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ABSTRACT

We present a cortical surface registration method that simul-
taneously aligns sulcal landmarks and parameterizes two cor-
tical surfaces. The approach is based on coregistration of cor-
tical surface coordinate systems so that the labeled sulcalfea-
tures share the same coordinates on both cortical surfaces.We
model the cortex as an elastic sheet and solve the associated
Cauchy-Navier equilibrium equation subject to sulcal align-
ment constraints. The elastic energy is computed directly
with respect to the intrinsic surface geometry and discretized
using a finite element method on triangular tessellations of
the two surfaces. In contrast to alternative methods for cor-
tical alignment, the method avoids the need for an interme-
diate flat space for sulcal landmark matching and provides a
fast, accurate and inverse-consistent surface registration and
parameterization for inter-subject neuroanatomical studies.

Index Terms— Cortical alignment, Elastic parameteriza-
tion, Finite Elements

1. INTRODUCTION

Registration of surface models of the cerebral cortex has im-
portant applications in multi-subject studies of brain anatomy
and function. Investigators have studied progression of dis-
orders such as Alzheimer’s disease [1], growth patterns in
developing human brains [2], genetic influences [3] and the
influence of medication and drug abuse on the structure and
function of the brain [4, 5]. Intersubject surface registration,
or the intrasubject analysis required for longitudinal studies,
presents a difficult problem due to inter-subject variability and
the convoluted geometry of the cortical surface. Various land-
mark based and landmark free techniques have been devel-
oped for registration of two cortical surface models. Most of
these methods first map the two cortical surfaces to a plane
or sphere and then compute a deformation vector field that
aligns sulcal landmarks with respect to their planar or spheri-
cal coordinates [6, 7, 8, 9, 10, 11, 12].

Here we propose an FEM based elastic mapping method
that avoids the use of an intermediate surface flattening step
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for landmark matching. It incorporates the landmark regis-
tration into the parameterization method itself. We use the
Cauchy-Navier elastic equilibrium equation for performing
this matching as explained in the next section. In our earlier
method [10, 12], surface registration was performed in two
stages: (i) for each subject, parameterize the surface of each
cortical hemisphere to either a unit square or disk, and (ii)find
a vector field with respect to this parameterization that aligns
sulcal landmarks between subjects. Registration can use lin-
ear elastic [10] or thin-plate bending energies [12] for regular-
izing the deformation field and covariant derivatives to make
the alignment independent of the parameterization. However,
in order to solve the resulting variational minimization prob-
lem, numerical derivatives were computed by resampling the
brain on a uniform grid with respect to the parameterization.
In addition to the computational cost of resampling and in-
terpolation, this step results in a loss of resolution sincethe
regular or semi-regular grid in flat space is not necessarily
optimal for representing the brain in 3D space. In our new
approach, we incorporate sulcal landmark alignment directly
in our parameterization method and thus avoid the resampling
and reparameterization step completely. This approach also
has the advantage that the computation cost is relatively small
and that the resulting alignment is inverse consistent [13]as
will become clear from the symmetry of the cost function de-
fined below.

2. SURFACE REGISTRATION

To perform cortical surface registration and parameterization
with labeled sulcal curves as constraints, we model the cor-
tical surface as an elastic sheet and solve the associated elas-
tic equilibrium equation using an FEM. We choose the more
general elastic model over a surface based harmonic mapping
method [14, 15, 16, 17] because we found that the surface
based harmonic mappings do not remain bijective when mul-
tiple sulcal landmark constraints are imposed on the interior
of the flat parameter space. However, for the elastic model we
have so far always obtained a near bijective map by adjusting
the model parametersλ andµ appropriately. The reason for
this situation, intuitively, is that relative to the power of the
Laplacian alone, the Cauchy-Navier elasticity operator pro-



vides additional control over the gradient of the divergence of
the surface vector field, and this indirectly controls the Jaco-
bian of the mapping, constraining it from taking on extreme
values and thereby violating the smoothness assumption.

