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ABSTRACT

Inter-subject analysis of anatomical and functional brain imaging data requires the images to be registered to
a common coordinate system in which anatomical features are aligned. Intensity-based volume registration
methods can align subcortical structures well, but the variability in sulcal folding patterns typically results
in misalignment of the cortical surface. Conversely, surface-based registration using sulcal features can produce
excellent cortical alignment but the mapping between brains is restricted to the cortical surface. Here we describe
a method for volumetric registration that also produces a one-to-one point correspondence between cortical
surfaces. This is achieved by first parameterizing and aligning the cortical surfaces. We then use a constrained
harmonic mapping to define a volumetric correspondence between brains. Finally, the correspondence is refined
using an intensity-based warp. We evaluate the performance of our proposed method in terms of the inter-subject
alignment of expert-labeled sub-cortical structures after registration.

Keywords: Volumetric registration, Harmonic mappings.

1. INTRODUCTION

Inter-subject studies for detecting systematic patterns of brain structure and function in human populations
require that the data first be transformed to a common coordinate system in which anatomical structures are
aligned. Similarly, inter-subject longitudinal studies or group analyses of functional data also require that the
images first be anatomically aligned. Such an alignment is commonly performed either with respect to the
entire volumetric space1 or is restricted to the cortical surface.2 Here we describe an approach to brain image
registration based on harmonic maps that combines these two approaches producing a volumetric alignment in
which there is also a one-to-one correspondence between points on the two cortical surfaces.

Volumetric brain image registration methods3–10 try to align intensity values and landmarks by finding a
diffeomorphism between the two brain image volumes by finding a deformation field which aligns one volume
to another. In addition to the intensity, additional information such as landmark points, curves and surfaces
can be incorporated as additional constraints in an intensity-based warping method.2, 11–16 Landmarks, curves16

and image matching15 have been applied in a hierarchical manner in a large deformation framework ensuring
generation of diffeomorphisms.17, 18 The volume registration methods provide a good registration of subcortical
structures, but do not provide an accurate cortical alignment. While the regions of cortical grey matter exhibit
reasonably good correspondence between the two images, the cortical surfaces themselves do not align well. Since
cytoarchitectural and functional parcellation of the cortex is intimately related to the folding of the cortex, it is
important when comparing cortical anatomy and function in two or more subjects that the surfaces are aligned.
For this reason, there has been an increasing interest in alignment of surfaces rather than volumes.

Various surface-based techniques have been developed for inter-subject registration of two cortical models.
One class of techniques involves flattening the two cortical surfaces to a plane or to a sphere19 using mechanical
models or variational methods and then analyzing the data in the common flat space.20 Other surface based
techniques work in the surface geometry itself rather than a plane or a sphere and choose to account for the surface
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metric in the inter-subject registration.21, 22 The advantage of such techniques is that they produce registration
results that are independent of the intermediate flat space (or, equivalently, the specific parameterization of the
cortex) resulting in a more consistently accurate registration throughout the cortex. These approaches involve
manually delineated sulcal landmark matching22 in the intrinsic surface geometry. While some progress has
been made recently towards automating the matching process using mutual information23 or optical flows of
mean-curvature images in the surface parameter space,24, 25 fully automatic alignment of high resolution cortical
surfaces remains a challenging problem.

While the volume registration methods described above do not provide suitable cortical alignment, the cortical
registration methods do not define any volumetric correspondence. Registration methods such as the Hierarchial
Attribute Matching Mechanism for Image Registration (HAMMER) algorithm26, 27 incorporate surface as well
as volume information in the alignment procedure. For brain images, the desired deformation fields need to be
obtained incrementally by using large deformation or fluid models28, 29 and hence are computationally expensive.
Additionally, accurate alignment of the cortical surface as well as the cortical volume remains a challenging task
mainly due to the complex folding pattern variability of the cortex.

