We
assume that both

/
and
4

are piecewise linear functions de-
fined on a triangular tessellation of the cortical surface.

To discretize the problem, we use a local coordinate sys-
tem for each triangle. The use of a local coordinate system
for each triangle is justified because we are only interested
in the magnitude of the gradient and not its direction. TheI -axis is chosen normal to the triangle and the J -axis lies on
the longest edge of the triangle.

Let
/

be a piecewise linear real-valued scalar function
defined over the surface, and

/LK
is the function restricted to

triangle M . Since
/�K

is linear on the MN� � triangle we can write,/ KPO J 9'QSRT� U KV 2 U K W JA2 U K
 Q (2)

The three coefficients can be determined if values of the
function

/
are known at the three vertices of the triangle.

These equations can be written in matrix form as,XY � J KW QZKW� J K
 QZK
� J K[ QZK[3\]^ _a` bc�d
XY UeKVUeKWUeK
 \] �

XY /�K O J W 9'Q W R/�K O J 
 9'Q 
 R/�K O J [ 9'Q [ RA\] (3)

The coefficients
UZKV , UeK W and

UeK
 can be obtained by invert-
ing the matrix. From eq. 2 and by inverting the matrix in
eq. 3, we obtainf.f �$0/ K � g UeKWUeK
ih� �j k K jLlAm%noqp m%nrsm�nt�p m�nrum%nr p m%nov n r p v n o v n r p v nt v n oqp v n rxwy zN{ |}qd ~��� n�� v r�� m r'�� n�� v o � m o �� n�� v t � m t ����y zN{ |��df.f �$0/ K � �)�� K.� K��qK

We use the fact that for any triangle
j k K j ��)���K

, where��K
is the area of the triangle. Since

/LK
is piecewise linear,

its gradient is constant over each triangle M , so that:!-".$0/1" & ( � � � K��� $0/ K �� & � K
where the sum is over all triangles.?A@CBE !#".$0/F" & ( � � ?�@CB� � K �����

O ��K�Re��S� W) � K � K �����
&

� ?�@CB� � K���%� K � K �� &� ?�@CB� " � � " &
where � K������ d¡  ��S¢ �
 � K , � is composed using coefficients
of � K , and

�
is a vector with coefficients

/
for each vertex.

The vector � � can be split into two parts: free vertices and
constrained vertices. Values of

/
at constrained vertices are

known.?A@�BE !-"%$0/F":&L( � � ?A@�B�
£ " �¥¤ � ¤ 2 �¥¦ � ¦ "P&
where � ¤ , � ¤ and � ¦ , � ¦ are the free and constrained parts,
respectively of the � and

�
matrices.

By removing the constrained vertices, we now have an
unconstrained minimization problem. For � �§) , the solu-
tion is given by taking the pseudoinverse of the matrix �¨¤ .� ¤ � f �ª©¤ �¥¦ � ¦ (4)



The fact that matrix �«¤ is sparse allows us to use the
computationally efficient conjugate gradient method for ob-
taining the solution. The Jacobi preconditioner reduces the
execution time considerably. For �­¬ ) , we use a nonlinear
conjugate gradient method. As noted above, we consider
only even values of � so that the gradients are analytic. This
is particularly easy for even values of � .

4. PLANAR AND SPHERICAL MAPPINGS

The goal of this work is to develop a common parameteriza-
tion across multiple brains. While the parameterization ap-
plies to the original brain surface, for the purposes of illus-
tration and visualization it is often convenient to represent
these surfaces as mappings to a plane or sphere. To com-
pute the parameterizations we first generated cortical sur-
faces using our BrainSuite software package [11] (Shattuck
and Leahy, 2002), which includes a six-stage cortex mod-
eling sequence. First, the brain is extracted from surround-
ing skull and scalp tissues using a combination of edge de-
tection and mathematical morphology. Next, the intensi-
ties of the MRI are corrected for shading artifacts. Each
voxel in the corrected image is labeled according to tissue
type using a statistical classifier. The white matter in the
brain volume is selected to produce a binary mask; the user
then cuts through the brainstem in this mask to remove the
brainstem and cerebellum. The resulting mask represents
the cerebrum, but it is likely that tessellation of this volume
will produce surfaces with topological handles. Prior to tes-
sellation, these handles are identified and removed using a
graph-based approach. The resulting mask is then tessel-
lated to produce a genus zero surface.