2.1. Mathematical Formulation

We assume as input a pair of genus-zero, tessellated cortical
surfaces extracted from a volumetric MR image [18]. Our
goal is to map the surfaces of each cortical hemisphere in the
two brains to the unit square such that in the flat map a set
of manually delineated sulcal landmarks are aligned with re-
spect to the flat space coordinates. Point landmarks are gen-
erated by sampling uniformly along each sulcal curve. Let
φ = [φ1, φ2]

T be the 2D coordinates assigned to every point
on a given cortical surface such that the coordinatesφ satisfy
the Cauchy-Navier elastic equilibrium equation with Dirichlet
boundary conditions on the boundary of each cortical hemi-
sphere, represented by the corpus callosum. We constrain the
corpus callosum to lie on the boundary of the unit square
mapped as a uniform speed curve. We solve the equilib-
rium equation in the geometry of the cortical surface using
the form:

µ∆φ + (µ + λ)∇(∇ · φ) = 0. (1)

whereµ andλ are Lamé’s coefficients. The operators∆ and
∇ represent the Laplace-Beltrami and covariant gradient op-
erators, respectively, with respect to the surface geometry.
The solution of this equation can be obtained variationally
by minimizing the following integral on the cortical surface
[19]:

E(φ) =

Z

S

λ

4
(Tr ((Dφ)T + Dφ))2 +

µ

2
Tr (((Dφ)T + Dφ)2)dS.

(2)
whereDφ is the covariant derivative of the coordinate vector
field φ. The integralE(φ) is the totalstrain energy. Although
the elastic equilibrium equation models only small deforma-
tions, we have found that in practice we can always compute
a flat map of the cortex by setting the parametersµ = 1 and
λ = 10.

Minimizing (2) produces a flat map of each hemisphere
but will not constrain the locations of the sulcal landmarks.
To do this, we introduce the following constraints. LetφS and
φA denote the 2D coordinates to be assigned to the subject
and atlas brain hemispheres respectively. Then we define the
Lagrangian cost functionC(φS , φA) as

C(φS, φA) = E(φS) + E(φA) + σ
X

k∈M

(φS(k) − φA(k))2 (3)

whereφS(k) andφA(k) denote the coordinates assigned to
the set of sulcal landmarksM , andσ is a Lagrange multiplier.
Note that we do not constrain the locations of the sulci in the
flat map but simply constrain homologous landmarks in the
two maps to lie at the same coordinates.

2.2. Finite Element Formulation

To minimize (3) on a tessellated surface we use an FEM to
discretize the strain energyE(φ). Since the integrand in (3)
is a tensor, it is justifiable to compute it locally at each ver-
tex point by assigning a local coordinate system(x, y) to its
neighborhood. For each triangle the covariant derivativeDφ
in the local coordinatesx, y becomes the Jacobian matrix:

Dφ =
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From (2), the strain energyEi(φ) for the ith triangle∆i is
given by:
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We now describe the FEM discretization of the partial deriva-
tives with respect to the local coordinates. Letα be any piece-
wise linear real-valued scalar function defined over the sur-
face, andαi the function restricted to trianglei with local co-
ordinatesx, y. Also denote the local coordinates of the three
vertices as(x1, y1), (x2, y2) and(x3, y3) respectively. Since
αi is linear on theith triangle, we can write,

αi(x, y) = ai
0
+ ai

1
x + ai

2
y (6)

Writing this expression at three vertices of the trianglei in
matrix form,
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The coefficientsai
0
, ai

1
andai

2
can be obtained by inverting

the matrixDi. From (6) and by inverting the matrix in (7),
we obtain
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Denote the discretization of∂
∂x

and ∂
∂y

at trianglei by Di
x and

Di
y respectively. Also note that|Di| = 2Ai whereAi is the

area of theith triangle. Then we have:
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Substituting these in (5) and (3), we have
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whereK is given by
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This method is used to discretize bothE(φS) and E(φA).
It can be seen from (13) and (3) that the cost function is
quadratic. We minimize (3) with respect to bothφS andφA,
with the corpus callosum fixed at the boundary of the unit
square, to compute the sulcally-coregistered flat maps for both
brains simultaneously. The minimization is performed by us-
ing a preconditioned conjugate gradient method with Jacobi
preconditioner. In practice the minimization algorithm con-
verges in approximately 500 iterations, requiring 3-4 minson
a desktop computer for surfaces with approximately 200,000
vertices.

