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Abstract. Despite being routinely required in medical applications,deformable
surface registration is notoriously difficult due to large intersubject variability and
complex geometry of most medical datasets. We present a general and flexible de-
formable matching framework based on generalized surface flows that efficiently
tackles these issues through tailored deformation priors and multiresolution com-
putations. The value of our approach over existing methods is demonstrated for
automatic and user-guided cortical registration.

1 Introduction
Matching (or registration) of deformable surfaces is a fundamental problem in med-

ical image analysis and computational anatomy. One particularly challenging instance
of the problem arises in the field of human brain mapping, where deformable registra-
tion of two cortical surfaces is required for intersubject comparisons and intrasubject
analysis of neuroanatomical surface data. Related studiesinclude progression of dis-
orders such as Alzheimer’s disease, brain growth patterns,genetic influences [1] and
the effects of drug abuse on the structure and function of thebrain [2]. The challenge
in registering two cortices lies in the wide inter-subject variability and the convoluted
geometry of the cortical surface, representing a real ”stress test” for any general de-
formable registration technique. Various landmark-basedand landmark-free methods
have been developed [3–8]. Parameterization-based techniques first find a mapping be-
tween the cortical surface and a plane or a sphere, then alignin the parameter domain
cortical features such as mean curvature [2, 5, 6] or sulcal landmarks [8, 9]. The often
large change in metric due to the mapping needs to be accounted for while perform-
ing the alignment process in the parameter domain [9, 10], adding to the computational
costs. Another class of techniques operates directly in theambient space by finding a
3D warping field that aligns the cortical features. Most of these methods are volume-
based, aiming to align image features such as intensities [11] or invariant geometric
moments [12], rather than surfaces. As a result, their matching of the cortices often
exhibits inaccuracies.

In this paper we present a new, general, and flexible computational framework for
deformable surface matching, based on the notion ofgeneralizedflows of discrete sur-
faces. Generalized flows were introduced recently in [13] and [14] in the Eulerian set-
ting (i.e., for implicit surface representations), and extended to the Lagrangian (mesh-
based) case in [15]. The proposed method iteratively deforms a 3D template surface to
match the target, until convergence criteria are met. As a result, the whole deformation
trajectory is available as a by-product for evaluation and determination of the best fit.

The use of geometric flows in medical image analysis is not new: for instance, active
contours (or snakes) and deformable models have been widelyapplied to reconstruct
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Fig. 1. A white matter cortex and its corresponding Partially Flattened Surface(a), where the
major sulci is still clearly present. A basic Hausdorff gradient flow applied on a rotated, smoother
version(b) creates spurious deformations(c) due to lack of coherence and local minima, while
with a quasi-rigid deformation prior(d), it successfully recovers the transformation.

surfaces from volumetric images (e.g., [16]). The main drawback of these methods is
their sensitivity to local minima, which can become particularly severe when matching
of geometrically complex objects is sought. Here we show a way to systematically deal
with this issue using problem-specific prior knowledge. Thecontributions of this paper
are as follows:
- We present a computational framework for surface matchingbased ongeneralized

discrete geometric flows. By allowing customdeformation priors, the generalized
approach significantly helps avoiding local minima and provides additional flexibility
and control over the registration process, as well as robustness to noise.

- The proposed framework uses a triangle mesh (Lagrangian) representation for surface
matching. Compared to the Eulerian methodology, this approach is both topology-
preserving by definition and efficient by nature, confining computations strictly to
the object boundary. Moreover, this representation can provide point correspondences
between two surfaces at any chosen resolution.

- We formulate the alignment problem as a minimization process of a pseudo-Hausdorff
distance and show a practical application of the method to cortical matching.

- The basic algorithm is optimized using a surface multiresolution representation, al-
lowing efficient handling of complex models and faster convergence.

2 Method
A typical shape matching problem considers two 3D models—atemplateand an

instance—assumed to have some ”meaningful” but unknown mapping between them.
The matching problem is thus to find such a valid mapping between the two shapes,
generally involving a non-rigid mapping in medical applications. We start with a brief
overview of our approach to the problem of deformable shape matching, before pro-
ceeding to the specific (and challenging) case of cortical surface matching.

