
1982 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 5, MAY 2020

Bidirectional Backpropagation
Olaoluwa Adigun, Member, IEEE, and Bart Kosko , Fellow, IEEE

Abstract—We extend backpropagation (BP) learning from
ordinary unidirectional training to bidirectional training of deep
multilayer neural networks. This gives a form of backward
chaining or inverse inference from an observed network out-
put to a candidate input that produced the output. The trained
network learns a bidirectional mapping and can apply to some
inverse problems. A bidirectional multilayer neural network can
exactly represent some invertible functions. We prove that a fixed
three-layer network can always exactly represent any finite per-
mutation function and its inverse. The forward pass computes
the permutation function value. The backward pass computes the
inverse permutation with the same weights and hidden neurons.
A joint forward–backward error function allows BP learning in
both directions without overwriting learning in either direction.
The learning applies to classification and regression. The algo-
rithms do not require that the underlying sampled function has
an inverse. A trained regression network tends to map an output
back to the centroid of its preimage set.

Index Terms—Backpropagation (BP) learning, backward
chaining, bidirectional associative memory, function approxima-
tion, function representation, inverse problems.

I. BIDIRECTIONAL BACKPROPAGATION

WE EXTEND the familiar unidirectional backpropaga-
tion (BP) algorithm [1]–[5] to the bidirectional case.

Unidirectional BP maps an input vector to an output vector by
passing the input vector forward through the network’s visible
and hidden neurons and its connection weights. Bidirectional
BP (B-BP) combines this forward pass with a backward pass
through the same neurons and weights. It does not use two
separate feedforward or unidirectional networks.

B-BP training endows a multilayered neural network
N : R

n → R
p with a form of backward inference. The for-

ward pass gives the usual predicted neural output N(x) given
a vector input x. The output vector value y = N(x) answers
the what-if question that x poses: What would we observe if
x occurred? What would be the effect? The backward pass
answers the why question that y poses: Why did y occur?
What type of input would cause y? Feedback convergence to
a resonating bidirectional fixed-point attractor [6], [7] gives a
long-term or equilibrium answer to both the what-if and why
questions. This paper does not address the global stability of
multilayered bidirectional networks.

Manuscript received May 18, 2017; revised September 2, 2017; accepted
November 10, 2017. Date of publication June 28, 2019; date of current
version April 15, 2020. This paper was recommended by Associate Editor
G.-B. Huang. (Corresponding author: Bart Kosko.)

The authors are with the Department of Electrical and Computer
Engineering, University of Southern California, Los Angeles, CA 90089 USA
(e-mail: kosko@usc.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2019.2916096

Bidirectional neural learning applies to large-scale prob-
lems and big data because the BP algorithm scales linearly
with training data. BP has time complexity O(n) for n train-
ing samples because both the forward and backward passes
have complexity O(n). So the B-BP algorithm still has O(n)

complexity because O(n) + O(n) = O(n). This linear scaling
does not hold for most machine-learning algorithms. An exam-
ple is the quadratic complexity O(n2) of support-vector kernel
methods [8].

We first show that multilayer bidirectional networks have
sufficient power to exactly represent permutation mappings.
These mappings are invertible and discrete. We then develop
the B-BP algorithms that can approximate these and other
mappings if the networks have enough hidden neurons.

A neural network N exactly represents a function f just in
case N(x) = f (x) for all input vectors x. Exact representation
is much stronger than the more familiar property of function
approximation: N(x) ≈ f (x). Feedforward multilayer neural
networks can uniformly approximate continuous functions on
compact sets [9], [10]. Additive fuzzy systems are also uniform
function approximators [11]. But additive fuzzy systems have
the further property that they can exactly represent any real
function if it is bounded [12]. This exact representation needs
only two fuzzy rules because the rules absorb the function
into their fuzzy sets. This holds more generally for generalized
probability mixtures because the fuzzy rules define the mixed
probability densities [13], [14].

Figs. 1 and 2 show bidirectional 3-layer networks of zero-
threshold neurons. Both networks exactly represent the 3-bit
permutation function f in Table I where {−,−,+} denotes
{−1,−1, 1}. So f is a self-bijection that rearranges the 8 vec-
tors in the bipolar hypercube {−1, 1}3. This f is just one
of the 8! or 40 320 permutation maps or rearrangements on
the bipolar hypercube {−1, 1}3. The forward pass converts
the input bipolar vector (1, 1, 1) to the output bipolar vec-
tor (−1,−1, 1). The backward pass converts (−1,−1, 1) to
(1, 1, 1) over the same fixed synaptic connection weights.
These same weights and neurons similarly convert the other
7 input vectors in the first column of Table I to the cor-
responding 7 output vectors in the second column and vice
versa.

Theorem 1 states that a multilayer bidirectional network can
exactly represent any finite bipolar or binary permutation func-
tion. This result requires a hidden layer with 2n hidden neurons
for an n-bit permutation function on the bipolar hypercube
{−1, 1}n. Fig. 3 shows such a network. Using so many hidden
neurons is not practical or necessary in most real-world cases.
The exact bidirectional representation in Fig. 1 uses only 4
hidden threshold neurons to represent the 3-bit permutation
function. This was the smallest hidden layer that we found

2168-2216 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4745-8986

ADIGUN AND KOSKO: B-BP 1983

Fig. 1. Exact bidirectional representation of a permutation map. The 3-layer
bidirectional threshold network exactly represents the invertible 3-bit bipolar
permutation function f in Table I. The network uses four hidden neurons. The
forward pass takes the input bipolar vector x at the input layer and feeds it
forward through the weighted edges and the hidden layer of threshold neurons
to the output layer. The backward pass feeds the output bipolar vector y back
through the same weights and neurons. All neurons are bipolar and use zero
thresholds. The bidirectional network computes y = f (x) on the forward pass.
It computes the inverse value f −1(y) on the backward pass.

through guesswork. Many other bidirectional representations
also use fewer than 8 hidden neurons.

We seek instead a practical learning algorithm that can learn
bidirectional approximations from sample data. Fig. 2 shows
a learned bidirectional representation of the same 3-bit per-
mutation in Table I. It uses only 3 hidden neurons. The B-BP
algorithm tuned the neurons’ threshold values as well as their
connection weights. All the learned threshold values were near
zero. We rounded them to zero to achieve the bidirectional
representation with just 3 hidden neurons.

The rest of this paper derives the B-BP algorithm for
regression and classification in both directions and for mixed
classification–regression. This takes some care because train-
ing the weights in one direction tends to overwrite their BP
training in the other direction. The B-BP algorithm solves this
problem by minimizing a joint error function. The lone error
function is cross entropy for unidirectional classification. It is
squared error for unidirectional regression. Fig. 4 compares
ordinary BP training and overwriting with B-BP training.

