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Abstract—Fuzzy rule-based systems can approximate prior
and likelihood probabilities in Bayesian inference and thereby
approximate posterior probabilities. This fuzzy approximation
technique allows users to apply a much wider and more flexible
range of prior and likelihood probability density functions than
found in most Bayesian inference schemes. The technique does
not restrict the user to the few known closed-form conjugacy
relations between the prior and likelihood. It allows the user in
many cases to describe the densities with words. And just two
rules can absorb any bounded closed-form probability density
directly into the rulebase. Learning algorithms can tune the
expert rules as well as grow them from sample data. The
learning laws and fuzzy approximators have a tractable form
because of the convex-sum structure of additive fuzzy systems.
This convex-sum structure carries over to the fuzzy posterior
approximator. We prove a uniform approximation theorem
for Bayesian posteriors: An additive fuzzy posterior uniformly
approximates the posterior probability density if the prior or
likelihood densities are continuous and bounded and if separate
additive fuzzy systems approximate the prior and likelihood
densities. Simulations demonstrate this fuzzy approximation of
priors and posteriors for the three most common conjugate priors
(as when a beta prior combines with a binomial likelihood to give
a beta posterior). Adaptive fuzzy systems can also approximate
non-conjugate priors and likelihoods as well as approximate
hyperpriors in hierarchical Bayesian inference. The number of
fuzzy rules can grow exponentially in iterative Bayesian inference
if the previous posterior approximator becomes the new prior
approximator.

I. BAYESIAN INFERENCE WITH FUZZY SYSTEMS

Additive fuzzy systems can extend Bayesian inference be-
cause they allow users to express prior or likelihood knowledge
in the form of if-then rules. Fuzzy systems can approximate
any prior or likelihood probability density functions (pdfs) and
thereby approximate any posterior pdfs. This allows a user
to describe priors with fuzzy if-then rules rather than with
closed-form pdfs. The user can also train the fuzzy system
with collateral data to adaptively grow or tune the fuzzy rules
and thus to approximate the prior or likelihood pdf. A simple
two-rule system can also exactly represent a bounded prior
pdf if such a closed-form pdf is available. So fuzzy rules
substantially extend the range of knowledge and statistical
structure that prior or likelihood pdfs can capture–and they do
so in an expressive linguistic framework based on multivalued
or fuzzy sets [33].

Figure 1 shows how five tuned fuzzy rules approximate the
skewed beta prior pdf β(8, 5). Learning has sculpted the five
if-part and then-part fuzzy sets so that the approximation is
almost exact. Users will not in general have access to such
training data because they do not know the functional form of
the prior pdf. They can instead use any noisy sample data at
hand or just state simple rules of thumb in terms of fuzzy sets
and thus implicitly define a fuzzy system approximator F . The
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following prior rules define such an implied skewed prior that
maps fuzzy-set descriptions of the parameter random variable
Θ to fuzzy descriptions F (Θ) of the occurrence probability:
Rule 1: If Θ is much smaller than 1

2 then F (Θ) is very small
Rule 2: If Θ is smaller than 1

2 then F (Θ) is small
Rule 3: If Θ is approximately 1

2 then F (Θ) is large
Rule 4: If Θ is larger than 1

2 then F (Θ) is medium
Rule 5: If Θ is much larger than 1

2 then F (Θ) is small
Learning shifts and scales the Cauchy bell curves that define
the if-part fuzzy sets in Figure 1. The tuned bell curve in the
third rule has shifted far to the right of the equi-probable value
1
2 . Different prior rules and fuzzy sets will define different
priors just as will different sets of sample data. The simulations
results in Figures 3-11 show that such fuzzy rules can quickly
learn an implicit prior if the fuzzy system has access to
data that reflects the prior. These simulations give probative
evidence that an informed expert can use fuzzy sets to express
reasonably accurate priors in Bayesian inference even when no
training data is available. The uniform fuzzy approximation
theorem in [13], [15] gives a theoretical basis for such rule-
based approximations of priors or likelihoods. Theorem 2
below further shows that such uniform fuzzy approximation
of priors or likelihoods leads in general to the uniform fuzzy
approximation of the corresponding Bayesian posterior.
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Fig. 1. Five fuzzy if-then rules approximate the beta prior h(θ) = β(8, 5).
The five if-part fuzzy sets are truncated Cauchy bell curves. An adaptive
Cauchy SAM (Standard Addtive Model) fuzzy system tuned the sets’ location
and dispersion parameters to give a nearly exact approximation of the beta
prior. Each fuzzy rule defines a patch or 3-D surface above the input-output
planar state space. The third rule has the form “If Θ = A3 then B3” where
then-part set B3 is a fuzzy number centered at centroid c3. This rule might
have the linguistic form “If Θ is approximately 1

2
then F (Θ) is large.”

The training data came from 500 uniform samples of β(8, 5). The adaptive
fuzzy system cycled through each training sample 6,000 times. The fuzzy
approximator converged in fewer than 200 iterations. The adaptive system
also tuned the centroids and areas of all five then-part sets (not pictured).

Bayesian inference itself has a key strength and a key
weakness. The key strength is that it computes the posterior
pdf f(θ|x) of a parameter θ given the observed data x. The
posterior pdf gives all probabilistic information about the
parameter given the available evidence. The key weakness is
that this process requires that the user produce a prior pdf h(θ)
that describes the unknown parameter. The prior pdf can inject
“subjective” information into the inference process because it
can be little more than a guess from the user or from some
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consulted expert or other source of authority. Priors can also
capture “objective” information from a collateral source of
data.

Additive fuzzy systems use if-then rules to map inputs
to outputs and thus to model priors or likelihoods. A fuzzy
system with enough rules can uniformly approximate any
continuous function on a compact domain. Statistical learning
algorithms can grow rules from unsupervised clusters in the
input-output data or from supervised gradient descent. Fuzzy
systems also allow users to add or delete knowledge by simply
adding or deleting if-then rules. So they can directly model
prior pdfs and approximate them from sample data if it is
available. Inverse algorithms can likewise find fuzzy rules that
maximize the posterior pdf or functionals based on it. The
adaptive fuzzy systems approximate the prior and likelihood
pdfs for iterative Bayesian inference and thus differ from the
many fuzzified Bayes Theorems in [11], [28] and elsewhere.
They preserve the numerical structure of modern Bayesian
inference and so also differ from earlier efforts to fuzzify
Bayesian inference by using fuzzy-set inputs and other fuzzy
contraints [7], [32].

We first demonstrate this fuzzy approximation with the three
well-known conjugate priors of Bayesian inference and with
a non-conjugate prior. A conjugate prior pdf of one type
combines with some randomly sampled data from a likelihood
pdf to produce a posterior pdf of the same type: beta priors
combine with binomial data to produce beta posteriors, gamma
priors combine with Poisson data to produce gamma posteri-
ors, and normal priors combine with normal data to produce
normal posteriors. Figures 3-11 below show how adaptive
standard-additive-model (SAM) fuzzy systems can approx-
imate these three conjugate priors and their corresponding
posteriors. Section II reviews Bayesian inference with these
conjugate priors. Section III presents the learning laws that
use sample data to tune the fuzzy-system approximators for the
six different shaped if-part fuzzy sets in Figure 2. Section IV
extends the fuzzy approximation to hierarchical Bayes models
where the user puts a second-order prior pdf or a hyperprior
on one of the uncertain parameters in the original prior pdf.
Section V further extends the fuzzy approach to doubly fuzzy
Bayesian inference where separate fuzzy systems approximate
the prior and the likelihood. This section also states and proves
what we call the Bayesian Approximation Theorem: Uniform
fuzzy approximation of the prior and likelihood results in
uniform fuzzy approximation of the posterior.

II. BAYESIAN STATISTICS AND CONJUGACY

Bayesian inference models learning as computing a con-
ditional probability based both on new evidence or data
and on prior probabilistic beliefs. It builds on the simple
Bayes theorem that shows how set-theoretic evidence should
update competing prior probabilistic beliefs or hypotheses. The
theorem gives the posterior conditional probability P (Hj |E)
that the jth hypothesis Hj occurs given that evidence E
occurs. The posterior depends on all the converse conditional
probabilities P (E|Hk) that E occurs given Hk and on all the
unconditional prior probabilities P (Hk) of the disjoint and

exhaustive hypotheses {Hk}:

P (Hj |E) =
P (E|Hj)P (Hj)

P (E)
=

P (E|Hj)P (Hj)∑
k P (E|Hk)P (Hk)

. (1)

The result follows from the definition of conditional proba-
bility P (B|A) = P (A ∩ B)/P (A) for P (A) > 0 when the
set hypotheses Hj partition the state space of the probability
measure P [16], [27].

Bayesian inference or so-called “Bayesian statistics” [1],
[8], [9] usually works with a continuous version of (1). Now
the parameter value θ corresponds to the hypothesis of interest
and the evidence corresponds to the sample values x from a
random variable X that depends on θ:

f(θ|x) =
g(x|θ)h(θ)∫
g(x|u)h(u)du

∝ g(x|θ)h(θ) (2)

where we follow convention and drop the normalizing term
that does not depend on θ as we always can if θ has a sufficient
statistic [8], [9]. The model (2) assumes that random variable
X conditioned on θ admits the random sample X1, . . . , Xn

with observed realizations x1, . . . , xn. So again the posterior
pdf f(θ|x) depends on the converse likelihood g(x|θ) and
on the prior pdf h(θ). The posterior f(θ|x) contains the
complete Bayesian description of this probabilistic world. Its
maximization is a standard optimality criterion in statistical
decision making [1], [3], [4], [5], [8], [9].

