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ABSTRACT for landmark matching. It incorporates the landmark regis-

We present a cortical surface registration method thatlsimy(ration into the parameterization method itself. We use the
taneously aligns sulcal landmarks and parameterizes two cac@uchy-Navier elastic equilibrium equation for perforgin
tical surfaces. The approach is based on coregistratiooref ¢ thiS matching as explained in the next section. In our earlie
tical surface coordinate systems so that the labeled sielgal Method [10, 12], surface registration was performed in two
tures share the same coordinates on both cortical surfates. Stages: (i) for each subject, parameterize the surfaceabf ea
model the cortex as an elastic sheet and solve the associafgftical hemisphere to either a unit square or disk, anéirit)
Cauchy-Navier equilibrium equation subject to sulcal miig & Vector field with respect to this parameterization thagrai
ment constraints. The elastic energy is computed directigulcal landmarks between subjects. Registration can ose li
with respect to the intrinsic surface geometry and dispeeti €2 €lastic [10] or thin-plate bending energies [12] foulag
using a finite element method on triangular tessellations dfing the deformation field and covariant derivatives to mak
the two surfaces. In contrast to alternative methods for coftn€ alignmentindependent of the parameterization. Homeve
tical alignment, the method avoids the need for an intermel Order to solve the resulting variational minimizatiorops
diate flat space for sulcal landmark matching and provides M, numerical derivatives were computed by resampling the
fast, accurate and inverse-consistent surface regitratid brain on a uniform grid with respect to the parameterization

parameterization for inter-subject neuroanatomicaliegid " @ddition to the computational cost of resampling and in-
terpolation, this step results in a loss of resolution sitihee

Index Terms— Cortical alignment, Elastic parameteriza- reqular or semi-regular grid in flat space is not necessarily

tion, Finite Elements optimal for representing the brain in 3D space. In our new
approach, we incorporate sulcal landmark alignment direct
1. INTRODUCTION in our parameterization method and thus avoid the resamplin

and reparameterization step completely. This approach als

Registration of surface models of the cerebral cortex has imhas the advantage that the computation cost is relativedyl sm
portant applications in multi-subject studies of braintana/  and that the resulting alignment is inverse consistent §k3]
and function. Investigators have studied progression ®f di will become clear from the symmetry of the cost function de-
orders such as Alzheimer’s disease [1], growth patterns ifined below.
developing human brains [2], genetic influences [3] and the
influence of medication and drug abuse on the structure and 2 SURFACE REGISTRATION
function of the brain [4, 5]. Intersubject surface registna,
or the intrasubject analysis required for longitudinabdé®s, 1o perform cortical surface registration and paramettitina
presents a difficult problem due to inter-subjectvari#pdnd  yith |abeled sulcal curves as constraints, we model the cor-
the convoluted geometry of the cortical surface. Variongia  tjcal surface as an elastic sheet and solve the associated el
mark based and landmark free techniques have been devgk equilibrium equation using an FEM. We choose the more
oped for registration of two cortical surface models. Mdst 0 general elastic model over a surface based harmonic mapping
these methods first map the two cortical surfaces to a plangethod [14, 15, 16, 17] because we found that the surface
or sphere and then compute a deformation vector field thajased harmonic mappings do not remain bijective when mul-
aligns sulcal landmarks with respect to their planar or 8phe tiple sulcal landmark constraints are imposed on the iotteri
cal coordinates [6, 7, 8, 9, 10, 11, 12]. of the flat parameter space. However, for the elastic model we

Here we propose an FEM based elastic mapping methoghye so far always obtained a near bijective map by adjusting
that avoids the use of an intermediate surface flattening stenhe model parametersand u appropriately. The reason for

This work is supported by NIBIB under Grant No: RO1 EB0020m6 a this situation, intuitively, is that relative to the powefrtbe
NCRR under Grant No: P41 RR013642. Laplacian alone, the Cauchy-Navier elasticity operatar pr




vides additional control over the gradient of the divergeot  2.2. Finite Element Formulation
the surface vector field, and this indirectly controls theoda
bian of the mapping, constraining it from taking on extrem
values and thereby violating the smoothness assumption.