We present a registration method which combines surface as well as a volume alignment methods to perform
the final normalization. We start by aligning the cortical surfaces, semi-automatically, by using sulcal landmarks.
Then we use harmonic maps to extrapolate this surface mapping to the entire cortical volume. Harmonic maps
are suitable for this task since they are bijective provided that the boundary (cortical surface in this case) is
mapped bijectively.30 Finally, an intensity based volumetric registration refines this correspondence to align
subcortical structures.

2. PROBLEM STATEMENT AND FORMULATION

Given two 3D manifolds M and N representing subject and template brain volumes, with boundaries ∂M and
∂N representing corresponding cortical surfaces, we want to find a map from M to N such that ∂M , the surface
of M , maps to ∂N , the surface of N , and the intensities of the images in the interior of M and N are matched.
The boundaries, ∂M and ∂N , representing the cortical surfaces of the two brain volumes are assumed to have a
spherical topology. We solve the mapping problem in three steps:

1. Surface matching which computes a map between ∂M and ∂N - subject and template surfaces, with sulcal
alignment constraints. This is performed by using thin-plate spline registration in the intrinsic surface
geometry as discussed in Section 3.

2. Extrapolation of the surface map to the entire cortical volume such that the cortical surfaces remain aligned.
This is done by computing a harmonic map between M and N subject to surface matching constraints.
As we describe in Section 4.3, an intermediate spherical representation is used to facilitate enforcement of
this constraint. We note also that while the sulci are constrained to remain in correspondence, the cortical
surfaces can flow with respect to each other when computing the volume harmonic map provided we retain
the one-to-one mapping between ∂M and ∂N ;

3. Refinement of the harmonic map on the interiors of M and N to improve intensity alignment leading to
better registration of subcortical structures. The third step is describe in Section 5.

3. SURFACE MATCHING

The first step of our procedure is extraction and registration of subject and template cortical surfaces. Assuming
as input, two T1 weighted MR volumes corresponding to the subject, cortical surfaces are extracted from volume
images for the two brains using the BrainSuite software.31 BrainSuite includes a six stage cortical modeling
sequence. First the brain is extracted from the surrounding skull and scalp tissues using a combination of
edge detection and mathematical morphology. Next the intensities of the magnetic resonance images (MRI)
are corrected for shading artifacts. Each voxel in the corrected image is labeled according to tissue type using
a statistical classifier. Co-registration to a standard atlas is then used to automatically identify the white
matter volume, fill ventricular spaces and remove the brain stem and cerebellum, leaving a volume whose surface



represents the outer white-matter surface of the cerebral cortex. It is likely that the tessellation of this volume
will produce surfaces with topological handles. Prior to tessellation, these handles are identified and removed
automatically using a graph based approach. A tessellated isosurface of the resulting mask is then extracted
to produce a genus zero surface which is subsequently split into two cortical hemispheres. These extracted
surfaces are hand labeled with 23 major sulci on each cortical hemisphere according to a sulcal labeling protocol
with established intra- and inter-rater reliability.31 This protocol specifies that sulci do not intersect and that
individual sulci are continuous curves that are not interrupted. If interruptions are present, the human raters
specify the path across any interrupting gyri. We note that the procedure implemented in BrainSuite to find the
cortical surface uses the inner grey/white boundary of cortex as the surface. Consequently the images shown here
do not include cortical grey matter but are restricted to white matter, ventricles and subcortical grey matter.
The sulcal landmarks and triangulated mesh models of the subject and template cortical surfaces are used for
the surface registration procedure which sets up a point correspondence between the two surface.

We use a thin-plate spline based surface registration method as we have previously described.22 This method
produces a bijective point correspondence between the two cortical surfaces by aligning their coordinate systems.
This is done by first mapping the two surfaces to unit squares using p-harmonic energy minimization and then
aligning their sulcal landmarks by computing a coordinate deformation field to align the sulcal coordinates.
The field is regularized using the intrinsic thin-plate bending energy computed using the covariant bi-harmonic
equation. The resulting deformation field defines a one to one correspondence between the subject and template
surfaces. We refer the reader to Joshi et al.22 for a more detailed description of this method. We note that any
of the landmark based or automated surface registration algorithms20, 23–25, 32–34 could also be used for this step.