The Bayes inference structure in (2) involves a radical
abstraction. The set or event hypothesis Hj in (1) has become
the measurable function or random variable Θ that takes on
realizations θ according to the prior pdf h(θ) : Θ ∼ h(θ).
The pdf h(θ) can make or break the accuracy of the posterior
pdf f(θ|x) because it scales the data pdf g(x|θ) in (2). The
prior itself can come from an expert and thus be “subjective”
because it is ultimately an opinion or guess. Or the prior in
“empirical Bayes” [3], [8] can come from “objective” data
or from statistical hypothesis tests such as chi-squared or
Kolmogorov-Smirnov tests for a candidate pdf [9]. Section
III shows that the prior can also come from fuzzy rules that in
turn come from an expert or from training data or from both.

A. Conjugate Priors
The most common priors tend to be conjugate priors.

These priors produce not only closed-form posterior pdfs but
posteriors that come from the same family as the prior [1],
[4], [8], [26]. The three most common conjugate priors in
the literature are the beta, the gamma, and the normal. Table
I displays these three conjugacy relationships. The posterior
f(θ|x) is beta if the prior h(θ) is beta and if the data or
likelihood g(x|θ) is binomial or has a dichotomous Bernoulli
structure. The posterior is gamma if the prior is gamma
and if the data is Poisson or has a counting structure. The
posterior is normal if the prior and data are normal. Conjugate
priors permit easy iterative or sequential Bayesian learning
because the previous posterior pdf fold(θ|x) becomes the
new prior pdf hnew(θ) for the next experiment based on a
fresh random sample: hnew(θ) = fold(θ|x). Such conjugacy
relations greatly simplify iterative convergence schemes such
as Gibbs sampling in Markov chain Monte Carlo estimation
of posterior pdfs [3], [8].
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TABLE I
CONJUGACY RELATIONSHIPS IN BAYESIAN INFERENCE. A PRIOR PDF OF ONE TYPE COMBINES WITH ITS CONJUGATE LIKELIHOOD PDF TO PRODUCE A

POSTERIOR PDF OF THE SAME TYPE.

PRIOR h(θ) LIKELIHOOD g(x|θ) POSTERIOR f(θ|x)
Beta Binomial Beta′

B(α, β) bin(n, θ) B(α+ x, β + n− x)
Γ(α+β)
Γ(α)Γ(β)

θα−1(1− θ)β−1
(n
x

)
θx(1− θ)n−x Γ(α+β+n)

Γ(α+x)Γ(β+n−x)
θα+x−1(1− θ)β+n−x−1

Gamma Poisson Gamma′

Γ(α, β) p(θ) Γ(α+ x, β
1+β

)

θα−1 exp(−θ/β)
Γ(α)βα e−θ θx

x!
(θ+θβ)α+x

θ Γ(α+x) βα+x exp
(

−θ(1+β)
β

)
Normal Normal′ Normal′′

N(µ, τ2) N(θ|σ2) N
(

µτ2+xσ2

τ2+σ2 , τ2σ2

τ2+σ2

)
1) Beta-Binomial Conjugacy: Consider the beta prior on

the unit interval:

Θ ∼ β(α, β) : h(θ) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (3)

if 0 < θ < 1 for parameters α > 0 and β > 0. Here
Γ is the gamma function Γ(α) =

∫∞
0

xα−1e−xdx. Then Θ
has population mean or expectation E[Θ] = α/(α + β). The
beta pdf reduces to the uniform pdf if α = β = 1. A beta
prior is a natural choice when the unknown parameter θ is
the success probability for binomial data such as coin flips
or other Bernoulli trials because the beta’s support is the unit
interval (0, 1) and because the user can adjust the α and β
parameters to shape the beta pdf over the interval.

A beta prior is conjugate to binomial data with likeli-
hood pdf g(x1, . . . , xn|θ). This means that a beta prior h(θ)
combines with binomial sample data to produce a new beta
posterior:

f(θ|x) = Γ(n+ α+ β)

Γ(α+ x)Γ(n+ β − x)
θx+α−1(1− θ)n−x+β−1 (4)

Here x is the observed sum of n Bernoulli trials and hence is
an observed sufficient statistic for θ [9]. So g(x1, . . . , xn|θ) =
g(x|θ). This beta posterior f(θ|x) gives the mean-square
optimal estimator as the conditional mean E[Θ|X = x] =
(α+ x)/(α+ β + n) if the loss function is squared-error [9].
A beta conjugate relation still holds when negative-binomial
or geometric data replaces the binomial data or likelihood.
The conjugacy result also extends to the vector case for the
Dirichlet or multidimensional beta pdf. A Dirichlet prior is
conjugate to multinomial data [4], [24].

2) Gamma-Poisson Conjugacy: Gamma priors are conju-
gate to Poisson data. The gamma pdf generalizes many right-
sided pdfs such as the exponential and chi-square pdfs. The
generalized (three-parameter) gamma further generalizes the
Weibull and lognormal pdfs. A gamma prior is right-sided
and has the form

Θ ∼ γ(α, β) : h(θ) =
θα−1e−θ/β

Γ(α)βα
if θ > 0. (5)

The gamma random variable Θ has population mean E[Θ] =
αβ and variance V [Θ] = αβ2.

The Poisson sample data x1, . . . , xn comes from the likeli-
hood pdf g(x1 . . . , xn|θ) = θx1e−θ

x1!
· · · θxne−θ

xn!
. The observed

Poisson sum x = x1 + · · · + xn is an observed sufficient
statistic for θ because the Poisson pdf also comes from an
exponential family [1], [8]. The gamma prior h(θ) combines

with the Poisson likelihood g(x|θ) to produce a new gamma
posterior f(θ|x) [9]:

f(θ|x) = θ(
∑n

k=1 xk+α−1)e−θ/[β/(nβ+1)]

Γ(
∑n

k=1 xk + α)[β/(nβ + 1)](
∑n

k=1 xk+α)
. (6)

So E[Θ|X = x] = (α + x)β/(1 + β) and V [Θ|X = x] =
(α+ x)β2/(1 + β)2.

3) Normal-Normal Conjugacy: A normal prior is self-
conjugate because a normal prior is conjugate to normal data.
A normal prior pdf has the whole real line as its domain and
has the form [9]

Θ ∼ N(θ0, σ
2
0) : h(θ) =

1√
2πσ0

e−(θ−θ0)
2/2σ2

0 (7)

for known population mean θ0 and known population variance
σ2
0 . The normal prior h(θ) combines with normal sample

data from g(x|θ) = N(θ|σ2/n) given an observed real-
ization x of the sample-mean sufficient statistic Xn. This
gives the normal posterior pdf f(θ|x) = N(µn, σ

2
n). Here

µn is the weighted-sum conditional mean E[Θ|X = x] =(
σ2
0

σ2
0+σ2/n

)
x +

(
σ2/n

σ2
0+σ2/n

)
θ0 and σ2

n =
(

σ2/n
σ2
0+σ2/n

)
σ2
0 . A

hierarchical Bayes model [3], [8] would write any of the these
priors as a function of still other random variables and their
pdfs as we demonstrate below in Section IV.

III. ADAPTIVE FUZZY APPROXIMATION

Additive fuzzy systems can uniformly approximate continu-
ous functions on compact sets [12], [13], [15]. Hence the set of
additive fuzzy systems is dense in the space of such functions.
A scalar fuzzy system is the map F : Rn → R that stores m
if-then rules and maps vector inputs x to scalar outputs F (θ).
The prior and likelihood simulations below map not Rn but
a compact real interval [a, b] into reals. So these systems
also satisfy the approximation theorem but at the expense of
truncating the domain of pdfs such as the gamma and the
normal. Truncation still leaves a proper posterior pdf through
the normalization in (2).
A. SAM Fuzzy Systems

A standard additive model (SAM) fuzzy system computes
the output F (θ) by taking the centroid of the sum of the “fired”
or scaled then-part sets: F (θ) = Centroid(w1a1(θ)B1+· · ·+
wmam(θ)Bm). Then the SAM Theorem states that the output
F (θ) is a simple convex-weighted sum of the then-part set
centroids cj [12], [13], [15], [21]:

F (θ) =

∑m
j=1 wjaj(θ)Vjcj∑m
j=1 wjaj(θ)Vj

=

m∑
j=1

pj(θ)cj . (8)
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Here Vj is the finite area of then-part set Bj in the rule “If
X = Aj then Y = Bj” and cj is the centroid of Bj . The
then-part sets Bj can depend on the input θ and thus their
centroids cj can be functions of θ: cj(θ) = Centroid(Bj(θ)).
The convex weights p1(θ), . . . , pm(θ) have the form pj(θ) =

wjaj(θ)Vj∑m
i=1 wiai(θ)Vi

. The convex coefficients pj(θ) change with
each input θ. The positive rule weights wj give the relative
importance of the jth rule. They drop out in our case because
they are all equal.

The scalar set function aj : R → [0, 1] measures the degree
to which input θ ∈ R belongs to the fuzzy or multivalued
set Aj : aj(θ) = Degree(θ ∈ Aj). The sinc set functions
below map into the augmented range [−.217, 1]. They require
some care in simulations because the denominator in (8)
can be zero. We can replace the input θ with θ′ in a small
neighborhood of θ and so replace the undefined F (θ) with
F (θ′) when the denominator in (8) equals zero. The fuzzy
membership value aj(θ) “fires” the rule “If Θ = Aj then
Y = Bj” in a SAM by scaling the then-part set Bj to give
aj(θ)Bj . The if-part sets can in theory have any shape but
in practice they are parametrized pdf-like sets such as those
we use below: sinc, Gaussian, triangle, Cauchy, Laplace, and
generalized hyperbolic tangent. The if-part sets control the
function approximation and involve the most computation in
adaptation. Users define a fuzzy system by giving the m
corresponding pairs of if-part Aj and then-part Bj fuzzy sets.
Many fuzzy systems in practice work with simple then-part
fuzzy sets such as congruent triangles or rectangles.