The learned approximation tends to improve if we add more
hidden neurons. Fig. 5 shows that the B-BP training cross-
entropy error falls as the number of hidden neurons grows
when learning the 5-bit permutation in Table II.

Fig. 2. Learned bidirectional representation of the 3-bit permutation in
Table I. The bidirectional BP algorithm found this representation using the
double-classification learning laws of Section III. It used only three hid-
den neurons. All the neurons were bipolar and had zero thresholds. Zero
thresholding gave an exact representation of the 3-bit permutation.

Fig. 6 shows a deep 8-layer bidirectional approximation of
the nonlinear function f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2)

and its inverse. The network used 6 hidden layers with 10
bipolar logistic neurons per layer. A bipolar logistic activation
σ scales and translates an ordinary unit-interval-valued logistic

σ(x) = 2

1 + e−x
− 1. (1)

The final sections show that similar B-BP algorithms
hold for training double-classification networks and mixed
classification–regression networks. The B-BP learning laws
are the same for regression and classification subject to
these conditions: regression minimizes the squared error and
uses identity output neurons. Classification minimizes the
cross entropy and uses softmax output neurons. Both cases
maximize the network likelihood or log-likelihood function.
Logistic input and output neurons give the same B-BP learn-
ing laws if the network minimizes the bipolar cross entropy
in (114). We call this backpropagation invariance.

B-BP learning also approximates noninvertible functions.
The algorithm tends to learn the centroid of many-to-one
functions. Suppose that the target function f : R

n → R
p is

not one-to-one or injective. So it has no inverse f −1 point
mapping. But it does have a set-valued inverse or preimage
pullback mapping f −1 : 2R

p → 2R
n

such that f −1(B) = {x ∈
R

n : f (x) ∈ B} for any B ⊂ R
p. Suppose that the n input

training samples x1, . . . , xn map to the same output training
sample y : f −1({y}) = {x1, . . . , xn}. Then B-BP learning tends
to map y to the centroid x̄ of f −1({y}) because the centroid
minimizes the mean-squared error of regression.

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

1984 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 5, MAY 2020

TABLE I
3-BIT BIPOLAR PERMUTATION FUNCTION f

Fig. 7 shows such an approximation for the noninvertible
target function f (x) = sin x. The forward regression approxi-
mates sin x. The backward regression approximates the average
or centroid of the two points in the preimage set of y = sin x.
Then f −1({y}) = sin−1(y) = {θ, π − θ} for 0 < θ < (π/2) if
0 < y < 1. This gives the pullback’s centroid as (π/2). The
centroid equals −(π/2) if −1 < y < 0.

B-BP differs from earlier neural approaches to approx-
imating inverses. Hwang et al. [15] developed an inverse
algorithm for query-based learning in binary classification.
Their BP-based algorithm is not bidirectional. It instead
exploits the data-weight inner-product input to neurons. It
holds the weights constant while it tunes the data for a given
output. Saad et al. [16], [17] have applied this inverse algo-
rithm to problems in aerospace and elsewhere. B-BP also
differs from the more recent bidirectional extreme-learning-
machine algorithm that uses a two-stage learning process but
in a unidirectional network [18].

II. BIDIRECTIONAL EXACT REPRESENTATION OF

BIPOLAR PERMUTATIONS

This section proves that there exist multilayered neu-
ral networks that can exactly bidirectionally represent some
invertible functions. We first define the network variables. The
proof uses threshold neurons. The B-BP algorithms below use
soft-threshold logistic sigmoids for hidden neurons.

A bidirectional neural network is a multilayer network
N : X → Y that maps the input space X to the output space
Y and conversely through the same set of weights. The back-
ward pass uses the matrix transposes of the weight matrices
that the forward pass uses. Such a network is a bidirectional
associative memory or BAM [6], [7]. The original BAM the-
orem [6] states that any two-layer neural network is globally
bidirectionally stable for any sole rectangular weight matrix
W with real entries.

The forward pass sends the input vector x through the
weight matrix W that connects the input layer to the hid-
den layer. The result passes on through matrix U to the output
layer. The backward pass sends the output y from the output
layer back through the hidden layer to the input layer. Let
I, J, and K denote the respective numbers of input, hidden,
and output neurons. Then the I × J matrix W connects the
input layer to the hidden. The J × K matrix U connects the
hidden layer to the output layer.

The hidden-neuron input oh
j has the affine form

oh
j =

I∑

i=1

wija
x
i (xi) + bh

j (2)

where weight wij connects the ith input neuron to the jth hid-
den neuron, ax

i is the activation of the ith input neuron, and
bh

j is the bias of the jth hidden neuron. The activation ah
j of

the jth hidden neuron is a bipolar threshold

ah
j

(
oh

j

)
=
{

−1 if oh
j ≤ 0

1 if oh
j > 0.

(3)

The B-BP algorithm in the next section uses soft-threshold
bipolar logistic functions for the hidden activations because
such sigmoid functions are differentiable. The proof below
also modifies the hidden thresholds to take on binary values
in (14) and to fire with a slightly different condition.

The input oy
k to the kth output neuron from the hidden layer

is also affine

oy
k =

J∑

j=1

ujkah
j + by

k (4)

where weight ujk connects the jth hidden neuron to the kth
output neuron. Term by

k is the additive bias of the kth output
neuron. The output activation vector ay gives the predicted
outcome or target on the forward pass. The kth output neuron
has bipolar threshold activation ay

k

ay
k

(
oy

k

) =
{−1 if oy

k ≤ 0
1 if oy

k > 0.
(5)

The forward pass of an input bipolar vector x from Table I
through the network in Fig. 1 gives an output activation vector
ay that equals the table’s corresponding target vector y. The
backward pass feeds y from the output layer back through the
hidden layer to the input layer. Then the backward-pass input
ohb

j to the jth hidden neuron is

ohb
j =

K∑

k=1

ujkay
k(yk) + bh

j (6)

where yk is the output of the kth output neuron. The term ay
k

is the activation of the kth output neuron. The backward-pass
activation of the jth hidden neuron ahb

j is

ahb
j

(
ohb

j

)
=
{

−1 if ohb
j ≤ 0

1 if ohb
j > 0.

(7)

The backward-pass input oxb
i to the ith input neuron is

oxb
i =

J∑

j=1

wija
hb
j + bx

i (8)

where bx
i is the bias for the ith input neuron. The input-layer

activation ax gives the predicted value for the backward pass.
The ith input neuron has bipolar activation

axb
i

(
oxb

i

)
=
{−1 if oxb

i ≤ 0
1 if oxb

i > 0.
(9)

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

ADIGUN AND KOSKO: B-BP 1985

We can now state and prove the bidirectional representation
theorem for bipolar permutations. The theorem also applies
to binary permutations because the input and output neurons
have bipolar threshold activations.