3. RESULTS AND VALIDATION

We first extract cortical surfaces from MRI for each subject
using the BrainSuite software [20] to produce a genus-zero
tessellated representation of the inner gray/white cortical bound-
ary. We then manually delineate 23 major sulci on each of
these extracted cortical hemisphere meshes. Delineation is
performed in accordance with a sulcal labeling protocol with
established intra- and inter- rater reliability [3]. This protocol
specifies that sulci do not intersect and that individual sulci
are continuous curves that are not interrupted. If interruptions
are present the curves are simply interpolated across any in-
terrupting gyri. In cases where a full set cannot be defined,
a subset can be used without any change in the algorithm de-
fined here. Uniform samples along the sulcal curves serve as
landmarks in our registration. Fig. 1 illustrates the alignment
process. Fig. 2 shows the RMS error in matching of sul-
cal landmarks and the percentage area of overlap or folding
in the flat maps as a function of the Lagrange multiplierσ.
Enforcing a more accurate sulcal alignment by increasingσ

results in an increase in overlap in the mappings. We choose
σ = 3 for further analysis. Although the elastic mappings
are not formally guaranteed to produce a bijective registra-
tion, we found that by settingµ = 1, λ = 10 andσ = 3,
we can achieve a nearly bijective map with an average over-
lap of approximately0.4% of the surface area. By inspection
we see that the overlap occurs in the vicinity of pairs of land-
marks that are closely spaced in one brain and distant in the

(a) Surface 1 (b) Surface 2

(c) σ = 0 for surface 1 (d) σ = 0 for surface 2

(e) σ = 3 for surface 1 (f) σ = 3 for surface 2

(g) Sulcal alignment forσ = 0 (h) Sulcal alignment forσ = 3

Fig. 1. (a),(b) The two cortical surfaces with hand labeled
sulci as colored curves; (c),(d) flat maps of a single hemi-
sphere for the two brains without the sulcal alignment con-
straint; (e),(f) flat maps with sulcal alignment; (g),(h) overlay
of sulcal curves on the flat maps, without and with alignment,
respectively.
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(a) RMS error as a function ofσ
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Fig. 2. RMS error and percentage overlap in the flattened map
as a function ofσ.

Fig. 3. Mapping of sulcal landmarks from 5 subjects to the
atlas brain (left) without and (right) with the sulcal alignment
constraint.

other. One solution to this problem is to locally reparameter-
ize in the neighborhood of the overlap once the flat maps are
computed.

We performed a leave-one-out validation for examining
the performance of our method. We choose one brain as a
representative ‘atlas’ and align cortices of 5 subjects with the
atlas using 22 of the 23 labeled sulci leaving one sulcus out
of the registration each time. For each of the registrations, we
measured how well the sulcus that was left out of the regis-
tration process aligned across the subjects with (σ = 0) and
without (σ = 3) sulcal alignment. Without alignment, there
was an RMS error of 33.1 mm in the free sulcus. With align-
ment using all but the free sulcus, the remaining rms error was
3.2 mm for the free sulcus.

Incorporating sulcal landmark alignment directly in our
parameterization method not only avoids the resampling and
reparameterization steps and reduces computational cost while
maintaining high resolution in the surface tessellations,but
also makes the registration inverse consistent. The improved
speed and resolution of the registration may help in large scale
and detailed comparisons of cortical data.
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