SAMs define “model-free” statistical estimators in the fol-
lowing sense [15], [19], [21]:

E[Y |Θ = θ] = F (θ) =
m∑
j=1

pj(θ)cj (9)

V [Y |Θ = θ] =
m∑
j=1

pj(θ)σ
2
Bj

+
m∑
j=1

pj(θ)[cj − F (θ)]2. (10)

The then-part set variance σ2
Bj

is σ2
Bj

=
∫∞
−∞(y −

cj)
2pBj (y)dy. Then pBj (y) = bj(y)/Vj is an integrable pdf

if bj : R → [0, 1] is the integrable set function of then-part
set Bj . The conditional variance V [Y |Θ = θ] gives a direct
measure of the uncertainty in the SAM output F (θ) based
on the inherent uncertainty in the stored then-part rules. This
defines a type of confidence surface for the fuzzy system [19].
The first term in the conditional variance (10) measures the
inherent uncertainty in the then-part sets given the current rule
firings. The second term is an interpolation penalty because
the rule “patches” Aj × Bj cover different regions of the
input-output product space. The shape of the then-part sets
affects the conditional variance of the fuzzy system but affects
the output F (θ) only to the extent that the then-part sets
Bj have different centroids cj or areas Vj . The adaptive
function approximations below tune only these two parameters
of each then-part set. The conditional mean (9) and variance
(10) depend on the realization Θ = θ and so generalize the
corresponding unconditional mean and variance of mixture
densities [8].

A SAM fuzzy system F can always approximate a function
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Fig. 2. Six types of if-part fuzzy sets in conjugate prior approximations.
Each type of set produces its own adaptive SAM learning law for tuning its
location and dispersion parameters: (a) sinc set, (b) Gaussian set, (c) triangle
set, (d) Cauchy set, (e) Laplace set, and (f) a generalized hyperbolic-tangent
set. The sinc shape performed best in most approximations of conjugate priors
and the corresponding fuzzy-based posteriors.

f or F ≈ f if the fuzzy system contains enough rules.
But multidimensional fuzzy systems F : Rn → R suffer
exponential rule explosion in general because they require
O(kn) rules [10], [14], [22]. Optimal rules tend to reside at
the extrema or turning points of the approximand f and so
optimal fuzzy rules “patch the bumps” [14]. Learning tends to
quickly move rules to these extrema and to fill in with extra
rules between the extremum-covering rules. The supervised
learning algorithms can involve extensive computation in
higher dimensions [20], [21]. Our fuzzy prior approximation
F : R → R maps scalars to scalars so it requires only O(k)
rules and thus does not suffer rule explosion. But Theorem 3
below shows that iterative Bayesian inference can produce its
own rule explosion.

B. The Watkins Representation Theorem

Fuzzy systems can exactly represent a bounded pdf with a
known closed form. Watkins has shown that in many cases a
SAM system F can exactly represent a function f in the sense
that F = f [29], [30]. The Watkins Representation Theorem
states that F = f if f is bounded and if we know the closed
form of f . The result is stronger than this because the SAM
system F exactly represents f with just two rules with equal
weights w1 = w2 and equal then-part set volumes V1 = V2:

F (θ) =

∑2
j=1 wjaj(θ)Vjcj∑2
j=1 wjaj(θ)Vj

(11)

=
a(θ)c1 + ac(θ)c2
a(θ) + ac(θ)

(12)

= f(θ) (13)

if a1(θ) = a(θ) =
sup f − f(θ)

sup f − inf f
, a2(θ) = ac(θ) = 1 − a(θ),

c1 = inf f , and c2 = sup f .
The representation technique builds f directly into the

structure of the two if-then rules. Let h(θ) be any bounded
prior pdf such as the β(8, 5) pdf in the simulations below.
Then F (θ) = h(θ) holds for all realizations θ if the SAM’s
two rules have the form “If Θ = A then Y = B1” and “If
Θ = not-A then Y = B2” for the if-part set function

a(θ) =
suph− h(θ)

suph− inf h
= 1− 1111

7744
θ7(1− θ)4 (14)

if Θ ∼ β(8, 5). Then-part sets B1 and B2 can have any
shape from rectangles to Gaussians so long as 0 < V1 =
V2 < ∞ with centroids c1 = inf h = 0 and c2 =
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suph = Γ(13)
Γ(8)Γ(5) (

7
11 )

7( 4
11 )

4. So the Watkins Representation
Theorem lets a SAM fuzzy system directly absorb a closed-
form bounded prior h(θ) if it is available. The same holds for
a bounded likelihood or posterior pdf.
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Fig. 3. Comparison of conjugate beta priors and posteriors with their fuzzy
approximators. (a) an adapted sinc-SAM fuzzy system F (θ) with 15 rules
approximates the three conjugate beta priors h(θ): β(2.5, 9), β(9, 9), and
β(8, 5). (b) the sinc-SAM fuzzy priors F (θ) in (a) produce the SAM-based
approximators F (θ|x) of the three corresponding beta posteriors f(θ|x)
for the three corresponding binomial likelihood pdfs g(x|θ) with n = 80:
bin(20, 80), bin(40, 80), and bin(60, 80) where g(x|θ) = bin(x, 80) =

80!
x!(80−x)!

θx(1− θ)80−x. So X ∼ bin(x, 80) and X = 20 mean that there
were 20 successes out of 80 trials in an experiment where the probability of
success was θ. Each of the three fuzzy approximations cycled 6,000 times
through 500 uniform training samples from the corresponding beta priors.

C. ASAM Learning Laws

An adaptive SAM (ASAM) F can quickly approximate a
prior h(θ) (or likelihood) if the following supervised learning
laws have access to adequate samples h(θ1), h(θ2), . . . from
the prior. This may mean in practice that the ASAM trains
on the same numerical data that a user would use to conduct
a chi-squared or Kolmogorov-Smirnov hypothesis test for a
candidate pdf. Figure 4 shows that an ASAM can learn the
prior pdf even from noisy random samples drawn from the pdf.
Unsupervised clustering techniques can also train an ASAM
if there is sufficient cluster data [12], [15], [31]. The ASAM
prior simulations in the next section show how F approximates
h(θ) when the ASAM trains on random samples from the
prior. These approximations bolster the case that ASAMs will
in practice learn the appropriate prior that corresponds to the
available collateral data.

ASAM supervised learning uses gradient descent to tune the
parameters of the set functions aj as well as the then-part areas

Vj (and weights wj) and centroids cj . The learning laws follow
from the SAM’s convex-sum structure (8) and the chain-rule
decomposition ∂E

∂mj
= ∂E

∂F
∂F
∂aj

∂aj

∂mj
for SAM parameter mj and

error E in the generic gradient-descent algorithm [15], [21]

mj(t+ 1) = mj(t)− µt
∂E

∂mj
(15)

where µt is a learning rate at iteration t. We seek to minimize
the squared error

E(θ) =
1

2
(f(θ)− F (θ))2 =

1

2
ε(θ)2 (16)

of the function approximation. Let mj denote any parameter
in the set function aj . Then the chain rule gives the gradient
of the error function with respect to the respective if-part set
parameter mj , the centroid cj , and the volume Vj :

∂E

∂mj
=

∂E

∂F

∂F

∂aj

∂aj
∂mj

(17)

∂E

∂cj
=

∂E

∂F

∂F

∂cj
(18)

∂E

∂Vj
=

∂E

∂F

∂F

∂Vj
(19)

with partial derivatives [15], [21]
∂E

∂F
= −(f(θ)− F (θ)) = − ε(θ) (20)

∂F

∂aj
= [cj − F (θ)]

pj(θ)

aj(θ)
. (21)

The SAM ratio (8) with equal rule weights w1 = · · · = wm

gives [15], [21]
∂F

∂cj
=

aj(θ)Vj∑m
i=1 ai(θ)Vi

= pj(θ) (22)

∂F

∂Vj
=

aj(θ)[cj − F (θ)]∑m
i=1 ai(θ)Vi

= [cj − F (θ)]
pj(θ)

Vj
. (23)

Then the learning laws for the then-part set centroids cj and
volume Vj have the final form

cj(t+ 1) = cj(t) + µtε(θ)pj(θ) (24)

Vj(t+ 1) = Vj(t) + µtε(θ)[cj − F (θ)]
pj(θ)

Vj
. (25)

The learning laws for the if-part set parameters follow in like
manner by expanding ∂aj

∂mj
in (17).

The simulations below tune the location mj and dispersion
dj parameters of the if-part set functions aj for sinc, Gaussian,
triangle, Cauchy, Laplace, and generalized hyperbolic tangent
if-part sets. Figure 2 shows an example of each of these six
fuzzy sets with the following learning laws.

1) Sinc ASAM learning law: The sinc set function aj has
the form

aj(θ) = sin

(
θ −mj

dj

)/(θ −mj

dj

)
(26)

with parameter learning laws [15], [21]

mj(t+ 1) = mj(t) + µtε(θ)[cj − F (θ)]×
pj(θ)

aj(θ)

(
aj(θ)− cos

(
θ −mj

dj

))
1

θ −mj
(27)

dj(t+ 1) = dj(t) + µtε(θ)[cj − F (θ)]×
pj(θ)

aj(θ)

(
aj(θ)− cos

(
θ −mj

dj

))
1

dj
. (28)



6

0.2 0.4 0.6 0.8 1.0
Θ

1

2

3

4

hHΘL HempHΘL

500 random samples

0.2 0.4 0.6 0.8 1.0
Θ

1

2

3

4

hHΘL HempHΘL

2500 random samples

0.2 0.4 0.6 0.8 1.0
Θ

0.5

1.0

1.5

2.0

2.5

3.0

3.5

hHΘL HempHΘL

25000 random samples

HaLPDF approximation using random samples

0.2 0.4 0.6 0.8 1.0
Θ

0.5

1.0

1.5

2.0

2.5

3.0

3.5

hHΘL Hemp,nHΘL

Σn = 0.1

0.2 0.4 0.6 0.8 1.0
Θ

0.5

1.0

1.5

2.0

2.5

3.0

3.5

hHΘL Hemp,nHΘL

Σn = 0.05

0.2 0.4 0.6 0.8 1.0
Θ

0.5

1.0

1.5

2.0

2.5

3.0

3.5

hHΘL Hemp,nHΘL

Σn = 0.025

HbLPDF approximation using 5000 noisy random samples

Fig. 4. ASAMs can use a limited number of random samples or noisy random samples to estimate the sampling pdf. The ASAMs for these examples use
the tanh set function with 15 rules and they run for 6000 iterations. The ASAMs approximate empirical pdfs from the different sets of random samples.
The shaded regions represent the approximation error between the ASAM estimate and the sampling pdf. Part (a) compares the β(3, 10.4) pdf with ASAM
approximations for some β(3, 10.4) empirical pdfs. Each empirical pdf is a scaled histogram for a set of N random samples. The figure shows comparisons
for the cases N = 500, 2500, 25000. Part (b) compares the β(3, 10.4) pdf with ASAM approximations of 3 β(3, 10.4) random sample sets corrupted by
independent noise. Each set has 5000 random samples. The noise is zero-mean additive white Gaussian noise. The standard deviations σn of the additive
noise are 0.1, 0.05, and 0.025. The plots show that the ASAM estimate gets better as the number of samples increases. The ASAM has difficulty estimating
tail probabilities when the additive noise variance gets large.