Theorem 1 (Exact Bidirectional Representation of Bipolar
Permutation Functions): Suppose that the invertible function
f : {−1, 1}n → {−1, 1}n is a permutation. Then there exists a
3-layer bidirectional neural network N : {−1, 1}n → {−1, 1}n

that exactly represents f in the sense that N(x) = f (x) and that
N−1(x) = f −1(x) for all x. The hidden layer has 2n threshold
neurons.

Proof: The proof constructs weight matrices W and U so
that exactly one hidden neuron fires on both the forward and
the backward passes. Fig. 3 shows the proof technique for the
special case of a 3-bit bipolar permutation. We structure the
network so that an input vector x fires only one hidden neuron
on the forward pass. The output vector y = N(x) fires only
the same hidden neuron on the backward pass.

The bipolar permutation f is a bijective map of the bipolar
hypercube {−1, 1}n onto itself. The bipolar hypercube con-
tains the 2n input bipolar column vectors x1, x2, . . . , x2n . It
likewise contains the 2n output bipolar vectors y1, y2, . . . , y2n .
The network uses 2n corresponding hidden threshold neurons.
So J = 2n.

Matrix W connects the input layer to the hidden layer.
Matrix U connects the hidden layer to the output layer. Define
W so that its columns list all 2n bipolar input vectors. Define
U so that the columns of its transpose UT list all 2n transposed
bipolar output vectors:

W = [
x1 x2 . . . x2n

]

UT = [
y1 y2 . . . y2n

]
.

We show next both that these weight matrices fire only one
hidden neuron and that the forward pass of any input vector
xn gives the corresponding output vector yn. Assume that each
neuron has zero bias.

Pick a bipolar input vector xm for the forward pass. Then the
input activation vector ax(xm) = (ax

1(x
1
m), . . . , ax

n(x
n
m)) equals

the input bipolar vector xm because the input activations (9) are
bipolar threshold functions with zero threshold. So ax equals
xm because the vector space is bipolar {−1, 1}n.

The hidden layer input oh is the same as (2). It has the
matrix-vector form

oh = WTax (10)

= WTxm (11)

=
(

oh
1, oh

2, . . . , oh
n, . . . , oh

2n

)T
(12)

=
(

xT
1 xm, xT

2 xm, . . . , xT
j xm, . . . , xT

2n xm

)T
(13)

since oh
j is the inner product of the bipolar vectors xj and xm

from the definition of W.
The input oh

j to the jth neuron of the hidden layer obeys
oh

j = n when j = m. It obeys oh
j < n when j �= m. This holds

because the vectors xj are bipolar with scalar components in
{−1, 1}. The magnitude of a bipolar vector in {−1, 1}n is

√
n.

The inner product xT
j xm is a maximum when both vectors have

Fig. 3. Bidirectional network structure for the proof of Theorem 1. The input
and output layers have n threshold neurons. The hidden layer has 2n neurons
with threshold values of n. The 8 fan-in 3-vectors of weights in W from the
input to the hidden layer list the 23 elements of the bipolar cube {−1, 1}3.
So they list the eight vectors in the input column of Table I. The 8 fan-in
3-vectors of weights in U from the output to the hidden layer list the eight
bipolar vectors in the output column of Table I. The threshold value for the
sixth and highlighted hidden neuron is 3. Passing the sixth input vector (−1,
1, −1) through W leads to the hidden-layer vector (0, 0, 0, 0, 0, 1, 0, 0) of
thresholded values. Passing this 8-bit vector through U produces after thresh-
olding the sixth output vector (−1, −1, −1) in Table I. Passing this output
vector back through the transpose of U produces the same unit bit vector of
thresholded hidden-unit values. Passing this vector back through the transpose
of W produces the original bipolar vector (−1, 1,−1).

the same direction. This occurs when j = m. The inner product
is otherwise less than n. Fig. 3 shows a bidirectional neural
network that fires just the sixth hidden neuron. The weights
for the network in Fig. 3 are

W =
⎡

⎣
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1

⎤

⎦

UT =
⎡

⎣
−1 −1 1 1 −1 −1 1 1
−1 1 1 −1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1

⎤

⎦.

Now comes the key step in the proof. Define the hidden
activation ah

j as a binary (not bipolar) threshold function where
n is the threshold value

ah
j

(
oh

j

)
=
{

1 if oh
j ≥ n

0 if oh
j < n.

(14)

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

1986 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 5, MAY 2020

Then the hidden-layer activation ah is the unit bit vector
(0, 0, . . . , 1, . . . , 0)T, where ah

j = 1 when j = m and where
ah

j = 0 when j �= m. This holds because all 2n bipolar vec-
tors xm in {−1, 1}n are distinct. So exactly one of these 2n

vectors achieves the maximal inner-product value n = xT
mxm.

So ah
j (o

h
j) = 0 for j �= m and ah

m(oh
m) = 1. The bidirectional

network in Fig. 3 represents the 3-bit bipolar permutation in
Table I.

The input vector oy to the output layer is

oy = UTah (15)

=
J∑

j=1

yj ah
j (16)

= ym (17)

where ah
j is the activation of the jth hidden neuron. The

activation ay of the output layer is

ay
(

oy
j

)
=
{

1 if oy
j ≥ 0

−1 if oy
j < 0.

(18)

The output layer activation leaves oy unchanged because oy

equals ym and because ym is a vector in {−1, 1}n. So

ay = ym. (19)

So the forward pass of an input vector xm through the network
yields the desired corresponding output vector ym if ym =
f (xm) for the bipolar permutation map f .

Consider next the backward pass through the network N.
The backward pass propagates the output vector ym through
the hidden layer back to the input layer. The hidden layer input
ohb has the same inner-product form as in (6):

ohb = U ym (20)

where ohb = (yT
1 ym, yT

2 ym, . . . , yT
j ym, . . . , yT

2n ym)
T

.
The input ohb

j of the jth neuron in the hidden layer equals
the inner product of yj and ym. So ohb

j = n when j = m.
But now ohb

j < n when j �= m. This holds because again the
magnitude of a bipolar vector in {−1, 1}n is

√
n. The inner

product ohb
j is a maximum when vectors ym and yj lie in the

same direction. The activation ahb for the hidden layer has the
same components as in (14). So the hidden-layer activation
ahb again equals the unit bit vector (0, 0, . . . , 1, . . . , 0)T where
ahb

j = 1 when j = m and ahb
j = 0 when j �= m.

Then the input vector oxb for the input layer is

oxb = W ahb (21)

=
J∑

j=1

xj ahb (22)

= xm. (23)

The ith input neuron has a threshold activation that is the
same as

axb
i

(
oxb

i

)
=
{

1 if oxb
i ≥ 0

−1 if oxb
i < 0

(24)

where oxb
i is the input of ith neuron in the input layer. This

activation leaves oxb unchanged because oxb equals xm and
because the vector xm lies in {−1, 1}n. So

axb = oxb (25)

= xm. (26)

So the backward pass of any target vector ym yields the
desired input vector xm if f −1(ym) = xm. This completes the
backward pass and the proof.