4. HARMONIC MAPPING

The surface registration procedure as described in Section 3 sets up a point to point correspondence between
the subject and template cortical surfaces. Extrapoliating this correspondence from the boundary of the cortical
volume to the entire cortical volume in a one-to-one manner is challenging due to the convoluted nature of the
cortex. We propose that 3D harmonic maps are attractive for this purpose due to their tendency to be bijective
if the boundary (cortical surface) are mapped bijectively.35

This section describes the harmonic mapping between two 3D volumes. A computational scheme for extending
the surface maps to the volumes is also described. We refer readers to Jost35 for basic properties of harmonic
maps.

4.1. Mathematical Formulation

Let u : M → N be a C∞ map from a 3-dimensional Riemannian manifold (M, g) to an 3-dimensional Riemannian
manifold (N, h) where g and h are Riemannian metrics for M and N respectively. Riemannian metric defines an
inner product at every point in the manifold and thus helps in defining the notion of distance on the manifold.35

Let {gij ; i, j ∈ {1, 2, 3}} denote components of the Riemannian metric tensor g and {hαβ; α, β ∈ {1, 2, 3}} denote
the components of the Riemannian metric tensor h. The inverse of the metric g = {gij} is denoted by {gij}. Let
(x1, x2, x3) and (u1, u2, u3) be local coordinates for x and u(x) respectively. The mapping energy in coordinate
form36 is given by:

E(u) =
1

2

∫

M

3
∑

i,j=1

3
∑

α,β=1

gij(x)hαβ(u(x))
∂uα(x)

∂xi

∂uβ(x)

∂xj
dµg, (1)

where the integration is over the manifold M with respect to the intrinsic measure dµg induced by its Riemannian
metric g. A harmonic map from (M, g) to (N, h) is defined to be a critical point of the mapping energy E(u).

A number of existence, uniqueness, and regularity results have been proven for harmonic maps.37 Eells
and Sampson38 proved the existence of a harmonic map from any compact Riemannian manifold to a compact
Riemannian manifold of non-positive sectional curvature. Hamilton30 generalized this result to manifolds with
boundaries. In medical imaging, harmonic mappings and p-harmonic mappings, their generalized counterparts,
have been used for various applications such as surface parameterization and registration39 and image smooth-
ing.40 Wang et al.41 describe a method for volumetric mapping of the brain to the unit ball B(0, 1). Here we
use harmonic maps to align two brain volumes so that both the brain volumes and cortical surfaces are aligned.



(a) Schematic (b) Initialization

Figure 1. (a) Illustration of our general framework for surface-constrained volume registration. We first compute the
map v from brain manifold (N, I) to the unit ball to form manifold (N, h). We then compute a map ũ from brain (M, I)
to (N, h). The final harmonic map from (M, I) to (N, I) is then given by u = v−1

◦ ũ. (b) The initialization for the
mapping procedure. First we generate flat square maps of the two brains, one for each hemisphere, with sulci aligned.
Then we map the squares corresponding to each hemispheres to a disk and project the disks onto the unit sphere. We
then generate a volumetric maps from each of the brains to the unit ball. Since all these maps are bijective, the resulting
map gives us a bijective point correspondence between the two brains. However, this correspondence is not optimal with
respect to the harmonic energy of maps from the first brain to the second, but is used as an initialization for minimization
of (3)

One approach to the mapping problem is to first align the surfaces of the two manifolds and then align the
volumes in their interiors while keeping the surfaces fixed. However, fixing the surface correspondence before
aligning the volumes will result in a suboptimal mapping with respect to the 3D mapping energy. To overcome
this problem and compute an optimal mapping for the surface as well as the interior, we instead allow the surface
M to flow within the surface of N when computing the map. The only constraints placed on the surfaces are that
the maps are aligned at a set of user defined sulcal landmarks. This less restrictive surface mapping constraint
cannot be formulated directly in the ambient Euclidean 3D space since there is no analytical expression for the
surfaces, although this could be accomplished without parameterizing the surface using a level set approach.32, 40