2.1 Object Alignment as a Geometric Optimization
The task of aligning two objects is often cast as a geometric distance minimization

problem: a common approach to registration is to deform one of the shapes (typically,
the template) so as to minimize its “distance” to the other shape. Since anL2-type
distance measure is known to be too forgiving in comparing two shapes, we opt instead
for the symmetric Hausdorff distance which, for two surfacesS andT , is given by

d(S,T ) = max

[

max
p∈S

min
q∈T

‖p−q‖ ,max
q∈T

min
p∈S

‖p−q‖

]

.
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Since this expression is not differentiable, we adopt a pseudo-Hausdorff distancedH(X,Y)
between two distinct meshesX = {xi}i=1..P andY = {y j} j=1..Q, based on a method in-
troduced in [17] in the context of Level Sets, and adapted in [15] to handle irregularly
shaped polygonal meshes. This allows us to formulate distance minimization as an iter-
ative gradient descent procedure, where the template meshX is evolved (or flowed) at
each step in the direction of the negative gradient ofdH(X,Y), with Y being the instance
mesh. This process is known asgradient flow, and can be written as the following PDE:

dX
dt

= −M−1 ∂ dH

∂X
(X,Y) , (1)

whereM is a finite element lumped (diagonal)mass matrix[18] associated with the
meshX to account for non-uniform sampling, and∂dH(X,Y)

∂X is given by

∂dH(X,Y)

∂xi
=

(dH(X,Y)+ ε)1−2α

P·Q
Mx

ii ∑
j

xi −y j

dα+1
i j

My
j j ( f−2

i +g−2
j ) , (2)

where dH(X,Y) =

[

1
P ∑

i
Mx

ii f−1
i +

1
Q ∑

j
My

j j g
−1
j

]
1

2α

− ε ,

and fi =
1
Q ∑

j
My

j j d
−α
i j , g j =

1
P ∑

i
Mx

ii d−α
i j , di j = |xi −y j |

2 + ε2
,

with Mx
ii andMy

j j are elements of the mass matrices ofX andY, respectively, andε > 0,
α ≥ 0 are parameters [15]. However, as illustrated by Figure 1 (right) such a naı̈ve min-
imization is unlikely to yield relevant correspondences between two dissimilar shapes,
as the energy landscape is too complex and non-linear to avoid getting stuck in one of
the numerous local minima.

2.2 Generalized Hausdorff Flow

One important detail is that the definition of the gradient inEq. 1 is implicitly based
on theL2 inner product on the deformation space [13], which in fact can be replaced by
any valid inner product. In particular, given theL2 inner product andany self-adjoint
positive-definite linear operatorL : U → U (U being the deformation space), anew
inner product can be defined by

〈u,v〉L = 〈u,Lv〉L2 = 〈Lu,v〉L2 . (3)

This is a special type of inner product, as it is defined with respect to theL2 norm.
The advantage is that, given theL2-gradient∇L2 of any surface energy functionalE , the
generalized gradient[13] of E can be defined by

∇LE(X) = L−1∇L2E(X) . (4)

This leads to the definition of ageneralized Hausdorff flow:

dX
dt

= −(ML)−1 ∂ dH

∂X
(X,Y) .
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The operatorL should be chosen so as to reflect prior knowledge about the nature of
a problem-specific deformation, and is therefore called adeformation prior(not to be
confused with probabilistic priors used in Bayesian estimation). Thus, this procedure
is of practical interest because it allows us tomodify any existing L2 gradient flow.
Note that the energy itself is never altered by a prior—it is only the optimizationpath
that is. We will now show two particular priors useful in manydeformable registration
contexts.

2.3 Deformation Priors

Sobolev Deformation PriorAs most conventional gradient flows are based on theL2

norm of vector fields which disregards the spatial coherenceof a deformation, they
can produce highly irregular motion and are susceptible to noise and local minima. To
address these flaws, Sundaramoorthiet al. [14] proposed a regularizing inner product,
namely, a Sobolev norm, in the context of Eulerian (Level Sets) active contours. For
meshes, the Sobolev normH1 derives from the following inner product:

〈u,v〉H1 =

∫

S

u(x) ·v(x)dx + λ
∫

S

∇u(x) ·∇v(x)dx .

Using Eq. 3 and integration by parts, we can show that this inner product corresponds
to the linear operatorLH1(u) = u− λ ∆u, where∆ is the discrete Laplace-Beltrami
operator [19], andλ is an arbitrary weighting factor. Equipped with this deformation
prior, we can define theH1-gradient of the pseudo-Hausdorff distance (or any other
surface energyE), and perform an explicit integration of the correspondinggradient
flow. This yields:

Xt+dt = Xt −dt(Id−λ ∆)−1 ∂ E

∂X
(Xt).

