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for insurgency and terrorism
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Abstract
Feedback fuzzy cognitive maps (FCMs) can model the complex structure of public support for insurgency and terrorism
(PSOT). FCMs are fuzzy causal signed digraphs that model degrees of causality in interwoven webs of feedback causality
and policy variables. Their nonlinear dynamics permit forward-chaining inference from input causes and policy options to
output effects. We show how a concept node causally affects downstream nodes through a weighted product of the
intervening causal edge strengths. FCMs allow users to add detailed dynamics and feedback links directly to the causal
model. Users can also fuse or combine FCMs from multiple experts by weighting and adding the underlying FCM fuzzy
edge matrices. The combined FCM tends to better represent domain knowledge as the expert sample size increases if
the expert sample approximates a random sample. Statistical or machine-learning algorithms can use numerical sample
data to learn and tune a FCM’s causal edges. A differential Hebbian learning law can approximate a PSOT FCM’s directed
edges of partial causality using time-series training data. The PSOT FCM adapts to the computational factor-tree PSOT
model that Davis and OMahony based on prior social science research and case studies. Simulation experiments com-
pare the PSOT models with the adapted FCM models.
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1 Modeling feedback causal webs with
fuzzy cognitive maps

This paper presents static and dynamic fuzzy cognitive

map (FCM) models of public support for insurgency and

terrorism (PSOT). We base these PSOT FCMs on the fac-

tor-tree PSOT analysis of Davis et al.1,2 Public support for

insurgency and terrorism has complex sociopolitical

causes3,4 that involve numerous factors. FCMs can effi-

ciently model and process the interwoven causal and pol-

icy structure of PSOT and other defense problems. FCM

applications number in the thousands and range from con-

trol engineering and signal processing to policy analysis

and social modeling.5,6

FCMs are fuzzy causal signed directed graphs. They

are fuzzy because in general both their directed causal

edges and their concept nodes are multivalued and so can

assume more values than just the extremes of on or off.

They locally model degrees of causality through their

directed causal edge strengths.7 Users can express their

causal and policy models by drawing signed weighted

causal edges between concept nodes. Figure 1 shows a

FCM fragment that models an undersea causal web of dol-

phins in the presence of sharks or other survival threats.

The next section shows how to make what-if inferences or

predictions with this simple FCM that has binary concept

nodes and trivalent causal edges. The inference process

uses only vector-matrix multiplication and thresholding.

More complex FCMs can activate concept nodes with

some of the nonlinear functions in Figure 2 or with many
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other monotonic or nonmonotonic functions. A causal

learning law can approximate the causal edge values given

time-series data of the concept nodes. Figure 3 shows the

approximation path of one such causal edge from a PSOT

FCM.

A FCM’s overall cyclic signed digraph structure resem-

bles a feedback neural or semantic network. The graph

structure permits inference through forward chaining and

allows the user to control the level of causal or conceptual

granularity. A FCM concept node can itself be part of

another FCM or of some other nonlinear system.

Feedforward fuzzy rule-based systems can also model the

input-output structure of a concept node just as they can

model a single causal edge that connects one concept node

to another. Such fuzzy systems are uniform function

approximators if they use enough if-then rules.9 Their rule

bases adapt using both unsupervised and supervised learn-

ing laws.10,11

A FCM’s feedback loops model interwoven causal

webs and can produce rich and predictive equilibrium

dynamics.12,13 These causal equilibria define ‘‘hidden pat-

terns’’12 in the often inscrutable web of edges and nodes.

FCMs with binary concept variables produce limit-cycle

equilibria or simple fixed-point attractors. Properly fuzzy

concept nodes can in principle produce more exotic equili-

bria such as limit tori or chaotic attractors.

A FCM’s underlying matrix structure makes it easy to

combine or fuse FCMs from several sources to produce an

overall representative FCM. The strong law of large num-

ber shows that in many cases this fused FCM converges

with probability one to the population FCM of the sampled

FCMs.14 This result holds formally if the FCM values from

the combined experts approximate a statistical random

sample with finite variance. A random sample is sufficient

for this convergence result but not necessary. A combined

FCM may still give a representative knowledge base when

the expert responses are somewhat correlated or when the

experts do not all have the same level of expertise. Users

can also construct FCMs from written sources such as pol-

icy articles or books or legal testimony. They can also use

statistical learning algorithms to grow FCMs from sample

data. FCMs can in this way address the growing represen-

tational problems of big data and what we have called

‘‘big knowledge.’’6 Figure 4 shows the minimal fusion

case of combining two FCMs with overlapping concept

nodes.

Knowledge fusion is a key function in defense and

intelligence decision-making processes.15,16 The PSOT

FCMs we develop below allow such knowledge combina-

tion or fusion12,14,17,18 and can use a causal differential

Hebbian learning law12 to grow and tune the FCM causal

edges from numerical time-series data.

The FCM PSOT models below rely on the prior PSOT

modeling of Davis et al.1,2 Their carefully constructed

PSOT model is a factor tree model. It reflects social sci-

ence research that describes the factors and societal

Figure 1. Fragment of a predator–prey fuzzy cognitive map
(FCM) that describes dolphin behavior in the presence of sharks
or other survival threats.8 The FCM itself is a fuzzy signed
directed graph with feedback. The concept nodes of the digraph
represent fuzzy sets that activate to varying degrees of concept-
node occurrence. The edges denote fuzzy or partial causal
dependence between concept nodes. The edges in this FCM are
trivalent: eij ∈ f�1,0,1g. Each nonzero edge defines a causal if–
then rule. The dolphin pod decreases its resting behavior if a
shark or other survival threat is present. But the survival threat
increases if the pod rests more. These two causal links define a
minimal cycle or feedback loop within the FCM’s causal web.
Such feedback cycles endow the FCM with transient and
equilibrium dynamics. All inputs produce equilibrium limit cycles
or fixed-point attractors in the simplest case where all nodes
are bivalent threshold functions and when the system updates
all nodes at each iteration.