2) Gaussian ASAM learning law: The Gaussian set func-
tion aj has the form

aj(θ) = exp

{
−
(
θ −mj

dj

)2
}

(29)

with parameter learning laws

mj(t+ 1) = mj(t) + µtε(θ)pj(θ)[cj − F (θ)]
θ −mj

d2j
(30)

dj(t+ 1) = dj(t) + µtε(θ)pj(θ)[cj − F (θ)]
(θ −mj)

2

d3j
. (31)

3) Triangle ASAM learning law: The triangle set function
has the form

aj(θ) =


1− mj−θ

lj
if mj − lj ≤ θ ≤ mj

1− θ−mj

rj
if mj ≤ θ ≤ mj + rj

0 else

(32)

with parameter learning laws

mj(t+ 1) =



mj(t)− µtε(θ)[cj − F (θ)]
pj(θ)
aj(θ)

1
lj

if mj − lj < θ < mj

mj(t) + µtε(θ)[cj − F (θ)]
pj(θ)
aj(θ)

1
rj

if mj < θ < mj + rj
mj(t) else

(33)

lj(t+ 1) =


lj(t) + µtε(θ)[cj − F (θ)]

pj(θ)
aj(θ)

mj−θ

l2j

if mj − lj < θ < mj

lj(t) else
(34)

rj(t+ 1) =


rj(t) + µtε(θ)[cj − F (θ)]

pj(θ)
aj(θ)

θ−mj

r2j

if mj < θ < mj + rj
rj(t) else

(35)

The Gaussian learning laws (30)-(31) can approximate the
learning laws for the symmetric triangle set function aj(θ) =

max{0, 1− |θ−mj |
dj

}.

4) Cauchy ASAM learning law: The Cauchy set function
aj has the form

aj(θ) =
1

1 +
(

θ−mj

dj

)2 (36)

with parameter learning laws
mj(t+ 1) = mj(t)

+ µtε(θ)pj(θ)[cj − F (θ)]
θ −mj

d2j
aj(θ) (37)

dj(t+ 1) = dj(t)

+ µtε(θ)pj(θ)[cj − F (θ)]
(θ −mj)

2

d3j
aj(θ). (38)

5) Laplace ASAM learning law: The Laplace or double-
exponential set function aj has the form

aj(θ) = exp

{
−|θ −mj |

dj

}
(39)

with parameter learning laws
mj(t+ 1) = mj(t)

+ µtε(θ)pj(θ)[cj − F (θ)]sign(θ −mj)
1

dj
(40)

dj(t+ 1) = dj(t)

+ µtε(θ)pj(θ)[cj − F (θ)]sign(θ −mj)
|θ −mj |

d2j
.(41)

6) Generalized hyperbolic tangent ASAM learning law:
The generalized hyperbolic tangent set function has the form

aj(θ) = 1 + tanh

(
−
(
θ −mj

dj

)2
)

(42)

with parameter learning laws

mj(t+ 1) = mj(t)

+ µtε(θ)pj(θ)[cj − F (θ)](2− aj(θ))
θ −mj

d2j
(43)

dj(t+ 1) = dj(t)

+ µtε(θ)pj(θ)[cj − F (θ)](2− aj(θ))
(θ −mj)

2

d3j
.(44)
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Fig. 5. Comparison of conjugate gamma priors and posteriors with their fuzzy
approximators. (a) an adapted sinc-SAM fuzzy system F (θ) with 15 rules
approximates the three conjugate gamma priors h(θ): γ(1, 30), γ(4, 12), and
γ(9, 5). (b) the sinc-SAM fuzzy priors F (θ) in (a) produce the SAM-based
approximators F (θ|x) of the three corresponding gamma posteriors f(θ|x)
for the three corresponding Poisson likelihood pdfs g(x|θ): p(35), p(70),
and p(105) where g(x|θ) = p(x) = θxe−θ/x!. Each of the three fuzzy
approximations cycled 6,000 times through 1,125 uniform training samples
from the corresponding gamma priors.

We can also reverse the learning process and adapt the SAM
if-part and then-part set parameters by maximizing a given
closed-form posterior pdf f(θ|x). The basic Bayesian relation
(2) above leads to the following application of the chain rule
for a set parameter mj :

∂f(θ|x)
∂mj

∝ g(x|θ) ∂F

∂mj
(45)

since ∂g
∂F = 0 because the likelihood g(x|θ) does not depend

on the fuzzy system F . The chain rule gives ∂F
∂mj

= ∂F
∂aj

∂aj

∂mj

and similarly for the other SAM parameters. Then the above
learning laws can eliminate the product of partial derivatives to
produce a stochastic gradient ascent or maximum-a-posteriori
or MAP learning law for the SAM parameters.
D. ASAM Approximation Simulations

We simulated six different types of adaptive SAM fuzzy
systems to approximate the three standard conjugate prior
pdfs and their corresponding posterior pdfs. The six types
of ASAMs corresponded to the six if-part sets in Figure 2
and their learning laws above. We combined C++ software
for the ASAM approximations with Mathematica to compute
the fuzzy-based posterior F (θ|x) using (2). Mathematica’s
NIntegrate program computed the mean-squared errors be-
tween the conjugate prior h(θ) and the fuzzy-based prior
F (θ) and between the posterior f(θ|x) and the fuzzy posterior
F (θ|x).

-4 -3 -2 -1 0 1 2 3 4
Θ

0.5

1.

1.5

2.

2.5
fHΘÈXL & FHΘÈXL

Posterior f HΘÈxL
Fuzzy-based Posterior FHΘÈxL

Fig. 6. Comparison of 11 conjugate normal posteriors with their fuzzy-
based approximators based on a standard normal prior and 11 different
normal likelihoods. An adapted sinc-SAM approximator with 15 rules first
approximates the standard normal prior h(θ) = N(0, 1) and then combines
with the likelihood pdf g(x|θ) = N(θ| 1

16
). The variance is 1/16 because

x is the observed sample mean of 16 standard-normal random samples
Xk ∼ N(0, 1). The 11 priors correspond to the 11 likelihoods g(x|θ) with
x = −4, −3.25, −2.5, −1.75, −1, −0.25, 0.5, 1.25, 2, 2.75, and 3.5. The
fuzzy approximation cycled 6,000 times through 500 uniform training samples
from the standard-normal prior.

Each ASAM simulation used uniform samples from a prior
pdf h(θ). The program evenly spaced the initial if-part sets
and assigned them equal but experimental dispersion values.
The initial then-part sets had unit areas or volumes. The initial
then-part centroids corresponded to the prior pdf’s value at
the location parameters of the if-part sets. A single learning
iteration began with computing the approximation error at
each uniformly spaced sample point. The program cycled
through all rules for each sample value and then updated
each rule’s if-part and then-part parameters according to the
appropriate ASAM learning law. Each adapted parameter had
a harmonic-decay learning rate µt =

c
t for learning iteration

t. Experimentation picked the numerator constants c for the
various parameters.

The approximation figures show representative simulation
results. Figure 1 used Cauchy if-part sets for illustration only
and not because they gave a smaller mean-squared error than
sinc sets did. Figures 3-6 used sinc if-part sets even though
we simulated all six types of if-part sets for all three types
of conjugate priors. Simulations demonstrated that all 6 set
functions produce good approximations for the prior pdfs. The
sinc ASAM usually performed best. We truncated the gamma
priors at the right-side value of 150 and truncated the normal
priors at −4 and 4 because the overlap between the truncated
prior tails and the likelihood pdfs g(x|θ) were small. The
likelihood functions g(x|θ) had narrow dispersions relative to
the truncated supports of the priors. Larger truncation values
or appended fall-off tails can accommodate unlikely x values
in other settings. We also assumed that the priors were strictly
positive. So we bounded the ASAM priors to a small positive
value (F (θ) ≥ 10−3) to keep the denominator integral in (2)
well-behaved.

Figure 1 used only one fuzzy approximation. The fuzzy
approximation of the β(8, 5) prior had mean-squared error
4.2× 10−4. The Cauchy-ASAM learning algorithm used 500
uniform samples for 6,000 iterations.

The fuzzy approximation of the beta priors β(2.5, 9),
β(9, 9), and β(8, 5) in Figure 3 had respective mean-squared
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errors 1.3×10−4, 2.3×10−5, and 1.4×10−5. The sinc-ASAM
learning used 500 uniform samples from the unit interval for
6,000 training iterations. The corresponding conjugate beta
posterior approximations had respective mean-squared errors
3.0× 10−5, 6.9× 10−6, and 3.8× 10−5.