To minimize (3) on a tessellated surface we use an FEM to
Cdiscretize the strain energy(¢). Since the integrand in (3)

is a tensor, it is justifiable to compute it locally at each-ver
tex point by assigning a local coordinate systemy) to its
neighborhood. For each triangle the covariant derivalive

in the local coordinates, y becomes the Jacobian matrix:

We assume as input a pair of genus-zero, tessellated dortica 06, 09,

2.1. Mathematical Formulation

surfaces extracted from a volumetric MR image [18]. Our S 37;92
goal is to map the surfaces of each cortical hemisphere in the 9z Oy
two brains to the unit square such that in the flat map a &t om (2), the strain energg(¢) for the i" triangle A, is
of manually delineated sulcal landmarks are aligned with re_,; . ! !
: ) given by:

spect to the flat space coordinates. Point landmarks are gen-
erated by sampling uniformly along each sulcal curve. Let / < 0p1,2 , O 2)

. . B = 2 A - - 5
¢ = [¢1,$2]T be the 2D coordinates assigned to every point 2 Ai( nEA(L oz )+ dy ) ®)
on a given cortical surface such that the coordinatsatisfy O 02 015 O .o
the Cauchy-Navier elastic equilibrium equation with Difiet +2(p+A) (a_y) (%) Th <(5_y) + (%) ) ds.
boundary conditions on the boundary of each cortical hemi- ] ] o ] ]
sphere, represented by the corpus callosum. We consteain ttyVe now describe the FEM discretization of the partial deriva
corpus callosum to lie on the boundary of the unit squar&Ves with respect to the local coordinates. beie any piece-
mapped as a uniform speed curve. We solve the equilid¥ise linear real-valued scalar function defined over the sur

rium equation in the geometry of the cortical surface usindac?' andy; the function restricted to triang_{GNith local co-
the form: ordinatesr, y. Also denote the local coordinates of the three

vertices agx1,y1), (x2,y2) and(xs, y3) respectively. Since

(4)

nAG+ (1 + NV(V - ¢) = 0. (1) «; is linear on the*” triangle, we can write,
whereu and\ are Lamé’s coefficients. The operatdksand ; ; ;
V represent the Laplace-Beltrami and covariant gradient op- a;i(z,y) = ag + a1z + ayy (6)

erators, respectively, with respect to the surface gegmetr ) ) ) o
The solution of this equation can be obtained variationallyVriting this expression at three vertices of the triangie
by minimizing the following integral on the cortical surtac matrix form,

[19]: . , . .
1ol i\ [d (21, 1)
A T 2 | M T 2 1 x5 g5 aj | = 041@2’3/2) (7)
E(¢)= [ =(Tr((D +D + = Tr (((D +D ds. i i i i
) = [ 31 (DO + Do) + 51 (D) + Do) )(2) PR BV Bl
~—————
whereD¢ is the covariant derivative of the coordinate vector D

field ¢. The integralE(¢) is the totaksirain energy. Although ¢, coefficients:)), a® anda} can be obtained by inverting

the elastic equilibrium equation models only small deformaine matrix ‘. From (6) and by inverting the matrix in (7)
tions, we have found that in practice we can always computge gbtain

a flat map of the cortex by setting the parameters 1 and

X = 10. ) <a1) @®
Minimizing (2) produces a flat map of each hemisphere aa—f as

but will not constrain the locations of the sulcal landmarks s [

To do this, we introduce the following constraints. ketand _ 1 (yé -yl Ys— Yl yi— yé) o (m27 va)

¢ denote the 2D coordinates to be assigned to the subject |Di| \21 —2z @1 —x5 a3 — 2 ai(x" 2)

and atlas brain hemispheres respectively. Then we define the 58 9

Lagrangian cost functio@'(¢s, ¢4) as ©)

Denote the discretization gf- anda% at trianglei by D? and
D;, respectively. Also note thaD’| = 24; whereA; is the

area of the'” triangle. Then we have:
whereg¢gs (k) and ¢4 (k) denote the coordinates assigned to

C(ps,¢a) = E(ds) + E(¢a) +0 Y (¢s(k) — pa(k))® (3)

keM

the set of sulcal IandmarIM,_anda isa L_agrange mult|p_l|_er. D! = i (% —yi oyl -yl oyl — y%) (10)
Note that we do not constrain the locations of the sulci in the i
flat map but simply constrain homologous landmarks in the Dl = (le N e g le) . (1)

two maps to lie at the same coordinates. Y24,



Substituting these in (5) and (3), we have

E@) =Y 1 (6165 K (j) (12)