Figure 2. Six types of FCM concept-node occurrence or
activation function: sigmoid logistic, sigmoid hyperbolic tangent,
arctangent, linear, step function, and the delayed step. Each
occurrence function maps into the unit interval ½0,1� and gives
the degree to which the concept or policy occurs at a given
moment in the causal web. Simulations used the logistic, linear,
or step function.

18 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 14(1)



Figure 3. Learning fuzzy cognitive map causal-edge values eij with time-series data from activated causal concept nodes. The
directed causal edge lvic→ ACR between Assessment of likely victor and Acceptability of costs and risks is uncertain in the original Public
Support for Insurgency and Terrorism model. We can infer the value of this directed causal edge with adaptive inference algorithms
such as differential Hebbian learning if we have access to the time-series data history of both concept nodes. The time-series data
may come from survey data, field measurements, or expert elicitations. The plot shows that differential Hebbian learning quickly
converged to a good approximation of the edge value eij .

Figure 4. Fuzzy cognitive map (FCM) knowledge combination or fusion by averaging weighted FCM adjacency matrices. The three
digraphs show the minimal case of combining two FCMs that have overlapping concept nodes. The third FCM is the weighted
combination of the first two. The expert problem domain is the medical problem of strokes and blood clotting involving Virchow’s
triad: blood stasis (stas), endothelial injury (inju), and hypercoagulation factors (HCP and HCF).14 Expert 1 has a larger FCM than
Expert 2 because Expert 1 uses an extra concept node. We can fuse their knowledge webs by averaging their causal-edge adjacency
matrices using Equation (25). This weighted average uses each expert’s causal-edge matrix E= 2

3 E1 + 1
3 E2, as shown in the

combined (third) FCM. The weighting assumes that the first expert is twice as credible as the second expert. Note that Expert 2
ignored the HCF factor. This results in a new row and column of all zeros in E2.
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relationships that determine a community’s propensity to

support insurgent or terrorist acts. This PSOT factor tree

model has limited scenario simulation capability because

the ‘‘public’’ under study in the PSOT model is a hetero-

geneous aggregation. Later work introduced the related

propensity for terrorism model15,16 that focuses on the fac-

tors that influence someone’s or some group’s propensity

to support terrorism or carry out terrorist acts.

We use both static and dynamic FCM versions of the

PSOT factor tree. The static FCM behaves much as does

the original factor tree model. The dynamic FCM extends

the static model to allow simulations of long-run what-if

scenarios.

The next sections develop the FCM PSOT models.

Section 2 explains and extends the basic mathematical and

graph structure of FCMs and how to use them for forward-

chaining inference in analysis. Section 3 presents the origi-

nal PSOT model. Then we introduce a FCM version of the

PSOT model. This includes adaptations to the PSOT model

that allow long-run simulations. We demonstrate the fusion

and simulation capabilities of some FCM-PSOT models.

Section 4 summarizes the FCM PSOT experiments for

causal inference and knowledge fusion.

2 Inference with fuzzy cognitive maps

Fuzzy cognitive maps (FCMs)6,13 are fuzzy signed directed

graphs that describe degrees of causality and webs of cau-

sal feedback. Most FCMs have cycles or closed loops that

model causal feedback. FCMs can be acyclic and thus

define trees. This is rare in practice and implies that such a

FCM has no feedback dynamics.

FCMs are fuzzy because their nodes and edges can be

multivalent and so need not be binary or bivalent. A prop-

erty or concept is fuzzy if it admits degrees and is not just

black and white.19–21 Then the property or concept has

borders that are gray and not sharp or binary. A subset A

of a space X is properly fuzzy if and only if at least one

element x∈X belongs to A to a degree other than 0 or 1.

Then the set A breaks the so-called ‘‘law’’ of contradiction

because then A∩Ac 6¼ ; holds where Ac is the comple-

ment set of A. The set A equivalently breaks the dual

‘‘law’’ of excluded middle because then A∪Ac 6¼ X holds.

Equality holds in these two ‘‘laws’’ just in case A is an

ordinary bivalent set.

A FCM concept node is fuzzy in general because it can

take values in the unit interval [0, 1]. So its values over

time define a fuzzy set. This implies that a concept node

that describes a survival threat or any other property or pol-

icy both occurs and does not occur to some degree at the

same time. It cannot both occur 100% and not occur 100%

at the same time. The two percentages must sum to 100%.

Nor does this preclude applying a probability measure to a

concept node or fuzzy set. The probability of a fuzzy event

combines the two distinct uncertainty types of randomness

and vagueness or fuzz (and formally involves taking the

expectation of a measurable fuzzy indicator function22). So

it makes sense to speak of the probability of a partial sur-

vival threat. This differs from the compound uncertainty of

a fuzzy probability such as the statement that the survival-

threat probability is low or very high. This paper works only

with fuzzy concept values.

A directed causal edge eij is also fuzzy because in gen-

eral it takes on a continuum of values. The edge can also

have a positive or negative sign. So it takes values in the

bipolar interval ½�1, 1�. The use of ‘‘dis-concepts’’ can

convert all negative causal edges into positive edge val-

ues.7 The edge formally defines a relation or fuzzy subset

of a concept product space.

A FCM consists of n concept nodes Cj and n2

directed fuzzy causal edges eij. The n concept nodes

C1,C2, . . . ,Cn are nonlinear and represent variable concepts

or factors in a causal system. They are nonlinear in how they

convert their inputs to outputs. The concept nodes can

define concepts or social patterns that increase or

decrease such as political instability or jihadi radicalism.