The fuzzy approximation of the gamma priors γ(1, 30),
γ(4, 12), and γ(9, 5) in Figure 5 had respective mean-squared
errors 5.5×10−5, 3.6×10−6, and 7.9×10−6. The sinc-ASAM
learning used 1,125 uniform samples from the truncated in-
terval [0, 150] for 6,000 training iterations. The corresponding
conjugate gamma posterior approximations had mean-squared
errors 2.3× 10−5, 2.1× 10−7, and 2.3× 10−4.

The fuzzy approximation of the single standard-normal prior
that underlies Figure 6 had mean-squared error of 7.7×10−6.
The sinc-ASAM learning used 500 uniform samples from the
truncated interval [−4, 4] for 6,000 training iterations. Table
II gives the MSEs for the normal posteriors.

Sample Mean MSE
−4 0.12

−3.25 1.9× 10−3

−2.5 3× 10−4

−1.75 1.5× 10−4

−1 3.1× 10−5

−0.25 2.2× 10−6

Sample Mean MSE

0.5 1.1× 10−5

1.25 6.5× 10−5

2 1.6× 10−4

2.75 3× 10−4

3.5 7.6× 10−3

TABLE II
MEAN SQUARED ERRORS FOR THE 11 NORMAL POSTERIOR

APPROXIMATIONS

The generalized-hyperbolic-tanh ASAMs in Figure 4 learn
the beta prior β(3, 10.4) from both noiseless and noisy
random-sample (i.i.d.) x1, x2, . . . draws from the “unknown”
prior because the ASAMs use only the histogram or empirical
distribution of the pdf. The Glivenko-Cantelli Theorem [2]
ensures that the empirical distribution converges uniformly
to the original distribution. So sampling from the histogram
of random samples increasingly resembles sampling directly
from the unknown underlying pdf as the sample size increases.
This ASAM learning is robust in the sense that the fuzzy
systems still learn the pdf if independent white noise corrupts
the random-sample draws.

The simulation draws N random samples x1, x2, . . . , xN

from the pdf h(θ) = β(3, 10.40) and then bins them into 50
equally spaced bins of length ∆θ = 0.02. We generate an
empirical pdf hemp(θ) for the beta distribution by rescaling
the histogram. The rescaling converts the histogram into a
staircase approximation of the pdf h(θ):

hemp(θ) =

#of bins∑
m=1

p[m]rect(θ − θb[m])

N∆θ
(46)

where p[m] is the number of random samples in bin m and
where θb[m] is the central location of the mth bin. The
ASAM generates an approximation Hemp(θ) for the empirical
distribution hemp(θ). Figure 4(a) shows comparisons between
Hemp(θ) and h(θ).

The second example starts with 5, 000 random samples of
the β(3, 10.4) distribution. We add zero-mean white Gaussian
noise to the random samples. The noise is independent of the
random samples. The examples use respective noise standard
deviations of 0.1, 0.05, and 0.025 in the three separate cases.
The ASAM produces an approximation Hemp,n(θ) for this
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0.15

0.18

hHΘL & FHΘL

Prior hHΘL

Fuzzy Prior FHΘL

Fig. 7. Comparison of a non-conjugate prior pdf h(θ) and its fuzzy
approximator H(θ). The pdf h(θ) is a convex mixture of normal and Maxwell
pdfs: h(θ) = 0.4N(10, 1)+0.3M(2)+0.3M(5). The Maxwell pdf M(σ)

is θ2e−θ2/2σ2
for θ ≥ 0 and 0 for θ ≤ 0. An adaptive sinc-SAM generated

H(θ) using 15 rules and 6000 training iterations on 500 uniform samples of
the h(θ).

noise-modified function hemp,n(θ). Figure 4(b) shows com-
parisons between Hemp,n(θ) to h(θ). The approximands hemp

and hemp,n in Figures 4 (a) and (b) are random functions. So
these functions and their ASAM approximators are sample
cases.
E. Non-conjugate Priors

The ASAM technique can also approximate non-conjugate
priors and their corresponding posteriors. We defined a prior
pdf h(θ) as a convex bimodal mixture of normal and Maxwell
pdfs: h(θ) = 0.4N(10, 1)+0.3M(2)+0.3M(5). The Maxwell
pdfs have the form

θ ∼ M(σ) : h(θ) = θ2e−
θ2

2σ2 if θ > 0. (47)

The prior pdf modeled a location parameter for the nor-
mal mixture likelihood function: g(x|θ) = 0.7N(θ, 2.25) +
0.3N(θ + 8, 1). The prior h(θ) is not conjugate with respect
to this likelihood function g(x|θ). Figures 7 and 8 show the
ASAM approximations of the respective prior and posterior.

The ASAM used sinc set functions to generate a fuzzy
approximator H(θ) for the prior h(θ). The ASAM used 15
rules and 6000 iterations on 500 uniform samples of h(θ).
Figures 7 and 8 show the quality of the prior and posterior
fuzzy approximators. This example shows that fuzzy Bayesian
approximation still works for non-conjugate pdfs.

F. Closed-Form SAM Posterior Estimates

The next theorem shows that the SAM’s convex-weighted-
sum structure passes over into the structure of the fuzzy-
based posterior F (θ|x). The result is a generalized SAM [15]
because the then-part centroids cj are no longer constant but
vary both with the observed data x and the parameter value
θ. This simplified structure for the posterior F (θ|x) comes at
the expense in general of variable centroids that require several
integrations for each observation x.
Theorem 1: The fuzzy posterior approximator is a SAM:

F (θ|x) =
m∑
j=1

pj(θ)c
′
j(x|θ) (48)

where the generalized then-part set centroids c′j(x|θ) have the
form
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Fig. 8. Approximation of non-conjugate posterior pdf. Comparison of a non-
conjugate posterior pdf f(θ|x) and its fuzzy approximator F (θ|x). The fuzzy
prior H(θ) and the mixture likelihood function g(x|θ) = 0.7N(θ|2.25) +
0.3N(θ+8, 1) produce the fuzzy approximator of the posterior pdf F (θ|x).
The figure shows F (θ|x) for the single observation x = 6.

c′j(θ|x) =
cj(θ)g(x|θ)∑m

i=1

∫
D g(x|u)pi(u)ci(u) du

(49)

for sample space D.
We next state two corollaries that hold in special cases

that avoid the integration in (49) and thus are computationally
tractable.
Corollary 1.1: Suppose g(x|θ) approximates a Dirac delta
function centered at x: g(x|θ) ≈ δ(θ − x). Then c′j(θ|x) in
(49) becomes

c′j(θ|x) ≈ cjg(x|θ)
F (x)

. (50)

This special case arises when g(x|θ) concentrates on a region
Dg ⊂ D if Dg is much smaller than Dpj ⊂ D and if pj(θ)
concentrates on Dpj .

So a learning law for F (θ|x) needs to update only each
then-part centroid cj by scaling it with g(x|θ)/F (x) for each
observation x. This involves a substantially lighter computa-
tion than does the integration in (49).

The delta-pulse approximation g(x|θ) ≈ δ(θ − x) holds
for narrow bell curves such as normal or Cauchy pdfs when
their variance or dispersion is small. It holds in the limit as
the equality g(x|θ) = δ(θ − x) in the much more general
case of alpha-stable pdfs [17], [25] with any shape if x is the
location parameter of the stable pdf and if the dispersion γ
goes to zero. Then the characteristic function is the complex
exponential eixω and thus Fourier transformation gives the pdf
g(x|θ) exactly as the Dirac delta function [18]: lim

γ→0
g(x|θ) =

δ(θ − x). Then

F (θ|x) =
m∑
j=1

pj(θ)

(
cjg(x|θ)
F (x)

)
(51)

The approximation fails for a narrow binomial g(x|θ) unless
scaling maintains unity status for the mass of g(x|θ) in (78)
for a given n.

Corollary 1.2: Suppose we can approximate the likelihood
g(x|θ) with constant g(x|mj) and then-part set centroids cj(θ)
with constant cj(mj) over Dpj . Then c′j(θ|x) in (49) becomes

c′j(θ|x) ≈ cj(θ)g(x|θ)∑m
i=1 g(x|mi)Upici(mj)

(52)

where Upj =
∫
Dpj

pj(u)du.
We can pre-compute or estimate the if-part volume Upj in

advance. So (52) also gives a generalized SAM structure and
another tractable way to adapt the variable then-part centroids
c′j(x|θ).

This second special case holds for the normal likelihood pdf
g(x|θ) = 1√

2πσ0
e−(x−θ)2/2σ2

0 if the widths or dispersions dj
of the if-part sets are small compared with σ0 and if there are
a large number m of fuzzy if-then rules that jointly cover Dg.
This occurs if Dg = (θ−3σ0, θ+3σ0) with if-part dispersions
dj = σ0/m and locations mj . Then pj(θ) concentrates on
some Dpj = (mj − ϵ,mj + ϵ) where 0 < ϵ ≪ σ0 and so
pj(θ) ≈ 0 for θ /∈ Dpj . Then x−mj±ϵ

σ0
≈ x−mj

σ0
since ϵ ≪ σ0.

So x−θ
σ0

≈ x−mj

σ0
for all θ ∈ Dpj and thus

g(x|θ) ≈ 1√
2πσ0

e−(x−mj)
2/2σ2

0 = g(x|mj) (53)

for θ ∈ Dpj . Then (83) holds.
This special case also holds for the binomial g(x|θ) =(

n
x

)
θx(1 − θ)n−x for x = 0, 1, . . . , n if n ≪ m and thus if

there are fewer Bernoulli trials n than fuzzy if-then rules m in
the SAM system. It holds because g(x|θ) concentrates on Dg

and because Dg is wide compared with Dpj when m ≫ n.
This case also holds for the Poisson g(x|θ) = 1

x!θ
xe−θ if

the number of times x that a discrete event occurs is small
compared with the number m of SAM rules that jointly cover
Dg = (x2 ,

3x
2 ) because again Dg is large compared with Dpj .