III. BIDIRECTIONAL BACKPROPAGATION ALGORITHMS

A. Double Regression

We now derive the first of three B-BP learning algorithms.
The first case is double regression where the network performs
regression in both directions.

B-BP training minimizes both the forward error Ef and
backward error Eb. B-BP alternates between backward train-
ing and forward training. Forward training minimizes Ef while
holding Eb constant. Backward training minimizes Eb while
holding Ef constant. Ef is the error at the output layer. Eb is
the error at the input layer. Double regression uses squared
error for both error functions.

The forward pass sends the input vector x through the hid-
den layer to the output layer. The network uses only one
hidden layer for simplicity and with no loss of generality. The
B-BP double-regression algorithm applies to any number of
hidden layers in a deep network.

The hidden-layer input values oh
j are the same as in (2). The

jth hidden activation ah
j is the binary logistic map

ah
j

(
oh

j

)
= 1

1 + e−oh
j

(27)

where (4) gives the input oy
k to the kth output neuron. The hid-

den activations can be logistic or any other sigmoidal function
so long as they are differentiable. The activation for an output
neuron is the identity function

ay
k = oy

k (28)

where ay
k is the activation of kth output neuron.

The error function Ef for the forward pass is squared error

Ef = 1

2

K∑

k=1

(
yk − ay

k

)2
(29)

where yk denotes the value of the kth neuron in the out-
put layer. Ordinary unidirectional BP updates the weights and
other network parameters by propagating the error from the
output layer back to the input layer.

The backward pass sends the output vector y through the
hidden layer to the input layer. The input to the jth hidden
neuron ohb

j is the same as in (6). The activation ahb
j for the jth

hidden neuron is

ahb
j = 1

1 + e−ohb
j

. (30)

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

ADIGUN AND KOSKO: B-BP 1987

The input ox
i for the ith input neuron is the same as (8). The

activation at the input layer is the identity function

axb
i

(
oxb

i

)
= oxb

i . (31)

A nonlinear sigmoid (or Gaussian) activation can replace the
linear function.

The backward-pass error Eb is also squared error

Eb = 1

2

I∑

i=1

(
xi − ax

i

)2
. (32)

The partial derivative of the hidden-layer activation in the
forward direction is

∂ah
j

∂oh
j

= ∂

∂oh
j

(
1

1 + e−oh
j

)
(33)

= e−oh
j

(
1 + e−oh

j

)2
(34)

= 1

1 + e−oh
j

[
1 − 1

1 + e−oh
j

]
(35)

= ah
j

(
1 − ah

j

)
. (36)

Let ah
j
′

denote the derivative of ah
j with respect to the inner-

product term oh
j . We again use the superscript b to denote the

backward pass.
The partial derivative of Ef with respect to the weight

ujk is

∂Ef

∂ujk
= 1

2

∂

∂ujk

K∑

k=1

(
yk − ay

k

)2
(37)

= ∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ujk
(38)

= (
ay

k − yk
)
ah

j . (39)

The partial derivative of Ef with respect to wij is

∂Ef

∂wij
= 1

2

∂

∂wij

K∑

k=1

(
yk − ay

k

)2
(40)

=
(

K∑

k=1

∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ah
j

)
∂ah

j

∂oh
j

∂oh
j

∂wij
(41)

=
K∑

k=1

(
ay

k − yk
)
ujk ah

j
′

xi (42)

where ah
j
′

is the same as in (36). The partial derivative of Ef

with respect to the bias by
k of the kth output neuron is

∂Ef

∂by
k

= 1

2

∂

∂by
k

K∑

k=1

(
yk − ay

k

)2
(43)

= ∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂by
k

(44)

= ay
k − yk. (45)

The partial derivative of Ef with respect to the bias bh
j of

the jth hidden neuron is

∂Ef

∂bh
j

= 1

2

∂

∂bh
j

K∑

k=1

(
yk − ay

k

)2
(46)

=
(

K∑

k=1

∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ah
j

)
∂ah

j

∂oh
j

∂oh
j

∂bh
j

(47)

=
K∑

k=1

(
ay

k − yk
)
ujkah

j
′

(48)

where ah
j
′

is the same as in (36).
The partial derivative of the hidden-layer activation ahb

j in
the backward direction is

∂ahb
j

∂ohb
j

= ∂

∂ohb
j

(
1

1 + e−ohb
j

)
(49)

= e−ohb
j

(
1 + e−ohb

j

)2
(50)

= 1

1 + e−ohb
j

[
1 − 1

1 + e−ohb
j

]
(51)

= ahb
j

(
1 − ahb

j

)
. (52)

The partial derivative of Eb with respect to wij is

∂Eb

∂wij
= 1

2

∂

∂wij

K∑

k=1

(
xi − axb

i

)2
(53)

= ∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂wij
(54)

=
(

axb
i − xi

)
ahb

j . (55)

The partial derivative of Eb with respect to ujk is

∂Eb

∂ujk
= 1

2

∂

∂ujk

I∑

i=1

(
xi − axb

i

)2
(56)

=
(

I∑

i=1

∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂ahb
j

)
∂ahb

j

∂ohb
j

∂ohb
j

∂ujk
(57)

=
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk (58)

where ahb
j

′
is the same as in (52).

The partial derivative of Eb with respect to the bias bx
i of

ith input neuron is

∂Eb

∂bx
i

= 1

2

∂

∂bx
i

I∑

i=1

(
xi − axb

i

)2
(59)

= ∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂bx
i

(60)

= axb
i − xi. (61)

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

1988 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 5, MAY 2020

The partial derivative of Eb with respect to the bias bh
j of jth

hidden neuron is

∂Eb

∂bh
j

= 1

2

∂

∂bh
j

I∑

i=1

(
xi − axb

i

)2
(62)

=
(

I∑

i=1

∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂ahb
j

)
∂ahb

j

∂ohb
j

∂ohb
j

∂bh
j

(63)

=
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
(64)

where ahb
j

′
is the same as in (52).

The error function at the input layer is the backward-pass
error Eb. The error function at the output layer is the forward-
pass error Ef .