Or they can be policies or control variables that increase

or decrease such as weapons spending or foreign invest-

ment in a country. The very first FCM published7 dealt

with concepts related to Middle East stability such as

Islamic fundamentalism and Soviet imperialism and the

strength of the Lebanese government. The author based

this first FCM on a 1982 newspaper editorial from politi-

cal analyst Henry Kissinger titled ‘‘Starting Out in the

Direction of Middle East Peace.’’23

A concept node’s occurrence or activation value Ci(tk)

measures the degree to which the concept Ci occurs in the

causal web at time tk . It can also reflect the degree to

which it is true that the ith node fires or appears in a given

snapshot of the causal web at time tk . The FCM state vec-

tor C(tk) gives a snapshot of the FCM system at time tk .

A FCM model must specify the nonlinear dynamics of

the n concept nodes C1,C2, . . . ,Cn. It must also specify

the n2 directed and signed causal-edge values eij that con-

nect the ith concept node Ci to Cj. The edges can be time-

varying functions in more general FCMs.

We start with the nonlinear structure of the concept

nodes. The jth concept node Cj depends at time tk on a

scalar input xj(tk) that weights and aggregates all the in-

flowing causal activation to Cj. Then some nonlinear func-

tion �j converts xj(tk) into the concept node’s new state

Cj(tk + 1) at the next discrete time tk + 1. The FCM literature

explores discrete and continuous node models with a wide

variety of nonlinearities and time lags.5,6 We present here
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the simplest case of a discrete FCM where each node’s

current state depends on an edge-weighted inner product

of the node activity:

Cj(tk + 1)=�j

Xn

i= 1

Ci(tk)eij(tk)+ Ij(tk)

 !
ð1Þ

where Ij(tk) is some external or exogenous forcing value

or input at time tk . The simplest nonlinear function �j is a

hard threshold that produces bivalent or on–off concept-

node values:

Cj(tk + 1)= 0 if
Pn

i= 1 Ci(tk) eij(tk) + Ij(tk)≤ 0

1 if
Pn

i= 1 Ci(tk) eij(tk) + Ij(tk)> 0

�
ð2Þ

for a zero threshold value.

Fixing the input Ij as some very large positive (or nega-

tive) value ensures that Cj stays on (or off) during an infer-

ence cycle. We call this ‘‘clamping’’ on (or off) the jth

concept node Cj. We clamp one or more concept nodes to

test a given policy or forcing scenario. Clamping is the

only way to drive policy or other nodes that have no cau-

sal fan-in from other concept nodes. We show below how

to model the sustained presence of a shark in the dolphin

FCM of Figure 1 by clamping on the fourth concept node.

Continuous-valued concept nodes often use a mono-

tonic increasing �j nonlinearity such as the logistic sig-

moid function. But �j can also be nonmonotonic. This

happens if it is a Gaussian or Cauchy probability density

function. It can also be multimodal by forming a mixture

of such unimodal probability curves. Then the

Expectation-Maximization algorithm can tune the mixture

parameters based on numerical training data.24 Almost all

concept nodes are monotonically nondecreasing in the

FCM literature. The causal-influence theorem below holds

for such activation functions �j.

The logistic causal activation gives a soft threshold that

approximates the hard threshold in Equation (2) if the

shape parameter c> 0 is large enough:

Cj(tk + 1)= 1

1+ exp �c
Pn

i= 1 Ci(tk)eij(tk)� cIj(tk)
� � : ð3Þ

The first graph in Figure 2 shows a logistic function and

its sigmoidal or soft-threshold shape. The other five graphs

show other common causal activation functions. Logistic

units are popular in causal and neural-network learning

algorithms because they smoothly approximate the on-off

behavior of threshold units and still have a simple partial

derivative of the form

∂Cj(x)

∂x
= cCj(1� Cj)> 0 ð4Þ

if

Cj(x)= 1

1+ exp (� cx)
ð5Þ

for scaling constant c> 0. The positive derivative in

Equation (5) greatly simplifies many learning algorithms.

We will also use it below to show the transitive product

effect of the edges eij in a causal inference.

We turn next to the causal edge values eij. These values

are constants during most FCM inferences. The last section

below shows how a version of the differential Hebbian

learning law can learn and tune these causal edge values

from time-series data.

The causal edge value eij(tk) in Equation (1) measures

the degree that concept node Ci causes concept node Cj at

time tk :

eij =Degree Ci →Cj

� �
: ð6Þ

These n2 causal edge values define the FCM’s n× n fuzzy

adjacency matrix or causal edge matrix E. The ith row lists

the causal-edge values ei1, ei2, . . . , ein that flow out from

Ci to the other concept nodes (including to itself). The jth

column lists the causal-edge values e1j, e2j, . . . , enj that

flow into Cj from the other concept nodes. So the ith row

defines the causal fan-out vector of concept node Ci. The

jth column defines the causal fan-in vector of Cj. The

matrix diagonal lists any causal self-excitation of the n

concept nodes.

We can also interpret eij in terms of fuzzy subset-

hood.25,26 Then eij states the degree to which the fuzzy

concept set Cj is a fuzzy or partial subset of fuzzy concept

set Cj.
7 This abstract framework implies that the edge

value eij is the degree to which the fuzzy concept set Ci

belongs to the fuzzy power set of fuzzy set Cj.