VAD, VD,
1 VED}  EDL | a2
- - . . 13
||Zij2 v o |9 (13)
0 V2uDy

whereK is given by

K= A+ 2;4t)D;tD§; + ‘;:D;"ny )\foDyt-i- nyfD;t ‘
ADy D;, + pD5 Dy, (A+2u)Dy Dy + pDy D;,
(14)

This method is used to discretize balf{¢s) and E(¢4).
It can be seen from (13) and (3) that the cost function is|
guadratic. We minimize (3) with respect to bath and¢ 4,
with the corpus callosum fixed at the boundary of the unit
square, to compute the sulcally-coregistered flat map<fr b
brains simultaneously. The minimization is performed by us ¢
ing a preconditioned conjugate gradient method with Jacob .
preconditioner. In practice the minimization algorithrmeo (c) o = 0 for surface 1 (d) o = 0 for surface 2
verges in approximately 500 iterations, requiring 3-4 nuns
a desktop computer for surfaces with approximately 200,00(
vertices.

3. RESULTS AND VALIDATION

We first extract cortical surfaces from MRI for each subject
using the BrainSuite software [20] to produce a genus-zer(
tessellated representation of the inner gray/white calttiound- {
ary. We then manually delineate 23 major sulci on each o
these extracted cortical hemisphere meshes. Delineation i  (e) ¢ = 3 for surface 1 (f) o = 3 for surface 2
performed in accordance with a sulcal labeling protocohwit
established intra- and inter- rater reliability [3]. Thiomcol
specifies that sulci do not intersect and that individuatisul
are continuous curves that are not interrupted. If interoms

are present the curves are simply interpolated across any if
terrupting gyri. In cases where a full set cannot be defined
a subset can be used without any change in the algorithm dé
fined here. Uniform samples along the sulcal curves serve g
landmarks in our registration. Fig. 1 illustrates the afigmt
process. Fig. 2 shows the RMS error in matching of sul-
cal landmarks and the percentage area of overlap or folding(g) sulcal alignment for =0 (h) Sulcal alignment for = 3
in the flat maps as a function of the Lagrange multiptier

Enforcing a more accurate sulcal alignment by increasing Fig. 1. (a),(b) The two cortical surfaces with hand labeled
results in an increase in overlap in the mappings. We choosg)|ci as colored curves: (c),(d) flat maps of a single hemi-
o = 3 for further analysis. Although the elastic mappingssphere for the two brains without the sulcal alignment con-
are not formally guaranteed to produce a bijective registrastraint; (e),(f) flat maps with sulcal alignment; (g),(h)eokay

tion, we found that by setting = 1, A = 10 ando = 3,  of sulcal curves on the flat maps, without and with alignment,

we can achieve a nearly bijective map with an average ovefespectively.
lap of approximately).4% of the surface area. By inspection

we see that the overlap occurs in the vicinity of pairs of land

marks that are closely spaced in one brain and distant in the
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Fig. 2. RMS error and percentage overlap in the flattened map
as a function o#b.
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Fig. 3. Mapping of sulcal landmarks from 5 subjects to thel10]
atlas brain (left) without and (right) with the sulcal aligent
constraint.

other. One solution to this problem is to locally reparamete
ize in the neighborhood of the overlap once the flat maps arg o)
computed.

We performed a leave-one-out validation for examining

[

11]

the performance of our method. We choose one brain as a
13
atlas using 22 of the 23 labeled sulci leaving one sulcus ou[t ]
of the registration each time. For each of the registratioes
measured how well the sulcus that was left out of the regisp 4
tration process aligned across the subjects with=(0) and
without (¢ = 3) sulcal alignment. Without alignment, there
was an RMS error of 33.1 mm in the free sulcus. With align-;5
ment using all but the free sulcus, the remaining rms errgr wa

rep

3.2

resentative ‘atlas’ and align cortices of 5 subjectf wie

mm for the free sulcus.
Incorporating sulcal landmark alignment directly in our

parameterization method not only avoids the resampling andg;

rep
ma

arameterization steps and reduces computational bdst w
intaining high resolution in the surface tessellatidng,

also makes the registration inverse consistent. The inggrov [17]
speed and resolution of the registration may help in largkesc
and detailed comparisons of cortical data.
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