The above update laws for forward regression have the final
form (for learning rate η > 0)

u(n+1)
jk = u(n)

jk − η
(
ay

k − yk
)
ah

j (65)

w(n+1)
ij = w(n)

ij − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
xi

)
(66)

bh
j
(n+1) = bh

j
(n) − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
)

(67)

by
k
(n+1) = by

k
(n) − η

(
ay

k − yk
)
. (68)

The dual update laws for backward regression have the final
form

u(n+1)
jk = u(n)

jk − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk

)
(69)

w(n+1)
ij = w(n)

ij − η
(

axb
i − xi

)
ahb

j (70)

bx
i
(n+1) = bx

i
(n) − η

(
axb

i − xi

)
(71)

bh
j
(n+1) = bh

j
(n) − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
)

. (72)

B-BP training minimizes Ef while holding Eb con-
stant. It then minimizes Eb while holding Ef constant.
Equations (65)–(68) state the update rules for forward train-
ing. Equations (69)–(72) state the update rules for backward
training. Each training iteration involves forward training and
then backward training.

Algorithm 1 summarizes the B-BP algorithm. It shows how
to combine forward and backward training in B-BP. Fig. 6
shows how double-regression B-BP approximates the invert-
ible function f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) if σ(x)
denotes the bipolar logistic function in (1). The approximation
used a deep 8-layer network with six layers of ten bipo-
lar logistic neurons each. The input and output layer each
contained only a single identity neuron.

B. Double Classification

We now derive a B-BP algorithm where the network’s for-
ward pass acts as a classifier network and so does its backward
pass. We call this double classification.

We present the derivation in terms of cross entropy for
the sake of simplicity. Our double-classification simulations
used the slightly more general form of cross entropy in (114)
that we call logistic cross entropy. The simpler cross-entropy
derivation applies to softmax input neurons and output neurons
(with implied 1-in-K coding). Logistic input and output neu-
rons require logistic cross entropy for the same BP derivation
because then the same final BP partial derivatives result.

The simplest double-classification network uses Gibbs or
softmax neurons at both the input and output layers. This cre-
ates a winner-take-all structure at those layers. Then the kth
softmax neuron in the output layer codes for the kth input
pattern. The output layer represents the pattern as a K-length
unit bit vector with a “1” in the kth slot and a “0” in the
other K − 1 slots [3], [19]. The same 1-in-I binary encoding
holds for the ith neuron at the input layer. The softmax struc-
ture implies that the input and output fields each compute a
discrete probability distribution for each input.

Classification networks differ from regression networks in
another key aspect: they do not minimize squared error. They
instead minimize the cross entropy of the given target vec-
tor and the softmax activation values of the output or input
layers [3]. Equation (79) states the forward cross entropy at
the output layer if yk is the desired or target value of the
kth output neuron. Then ay

k is its actual softmax activation
value. The entropy structure applies because both the target
vector and the input and output vectors are probability vectors.
Minimizing the cross entropy maximizes the Kullback–Leibler
divergence [20] and vice versa [19].

The classification BP algorithm depends on another
optimization equivalence: minimizing the cross entropy is
equivalent to maximizing the network’s likelihood or log-
likelihood [19]. We will establish this equivalence because it
implies that the BP learning laws have the same form for
both classification and regression. We will prove the equiv-
alence for only the forward direction. It applies equally in
the backward direction. The result unifies the BP learning
laws. It also allows carefully selected noise to enhance the
network likelihood because BP is a special case [19], [21] of
the expectation–maximization algorithm for iteratively maxi-
mizing a likelihood with missing data or hidden variables [22].

Denote the network’s forward probability density function
as pf (y|x,�). The vector � lists all parameters in the network.
The input vector x passes through the multilayer network and
produces the output vector y. Then the network’s forward like-
lihood Lf (�) is the natural logarithm of the forward network
probability: Lf (�) = ln pf (y|x,�).

We will show that pf (y|x,�) = exp{−Ef (�)}. So BP’s for-
ward pass computes the forward cross entropy as it maximizes
the likelihood [19].

The key assumption is that output softmax neurons in a clas-
sifier network are independent because there are no intralayer
connections among them. Then the network probability den-
sity pf (y|x,�) factors into a product of K-many marginals [3]:
pf (y|x,�) = ∏K

k=1 pf (yk|x,�). This gives

Lf (�) = ln pf (y|x,�) (73)

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

ADIGUN AND KOSKO: B-BP 1989

= ln
K∏

k=1

pf (yk|x,�) (74)

= ln
K∏

k=1

(
ay

k

)yk (75)

=
K∑

k=1

yk ln ay
k (76)

= −Ef (�) (77)

from (79) since y is a 1-in-K-encoded unit bit vector. Then
exponentiation gives pf (y|x,�) = exp{−Ef (�)}. Minimizing
the forward cross entropy Ef is equivalent to maximizing the
negative cross entropy −Ef . So minimizing Ef maximizes the
forward network likelihood L and vice versa.

The third equality (75) holds because the kth marginal factor
pf (yk|x,�) in a classifier network equals the exponentiated
softmax activation (at

k)
yk . This holds because yk = 1 if k is

the correct class label for the input pattern x and yk = 0
otherwise. This discrete probability vector defines an output
categorical distribution. It is a single-sample multinomial.

We now derive the B-BP algorithm for double classifica-
tion. The algorithm minimizes the error functions separately
where Ef (�) is the forward cross entropy in (75) and Eb(�)

is the backward cross entropy in (81). We first derive the for-
ward B-BP classifier algorithm. We then derive the backward
portion of the B-BP double-classification algorithm.

The forward pass sends the input vector x through the hid-
den layer or layers to the output layer. The input activation
vector ax is the vector x.

We assume only one hidden layer for simplicity. The deriva-
tion applies to deep networks with any number of hidden
layers. The input to the jth hidden neuron oh

j has the same
linear form as in (2). The jth hidden activation ah

j is the
same ordinary unit-interval-valued logistic function in (27).
The input oy

k to the kth output neuron is the same as in (4). The
hidden activations can also be ReLU or hyperbolic tangents
or many other functions.

The forward classifier’s output-layer neurons use Gibbs or
softmax activations

ay
k = e(oy

k)

∑K
l=1 e(oy

l)
(78)

where ay
k is the activation of the kth output neuron. Then the

forward error Ef is the cross entropy

Ef = −
K∑

k=1

yk ln ay
k (79)

between the binary target values yk and the actual output
activations ay

k.
We next describe the backward pass through the classifier

network. The backward pass sends the output target vector
y through the hidden layer to the input layer. So the initial
activation vector ay equals the target vector y. The input to
the jth neuron of the hidden layer ohb

j has the same linear
form as (6). The activation of the jth hidden neuron is the
same as (30).