Here we use an intermediate representation for the manifolds which allows us to enforce the boundary matching
constraint while allowing one boundary to flow within the other. We achieve this by first computing a map
v : N → B(0, 1) as described below. This mapping to the unit ball results in a non-Euclidean representation
of N thus requiring the use of Riemannian metric in computing the harmonic map. The Riemannian metric
h = {hαβ} associated with this representation is given by

hαβ =

3
∑

i=1

∂xi

∂vα

∂xi

∂vβ
. (2)

Now instead of needing to directly compute the harmonic map u : (M, I) → (N, I), we instead find the harmonic
map ũ : (M, I) → (N, h) ≈ B(0, 1) subject to the constraint that the cortical surface ∂M maps to the spherical
boundary of the unit ball, as illustrated in Fig. 1.

The harmonic mapping problem now becomes:

ũ = arg min
γ

∫

M

3
∑

i=1

3
∑

α,β=1

hαβ(γ(x))

(

∂γα(x)

∂xi

) (

∂γβ(x)

∂xi

)

dµg (3)

subject to ‖ũ(x)‖2 = 1 for x ∈ ∂M , the surface of M . Note that this constraint allows the surface map to
flow within the spherical boundary. While we want to allow one surface to flow with respect to the other, we



also want to constrain the maps so that predefined sulcal landmarks, a user-defined set of sampled curves, are
aligned. To achieve this we impose the additional constraints that ũ(c) = uc for c ∈ Mc where Mc are the set of
sulcal landmark points in M and uc are the locations of the homologous landmarks in (N, h).

4.2. Initialization Procedure

Because the minimization problem is nonlinear, it is important to have a good initial estimate of the map ũ in
order to achieve convergence in a reasonable amount of time. We therefore generate an initial estimate ũ0 of
ũ by also computing a map of the second manifold (M, I) to the unit ball, just as we do for the first manifold
(N, I) (Fig. 1). To compute mappings of brain manifolds to the unit ball, we first compute a mapping of the
surfaces to the unit sphere with sulcal alignment as described in Section 3. To map the interior of the manifold
(N, I) to the interior of the unit ball B(0, 1), the mapping energy

E(v) =

∫

M

|∇v|2dV (4)

is minimized to get v (Fig. 1) with the constraint that the surface ∂N maps to the unit sphere, the boundary
of B(0, 1). Here ∇ is the usual gradient operator in 3D Euclidean space and dV is the volume integral.41

Similarly, in order to map the given cortical brain volume M to the unit ball, we minimize the mapping energy
subject to the constraint that the surface of M maps to the surface of the unit ball using the point-to-point
correspondence defined by the surface alignment. The minimization is computed using numerical integration
over the voxel lattice and finite differences to approximate the gradients in (4). The resulting discretized cost
function is minimized by conjugate gradient. The initialization procedure is illustrated in Fig. 1.

4.3. Harmonic Mapping Between the Two Brains

The initialization procedure results in maps u0 from (M, I) and v from (N, I) to the unit ball such that the sulci
on the cortical surface align on the unit sphere, the boundary of the unit ball. Since the map v is bijective, we
can treat the unit ball as a coordinate system for the manifold N . The manifold N with the unit ball coordinates
is denoted by (N, h). The ũ0 from M to the unit ball is used to initialize the desired map ũ from (M, I) to (N, h).
With this initialization, we then compute the 3D harmonic map by minimizing (3) to obtain the desired harmonic
map. The optimization problem is solved using numerical integration and finite difference operators, in this case
accounting for the metric h when computing derivatives. In this mapping, the location of the sulci in M are
constrained using their initial mappings ũ0 computed when flattening and matching the cortical surfaces. Other
points within the brain are allowed to move freely to minimize the harmonic energy, subject to the constraint
that all points on the surface map to ‖ũ‖2 = 1, which is achieved by adding a penalty function to the discretized
form of (3).