So (83) follows.

IV. FUZZY HIERARCHICAL BAYESIAN INFERENCE

Adaptive fuzzy approximation can also apply to second-
order priors or so-called hierarchical Bayes techniques [3],
[8]. Here the user puts a new prior or hyperprior pdf on an
uncertain parameter that appears in the original prior pdf. This
new hyperprior pdf can itself have a random parameter that
leads to yet another new prior or hyper-hyperprior pdf and so
on up the hierarchy of prior models. We will demonstrate the
hierarchical technique in the common case where an inverse-
gamma hyperprior pdf models the uncertainty in the unknown
variance of a normal prior pdf. This is the scalar case of
the conjugate inverse Wishart prior [3] that often models
the uncertainty in the covariance matrix of a normal random
vector.

Suppose again that the posterior pdf f(θ|x) is approximately
the product of the likelihood pdf g(x|θ) and the prior pdf h(θ):

f(θ|x) ∼ g(x|θ)h(θ). (54)

But now suppose that the prior pdf h(θ) depends on an
uncertain parameter τ : h(θ|τ). We will model the uncertainty
involving τ by making τ a random variable T with its own pdf
or hyperprior pdf π(τ). Conditioning the original prior h(θ)
on τ adds a new dimension to the posterior pdf:

f(θ|τ |x) ∼ g(x|θ)h(θ|τ)π(τ). (55)

But marginalizing or integrating over τ removes this extra
dimension and restores the original posterior pdf:

f(θ|x) ∼
∫

g(x|θ)h(θ|τ)π(τ) dτ. (56)
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Fig. 9. Comparison of inverse-gamma (IG) hyperprior π(τ) and its fuzzy
approximation. The hyperprior pdf is the IG(2, 1) pdf that describes the
random parameter τ that appears as the variance in a normal prior. The
approximating fuzzy hyperprior F (τ) used 15 rules in a SAM with Gaussian
if-part sets. The fuzzy approximator used 1000 uniform samples from [0, 4]
and 6000 training iterations.

Thus hierarchical Bayes has the benefit of working with a more
flexible and descriptive prior but at the computational cost of
a new integration. The approach of empirical Bayes [3], [8]
would simply replace the random variable τ with a numerical
proxy such as its most probable value. That approach is
simpler to compute but ignores most of the information in
the hyperprior pdf.

-4 -3 -2 -1 0 1 2 3 4
Θ

0.5

1.

1.5

2.
fHΘÈXL & FHΘÈXL

Hierarchical Posterior f HΘÈxL

Hierarchical Fuzzy-based Posterior FHΘÈxL

Fig. 10. Hierarchical Bayes posterior pdf approximation using a fuzzy
hyperprior. The plot shows the fuzzy approximation for 11 normal posterior
pdfs. These posterior pdfs use 2 levels of prior pdfs. The first prior pdf
h(θ|τ) is N(0, τ) where τ is a random variance hyperparameter. The
distribution of τ is the inverse-gamma (IG) hyperprior pdf. τ ∼ IG(2, 1)

where IG(α, β) ≡ π(τ) = βαe−β/τ

Γ(α)τα+1 . The likelihood function is

g(x|θ) = N(θ| 1
16

). The 11 pdfs are posteriors for the observations
x = −4,−3.25,−1.75,−1,−0.25, 0.5, 1.25, 2.75, and 3.5. The approx-
imate posterior F (θ|x) uses a fuzzy approximation for the inverse-gamma
hyperprior π(τ) (1000 uniform sample points on the support [0, 4], 15 rules,
and 6000 learning iterations). The posterior pdfs show the distribution of θ
given the data x.

We simulated a variation of the conjugate normal case.
The likelihood is normally distributed with unknown mean
g(x|θ) = N(θ| 1

16 ). A normal prior pdf h(θ) models the
unknown mean. We used a standard normal for h(θ) in the
previous case. Here we assume h(θ) has unknown variance
τ . So h(θ|τ) is N(0, τ). We model τ with an inverse gamma
(IG) hyperprior pdf: τ ∼ IG(2, 1) where IG(α, β) = π(τ) =
βαe−β/τ

Γ(α)τα+1 . The inverse gamma prior is conjugate to the normal
likelihood and so the resulting posterior is inverse gamma.
Thus we have conjugacy in both the mean and variance

parameters.
We obtain an approximation F (θ|x) for the posterior f(θ|x)

by fuzzy approximation of the truncated hyperprior π(τ).
Figure 9 shows how an adaptive sinc SAM approximates
the truncated hyperprior. This fuzzy approximation used 1000
uniform sample points on the support [0, 4], 15 rules, and
6000 learning iterations.

Figure 10 shows the final fuzzy approximations for 11
normal posterior pdfs using this technique. The 11 pdfs are
posteriors for the observations x = −4, −3.25, −2.5, −1.75,
−1, −0.25, 0.5, 1.25, 2, 2.75, and 3.5. The posterior pdfs
show the distribution of θ given the data x. We integrate τ
out of f(θ|τ |x) to yield the marginal posterior f(θ|x).

V. DOUBLY FUZZY BAYESIAN INFERENCE: UNIFORM
APPROXIMATION

We will use the term doubly fuzzy to describe Bayesian
inference where separate fuzzy systems H(θ) and G(x|θ)
approximate the respective prior pdf h(θ) and the likelihood
pdf g(x|θ). Theorem 3 below shows that the resulting fuzzy
approximator F of the posterior pdf f(θ|x) still has the
convex-sum structure (8) of a SAM fuzzy system.

The doubly fuzzy posterior approximator F requires only
m1m2 rules if the fuzzy likelihood approximator G uses m1

rules and if the fuzzy prior approximator H uses m2 rules.
The m1m2 if-part sets of F have a corresponding product
structure as do the other fuzzy-system parameters. Corollary
3.1 shows that using an exact 2-rule representation reduces the
corresponding rule number m1 or m2 to two. This is a tractable
growth in rules for a single Bayesian inference. But the same
structure leads in general to an exponential growth in posterior-
approximator rules if the old posterior approximator becomes
the new prior approximator in iterated Bayesian inference.

-4.0 -3.0 -2.0 -1.0 1.0 2.0 3.0 4.0
Θ

0.5

1.0

1.5

fHΘÈXL & FHΘÈXL

Posterior f HΘÈxL

Fuzzy-based Posterior FHΘÈxL

x = -0.25 x = 2

Fig. 11. Doubly fuzzy Bayesian inference: comparison of two normal
posteriors and their doubly fuzzy approximators. The doubly fuzzy approx-
imations use fuzzy prior-pdf approximator H(θ) and fuzzy likelihood-pdf
approximator G(x|θ). The sinc-SAM fuzzy approximator H(θ) uses 15
rules to approximate the normal prior h(θ) = N(0, 1). The Gaussian-SAM
fuzzy likelihood approximator G(x|θ) uses 15 rules to approximate the two
likelihood functions g(x|θ) = N(−0.25, 1

16
) and g(x|θ) = N(2, 1

16
). The

two fuzzy approximators used 6000 learning iterations based on 500 uniform
sample points.

Figure 11 shows the result of doubly fuzzy Bayesian infer-
ence for two normal posterior pdfs. A 15-rule Gaussian SAM
G approximates two normal likelihood pdfs while a 15-rule
sinc SAM H approximates a standard normal prior pdf.

We call the next theorem the Bayesian Approximation
Theorem (BAT). The BAT shows that doubly fuzzy systems
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can uniformly approximate posterior pdfs under some mild
conditions. The proof derives an approximation error bound
for F (θ|x) that does not depend on θ or x. Thus F (θ|x)
uniformly approximates f(θ|x). The BAT holds in general for
any uniform approximators of the prior or likelihood. Corol-
lary 2.1 shows how the centroid and convex-sum structure of
SAM fuzzy approximators H and G specifically bound the
posterior approximator F . Theorem 3 gives further insight
into the induced SAM structure of the doubly fuzzy posterior
approximator F .

The statement and proof of the BAT require the following
notation. Let D denote the set of all θ and let X denote the set
of all x. Assume that D and X are compact. The prior is h(θ)
and the likelihood is g(x|θ). H(θ) is a 1-dimensional SAM
fuzzy system that uniformly approximates h(θ) in accord with
the Fuzzy Approximation Theorem [13], [15]. G(x|θ) is a 2-
dimensional SAM that uniformly approximates g(x|θ). Define
the Bayes factors as q(x) =

∫
D h(θ)g(x|θ)dθ and Q(x) =∫

D H(θ)G(x|θ)dθ. Assume that q(x) > 0 so that the posterior
f(θ|x) is well-defined for any sample data x. Let ∆Z denote
the approximation error Z − z for an approximator Z.
Theorem 2: Bayesian Approximation Theorem. Suppose
that h(θ) and g(x|θ) are bounded and continuous and that
H(θ)G(x|θ) ̸= 0 almost everywhere. Then the doubly fuzzy
SAM system F (θ|x) = HG/Q uniformly approximates
f(θ|x) for all ϵ > 0 : |F (θ|x)− f(θ|x)| < ϵ.

The BAT proof in the Appendix also shows how sequences
of uniform approximators Hn and Gn lead to a sequence of
posterior approximators Fn that converges uniformly to F .
Suppose we have such sequences Hn and Gn that uniformly
approximate the respective prior h and likelihood g. Suppose
ϵh,n+1 < ϵh,n and ϵg,n+1 < ϵg,n for all n. Define Fn =
HnGn∫
HnGn

. Then for all ϵ > 0 there exists an n0 ∈ N such that
for all n > n0 : |Fn(θ|x) − F (θ|x)| < ϵ for all θ and for
all x. The positive integer n0 is the first n such that ϵh,n and
ϵg,n satisfy (101). Hence Fn converges uniformly to F .