The backward-pass input to the ith input neuron is also the
same as (8). The input activation is Gibbs or softmax

axb
i = e

(
oxb

i

)

∑I
l=1 e

(
oxb

i

) (80)

where axb
i is the backward-pass activation for the ith neuron

of the input neuron. Then the backward error Eb is the cross
entropy

Eb = −
I∑

i=1

xi ln axb
i (81)

where xi is the target value of the ith input neuron.
The partial derivatives of the hidden activation ah

j and ahb
j

are the same as in (36) and (52).
The partial derivative of the output activation ay

k for the
forward classification pass is

∂ay
k

∂oy
k

= ∂

∂oy
k

(
e(oy

k)

∑K
l=1 e(oy

l)

)
(82)

=
eoy

k

(∑K
l=1 e(oy

l)
)

− eoy
k eoy

k

(∑K
l=1 e(oy

l)
)2

(83)

=
eoy

k

(∑K
l=1 e(oy

l) − eoy
k

)

(∑K
l=1 e(oy

l)
)2

(84)

= ay
k

(
1 − ay

k

)
. (85)

The partial derivative when l �= k is

∂ay
k

∂oy
l

= ∂

∂oy
l

(
e(oy

k)

∑K
m=1 e(oy

m)

)
(86)

= −eoy
k eoy

l

(∑K
l=1 e(oy

l)
)2

(87)

= −ay
k ay

l . (88)

So the partial derivative of ay
k with respect to ok

l is

∂ay
k

∂oy
l

=
{−ay

k ay
l if l �= k

ay
k

(
1 − ay

k

)
if l = k.

(89)

Denote this derivative as ay
k
′
. The derivative axb

i
′

of the back-
ward classification pass has the same form because both sets
of classifier neurons have softmax activations.

The partial derivative of the forward cross entropy Ef with
respect to ujk is

∂Ef

∂ujk
= − ∂

∂ujk

K∑

k=1

yk ln ay
k (90)

=
K∑

k=1

(
∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂ujk

)
(91)

= −
⎛

⎝ yk

ay
k

(
1 − ay

k

)
ay

k −
K∑

l �=k

yl

ay
l

ay
kay

l

⎞

⎠ah
j (92)

= (
ay

k − yk
)
ah

j . (93)

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

1990 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 5, MAY 2020

The partial derivative of the forward cross entropy Ef with
respect to the bias by

k of the kth output neuron is

∂Ef

∂by
k

= ∂

∂by
k

K∑

k=1

yk ln ay
k (94)

=
K∑

k=1

(
∂Ef

∂ay
k

∂ay
k

∂oy
k

∂oy
k

∂by
k

)
(95)

= −
⎛

⎝ yk

ay
k

(
1 − ay

k

)
ay

k −
K∑

l �=k

yl

ay
l

ay
kay

l

⎞

⎠ (96)

= ay
k − yk. (97)

Equations (93) and (97) show that the derivatives of Ef with
respect to ujk and by

k for double classification are the same as
for double regression in (39) and (45). The activations of the
hidden neurons are the same as for double regression. So the
derivatives of Ef with respect to wij and bh

j are the same as
the respective ones in (42) and (48).

The partial derivative of Eb with respect to wij is

∂Eb

∂wij
= − ∂

∂wij

I∑

i=1

xi ln axb
i (98)

=
I∑

i=1

(
∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂wij

)
(99)

= −
⎛

⎝ xi

axb
i

(
1 − axb

i

)
axb

i −
I∑

l �=i

xl

axb
l

axb
i axb

l

⎞

⎠ahb
j (100)

=
(

axb
i − xi

)
ahb

j . (101)

The partial derivative of Eb with respect to the bias bx
i of

the ith input neuron is

∂Eb

∂bx
i

= − ∂

∂bxb
i

I∑

i=1

xi ln axb
i (102)

=
I∑

i=1

(
∂Eb

∂axb
i

∂axb
i

∂oxb
i

∂oxb
i

∂bx
i

)
(103)

= −
⎛

⎝ xi

axb
i

(
1 − axb

i

)
axb

i −
I∑

l �=i

xl

axb
l

axb
i axb

l

⎞

⎠ (104)

= axb
i − xi. (105)

Equations (101) and (105) likewise show that the derivatives
of Eb with respect to wij and bx

i for double classification are the
same as for double regression in (53) and (59). The activations
of the hidden neurons are the same as for double regression.
So the derivatives of Eb with respect to ujk and bh

j are the
same as the respective ones in (58) and (64).

B-BP training for double classification also alternates
between minimizing Ef while holding Eb constant and min-
imizing Eb while holding Ef constant. The forward and
backward errors are again cross entropies.

The update laws for forward classification have the final
form

u(n+1)
jk = u(n)

jk − η
((

ay
k − yk

)
ah

j

)
(106)

w(n+1)
ij = w(n)

ij − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
xi

)
(107)

bh
j
(n+1) = bh

j
(n) − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
)

(108)

by
k
(n+1) = by

k
(n) − η

(
ay

k − yk
)
. (109)

The dual update laws for backward classification have the
final form

u(n+1)
jk = u(n)

jk − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk

)
(110)

w(n+1)
ij = w(n)

ij − η
((

axb
i − xi

)
ahb

j

)
(111)

bx
i
(n+1) = bx

i
(n) − η

(
axb

i − xi

)
(112)

bh
j
(n+1) = bh

j
(n) − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
)

. (113)

The derivation shows that the update rules for double classifi-
cation are the same as the update rules for double regression.

B-BP training minimizes Ef while holding Eb con-
stant. It then minimizes Eb while holding Ef constant.
Equations (106)–(109) are the update rules for forward train-
ing. Equations (110)–(113) are the update rules for backward
training. Each training iteration involves first running forward
training and then running backward training. Algorithm 1
again summarizes the B-BP algorithm.

The more general case of double classification uses logistic
neurons at the input and output layer. Then the BP deriva-
tion requires the slightly more general logistic cross-entropy
performance measure. We used the logistic cross-entropy Elog
for double classification training because the input and output
neurons were logistic (rather than softmax)

Elog = −
K∑

k=1

yk ln ay
k −

K∑

k=1

(1 − yk) ln
(
1 − ay

k

)
. (114)

Partially differentiating Elog for logistic input and output
neurons gives back the same B-BP learning laws as does
differentiating cross entropy for softmax input and output
neurons.

C. Mixed Case: Classification and Regression

We last derive the B-BP learning algorithm for the mixed
case of a neural classifier network in the forward direction and
a regression network in the backward direction.

This mixed case describes the common case of neural
image classification. The user needs only add backward-
regression training to allow the same classifier net to predict
which image input produced a given output classification.
Backward regression estimates this answer as the centroid
of the inverse set-theoretic mapping or preimage. The B-BP

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

ADIGUN AND KOSKO: B-BP 1991

algorithm achieves this by alternating between minimizing Ef

and minimizing Eb. The forward error Ef is the same as the
cross entropy in the double-classification network above. The
backward error Eb is the same as the squared error in double
regression.

The input space is likewise the I-dimensional real space R
I

for regression. The output space uses 1-in-K binary encoding
for classification. The output neurons of regression networks
use identity functions as activations. The output neurons of
classifier networks use softmax activations.