4.4. Implementation

4.4.1. Computation of Metric

The metric hij(x), x ∈ N is associated with the unit ball coordinates B(0, 1) given to N by the map v = (v1, v2, v3)

(Fig. 1). It is given by hαβ(x) =
∑3

i=1
∂xi

∂vα
∂xi

∂vβ with α, β ∈ {1, 2, 3} at x = (x1, x2, x3). Note that although
x ∈ N is in the regular grid, v(x) ∈ B(0, 1) is not necessarily so, and hence computation of partial derivatives
with respect to v directly is difficult. In order to compute ∂vα

∂xi , first compute ∂vγ

∂xj using finite differences and

then use the chain rule identity
∑3

γ=1
∂xi

∂vγ
∂vγ

∂xj = ∂xi

∂xj = δi
j to solve for ∂vγ

∂xj . The metric hij is computed by
substituting these partial derivatives in the above equation.

4.4.2. Harmonic mapping

The harmonic mapping procedure can now be summarized as follows:

1. Align the surfaces of both the brains M and N as described in Section 3.

2. Map the unit squares to unit disks by the transformation (x, y) → ( x√
x2+y2

, y√
x2+y2

) and then project

them onto two hemispheres using (x, y) → (x, y, 1 ±
√

x2 + y2).



3. Using this mapping of the cortical surface to the unit sphere as the boundary condition, generate a volu-
metric harmonic map of M and N to the unit ball B(0, 1) to get maps ũ0 and v respectively as described
in Section 4.2.

4. Compute the metric h associated with the unit ball B(0, 1) coordinates of N .

5. Minimize (3) holding the matched sulci fixed, and letting the cortical surface ∂M slide along the unit
spherical boundary of the unit ball. This is done by minimizing (3) with the constraint that ‖ũ(x)‖2 = 1
for x ∈ ∂M and ũ(c) = ũ0(c) for c ∈ Mc where Mc ⊂ M denotes the set of sulcal points on M .

6. Compute the deformation vector field u(x) − x where u = v−1 ◦ ũ and apply this to map brain volume M

to N . Trilinear interpolation is used for this deformation.

5. VOLUMETRIC INTENSITY REGISTRATION

The harmonic surface constrained volume alignment procedure described above produces a bijective mapping
between the two brain volumes. However, it only uses the shape and does not use the MRI intensity values
in the alignment method. Using this additional information, the alignment of subcortical structures within the
brains can be improved further. In order to compute this refinement we use a linear elastic registration method
as described below.

Let fM (x) denote the MRI intensity value at location x = (x1, x2, x3)
t for the brain M and let fN(x) denote

the MRI intensity value at location x = (x1, x2, x3)
t for the brain N . In order to find a smooth deformation field

d = (d1, d2, d3)
t such that the mean squared error between MRI intensity values of the two brains fM (x+d) and

fN (x) is minimized, we minimize the cost function

C(d) = ‖Ld‖2 + α‖fM (x + d) − fN (x)‖2 (5)

subject to d(s) = 0 for s ∈ ∂M (6)

where L = ∇2 + µ∇(∇·) denotes the Cauchy-Navier elasticity operator in M . By imposing the constraint (6)
on the deformation field, we ensure that the surface alignment is not affected. Assuming that the deformation d

is small compared to the rate of change of fM , then using a Taylor series approximation, we have fM (x + d) ≈
fM (x) + ∇fM (x) · d. Substituting this approximation in (5) and (6), we get

C(d) ≈ ‖Ld‖2 + α‖∇fM (x) · d(x) + fM (x) − fN (x)‖2 (7)

subject to d(s) = 0 for s ∈ ∂M (8)

Note that this is a quadratic cost function and can be minimized by the conjugate gradient method. We use a
preconditioned conjugate gradient method with Jacobi preconditioner for this purpose.