Our spherical mapping is computed from the genus-zero
surface in two stages. First, each brain hemisphere is mapped
onto a unit disk. This is done by constraining a closed con-
tour, representing the intersection of a plane through the
inter-hemispheric fissure with the corpus callosum, to lie
on the unit circle. We parameterize this contour on the unit
circle by arc length. With this constraint we solve for the� -harmonic map, as described above, for each hemisphere
in turn. We then use a stereographic projection to map the
unit disk onto a hemisphere. Performing this operation for
both hemispheres produces a bijective mapping of the cor-
tical surface to the unit sphere.

5. EXAMPLES

An example of a single cortical surface and its spherical
maps for � = 2, 4 and 6 are shown in Fig. 1. Note that as� increases, the mapping of cortical features becomes more
uniform. A desirable property of the paramaterization is
that the associated spherical or planar maps are minimally
distorted and that corresponding gyral and sulcal features

map to similar coordinates across subjects. This can signifi-
cantly reduce the difficulty of the subsequent problem of au-
tomatically matching or identifying cortical features across
a population.

As a preliminary evaluation of this method, we have in-
vestigated the average behavior of these maps for several
subjects as a function of � . Volumetric MR images of six
volunteers were co-registered using a 12-parameter affine
fit with AIR [14]. Cortices were extracted and parameter-
ized as described above. The maps were resampled onto a
regular lattice with respect to the parameter � and partially
aligned by rotation about the unit circle corresponding to
the inter-hemispheric fissure. Shown in Fig. 2 are brain
surfaces produced by averaging the original 3D coordinates
for each parameterized brain at corresponding points on the
regular lattice in � .

Ideally the parameterizations would align sulcal land-
marks across subjects so that the averaged brain would serve
as an atlas containing clearly identifiable landmarks. Since
the parameterization uses only knowledge of the location of
the inter-hemispheric fissure, we do not expect to achieve
this degree of alignment. However, the results in Fig. 2 ap-
pear to show that as � increases, and distortion decreases,
there is indeed improved correspondence between brains so
that the average reveals a more realistic representation of
common cortical features.

We plan a more detailed evaluation of this approach in
which we will investigate the impact of the value of � , and
of the choice of volumetric alignment method prior to cor-
tex extraction, on the degree of metric distortion required
to bring cortices into alignment using covariant flows con-
strained by hand-labeled sulcal features [15].

6. REFERENCES

[1] M. K. Hurdal, K. Stephenson, P. L. Bowers, D. W. L.
Sumners, and D. A. Rottenberg. Coordinate systems
for conformal cerebellar flat maps. NeuroImage, vol-
ume 11, page S467, 2000.

[2] S. Haker, S. Angenent, A. Tannenbaum, R. Kikinis,
G. Sapiro and M. Halle. Conformal surface parame-
terization for texture mapping, IEEE Transactions on
Visualization and Computer Graphics, 6(2):181-189,
April-June 2000.

[3] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M.
Lounsbery, and W. Stuetzel. Multiresolution analysis
of arbitrary meshes. In Computer Graphics (Proceed-
ings of SIGGRAPH 95), August 1995.

[4] T. Kanai , H. Suzuki, and F. Kimura. Three-
dimensional geometric metamorphosis based on har-
monic maps. The Visual Computer, 14(4):166-176,
1998.



Cortical surface p=2 p=4 p=6

Fig. 1. A cortical surface extracted from MRI data and its maps on a sphere for different values of p
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