The forward pass sends the input vector x through the hid-
den layer to the output layer. The input activation vector ax

equals x. We again consider only a single hidden layer for
simplicity. The input oh

j to the jth hidden neuron is the same
as in (2). The activation ah

j of the jth hidden layer is the ordi-
nary logistic activation in (27). Equation (4) defines the input
oy

k to the kth output neuron. The output activation is softmax.
So the output activation ay

k is the same as in (78). The for-
ward error Ef is the cross entropy in (79). The forward pass
in this mixed case is the same as the forward pass for double
classification. So (42), (48), (93), and (97) give the respective
derivatives of the forward error Ef with respect to wij, bh

j , ujk,
and bk

y.
The backward pass propagates the 1-in-K vector y from the

output through the hidden layer to the input layer. The output
layer activation vector ay equals y. The input ohb

j to the jth
hidden neuron for the backward pass is the same as in (6).
Equation (30) gives the activation ahb

j for the jth hidden unit
in the backward pass. Equation (8) gives the input oxb

i for the
ith input neuron. The activation axb

i of the ith input neuron for
the backward pass is the same as in (31). The backward error
Eb is the squared error in (32).

The backward pass in this mixed case is the same as the
backward pass for double regression. So (55), (58), (61),
and (64) give the respective derivatives of the backward error
Eb with respect to wij, bx

i , ujk, and bh
j .

The update laws for forward classification–regression train-
ing have the final form

u(n+1)
jk = u(n)

jk − η
(
ay

k − yk
)
ah

j (115)

w(n+1)
ij = w(n)

ij − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
xi

)
(116)

bh
j
(n+1) = bh

j
(n) − η

(
K∑

k=1

(
ay

k − yk
)
ujkah

j
′
)

(117)

by
k
(n+1) = by

k
(n) − η

(
ay

k − yk
)
. (118)

The update laws for backward classification–regression
training have the final form

u(n+1)
jk = u(n)

jk − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
yk

)
(119)

w(n+1)
ij = w(n)

ij − η
(

axb
i − xi

)
ahb

j (120)

bx
i
(n+1) = bx

i
(n) − η

(
axb

i − xi

)
(121)

TABLE II
5-BIT BIPOLAR PERMUTATION FUNCTION

TABLE III
FORWARD-PASS CROSS ENTROPY Ef

bh
j
(n+1) = bh

j
(n) − η

(
I∑

i=1

(
axb

i − xi

)
wija

hb
j

′
)

. (122)

B-BP training minimizes Ef while holding Eb con-
stant. It then minimizes the Eb while holding Ef constant.
Equations (115)–(118) state the update rules for forward train-
ing. Equations (119)–(122) state the update rules for backward
training. Algorithm 1 shows how forward learning combines
with backward learning in B-BP.

IV. SIMULATION RESULTS

We tested the B-BP algorithm for double classification on
a 5-bit permutation function. We used 3-layer networks with
different numbers of hidden neurons. The neurons used bipolar
logistic activations. The performance measure was the logistic
cross entropy in (114). The B-BP algorithm produced either
an exact representation or an approximation. The permuta-
tion function bijectively mapped the 5-bit bipolar vector space
{−1, 1}5 of 32 bipolar vectors onto itself. Table II displays
the permutation test function. We compared the forward and
backward forms of unidirectional BP with B-BP. We also
tested whether adding more hidden neurons improved network
approximation accuracy.

The forward pass of standard BP used logistic cross entropy
as its error function. The backward pass did as well. B-BP
summed the forward and backward errors for its joint error. We
computed the test error for the forward and backward passes.
Each plotted error value averaged 20 runs.

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

1992 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 5, MAY 2020

Fig. 4. Logistic-cross-entropy learning for double classification using 100
hidden neurons with forward BP training, backward BP training, and B-BP
training. The trained network represents the 5-bit permutation function in
Table II. (a) Forward BP tuned the network with respect to logistic cross
entropy for the forward pass using Ef only. (b) Backward BP training tuned
the network with respect to logistic cross entropy for the backward pass using
Eb only. (c) B-BP training summed the logistic cross entropies for both the
forward-pass error term Ef and the backward-pass error term Eb to update
the network parameters.

Fig. 4 shows the results of running the three types of
BP learning for classification on a 3-layer network with 100
hidden neurons. The values of Ef and Eb decrease with an
increase in the training iterations for B-BP. This was not the
case for the unidirectional cases of forward BP and backward
BP training. Forward and backward training performed well
only for function approximation in their respective training
direction. Neither performed well in the opposite direction.

Fig. 5. B-BP training error for the 5-bit permutation in Table II using
different numbers of hidden neurons. Training used the double-classification
B-BP algorithm. The two curves describe the logistic cross entropy for the
forward and backward passes through the 3-layer network. Each test used 640
samples. The number of hidden neurons increased from 5, 10, 20, 50, to 100.

Fig. 6. B-BP double-regression approximation of the invertible function
f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) using a deep 8-layer network with
six hidden layers. The function σ denotes the bipolar logistic function in (1).
Each hidden layer contained ten bipolar logistic neurons. The input and out-
put layers each used a single neuron with an identity activation function.
The forward pass approximated the forward function f . The backward pass
approximated the inverse function f −1.

Table III shows the forward-pass cross entropy Ef for learn-
ing 3-layer classification neural networks as the number of
hidden neurons grows. We again compared the three forms of
BP for the network training: two forms of unidirectional BP
and B-BP. The forward-pass error for forward BP fell substan-
tially as the number of hidden neurons grew. The forward-pass
error of backward BP decreased slightly as the number of
hidden neurons grew. It gave the worst performance. B-BP
performed well on the test set. Its forward-pass error also

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

ADIGUN AND KOSKO: B-BP 1993

Fig. 7. B-BP double-regression learning of the noninvertible target func-
tion f (x) = sin x. (a) Forward pass learned the function y = f (x) = sin x.
(b) Backward pass approximated the centroid of the values in the set-theoretic
preimage f −1({y}) for y values in (−1, 1). The two centroids were −(π/2)

and (π/2).

TABLE IV
BACKWARD-PASS CROSS ENTROPY Eb

fell substantially as the number of hidden neurons grew.
Table IV shows similar error-versus-hidden-neuron results for
the backward-pass cross entropy Eb.

The two tables jointly show that the unidirectional forms of
BP for regression performed well only in one direction. The
B-BP algorithm performed well in both directions.

We tested the B-BP algorithm for double regression with the
invertible function f (x) = 0.5σ(6x + 3) + 0.5σ(4x − 1.2) for
values of x ∈ [−1.5, 1.5]. We used a deep 8-layer network with
6 hidden layers for this approximation. Each hidden layer had
10 bipolar logistic neurons. There was only a single identity
neuron in the input and output layers. The error functions Ef

and Eb were ordinary squared error. Fig. 6 compares the B-BP
approximation with the target function for both the forward
pass and the backward pass.