A probabilistic view might interpret the edge value eij

as the conditional probability P(CjjCi) that Cj occurs

given that Ci occurs. An immediate problem is that eij

takes on negative values in the bipolar interval ½�1, 1� to
indicate causal decrease. There is a simple but somewhat

costly way to address this. The original FCM paper7

showed how to introduce n companion dis-concepts to

keep all causal-edge values nonnegative and thus how to

convert causal decrease into causal increase: ‘‘Extreme

terrorism decreases government stability’’ holds just in

case ‘‘Extreme terrorism increases government instabil-

ity’’ holds. So dis-concepts negate the noun and not the

adjective that modifies it. Using dis-concepts doubles the

number of concept nodes and expands the edge matrix E

to a 2n× 2n matrix. The technique does preserve more

causal structure when combining multiple FCMs because

then two combined edges of opposite polarity but the

same magnitude do not cancel each other out.

There are two structural problems with viewing the

directed (positive) edge eij as the conditional probability

Osoba et al. 21



P(CjjCi). The first problem is that conditional probability

is not transitive but causal implication is transitive. The

transitive equality P(CjA)=P(BjA)P(CjB) does not hold

in general. A simple counter-example takes any two

disjoint or mutually exclusive events A and B with

positive joint probabilities P(A∩C)> 0 and P(B∩C)> 0

if all three set events have positive probability.

Then P(CjA)> 0 but P(BjA)P(CjB)= 0 because

P(BjA)=P(A∩B)=P(A)= 0 since A∩B= ;. An even

starker counter-example results if A⊂C because then

P(CjA)= 1 while P(BjA)P(CjB)= 0.

The second and deeper problem with a probability

interpretation of eij is that it collides with the Lewis

impossibility theorem.27,28 This triviality result and its

progeny show that we cannot in general equate the prob-

ability of the logical if-then conditional A→B with the

conditional probability P(BjA). The equality P(A→B)

=P(BjA) holds only in the trivial case when A and B are

independent and thus when there is no conditional rela-

tionship at all. So a probabilistic transitive equality of the

form P(A→C)=P(A→B)P(B→C) lacks a formal

foundation in general. One approach is to replace condi-

tional probability with a more general probable equiva-

lence relation. This gives upper and lower conditional

probabilities based on the general inequality that

P(A)P(B)≥P(A∩B)P(A∪B)26 because then P(BjA)

≤Q(BjA) if Q(BjA)=P(B)=P(A∪B). But the resulting

conditioning interval does not directly address the basic

prohibition that lies behind Lewis’s triviality theorem. So

a meta-level heuristic may be the best we can make of

probabilistic interpretations of the directed edge eij. Such

interpretations may be intuitive but they remain only

heuristics.

We now show that FCM nodes influence one another

through a weighted product of intervening causal-edge

strengths eij. This result describes a type of causal chain-

ing along a directed path or summed over all such direct

paths that connect two concept nodes. It depends on the

transitive causal product ej1j2 ej2j3 � � � ejk jk + 1
.

Consider first the directed causal path from concept

node Ci to node Ck by way of the intervening node Cj:

Ci −→
eij

Cj −→
ejk

Ck ð7Þ

Then how does a change in the input node Ci causally

affect the downstream node Ck? The chain rule of differ-

ential calculus gives a transitive-based product answer for

the logistic concept-node activation in Equation (3):

∂Ck

∂Ci

= ∂Ck

∂Cj

∂Cj

∂Ci

ð8Þ

= ∂Ck

∂xk

∂xk

∂Cj

∂Cj

∂xj

∂xj

∂Ci

ð9Þ

=Ck(xk)(1� Ck(xk))ejkCj(xj)(1� Cj(xj))eij ð10Þ

= eijejkψj, k ð11Þ

using Equations (4) and (5) if we define

ψj, k =CjCk(1� Cj)(1� Ck). The weighting function

ψj, k ≥ 0 is maximal when Cj = 1� Cj = 1
2
=Ck = 1� Ck

holds for the fuzzy concept nodes Cj and Ck .

So the induced causal effect of a change in Ci depends

directly on the causal-edge product eijejk . This causal influ-

ence decays in intensity the lesser Cj or Ck fires or occurs.

The edge product eijejk is negative if exactly one of the

edge values is negative. It is positive otherwise.

The causal-influence result of Equation (11) extends

directly to longer causal chains. Suppose there is a directed

causal path of length k from the initial concept node Cj1 to

the final node Cjk + 1
:

Cj1 −→
ej1 j2

Cj2 −→
ej2 j3

� � � −→
ejk jk + 1

Cjk + 1
ð12Þ

Then the chain rule and Equations (4) and (5) again give

the influence of Cj1 on Cjk as a weighted product of the

intervening causal-edge strengths:

∂Cjk + 1

∂Cj1

=
Yk

l= 1

ejljl+ 1
ψj2, j3, ..., jk + 1

ð13Þ

where now the nonnegative weighting function

ψj2, j3, ..., jk + 1
is the double product ψj2, j3, ..., jk + 1

= Qk + 1
l = 2 Cjl

Qk + 1
l = 2 (1� Cjl ). The edge productQk

l = 1 ejljl+ 1
is positive if the number of negative edges is

even. It is negative if the number of negative edges is odd.

The magnitude of the change ∂Cjk + 1
=∂Cj1 can only

decrease as the causal chain lengthens. The fuzziness or

partial firing of the concept nodes only exacerbates this

monotone causal decay.

The causal influence in Equation (13) still holds if we

replace the logistic activation function of Equation (1) of

concept node Cj with an arbitrary monotonically nonde-

creasing functions �j. Then ∂Cjl=∂xjl ≥ 0 and so

ψj2, j3, ..., jk + 1
≥ 0 because the weighting function is just the

product of these activation partial derivatives. This general

result on FCM causal influence is important enough to

state as a theorem.

