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Abstract. Despite being routinely required in medical applicatiaeformable

surface registration is notoriously difficult due to largeerrsubject variability and
complex geometry of most medical datasets. We present aajemel flexible de-

formable matching framework based on generalized surfaass fihat efficiently

tackles these issues through tailored deformation primigwaultiresolution com-
putations. The value of our approach over existing methsdiemonstrated for
automatic and user-guided cortical registration.

1 Introduction

Matching (or registration) of deformable surfaces is a améntal problem in med-
ical image analysis and computational anatomy. One péatigichallenging instance
of the problem arises in the field of human brain mapping, elisformable registra-
tion of two cortical surfaces is required for intersubjestparisons and intrasubject
analysis of neuroanatomical surface data. Related studtksde progression of dis-
orders such as Alzheimer’s disease, brain growth pattgersgtic influences [1] and
the effects of drug abuse on the structure and function obthan [2]. The challenge
in registering two cortices lies in the wide inter-subjeatiability and the convoluted
geometry of the cortical surface, representing a real $sttest” for any general de-
formable registration technique. Various landmark-based landmark-free methods
have been developed [3-8]. Parameterization-based tpagmifirst find a mapping be-
tween the cortical surface and a plane or a sphere, thenialitpe parameter domain
cortical features such as mean curvature [2, 5, 6] or sudcadrharks [8, 9]. The often
large change in metric due to the mapping needs to be acabtortevhile perform-
ing the alignment process in the parameter domain [9, 1@fnado the computational
costs. Another class of techniques operates directly irathkient space by finding a
3D warping field that aligns the cortical features. Most afdh methods are volume-
based, aiming to align image features such as intensitigsdrlinvariant geometric
moments [12], rather than surfaces. As a result, their nragcbf the cortices often
exhibits inaccuracies.

In this paper we present a new, general, and flexible compuottframework for
deformable surface matching, based on the notiogeokeralizedlows of discrete sur-
faces. Generalized flows were introduced recently in [18] [@4] in the Eulerian set-
ting (i.e., for implicit surface representations), andeexted to the Lagrangian (mesh-
based) case in [15]. The proposed method iteratively def@ 3D template surface to
match the target, until convergence criteria are met. Asaltighe whole deformation
trajectory is available as a by-product for evaluation aetkdnination of the best fit.

The use of geometric flows in medical image analysis is not favinstance, active
contours (or snakes) and deformable models have been vagelied to reconstruct
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Fig. 1. A white matter cortex and its corresponding Partially Elaéld Surfacéa), where the
major sulci is still clearly present. A basic Hausdorff gead flow applied on a rotated, smoother
version(b) creates spurious deformatio(® due to lack of coherence and local minima, while
with a quasi-rigid deformation priqd), it successfully recovers the transformation.

(c) (d

surfaces from volumetric images.§, [16]). The main drawback of these methods is

their sensitivity to local minima, which can become particly severe when matching

of geometrically complex objects is sought. Here we showwatewaystematically deal
with this issue using problem-specific prior knowledge. Thetributions of this paper
are as follows:

- We present a computational framework for surface matchiagpd orgeneralized
discrete geometric flows. By allowing custaeformation priors the generalized
approach significantly helps avoiding local minima and mtes additional flexibility
and control over the registration process, as well as rabsgstto noise.

- The proposed framework uses a triangle mesh (Lagrangiprgsentation for surface
matching. Compared to the Eulerian methodology, this agras both topology-
preserving by definition and efficient by nature, confiningnpaitations strictly to
the object boundary. Moreover, this representation cavigegoint correspondences
between two surfaces at any chosen resolution.

- We formulate the alignment problem as a minimization pssad a pseudo-Hausdorff
distance and show a practical application of the method tiiced matching.

- The basic algorithm is optimized using a surface multiketson representation, al-
lowing efficient handling of complex models and faster cogeace.

2 Method

A typical shape matching problem considers two 3D modeldenaplateand an
instance—assumed to have some "meaningful” but unknown mapping é&etvthem.
The matching problem is thus to find such a valid mapping betwtbe two shapes,
generally involving a non-rigid mapping in medical apptioas. We start with a brief
overview of our approach to the problem of deformable shapthing, before pro-
ceeding to the specific (and challenging) case of cortiadésa matching.