This final refinement completes the surface-constrained registration procedure. While there are several steps
required to complete the registration, each step can be reduced to either a surface or a volume mapping cast as an
energy minimization problem, possibly with constraints, and can be effectively computed using a preconditioned
conjugate gradient method, so that the entire procedure can be completed efficiently.

6. RESULTS AND VALIDATION

In this section we demonstrate the application of the surface constrained registration procedure to T1-weighted
MR brain images. The labeled brain data was obtained from the IBSR dataset at the Center for Morphometric
Analysis at Massachusetts General Hospital. This consists of T1-weighted MR images with 1.5mm slice thickness
as well as expert segmentations of 43 individual structures. The cortical masks were obtained and their topology
corrected using the BrainSuite software as described in Sec. 3. The cortical surfaces were then interactively
labelled with 23 sulcal curves on each hemisphere using a standard labeling protocol.42 Our registration algorithm
was applied by performing surface matching, harmonic mapping and volumetric intensity registration as described
above. Shown in Fig. 6 are three orthogonal views of a subject before and after alignment to the template image.
Note that before alignment the surfaces of the subject and template are clearly different, while after matching



Figure 2. Illustration of the effects of the two stages of volumetric matching is shown by applying the deformations to a
regular mesh representing one slice. Since the deformation is in 3D, the third in-paper value is represented by color. (a)
Regular mesh representing one slice in the subject; (b) the regular mesh warped by the harmonic mapping which matches
the subject cortical surface to the template cortical surface. Note that deformation is largest near the surface since the
harmonic map is constrained only by the cortical surface; (c) Regular mesh representing one slice in the harmonically
warped subject; (d) the intensity-based refinement now refines the deformation of the template to improve the match
between subcortical structures. In this case the deformation is constrained to zero at the boundary and changes re confined
to the interior of the volume.

the subject surface almost exactly matches the morphology of that of the template. However, since at this point
we do not take the image intensities into account, the interior structures are somewhat different. Following the
final intensity-based alignment procedure the interior structures, such as the ventricles better match those of the
template.

There is no gold standard for evaluating the performance of registration algorithms such as the one presented
here. However, there are several properties that are desirable for any such surface and volume registration
algorithm.For evaluating the quality of our registration results is based on the following two desirable features:

1. Alignment of the cortical surface and sulcal landmarks. We expect the sulcal landmarks to be accurately
aligned after registration and for the two surfaces to coincide.

2. Alignment of subcortical structures. We also expect the boundary of subcortical structures (thalamus,
lateral ventricles, corpus callosum) to be better aligned after coregistration than before.

In order to evaluate the performance with respect to 1 we used a set of 6 MR volumes on which we had labeled
23 sulci in each hemisphere. The pairs of cortical volumes were registered using our method as described above.
For comparison we used a 5th order polynomial intensity-driven warp computed using the AIR software.5, 43 We
also compared performance with the HAMMER26, 27 algorithm. HAMMER is an automated method for volume
registration which is able to achieve improved alignment of geometric features by basing the alignment on an
attribute vector that includes a set of geometric moment invariants rather than simply the voxel intensities. We
note that since our approach uses explicitly labelled sulci we can expect better performance than either AIR



Figure 3. Examples of surface constrained volumetric registration. (a) Original subject volume; (b) original template; (c)
registration of subject to template using surface constrained harmonic mapping, note that the surface matches that of the
template; (d) intensity-based refinement of the harmonic map of subject to template to complete registration procedure

or HAMMER in terms of the alignment of these features. However, AIR and HAMMER provide a basis for
comparison from some of the most widely used and best performing algorithms for volumetric registration.