Corollary 2.1 below reveals the fuzzy structure of the
BAT’s uniform approximation when the prior H and likelihood
G are uniform SAM approximators. The corollary shows
how the convex-sum and centroidal structure of H and G
produce centroid-based bounds on the fuzzy posterior approx-
imator F . Recall first that Theorem 1 states that F (θ|x) =∑m

j=1 pj(θ)c
′
j(x|θ) where c′j(x|θ) =

cjg(x|θ)∑m
i=1

∫
D g(x|u)pi(u)cidu

.
Replace the likelihood g(x|θ) with its doubly fuzzy SAM
approximator G(x|θ) to obtain the posterior

F (θ|x) =
m∑
j=1

pj(θ)C
′
j(x|θ) (57)

where the then-part set centroids are

C ′
j(x|θ) =

ch,jG(x|θ)∑m
i=1

∫
D G(x|u)pi(u)ch,idu

. (58)

The {ch,k}k are the then-part set centroids for the prior
SAM approximator H(θ). G(x|θ) likewise has then-part set
centroids {cg,j}j . Each SAM is a convex sum of its centroids
from (48). This convex-sum structure induces bounds on H
and G that in turn produce bounds on F . We next let the
subscripts max and min denote the respective maximal and

minimal centroids. The maximal centroids are positive. But
the minimal centroids may be negative even though h and g
are non-negative functions. We also assume that the minimal
centroids are positive. So define the maximal and minimal
product centroids as

cgh,max = max
j,k

cg,jch,k = cg,maxch,max (59)

cgh,min = min
j,k

cg,jch,k = cg,minch,min. (60)

Then the BAT gives the following SAM-based bound.
Corollary 2.1: Centroid-based bounds for the doubly fuzzy
posterior F .
Suppose that the set D of all θ has positive Lebesgue measure.
Then the centroids of the H and G then-part sets bound the
posterior F :

cgh,min

m(D)cgh,max
≤ F (θ|x) ≤ cgh,max

m(D)cgh,min
. (61)

The size of the bounding interval depends on the size of the
set D and on the minimal centroids of H and G. The lower
bound is more sensitive to minimal centroids than the upper
bound because dividing by a maximum is more stable than
dividing by a minimum close to zero. The bounding interval
becomes [0,∞) if any of the minimal centroids for H or G
equal zero. The infinite bounding interval [0,∞) corresponds
to the least informative case.

Similar centroid bounds hold for the multidimensional case.
Suppose that the SAM-based posterior F is the multidimen-
sional approximator F : R → Rp with p > 1. Then
the same argument applies to the components of the cen-
troids along each dimension. There are p bounding intervals

csgh,min

m(D)csgh,max
≤ Fs(θ|x) ≤ csgh,max

m(D)csgh,min
for each dimension

s of the range Rp. These componentwise intervals define a
bounding hypercube

∏p
s=1[

csgh,min

m(D)csgh,max
,

csgh,max

m(D)csgh,min
] ⊂ Rp

for F .
The next theorem shows that a doubly fuzzy system’s

posterior F (θ|x) maintains the convex-sum structure (8) and
has m1m2 rules if the likelihood approximator G has m1 rules
and the prior approximator H has m2 rules.
Theorem 3: Doubly fuzzy posterior approximators are SAMs
with product rules.

Suppose an m1-rule SAM fuzzy system G(x|θ) approxi-
mates (or represents) a likelihood pdf g(x|θ) and another m2-
rule SAM fuzzy system H(θ) approximates (or represents) a
prior h(θ) pdf with m2 rules:

G(x|θ) =

∑m1

j=1 wg,jag,j(θ)Vg,jcg,j∑m1

i=1 wg,jag,j(θ)Vg,j
=

m1∑
j=1

pg,j(θ)cg,j (62)

H(θ) =

∑m2

j=1 wh,jah,j(θ)Vh,jch,j∑m2

j=1 wh,jah,j(θ)Vh,j
=

m2∑
j=1

ph,j(θ)ch,j (63)

where pg,j(θ) =
wg,jag,j(θ)Vg,j∑m1
i=1 wg,jag,j(θ)Vg,j

and ph,j(θ) =
wh,jah,j(θ)Vh,j∑m2
i=1 wh,jah,j(θ)Vh,j

are convex coefficients:
∑m1

j=1 pg,j(θ) = 1

and
∑m2

j=1 ph,j(θ) = 1. Then (a) and (b) hold:
(a) The fuzzy posterior approximator F (θ|x) is a SAM

system with m = m1m2 rules:

F (θ|x) =

∑m
i=1 wF,i aF,i(θ)VF,i cF,i∑m

i=1 wF,i aF,i(θ)VF,i
. (64)
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(b) The m if-part set functions aF,i(θ) of the fuzzy posterior
approximator F (θ|x) are the products of the likelihood ap-
proximator’s if-part sets ag,j(θ) and the prior approximator’s
if-part sets ah,k(θ):

aF,i(θ) = ag,j(θ)ah,k(θ). (65)

for i = m2(j − 1) + k, j = 1, . . . ,m1, and k = 1, . . . ,m2.
The weights wFi , then-part set volumes VFi , and centroids cFi

also have the same likelihood-prior product form:

wFi = wg,jwh,k (66)
VFi = Vg,jVh,k (67)

cFi =
cg,jch,k
Q(x)

. (68)

So the updated fuzzy system F (θ|x) has m = m1m2 rules
with weights wF,i = wg,jwh,k, if-parts set functions aF,i(θ) =
ag,j(θ)ah,k(θ), then-part set volumes VF,i = Vg,jVh,k, and
centroids cF,i = cg,jch,k where i = m2(j − 1) + k,
j = 1, . . . ,m1, and k = 1, . . . ,m2. Note that the m1-rule
fuzzy system G(x|θ) represents (or approximates) g(x|θ) as a
function of θ when x is an observation.

VI. CONCLUSION

Fuzzy systems allow users to encode prior and likelihood
information through fuzzy rules rather than through only a
handful of closed-form probability densities. This can produce
more accurate priors and likelihoods based on expert input
or sample data or both. Gradient-descent learning algorithms
specifically allow fuzzy systems to learn and tune rules based
on the same type of collateral data that an expert might
consult or that a statistical hypothesis might use. Different
learning algorithms should produce different bounds on the
fuzzy prior or likelihood approximations and those in turn
should lead to different bounds on the fuzzy posterior approx-
imation. Hierarchical Bayes systems can model hyperpriors
with fuzzy approximators or with other “intelligent” learning
systems such as neural networks or semantic networks. An
open research problem is how to reduce the exponential rule
explosion that doubly fuzzy Bayesian systems face in general
in Bayesian iterative inference.
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APPENDIX: PROOFS OF THEOREMS

This section restates the Theorems and provides proofs.
Theorem 1: The fuzzy posterior approximator is a SAM:

F (θ|x) =
m∑
j=1

pj(θ)c
′
j(x|θ) (69)

where the generalized then-part set centroids c′j(x|θ) have the
form

c′j(θ|x) =
cj(θ)g(x|θ)∑m

i=1

∫
D g(x|u)pi(u)ci(u) du

(70)

for sample space D.
Proof: The proof equates the fuzzy-based posterior F (θ|x)
with the right-hand side of (2) and then expands according to
Bayes Theorem:
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F (θ|x) =
g(x|θ)F (θ)∫

D g(x|u)F (u)du
by (2) (71)

=
g(x|θ)

∑m
j=1 pj(θ)cj(θ)∫

D g(x|u)
∑m

j=1 pj(u)cj(u) du
by (8) (72)

=
g(x|θ)

∑m
j=1 pj(θ)cj(θ)∑m

j=1

∫
D g(x|u)pj(u)cj(u) du

(73)

=
m∑
j=1

pj(θ)

(
cj(θ)g(x|θ)∑m

i=1

∫
D g(x|u)pi(u)ci(u) du

)
(74)

=
m∑
j=1

pj(θ)c
′
j(x|θ). Q.E.D. (75)

Corollary 1.1: Suppose g(x|θ) approximates a Dirac delta
function centered at x: g(x|θ) ≈ δ(θ − x). Then c′j(θ|x) in
(70) becomes

c′j(θ|x) ≈ cj(θ)g(x|θ)
F (x)

. (76)

Proof: Suppose g(x|θ) ≈ δ(θ − x). Then the integration in
(70) becomes∫
D
g(x|u)pj(u)cj(u) du ≈

∫
D
δ(u− x)pj(u)cj(u) du(77)

= pj(x)cj(x). (78)

Then (70) becomes

c′j(θ|x) ≈ cj(θ)g(x|θ)∑m
i=1 pi(x)ci(x)

(79)

=
cj(θ)g(x|θ)

F (x)
by (8) Q.E.D. (80)

Corollary 1.2: Suppose we can approximate the likelihood
g(x|θ) with constant g(x|mj) and then-part set centroids cj(θ)
with constant cj(mj) over Dpj . Then c′j(θ|x) in (70) becomes

c′j(θ|x) ≈ cj(θ)g(x|θ)∑m
i=1 g(x|mi)Upici(mj)

(81)

where Upj =
∫
Dpj

pj(u)du.
Proof. Suppose g(x|θ) ≈ g(x|mj) and cj(θ) ≈ cj(mj) over
Dpj . Then∫
D
g(x|u)pj(u)cj(u) du ≈

∫
Dpj

g(x|mj)pj(u)cj(mj) du(82)

= g(x|mj)Upjcj(mj). (83)

Then (70) becomes

c′j(θ|x) ≈ cj(θ)g(x|θ)∑m
i=1 g(x|mi)Upici(mj)

Q.E.D. (84)