2.1 Object Alignment asa Geometric Optimization

The task of aligning two objects is often cast as a geomeistaice minimization
problem: a common approach to registration is to deform drileeoshapes (typically,
the template) so as to minimize its “distance” to the othexpsh Since an?-type
distance measure is known to be too forgiving in comparirgshapes, we opt instead
for the symmetric Hausdorff distance which, for two sura8eand7, is given by

d(S,7) = max|maxmin ||p— maxmin ||p— .
(S,7) maxmin ||p— g/ ,maxmin |[p— g



Since this expression is not differentiable, we adopt agsdtdausdorff distancey (X, Y)
between two distinct mesh&s= {x;}i—1. p andY = {y;}j—1.o, based on a method in-
troduced in [17] in the context of Level Sets, and adapted %] fo handle irregularly
shaped polygonal meshes. This allows us to formulate distarinimization as an iter-
ative gradient descent procedure, where the template Xeéslevolved (or flowed) at
each step in the direction of the negative gradiekiX, Y ), with Y being the instance

mesh. This process is knowngmdient flow and can be written as the following PDE:
dXx _10 0y
T =-M" E —(X,Y), 1)

whereM s a finite element lumped (diagonaijass matri{18] associated with the
meshX to account for non-uniform sampling, aﬁ&% is given by
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with M andMy are elements of the mass matriceXandY, respectively, and > 0,

o >0are parameters [15]. However, as illustrated by Figuréghirsuch a naive min-
imization is unlikely to yield relevant correspondencesigen two dissimilar shapes,
as the energy landscape is too complex and non-linear to getiing stuck in one of
the numerous local minima.

2.2 Generalized Hausdor ff Flow

One important detail is that the definition of the gradierfEq 1 is implicitly based
on theL? inner product on the deformation space [13], which in factloa replaced by
any valid inner product. In particular, given thé inner product andny self-adjoint
positive-definite linear operatdr : U — U (U being the deformation space)naw
inner product can be defined by

(u,v) =(Uu,Lv)2 =(Luv)z2. (3)

This is a special type of inner product, as it is defined witspeet to theL2 norm.
The advantage is that, given thé-gradient], > of any surface energy functiongj the
generalized gradier|tL3] of £ can be defined by

OLEX) =L 12E(X) . (4)
This leads to the definition of generalized Hausdorff flaw

=ML ERXY).



The operatoL. should be chosen so as to reflect prior knowledge about theenat
a problem-specific deformation, and is therefore callel@@rmation prior(not to be
confused with probabilistic priors used in Bayesian edtiom. Thus, this procedure
is of practical interest because it allows usmodify any existing £ gradient flow
Note that the energy itself is never altered by a prior—itriydhe optimizatiorpath
that is. We will now show two particular priors useful in mashgformable registration
contexts.

2.3 Deformation Priors

Sobolev Deformation PriorAs most conventional gradient flows are based onlthe
norm of vector fields which disregards the spatial coherarice deformation, they
can produce highly irregular motion and are susceptibleoteenand local minima. To
address these flaws, Sundaramoacethal. [14] proposed a regularizing inner product,
namely, a Sobolev norm, in the context of Eulerian (LevekBattive contours. For
meshes, the Sobolev notrt derives from the following inner product:

(u,v>H1:/Su(x)-v(x)dx+A/SDu(x)~Dv(x)dx.

Using Eq. 3 and integration by parts, we can show that thisripnoduct corresponds
to the linear operatok ,;1(u) = u — AAu, whereA is the discrete Laplace-Beltrami
operator [19], and\ is an arbitrary weighting factor. Equipped with this defation
prior, we can define thél’-gradient of the pseudo-Hausdorff distance (or any other
surface energy), and perform an explicit integration of the correspondingdient
flow. This yields: 0E

Xt+dt:Xt—dt(|d—)\A) W(Xt)

Thus, a step of Sobolev gradient flow is computed by solviegdhiowing linear sys-

tem:
J¢&

(Id—AA)X¢iqt = (Id—/\A—dta—X)Xt. (5)
Consequently, the solution of this linear system couplesntiotion of each vertex to
the motion of the other vertices. This exemplifies the regzddion effect: vertices that
move independently in alr? flow will now move in concord.