Theorem 1. Partial causal influence in fuzzy cognitive

maps. Suppose a fuzzy cognitive map has n concept

nodes Cj and n2 directed causal edges eij. Suppose fur-

ther that the concept nodes have monotonically nonde-

creasing activations: ∂Cj=∂xj ≥ 0 where the argument xj

of Cj(xj) has the same inner-product form as in Equation

(1). Then the causal influence of the concept node Cj1 on

the downstream node Cjk of the length-k directed causal

chain

22 Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 14(1)



Cj1 −→
ej1 j2

Cj2 −→
ej2 j3

� � � −→
ejk jk + 1

Cjk + 1
ð14Þ

is a nonnegatively weighted product of the intervening

causal-edge strengths ej1j2, . . . , ejk jk + 1
:

∂Cjk + 1

∂Cj1

=
Yk

l = 1

ejljl+ 1
ψj2, j3, ..., jk + 1

ð15Þ

where the weighting function ψj2, j3, ..., jk + 1
has the form:

ψj2, j3, ..., jk + 1
=
Yk + 1

l = 2

∂Cjl

∂xjl

: ð16Þ

Proof. The result follows from iterated applications of the

chain rule:

∂Cjk + 1

∂Cj1

= ∂Cjk + 1

∂Cjk

∂Cjk

∂Cjk�1

� � � ∂Cj2

∂Cj1

ð17Þ

= ∂Cjk + 1

∂xjk + 1

∂xjk + 1

∂Cjk

∂Cjk

∂xjk

∂xjk

∂Cjk�1

� � � ∂Cj2

∂xj2

∂xj2

∂Cj1

ð18Þ

= ∂Cjk + 1

∂xjk + 1

ejk jk + 1

∂Cjk

∂xjk

ejk�1jk � � �
∂Cj2

∂xj2

e12 ð19Þ

=
Yk

l = 1

ejljl+ 1

Yk + 1

l= 2

∂Cjl

∂xjl

ð20Þ

=
Yk

l = 1

ejljl+ 1
ψj2, j3, ..., jk + 1

ð21Þ

The theorem states only a partial causal result for just

one causal path from concept node Cj1 to Cjk + 1
. A FCM

may contain many other directed causal paths from Cj1 to

Cjk + 1
. So the total causal change dCjk + 1

=dCj1 invokes the

more general chain rule that sums over all the partial deri-

vatives in Equation (17) in all the paths involved. A dis-

crete version of the theorem also holds. It requires keeping

track of the discrete time steps as the causal activation

flows from one node in the path to the next node.

We next develop a simple example of FCM inference.

This example shows how a FCM answers a policy-based

what-if question by converging to a limit-cycle equili-

brium. The limit cycle itself is the policy answer.

Consider again the FCM fragment in Figure 1 that

describes some of the predator-prey behavior of a dolphin

pod in the presence of sharks or other survival threats.8 The

concept nodes are binary with threshold activations that obey

Equation (2). Bivalent nodes simplify the dynamical analysis

because updating all n nodes at the same time must lead to

either a fixed-point attractor or a limit-cycle of bit vectors.

The edges in the dolphin FCM fragment in Figure 1 are

trivalent: eij ∈ f�1, 0, 1g. So an edge describes maximal

causal increase (eij = 1) or maximal causal decrease

(eij = � 1) or there is no causal relationship at all (eij = 0).

The causal edge adjacency matrix E for the FCM in

Figure 1 is a five-by-five trivalent matrix:

C1 C2 C3 C4 C5

E=

C1

C2

C3

C4

C5

0 1 0 �1 0

0 0 1 0 �1

0 �1 0 1 �1

1 0 �1 0 1

�1 1 0 �1 0

0
BBBB@

1
CCCCA ð22Þ

A key argument for using trivalent edge weights eij in

f�1, 0, 1g here and elsewhere is that experts may find it

hard to accurately state a graded measure of causal inten-

sity eij ∈ ½�1, 1� for a causal dependence. It is usually

much easier to elicit just sign values from experts than

real-valued magnitudes. Taber et al.14 refer to this diffi-

culty as the expert’s articulation burden. Real-valued mag-

nitudes also tend to be less reliable. Experts are far more

likely to agree on edge signs than on both signs and magni-

tudes. Even the same expert may state different edge-value

magnitudes at different times. This articulation burden

motivates averaging the trivalent-edge-valued FCMs of

experts to approximate the unknown population FCM.

The stochastic convergence result in the appendix of14

shows that averaging FCMs with trivalent edges approxi-

mates the underlying population FCM that has real edge val-

ues. FCM sample averages converge with probability one to

the population average in accord with the strong law of large

numbers. The underlying limit-cycle structure of the aver-

aged FCM also appears to approximate the limit-cycle struc-

ture of the original or population FCM if the concept nodes

are binary. The limit-cycle results in14 are only preliminary

simulations. So far no theoretical guarantee of limit-cycle

convergence has appeared in the FCM literature.

FCM dynamics depend on the FCM’s nonlinear feed-

back structure. The long-run evolution of the FCM state

vector C:

lim
t →∞ C(t) ð23Þ

depends on the initial state C(0) as well as on the non-

linear structure of the concept nodes and the structure of

the FCM causal edge matrix E. Simple two-state or bin-

ary-node FCMs converge either to a fixed-point attractor

C * (t+ 1)=�(C * (t) E) ð24Þ

or to a limit cycle of repeating bit vectors. This conver-

gence assumes synchronous updating of all the concept

nodes at each time step. This stability or convergence

guarantee for binary-node FCMs follows from the general

result that every square connection matrix is temporally

stable.13,29
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We now show how a limit-cycle hidden pattern occurs

in the dolphin FCM in Figure 1. Suppose that a shark

appears at time t = 0. Then the fourth or survival-threat

concept node occurs or turns on. We can represent this ini-

tial state C(0) of the FCM with the unit bit vector

C(0)= (0, 0, 0, 1, 0):