Thus, a step of Sobolev gradient flow is computed by solving the following linear sys-
tem:

(Id−λ ∆)Xt+dt = (Id−λ ∆ −dt
∂ E

∂X
)Xt . (5)

Consequently, the solution of this linear system couples the motion of each vertex to
the motion of the other vertices. This exemplifies the regularization effect: vertices that
move independently in anL2 flow will now move in concord.

For a stronger regularization effect, we can extend to abovescheme to higher order
Sobolev-type norms. For instance, we can define a higher-order priorL(u) = u+µ∆2u,
where∆2 = ∆ ◦∆ . With a slightly higher computational cost, the resulting scheme is
equivalent to regularizing the instantaneous deformationwith a thin-plate spline energy
term (see e.g. [20]). In practice, we stick to theH1 prior in this work.

Quasi-rigid Deformation PriorSince the two input shapes are generally given in sep-
arate coordinate frames, it is often desired to first bring them into a rigid alignment.
For that purpose we can use the quasi-rigid deformation prior LR (see [13, 15] for the
Eulerian and Lagrangian derivations, respectively). Due to space constraints, we will
not reproduce its formulation here. In essence, it can be seen as a linear filter that boosts
the rigid component of a given motion field by a user-specifiedfactor. As a result, an
arbitrarily-rigid surface flow can be obtained. Figure 1 shows a successful quasi-rigid
alignment of two cortices with this prior.



5

Fig. 2. Automatically matching a template (grey) to the subject cortex (blue). Partially flattened
representations of both surfaces are iteratively aligned using a Hausdorff flow with a smoothing
prior. The obtained alignment yields a correspondence between the original surfaces. The final
color mix is due the fact that the surfaces lie on each other.

Note that since each of prior is given by a linear operator, wecan also design a com-
binedLR,H1 prior which is a weighted combination of the two above operators, such
that the rigid motion is prioritized and the non-rigid residual is smoothed. The result is
a single prior that covers both phases of the registration process.

2.4 Matching Cortical Surfaces

Basic Algorithm We are now ready to apply the Hausdorff flow approach to match a
template cortical surface (e.g., a digital atlas of the cortex) to an instance surface, e.g.,
segmented from a MRI scan. One naı̈ve solution would be to perform the minimization
directly on the input surfaces, combined with theH1 deformation prior for regular-
ization. This process is still likely to get stuck in a local minimum due to the highly
convoluted geometry of the cortex. Even if we managed to get the two surfaces into a
complete alignment, the result would hardly be adequate, asintercortex correspondence
is in general not well-defined due to extreme variability of the cortical structures. In
practice, quality of match is measured by the alignment of the major sulcal patterns that
can be consistently identified in all brains. Thus, minimum intersurface distance alone
is not a sufficient condition for an acceptable solution. In view if this problem, the use of
Partially Inflated Surfaces (PFS) has been advocated for cortical matching [6, 21]. The
idea is to smooth out excessive surface detail through, e.g., Mean Curvature Smooth-
ing [22]); a limited amount of smoothing is performed in order to facilitate matching
while preserving the principal sulcal patterns—see Figure1(a) for an illustration. We
adopt this approach, with one important difference. While correspondence between two
PFSs is typically computed by matching their maps in a commonparameter domain,
we eliminate these intermediate mappings by aligning the PFSs directly. Our strategy is
summarized below, and illustrated in Figure 2:
ALGORITHM:

1. Partially flattenS andT , obtainingS
′
andT

′
, respectively.

2. Apply Generalized Hausdorff Flow to achieve an arbitrarily close alignment ofS
′

with T
′
, yielding a correspondence mapϕ between the two.
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Fig. 3. a. Automatic matching of PFSs yields a close alignment for mostsulcal curves.b. Con-
straining only 7 out of the 23 available curves reduces most misalignments, further improved by
using the full set of constraints (c). d. Corresponding sulcal alignment for the original cortical
surfaces. For clarity, a single cerebral hemisphere is shown.

3. ReturnS → S
′ ϕ
−→ T

′
→T as a bijective map betweenS andT .