For a stronger regularization effect, we can extend to asolieme to higher order
Sobolev-type norms. For instance, we can define a higharpribrL (u) = u+ uA2u,
whereA? = A o A. With a slightly higher computational cost, the resultiopsme is
equivalent to regularizing the instantaneous deformatiitima thin-plate spline energy
term (see e.g. [20]). In practice, we stick to tH&prior in this work.

Quasi-rigid Deformation Prior Since the two input shapes are generally given in sep-
arate coordinate frames, it is often desired to first brirggrthinto a rigid alignment.
For that purpose we can use the quasi-rigid deformatiorr pria(see [13, 15] for the
Eulerian and Lagrangian derivations, respectively). Duegace constraints, we will
not reproduce its formulation here. In essence, it can hea®a linear filter that boosts
the rigid component of a given motion field by a user-specifiador. As a result, an
arbitrarily-rigid surface flow can be obtained. Figure 1wb@ successful quasi-rigid
alignment of two cortices with this prior.



Fig. 2. Automatically matching a template (grey) to the subjecteo(blue). Partially flattened

representations of both surfaces are iteratively aligredoigua Hausdorff flow with a smoothing
prior. The obtained alignment yields a correspondence devihe original surfaces. The final
color mix is due the fact that the surfaces lie on each other.

Note that since each of prior is given by a linear operatorca® also design a com-
binedL g prior which is a weighted combination of the two above opesatsuch
that the rigid motion is prioritized and the non-rigid rasidis smoothed. The result is
a single prior that covers both phases of the registrationgss.

2.4 Matching Cortical Surfaces

Basic Algorithm We are now ready to apply the Hausdorff flow approach to match a
template cortical surface (e.g., a digital atlas of theegrto an instance surface, e.g.,
segmented from a MRI scan. One naive solution would be tpeithe minimization
directly on the input surfaces, combined with tHé deformation prior for regular-
ization. This process is still likely to get stuck in a locainimum due to the highly
convoluted geometry of the cortex. Even if we managed tolgetwo surfaces into a
complete alignment, the result would hardly be adequaiei@sortex correspondence
is in general not well-defined due to extreme variability loé cortical structures. In
practice, quality of match is measured by the alignmenteftiajor sulcal patterns that
can be consistently identified in all brains. Thus, minimumbeisurface distance alone
is not a sufficient condition for an acceptable solution.ibwif this problem, the use of
Partially Inflated Surfaces (PFS) has been advocated fticabmatching [6, 21]. The
idea is to smooth out excessive surface detail through, ean Curvature Smooth-
ing [22]); a limited amount of smoothing is performed in arde facilitate matching
while preserving the principal sulcal patterns—see Fidw(eg for an illustration. We
adopt this approach, with one important difference. Whilgespondence between two
PFSs is typically computed by matching their maps in a compamameter domain,
we eliminate these intermediate mappings by aligning tHasRfirectly. Our strategy is
summarized below, and illustrated in Figure 2:

ALGORITHM:

1. Partially flattenS and7, obtainingS” and7, respectively. ,
2. Apply Generalized Hausdorff Flow to achieve an arbilyatiose alignment o
with 77, yielding a correspondence mggbetween the two.



Fig. 3. a. Automatic matching of PFSs yields a close alignment for nsostal curvesb. Con-
straining only 7 out of the 23 available curves reduces masalignments, further improved by
using the full set of constraintg)( d. Corresponding sulcal alignment for the original cortical
surfaces. For clarity, a single cerebral hemisphere is show

3. ReturnS — &' & T/ — T as a bijective map betweghand7 .

The first step can be done rapidly using Mean Curvature Srmap{MSC), with im-
plicit time integration allowing an arbitrarily large tinstep. Note that MSC is a clas-
sical example of gradient flow, so our whole approach fitsIpioeo the flow-based
methodology. The crux of the algorithm lies in the secong,sthere the template PFS
S (which can be precomputed for repeated use) is iterativefgrched to matchy” .
To regularize the flow, we use the, 1 operator from Section 2.3. In practice, once the
rigid component of the motion vanishéss ;1 can be replaced with a simplex prior
for efficiency. As the surfaces get closer, we switch to igiptime integration (Eg. 5)
to avoid oscillations and accelerate convergence.