Theorem 2: Bayesian Approximation Theorem. Suppose
that h(θ) and g(x|θ) are bounded and continuous and that
H(θ)G(x|θ) ̸= 0 almost everywhere. Then the doubly fuzzy
SAM system F (θ|x) = HG/Q uniformly approximates
f(θ|x) for all ϵ > 0 : |F (θ|x)− f(θ|x)| < ϵ.
Proof: Write the posterior pdf f(θ|x) as f(θ|x) = h(θ)g(x|θ)

q(x)

and its approximator F (θ|x) as F (θ|x) = H(θ)G(x|θ)
Q(x) . The

SAM approximations for the prior and likelihood functions
are uniform [15]. So they have approximation error bounds ϵh
and ϵg that do not depend on x or θ:

|∆H| < ϵh and |∆G| < ϵg (85)

where ∆H = H(θ)− h(θ) and ∆G = G(x|θ)− g(x|θ). The
posterior error ∆F is

∆F = F − f =
HG

Q(x)
− hg

q(x)
. (86)

Expand HG in terms of the approximation errors to get

HG = (∆H + h)(∆G+ g) (87)
= ∆H∆G+∆Hg + h∆G+ hg. (88)

We have assumed that HG ̸= 0 almost everywhere and so
Q ̸= 0. We now derive an upper bound for the Bayes-factor
error ∆Q = Q− q:

∆Q =

∫
D
(∆H∆G+∆Hg + h∆G+ hg − hg) dθ. (89)

So
|∆Q| ≤

∫
D
|∆H∆G+∆Hg + h∆G| dθ (90)

≤
∫
D

(
|∆H||∆G|+ |∆H|g + h|∆G|

)
dθ (91)

<

∫
D
(ϵhϵg + ϵhg + hϵg) dθ by (85). (92)

Parameter set D has finite Lebesgue measure m(D) =∫
D

dθ < ∞ because D is a compact subset of a metric space

and thus [23] it is (totally) bounded. Then the bound on ∆Q
becomes

|∆Q| < m(D)ϵhϵg + ϵg + ϵh

∫
D
g(x|θ) dθ (93)

because
∫
D
h(θ)dθ = 1.

We now invoke the extreme value theorem [6]. The extreme
value theorem states that a continuous function on a compact
set attains both its maximum and minimum. The extreme
value theorem allows us to use maxima and minima instead
of suprema and infima. Now

∫
D g(x|θ) dθ is a continuous

function of x because g(x|θ) is a continuous nonnegative
function. The range of

∫
D g(x|θ) dθ is a subset of the right

half line (0,∞) and its domain is the compact set D. So∫
D g(x|θ) dθ attains a finite maximum value. Thus

|∆Q| < ϵq (94)
where we define the error bound ϵq as

ϵq = m(D)ϵhϵg + ϵg + ϵh max
x

{∫
D
g(x|θ) dθ

}
.(95)

Rewrite the posterior approximation error ∆F as

∆F =
qHG−Qhg

qQ
(96)

=
q(∆H∆G+∆Hg + h∆G+ hg) − Qhg

q(q +∆Q)
(97)

Inequality (94) implies that −ϵq < ∆Q < ϵq and that (q −
ϵq) < (q+∆Q) < (q+ϵq). Then (85) gives similar inequalities
for ∆H and ∆G. So

q[−ϵhϵg − min(g)ϵh − min(h)ϵg] − ϵqhg

q(q − ϵq)
< ∆F

<
q[ϵhϵg + max(g)ϵh + max(h)ϵg] + ϵqhg

q(q − ϵq)
. (98)
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The extreme value theorem ensures that the maxima in (98)
are finite. The bound on the approximation error ∆F does not
depend on θ. But q still depends on the value of the data sam-
ple x. So (98) guarantees at best a pointwise approximation
of f(θ|x) when x is arbitrary. We can improve the result by
finding bounds for q that do not depend on x. Note that q(x)
is a continuous function of x ∈ X because hg is continuous.
So the extreme value theorem ensures that the Bayes factor q
has a finite upper bound and a positive lower bound.

The term q(x) attains its maximum and minimum by the
extreme value theorem. The minimum of q(x) is positive
because we assumed q(x) > 0 for all x. Hölder’s inequality
gives |q| ≤

(∫
D |h|dθ

)
(∥g(x, θ)∥∞) = ∥g(x, θ)∥∞ since h is

a pdf. So the maximum of q(x) is finite because g is bounded:
0 < min{q(x)} ≤ max{q(x)} < ∞. Then

ϵ− < ∆F < ϵ+ (99)

if we define the error bounds ϵ− and ϵ+ as

ϵ− =
(−ϵhϵg −min{g}ϵh −min{h}ϵg)min{q} − hgϵq

min{q} (min{q} − ϵq)
(100)

ϵ+ =
(ϵhϵg +max{g}ϵh +max{h}ϵg)max{g}+ hgϵq

min{q} (min{q} − ϵq)
.(101)

Now ϵq → 0 as ϵg → 0 and ϵh → 0. So ϵ− → 0
and ϵ+ → 0. The denominator of the error bounds must be
non-zero for this limiting argument. We can guarantee this
when ϵq < min{q}. This condition is not restrictive because
the functions h and g fix or determine q independent of the
approximators H and G involved and because ϵq → 0 when
ϵh → 0 and ϵg → 0. So we can achieve arbitrarily small ϵq
that satisfies ϵq < min{q} by choosing appropriate ϵh and
ϵg . Then ∆F → 0 as ϵg → 0 and ϵh → 0. So |∆F | → 0.
Q.E.D.
Corollary 2.1: Centroid-based bounds for the doubly fuzzy
posterior F .

Suppose that the set D of all θ has positive Lebesgue
measure. Then the centroids of the H and G then-part sets
bound the posterior F :

cgh,min

m(D)cgh,max
≤ F (θ|x) ≤ cgh,max

m(D)cgh,min
. (102)

Proof: The convex-sum structure constrains the values of the
SAMs: H(θ) ∈ [ch,min, ch,max] for all θ and G(x|θ) ∈
[cg,min, cg,max] for all x and θ. Then (58) implies

C ′
j(x|θ) ≥ cgh,min

cgh,max

∑m
i=1

∫
D pi(u)du

(103)

=
cgh,min

m(D)cgh,max
for all x and θ (104)

since
∑m

i=1

∫
D pi(u)du =

∫
D
∑m

i=1 pi(u)du =
∫
D du =

m(D) where m(D) denotes the (positive) Lebesgue measure
of D. The same argument gives the upper bound:

C ′
j(x|θ) ≤ cgh,max

m(D)cgh,min
(105)

for all x and θ. Thus (104) and (105) give bounds for all
centroids:

cgh,min

m(D)cgh,max
≤ C ′

j(x|θ) ≤ cgh,max

m(D)cgh,min
(106)

for all x and θ. This bounding interval applies to F (θ|x)
because the posterior approximator also has a convex-sum
structure. Thus

cgh,min

m(D)cgh,max
≤ F (θ|x) ≤ cgh,max

m(D)cgh,min
(107)

for all x and θ. Q.E.D.
Theorem 3: Doubly fuzzy posterior approximators are SAMs
with product rules.

Suppose an m1-rule SAM fuzzy system G(x|θ) approxi-
mates (or represents) a likelihood pdf g(x|θ) and another m2-
rule SAM fuzzy system H(θ) approximates (or represents) a
prior h(θ) pdf with m2 rules:

G(x|θ) =

∑m1

j=1 wg,jag,j(θ)Vg,jcg,j∑m1

i=1 wg,jag,j(θ)Vg,j
=

m1∑
j=1

pg,j(θ)cg,j(108)

H(θ) =

∑m2

j=1 wh,jah,j(θ)Vh,jch,j∑m2

j=1 wh,jah,j(θ)Vh,j
=

m2∑
j=1

ph,j(θ)ch,j(109)

where pg,j(θ) =
wg,jag,j(θ)Vg,j∑m1
i=1 wg,jag,j(θ)Vg,j

and ph,j(θ) =
wh,jah,j(θ)Vh,j∑m2
i=1 wh,jah,j(θ)Vh,j

are convex coefficients:
∑m1

j=1 pg,j(θ) = 1

and
∑m2

j=1 ph,j(θ) = 1. Then (a) and (b) hold:
(a) The fuzzy posterior approximator F (θ|x) is a SAM

system with m = m1m2 rules:

F (θ|x) =

∑m
i=1 wF,i aF,i(θ)VF,i cF,i∑m

i=1 wF,i aF,i(θ)VF,i
. (110)

(b) The m if-part set functions aF,i(θ) of the fuzzy posterior
approximator F (θ|x) are the products of the likelihood ap-
proximator’s if-part sets ag,j(θ) and the prior approximator’s
if-part sets ah,k(θ):

aF,i(θ) = ag,j(θ)ah,k(θ). (111)

for i = m2(j − 1) + k, j = 1, . . . ,m1, and k = 1, . . . ,m2.
The weights wFi , then-part set volumes VFi , and centroids cFi

also have the same likelihood-prior product form:
wFi = wg,jwh,k (112)
VFi = Vg,jVh,k (113)

cFi =
cg,jch,k
Q(x)

. (114)

Proof: The fuzzy system F (θ|x) has the form

F (θ|x) = H(θ)G(x|θ)∫
D H(t)G(x|t) dt

(115)

=
1

Q(x)

m1∑
j=1

wg,jag,j(θ)Vg,jcg,j

m1∑
i=1

wg,jag,j(θ)Vg,j

m2∑
j=1

wh,jah,j(θ)Vh,jch,j

m2∑
j=1

wh,jah,j(θ)Vh,j

(116)

=

m1∑
j=1

m2∑
k=1

wg,j wh,k ag,j(θ)ah,k(θ)Vg,j Vh,k
cg,j ch,k
Q(x)

m1∑
j=1

m2∑
k=1

wg,j wh,k ag,j(θ)ah,k(θ)Vg,j Vh,k

(117)

=

∑m
i=1 wF,i aF,i(θ)VF,i cF,i∑m

i=1 wF,i aF,i(θ)VF,i
Q.E.D. (118)