Each of the 5 concept nodes acts as a threshold function

with zero threshold as in Equation (2). So Ck(t)= 1 if and

only if its total inner-product input x is positive: x> 0. It

otherwise equals zero and thus turns off or stays off if it is

not active. Then a forward inference gives the following

sequence of FCM state vectors:

C(0)E= (1, 0, �1, 0, 1) → (1, 0, 0, 0, 1)=C(1)

C(1)E= (�1, 2, 0, �2, 0) → (0, 1, 0, 0, 0)=C(2)

C(2)E= (0, 0, 1, 0, �1) → (0, 0, 1, 0, 0)=C(3)

C(3)E= (0, �1, 0, 1, �1) → (0, 0, 0, 1, 0)=C(0)

This inference sequence defines an equilibrium 4-step

limit cycle because the fourth state vector C(4)=
(0, 0, 0, 1, 0) is just the first state vector C(0). So the FCM

equilibrium or hidden pattern is the indefinitely repeating

cycle C(0)→C(1)→C(2)→C(3)→C(0)→ � � � . This

cycle defines the equivalent cycle of bit vectors

(0, 0, 0, 1, 0)→ (1, 0, 0, 0, 1)→ (0, 1, 0, 0, 0)→ (0, 0, 1,

0, 0)→ (0, 0, 0, 1, 0)→ � � � . The repeating cycle predicts

a predator-prey oscillation: The shark threat appears. Then

the threatened dolphin pod clusters and runs away. Then

the dolphins get tired. Then they rest. But the resting dol-

phins then attract a shark and so on. This limit cycle can

model an incidental appearance of a shark.

Suppose instead that a shark appears and actively pur-

sues the dolphins. We can model this what-if policy sce-

nario by clamping the fourth node on during each update.

This again amounts to adding a large positive input value

for I4 in Equation (1). Clamping leads to two transient bit-

vector states and then a stable 3-step equilibrium limit

cycle:

C(0)E= (1, 0, � 1, 0, 1) → (1, 0, 0, 1, 1)=C(1)

since we keep C4 = 1 throughout

C(1)E= (0, 2, � 1, � 2, 1) → (0, 1, 0, 1, 1)=C(2)

C(2)E= (0, 1, 0, � 1, 0) → (0, 1, 0, 1, 0)=C(3)

C(3)E= (1, 0, 0, 0, 0) → (1, 0, 0, 1, 0)=C(4)

C(4)E= (1, 1, � 1, � 1, 1) → (1, 1, 0, 1, 1)=C(5)

C(5)E= (0, 2, 0, � 2, 0) → (0, 1, 0, 1, 0)=C(3)

The equilibrium three-step limit cycle is

C(3)→C(4)→C(5)→C(3)→ � � � or (0, 1, 0, 1, 0)→
(1, 0, 0, 1, 0)→ (1, 1, 0, 1, 1)→ (0, 1, 0, 1, 0)→ � � � . The

limit cycle defines and thus predicts a different form of

predator–prey behavior. The shark tires the dolphin pod.

The dolphins cluster in a safety maneuver. They then try

to rest and still run away as they fatigue. The shark does

not relent and the dolphins fatigue and so on.

We show next how FCM models naturally combine or

fuse knowledge networks from multiple experts. A group

of m experts can each produce an FCM causal edge matrix

Ek that describes their understanding of the prey system in

Figure 1. A simple and powerful way to fuse these expert

opinions is to take the weighted average of the panel’s

knowledge base or FCMs by taking the convex combina-

tion of their edge matrices12,13,18:

�Em =
Xm

k = 1

wkEk ð25Þ

where the weights wk are convex weights and hence non-

negative and sum to one as in Figure 4.

The weights wk can reflect relative expert credibility in

the problem domain. So the weights can correspond to test

scores or to subjective valuations or to some other measure

of the experts’ predictive accuracy in prior experiments.

Predd et al.30 developed a method for aggregating expert

contributions in cases where experts can abstain or be inco-

herent. We simply take the weights as given and use equal

weights as a default.

The edge matrices Ek in Equation (25) must be con-

formable for addition. So they must have the same number

of rows and columns and they must be in the same matrix

positions. We take the union of all concept nodes from all

m knowledge sources. This gives a total of n distinct con-

cept nodes. We zero-pad or add rows and columns of zeros

for missing nodes in a given knowledge source’s causal

edge matrix. This produces a conformable n-by-n adja-

cency matrix Ek after appropriately permuting rows and

columns to bring them in mutual coincidence with all other

zero-padded augmented matrices.

The strong law of large numbers gives some guarantees

about the convergence of this fusion knowledge graph to a

representative population FCM if the knowledge sources

are approximately statistically independent and identically

distributed and if they have finite variance.12,14 Then the

weighted average in Equation (25) can only reduce the

inherent variance in the expert sample FCMs. So the

knowledge fusion process improves with sample size m.

FCMs are digraph models and so resemble Bayesian

belief networks (BBNs) and decision trees and factor trees.

BBNs are directed acyclic probabilistic graphs that repre-

sent causal dependence among random variables. They

form the basis of Pearl’s alternate model of causal

inference.31
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FCMs differ from BBNs in many respects. They differ

conceptually because an FCM’s nodes need not represent

random variables and in practice seldom do. Partial causal-

ity is causality that occurs only to some degree. It is not a

probability or bet that the cause or effect occurs all or

none. More complex FCMs can superimpose such ran-

domness on top of the fuzzy degrees of occurrence. Even

then the two types of uncertainty are distinct even though

they merge and produce a single real number.

FCMs differ dynamically from BBNs because most

FCMs are rich nonlinear dynamical systems while BBNs

are feedforward trees and have no dynamical structure.