Finally, to make the process even more efficient for higloltd®n models, the ba-
sic minimization algorithm is cast in a multiresolutionritawork, yielding a speedup
of several orders of magnitude. A coarse match is first coatptdr simplified ver-
sions [23] of both PFSs, before refining them back to the wvalgresolution (using
pyramid coordinate$24]) for final alignment. Thus, our approach applies muakis
strategies to reduce both geometric and computational lexitips: geometrically—
using partial flattening to find a mapping, and computatiyraémploying coarser
meshes to optimize performance.

Adding ConstraintsAs shown in Figure 3, the above procedure manages to automati
cally align most sulci, but cannot guarantee a correct matoén a strong sulcal vari-
ability is present. A common remedy is to incorporate caists, i.e., expert-specified
sulcal curves, to control the mapping. In our case, addingstraints to the pseudo-
Hausdorff energy is quite straightforward. Indeed, matghof two curves on opposite
surfaces is just another distance minimization problemnis-time, between sets of sur-
face points that lie on the two curves. Thus, we can reuseatine $lausdorff distance
approach, applying a separate, similar energy term to tinesh vertices that are inci-
dent on the curves (instead of the global Hausdorff pothnéidding point constraints,
if needed, is even simpler. Note also that the constrainfmtmation is still kept smooth
due to the use of thid® prior.

3 Reaults

The proposed cortical matching algorithm was tested withtagbt of six subject
brains, segmented from MRI scans using the BrainSuite 2]l pach supplemented
with a set of sulcal curves marked by an expert accordingad_@NI Sulcal Tracing
Protocol [1]. As illustrated by Figure 2, the algorithm amiatically computes a near



zero-distance alignment for two partially inflated cortisarfaces, effectively yielding
an intercortex correspondence. It results in a reason#dide @lignment for most sulcal
curves, further improved through the addition of constmiRigure 3 shows that most
sulci could be matched automatically, and constraining arslubset of the sulcal curves
is sufficient, thus significantly reducing the amount of mareffort required.

Table 1 summarizes a limited evaluation of our algorithm EpHompared to
HAMMER [12], based on six pairs of subject brain images. Altgh the two meth-
ods operate on different modalities, distances betweeregponding subject and de-
formed template sulcal curves can be measured in both dages.without resorting
to constraints (to make a fair comparison to the landmagk-HAMMER), our method
demonstrates a comparable quality of match, with cleaghesor computation times:
under 5 min on a standard PC, as opposed to several hoursalSotiat for PFS sulci,
registration error is even lower, which illustrates the lgyaof the core deformable
matching procedure.

Method / Data MeanL? Distance Per Case (mffijotal Averagé
HAMMER / Original Sulci/|4.67/4.624.795.055.13 4.90 4.87
GHF / Original Sulci 5.495.024.565.164.97| 4.53 4.96
GHF / PFS Sulci 4.133.873.544.124.07 3.32 3.84

Table 1. Quality of match between deformed template and subjechbias average? distances
between corresponding sulcal curves.

4 Discussion and Future Work

We have presented a practical and flexible multiresolutaméwork for deformable
surface registration, based on generalized geometric flowise case of cortical match-
ing, initial evaluation indicated quality comparable tatst of the art methods, with
near-interactive computation times. The presented swiu$ not without limitations:
for instance, self-intersections may occur during the deédion, e.g., in presence of
constraints (in fact, one can design constrained configurahot having any intersection-
free solution). This shortcoming can be addressed throwggeaial deformation prior
added to the constraint energy term, e.g., a prior thatipzes tangential motion. We
are also investigating ways to generalize the definitioremigetric distance and design
new priors to improve automatic matching of sulcal featutésing generalized flows
to compute continuous morphs that follow geodesics in seppees [26, 27] is another
exciting avenue of future work.
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