The first step can be done rapidly using Mean Curvature Smoothing (MSC), with im-
plicit time integration allowing an arbitrarily large timestep. Note that MSC is a clas-
sical example of gradient flow, so our whole approach fits nicely into the flow-based
methodology. The crux of the algorithm lies in the second step, where the template PFS
S

′
(which can be precomputed for repeated use) is iteratively deformed to matchT

′
.

To regularize the flow, we use theLR,H1 operator from Section 2.3. In practice, once the
rigid component of the motion vanishes,LR,H1 can be replaced with a simplerH1 prior
for efficiency. As the surfaces get closer, we switch to implicit time integration (Eq. 5)
to avoid oscillations and accelerate convergence.

Finally, to make the process even more efficient for high-resolution models, the ba-
sic minimization algorithm is cast in a multiresolution framework, yielding a speedup
of several orders of magnitude. A coarse match is first computed for simplified ver-
sions [23] of both PFSs, before refining them back to the original resolution (using
pyramid coordinates[24]) for final alignment. Thus, our approach applies multiscale
strategies to reduce both geometric and computational complexities: geometrically—
using partial flattening to find a mapping, and computationally—employing coarser
meshes to optimize performance.

Adding ConstraintsAs shown in Figure 3, the above procedure manages to automati-
cally align most sulci, but cannot guarantee a correct matchwhen a strong sulcal vari-
ability is present. A common remedy is to incorporate constraints, i.e., expert-specified
sulcal curves, to control the mapping. In our case, adding constraints to the pseudo-
Hausdorff energy is quite straightforward. Indeed, matching of two curves on opposite
surfaces is just another distance minimization problem—this time, between sets of sur-
face points that lie on the two curves. Thus, we can reuse the same Hausdorff distance
approach, applying a separate, similar energy term to thosemesh vertices that are inci-
dent on the curves (instead of the global Hausdorff potential). Adding point constraints,
if needed, is even simpler. Note also that the constrained deformation is still kept smooth
due to the use of theH1 prior.

3 Results
The proposed cortical matching algorithm was tested with a dataset of six subject

brains, segmented from MRI scans using the BrainSuite tool [25], each supplemented
with a set of sulcal curves marked by an expert according to the LONI Sulcal Tracing
Protocol [1]. As illustrated by Figure 2, the algorithm automatically computes a near
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zero-distance alignment for two partially inflated cortical surfaces, effectively yielding
an intercortex correspondence. It results in a reasonably close alignment for most sulcal
curves, further improved through the addition of constraints. Figure 3 shows that most
sulci could be matched automatically, and constraining only a subset of the sulcal curves
is sufficient, thus significantly reducing the amount of manual effort required.

Table 1 summarizes a limited evaluation of our algorithm (GHF), compared to
HAMMER [12], based on six pairs of subject brain images. Although the two meth-
ods operate on different modalities, distances between corresponding subject and de-
formed template sulcal curves can be measured in both cases.Even without resorting
to constraints (to make a fair comparison to the landmark-free HAMMER), our method
demonstrates a comparable quality of match, with clearly superior computation times:
under 5 min on a standard PC, as opposed to several hours. Notealso that for PFS sulci,
registration error is even lower, which illustrates the quality of the core deformable
matching procedure.

Method / Data MeanL2 Distance Per Case (mm)Total Average
HAMMER / Original Sulci 4.67 4.62 4.79 5.05 5.13 4.90 4.87
GHF / Original Sulci 5.49 5.02 4.56 5.16 4.97 4.53 4.96
GHF / PFS Sulci 4.13 3.87 3.54 4.12 4.07 3.32 3.84

Table 1. Quality of match between deformed template and subject brains as averageL2 distances
between corresponding sulcal curves.

4 Discussion and Future Work
We have presented a practical and flexible multiresolution framework for deformable

surface registration, based on generalized geometric flows. In the case of cortical match-
ing, initial evaluation indicated quality comparable to state of the art methods, with
near-interactive computation times. The presented solution is not without limitations:
for instance, self-intersections may occur during the deformation, e.g., in presence of
constraints (in fact, one can design constrained configurations not having any intersection-
free solution). This shortcoming can be addressed through aspecial deformation prior
added to the constraint energy term, e.g., a prior that prioritizes tangential motion. We
are also investigating ways to generalize the definition of geometric distance and design
new priors to improve automatic matching of sulcal features. Using generalized flows
to compute continuous morphs that follow geodesics in shapespaces [26, 27] is another
exciting avenue of future work.
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