We measured the mean squared distance between pairs of homologous landmarks corresponding to uniform
samples along each of the 23 labeled sulci. This procedure was repeated for each of the 30 possible pairwise
registrations of two from six brains and computed the average mean squared distance over all registrations. We
found that the mean squared distance (misalignment) between the respective sulcal landmarks was 11mm for
HAMMER registration and 3.2mm after our cortically constrained method. The difference in performance is
not suprising but reflects the fact that our approach explicitly constrains these sulcal features to match, which
HAMMER does not as described above.

For 2 we used manually labeled brain data from the IBSR database at the Center for Morphometric Analysis
at Massachusetts General Hospital (http://www.cma.mgh.harvard.edu/ibsr/). These data include volumetric
MR data and hand segmented and labeled structures.To evaluate accuracy, we computed the Dice coefficients
for each subcortical structure, where the structure names and boundaries were taken from the IBSR database.

Dice coefficient which measures overlap between two regions, say region P and region Q, is defined as 2|P∩Q|
|P |+|Q|

where | · | denotes size of the region. A comparison of the Dice coefficients is shown in Table 6, where we show
Dice coefficients for our method before and after application of the final intensity-based alignment step. It can be
noted that our method produces comparable volumetric subcortical alignment as HAMMER, while performing
better cortical surface registration. This study shows that our method is able to simultaneously align sulcal
landmarks, the cortical surface, and the interior intensity structures in the brain, with reasonable accuracy.
Larger scale validation is still needed.

The examples shown here demonstrate the cortical matching properties and the ability to also align sub-



Table 1. Comparison of Dice coefficients

Subcortical Structure AIR Harmonic HAMMER Harmonic with intensity
Left Thalamus 0.6588 0.4903 0.7303 0.5565
Left Caudate 0.4426 0.4804 0.5688 0.5747
Left Putamen 0.4079 0.3509 0.4905 0.5060
Left Hippocampus 0.4676 0.2590 0.3916 0.2639
Right Thalamus 0.6326 0.5030 0.7495 0.6071
Right Caudate 0.3671 0.3997 0.5098 0.4885
Right Putamen 0.3096 0.2706 0.4111 0.4297
Right Hippocampus 0.5391 0.3222 0.1989 0.3180

RMS Error in Sulci 11.06mm 3.2mm 11.5mm 3.2mm

cortical structures. One of the limitations of this evaluation was that cortical grey matter was not included in
the registration since the cortical surfaces were generated by BrainSuite,31 which selects the inner grey/white
boundary as the cortical surface. However, this is a limitation of the preprocessing step rather than the method
itself, and the process can be applied to the full cerebral volume provided that a genus-zero brain volume and
sulcal labels are supplied. A second limitation is that the cerebellum and brainstem are not included in the
analysis since the volume of interest that is mapped is restricted to the cerebrum, bounded by the outer cortical
sheet. We can address this issue in practice by modifying the final intensity-based matching step by first adding
the brainstem and cerebellum back to the cerebrum. This would also require extrapolation of the deformation
field from the harmonic map outwards to these structures as an initialization of the intensity based warp. Al-
ternatively, the cerebellum could also be explicitly modelled using a surface based approach (see, e.g., Hurdal et
al.19), and its surface and enclosed volume could be treated in a similar fashion to the cerebrum.

7. CONCLUSION

Simultaneous alignment of sulcal features, cortex and subcortical structures is a challenging problem due to
variability in the sulcal folding pattern of the cortex. The method presented here based on harmonic maps
bridges the gap between surface and volume alignment techniques by extending the surface map to the whole
subcortical volume. This allows the large deformation of the sulcal pattern and makes the complex sulcal folds
to align accurately, while warping the internal cortical volume bijectively. Through the use of an intermediate
spherical map, we are able to constrain the surfaces of the two brain volumes to align while enforcing point
matching only at a set of hand labeled sulcal curves. Using harmonic maps we are able to compute large scale
deformations between brain volumes allowing cortical surface as well as volumetric intensities to register. This
approach combines the strengths of surface registration and volumetric registration methods the ability of surface
registration to align surfaces accurately and the ability of volumetric intensity registration to align sub-cortical
features.
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