FCM dynamics and inference depend on their nonlinear

concept-node functions and on their edge-based feedback

cycles. More complex FCMs replace the constant edges of

ordinary FCMs with nonlinear functions that vary with

time. This leads to still more complex transient and equili-

brium dynamics. The lack of cycles in BBNs precludes

any nontrivial dynamics. But a BBN’s acyclic structure

may permit finer control when propagating probabilistic

beliefs. Probabilistic belief propagation is also NP-hard.32

This complexity can impose a heavy computational bur-

den for large BBNs.

The cycles in a FCM directly model feedback causality

among the concept nodes. This cyclic structure gives rise

in turn to complex dynamics that range from simpled

fixed-point attractors and limit cycles to chaotic or aperio-

dic attractors in more advanced FCMs. The dynamic

attractor regions partition the FCM’s state space into a

finite number of such regions. Every input state converges

to exactly one of these regions. The mapping from inputs

to regions serves as a macro form of stored input-output

associations or what-if questions and answers.

FCMs also differ from BBNs in how they combine

expert knowledge sources. Trees do not naturally combine

to produce a tree because cycles tend to appear among the

nodes. So m BBN probability trees do not naturally com-

bine to form a representative BBN. So such knowledge

fusion does not improve with the expert or knowledge-

engineer sample size m. But FCMs always combine to

yield a new FCM from the matrix averaging process

Equation (25). So FCMs are closed under knowledge com-

bination while BBNs are not. The same holds for AI

search trees or any other knowledge representation struc-

ture based on acylic graphs.

3 The PSOT model: public support for
insurgency and terrorism

The Public Support for Insurgency and Terrorism (PSOT)

model1,2 is a factor-tree model that Davis33 developed to

describe the factors and causal pathways that influence a

public’s support for insurgent or terrorist organizations and

actions. The PSOT model synthesizes prior social-science

research on terrorism and social movements theory.2,34,35

This work has validated the PSOT model on case studies

of terrorist groups. These groups include al-Qa’ida and the

Taliban in Afghanistan, the Kurdistan Workers’ Party in

Turkey, and the Maoists in Nepal. More recent work1 has

distilled the extensive prior social science research on the

topic into a computational PSOT model. Davis’s later

work15,16 used the PSOT model to motivate related models

of an individual propensity for terrorism.

The PSOT model is a causal factor tree model because

it depicts the degree to which child nodes influence or

cause parent nodes. Figure 5 and Table I give more details

on the components and structure of the PSOT factor tree.

The PSOT nodes represent factors that directly or indir-

ectly relate to the Public Support for Insurgency and

Terrorism concept PSOT.

Davis’s factor tree models are multi-resolution models.36

Major elements have a hierarchical structure that allows

users to specify factors at different levels of detail. Each

node is an exogenously driven factor or it fires or activates

based on a function of its inputs.

There are also cross-cutting factors besides sub-node

factors. Cross-cutting factors affect multiple factors simul-

taneously. The ‘‘~and’’ nodes depend on all fan-in factors

being present to a first approximation. The ‘‘~or’’ nodes

depend on any of the fan-in factors being active or on a

combination of the fan-in factors being active. There are

several top-level factors that directly relate to the general

PSOT of Davis et al.2: effectiveness of the organization

EFF, motivation for supporting the group or cause MOTV,

the perceived legitimacy of violence PLEG, and the

acceptability of costs and risks ACR. Each of these factors

has attendant contributory sub-factors.

PSOT edges denote positive influences by default. We

denote negative edges with ‘− ’ as with a FCM causal-

decrease edge. Factor activation along a negative edge

reduces the activation of the parent factor. We denote

ambiguous edges with ‘‘+ /− ’’. The ambiguity refers to

uncertainty over the edge’s direction of influence.

We based our FCM models on the important case of the

al-Qa’ida transnational terrorist organization.

Davis et al.2 have discussed how the PSOT model

explains public support for al-Qa’ida’s mission as follows

(paraphrased from Davis et al.2). The organizational effec-

tiveness of al-Qa’ida depends in part on the charisma, stra-

tegic thinking, and organizational skills of its leadership

(lead). al-Qa’ida has packaged and framed its ideology to

appeal to many Muslims worldwide. Motivation for public

support of al-Qa’ida’s beliefs comes from shared religious

beliefs that stress common identity (id) and the sense of

duty (duty) that such identity fosters. al-Qa’ida also relies

on a popular narrative of shared grievances (shgr) in the
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Muslim world. They play up the perceived glory (glry) of

supporting a cause that aims to redress these purported

grievances. Religious beliefs and intolerance (intl) help

increase the perceived legitimacy (PLEG) of violence

against the West and against the many Muslims who do

not share their Salafist views. Countervailing pressure

(scst) discourages more support for al-Qa’ida. This coun-

tervailing pressure may occur in part because much of the

public believe that al-Qa’ida is not likely to succeed and

emerge as ultimate victors (lvic). This pressure in turn

diminishes the acceptability of costs and risks (ACR) for

al-Qa’ida activities. The parameters of this al-Qa’ida case

study determined the relative causal edge weights in our

FCM models.

3.1 The FCM-PSOT model

We cast the PSOT model as a FCM based on the original

PSOT factor tree model. Then the directed edges of the

factor tree became directed edges in the cognitive map.

The signs of the factor tree links determined the signs of

the FCM edges. The ambiguous factor-tree links (labeled

‘‘+ /− ’’ in Figure 5) defined weak bidirectional depen-

dence between pairs of factors in the FCM. Factor tree

nodes use ‘‘~or’’ or ‘‘~and’’ to aggregate their fan-in input

signals. We used these different PSOT combination func-

tions to specify analogous combination functions in the

FCM. Factor tree nodes aggregate inputs by using func-

tions from a predefined set of functions (Tables 2.3 and

2.4 in Davis and O’Mahony1). Nodes in a FCM apply non-

linear occurrence or activation functions to weighted linear

combinations of their inputs as discussed above. The

FCM-PSOT model used step functions (delayed or other-

wise), logistic sigmoids, and the clamped linear activation

functions.