Algorithm 1 B-BP Algorithm

We also tested the B-BP double-regression algorithm on
the noninvertible function f (x) = sin x for x ∈ [−π, π]. The
forward mapping f (x) = sin x is a well-defined point func-
tion. The backward mapping y = sin−1(f (x)) is not. It defines
instead a set-based pullback or preimage f −1(y) = f −1({y}) =
{x ∈ R : f (x) = y} ⊂ R. The B-BP-trained neural network
tends to map each output point y to the centroid of its preim-
age f −1(y) on the backward pass because centroids minimize
squared error and because backward-regression training uses
squared error as its performance measure. Fig. 7 shows that
forward regression learns the target function sin x while back-
ward regression approximates the centroids −(π/2) and (π/2)

of the two preimage sets.

V. CONCLUSION

Unidirectional BP learning extends to B-BP learning if
the algorithm uses the appropriate joint error function for

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

1994 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 50, NO. 5, MAY 2020

both forward and backward passes. This bidirectional exten-
sion applies to classification networks as well as to regres-
sion networks and to their combinations. Most classification
networks can easily acquire a backward-inference capability
if they include a backward-regression step in their training.
So most networks simply ignore this inverse property of their
weight structure.

Theorem 1 shows that a bidirectional multilayer threshold
network can exactly represent a permutation mapping if the
hidden layer contains an exponential number of hidden thresh-
old neurons. An open question is whether these bidirectional
networks can represent an arbitrary invertible mapping with far
fewer hidden neurons. A simpler question holds for the weaker
case of uniform approximation of invertible mappings.

Another open question deals with noise: to what extent does
carefully injected noise speed B-BP convergence and accu-
racy? There are two bases for this question. The first is that
the likelihood structure of BP implies that BP is itself a spe-
cial case of the expectation–maximization algorithm [19]. The
second basis is that appropriate noise can boost the EM fam-
ily of hill-climbing algorithms on average because such noise
makes signals more probable on average [21], [23].

REFERENCES

[1] P. J. Werbos, “Beyond regression: New tools for prediction and analysis
in the behavioral sciences,” Ph.D. Dissertation, Appl. Math., Harvard
Univ., Cambridge, MA, USA, 1974.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 323–533,
Oct. 1986.

[3] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer, 2006.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, May 2015.

[5] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, per-
spectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260,
2015.

[6] B. Kosko, “Bidirectional associative memories,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 18, no. 1, pp. 49–60, Jan./Feb. 1988.

[7] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical Systems
Approach to Machine Intelligence. Englewood Cliffs, NJ, USA:
Prentice-Hall, 1991.

[8] S. Y. Kung, Kernel Methods and Machine Learning. Cambridge, U.K.:
Cambridge Univ. Press, 2014.

[9] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Math. Control Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.

[10] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359–366, 1989.

[11] B. Kosko, “Fuzzy systems as universal approximators,” IEEE Trans.
Comput., vol. 43, no. 11, pp. 1329–1333, Nov. 1994.

[12] F. Watkins, “The representation problem for additive fuzzy systems,” in
Proc. Int. Conf. Fuzzy Syst. (IEEE FUZZ), 1995, pp. 117–122.

[13] B. Kosko, “Generalized mixture representations and combinations for
additive fuzzy systems,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
2017, pp. 3761–3768.

[14] B. Kosko, “Additive fuzzy systems: From generalized mixtures to rule
continua,” Int. J. Intell. Syst., vol. 33, no. 8, pp. 1573–1623, 2017.

[15] J.-N. Hwang, J. J. Choi, S. Oh, and R. J. Marks, “Query-based learning
applied to partially trained multilayer perceptrons,” IEEE Trans. Neural
Netw., vol. 2, no. 1, pp. 131–136, Jan. 1991.

[16] E. W. Saad, J. J. Choi, J. L. Vian, and D. C. Wunsch, “Query-based
learning for aerospace applications,” IEEE Trans. Neural Netw., vol. 14,
no. 6, pp. 1437–1448, Nov. 2003.

[17] E. W. Saad and D. C. Wunsch, “Neural network explanation using
inversion,” Neural Netw., vol. 20, no. 1, pp. 78–93, 2007.

[18] Y. Yang, Y. Wang, and X. Yuan, “Bidirectional extreme learning machine
for regression problem and its learning effectiveness,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 23, no. 9, pp. 1498–1505, Sep. 2012.

[19] K. Audhkhasi, O. Osoba, and B. Kosko, “Noise-enhanced convolutional
neural networks,” Neural Netw., vol. 78, pp. 15–23, Jun. 2016.

[20] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Stat., vol. 22, no. 1, pp. 79–86, 1951.

[21] O. Osoba and B. Kosko, “The noisy expectation-maximization algorithm
for multiplicative noise injection,” Fluctuation Noise Lett., vol. 15, no. 4,
2016, Art. no. 1650007.

[22] R. V. Hogg, J. McKean, and A. T. Craig, Introduction to Mathematical
Statistics. Boston, MA, USA: Pearson, 2013.

[23] O. Osoba, S. Mitaim, and B. Kosko, “The noisy expectation–
maximization algorithm,” Fluctuation Noise Lett., vol. 12, no. 3, 2013,
Art. no. 1350012.

Olaoluwa (Oliver) Adigun received the Bachelor of
Science degree in electronic and electrical engineer-
ing from Obafemi Awolowo University, Ife, Nigeria.
He is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
Signal and Image Processing Institute, University of
Southern California, Los Angeles, CA, USA.

He has been an Intern with Google AI, Mountain
View, CA, USA, and with the Machine Learning
Group, Amazon, Seattle, WA, USA.

Mr. Adigun shared the Best Paper Award for his
research on noise-boosted recurrent backpropagation at the 2017 International
Joint Conference on Neural Networks.

Bart Kosko (M’85–SM’07–F’10) received the
degrees in philosophy, economics, applied mathe-
matics, electrical engineering, and law.

He is a Professor of Electrical and Computer
Engineering and Law and the Past Director of Signal
and Image Processing Institute with the University
of Southern California, Los Angeles, CA, USA, and
a Licensed Attorney. He has published the text-
books entitled Neural Networks and Fuzzy Systems
and Fuzzy Engineering, the trade books entitled
Fuzzy Thinking, Heaven in a Chip, and Noise, the

edited volume Neural Networks and Signal Processing, the co-edited volume
Intelligent Signal Processing, the novel Nanotime, and the upcoming novel
Cool Earth.

Dr. Kosko was a co-recipient of the Best Paper Award at the 2017
International Joint Conference on Neural Networks.

Authorized licensed use limited to: University of Southern California. Downloaded on April 26,2020 at 07:36:50 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