The left panel of Figure 6 shows the direct FCM trans-

lation of the original PSOT model. The left panel of

Figure 7 shows the intensity plot of the causal edge con-

nection matrix for the FCM translation of the original

PSOT model. The FCM-PSOT models in Figure 6 retain

the general PSOT structure. But the edge weights are spe-

cific to the case of al-Qa’ida as researchers have reported

in Figure 2.4 of Davis and O’Mahony1 and Figure S.2 of

Davis et al.2

3.2 The dynamic FCM-PSOT model

The PSOT factor tree gives a static snapshot of the state of

public support for insurgency and terrorism. This makes

the model useful for causal attribution at single points in

time. This first-order static model does not require that we

correctly identify causal cross-linkages among the factors.

But the absence of cross-linkages can make long-run

dynamic simulations misleading. An FCM with no feed-

back loops converges in at most L steps where L is the

length of the longest chain in the FCM. Such feedforward

or feedback-free models rarely give an accurate model of

the real world and its causal interconnections. A dynamic

Figure 5. Factor-tree model that shows the relationships among factors that underlie the Public Support for Terrorism or
Insurgency model of Davis and O’Mahony.1
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time-varying PSOT model would need to identify such

cross-linkages to track system behavior over time. A

dynamic model gives causal attribution at snapshots in

time and the ability to simulate long-run what-if scenarios.

Causal cross-linkages specify how sets of two or more

factors co-vary in time. And they do so based on causal

relationships. Causal cross-linkages are difficult to specify

without insight into the causal laws that guide the related

factors. Domain experts are the main source of these cau-

sal relations. The PSOT model relies on domain experts,

extensive social science research, and validation to estab-

lish the snapshot relationships presented.1,2,34 Specifying

new causal cross-links in the model will require more such

inputs from experts.

Our goal was to produce a dynamic causal model of

public support for insurgency and terrorism in which new

edges model covariation in time among model factors. The

new edges needed grounding in subject-matter expertise.

So we reviewed prior work on PSOT for information on

factor covariation. We also consulted with PSOT authors

and experts on the PSOT model for guidance on the new

causal edges that we added. The new causal edges trans-

formed the PSOT model from a static snapshot model into

a dynamic simulation model. Figure 6 shows FCM ver-

sions of the old static and new dynamic PSOT model.

We now outline these changes to the original PSOT

model. We first added a weak self-excitation feedback

loop on the PSOT concept node because it is the highest-

level concept node. This self-excitation loop modeled iner-

tia in aggregate public opinion about insurgency and ter-

rorism. This new feedback source induced a weak serial

correlation in time in the PSOT concept node.

The next directed weak edges connected the top-level

factors in Figure 5 from left to right: EFF →MOTV ,

MOTV →PLEG, and PLEG →ACR. These directed cau-

sal edges made explicit an implicit point about O’Mahony

and Davis’s use of factor trees. Their factor-tree represen-

tation assumed a left-to-right dependence of the top-level

factors that we have linked.1,33 This implicit dependence

made their factor tree more readable. The FCM model

made this dependence explicit.

O’Mahony and Davis1 discuss other dynamic augmen-

tations to the PSOT model. They point to the following

new factors. A history of successes or failures can affect

motivation and perceived risks. We model this dependence

with the two factors ‘‘history of successes’’ and ‘‘history

of failures.’’ These two nodes exert opposing influence on

MOTV and prsk. We split this history factor because tradi-

tional FCM models admit only positive values that repre-

sent the degree or intensity to which a concept occurs.

And the effectiveness of the organization factor EFF partly

determines the history of successes: EFF → hsucc.

Unacceptable group behavior ugb also influences motiva-

tion and effectiveness: ugb→MOTV and ugb→EFF.

4 Simulation experiments and discussion

We first compare the behavior of the FCM-PSOT and

dynamic FCM-PSOT models in the previous Sections 3.2

and 3.2. Then we examine methods for adaptively updating

our fuzzy causal maps by using expert opinion or hard data

or by using both. Factor tree models do not have access to

these update methods.

4.1 Comparing the static and dynamic FCM-PSOT
models

The PSOT FCM mimics the behavior of the original PSOT

factor tree model because it is a direct FCM version of the

factor tree model. This suggests that FCM models may be

a richer classs of models than factor tree models because

they act as feedback-laden supersets of tree or acyclic

Table 1. Factors in the Public Support for Insurgency and
Terrorism (PSOT) model.

Label Full description

lead Leadership, strategic or otherwise
pkg Ideological package & framing
rsrc Resource mobilization
opp Opportunism & adaptation
pres Presence, tactics, & deeds
EFF Effectiveness of organization
reli Ideological religious concepts
socs Social services
glry Glory, excitement
ATT Attractions
duty Duty & honor
rwrd Rewards
MOTV Motivation for supporting group, cause
intl Religious, ideological, ethical beliefs; intolerance
rvng Revenge
cprop Cultural propensity for accepting violence
desp Desperation, necessity
PLEG Perceived legitimacy of violence
intm Intimidation
lvic Assessment of likely victor
prsk Personal risk and opportunity cost
scst Countervailing social costs & pressures
ACR Acceptability of costs & risks
id Identity
shgr Shared grievances & aspirations
ugb Unacceptable group behavior
env Environmental factors
impl Impulses, emotions, social psychology
hsucc History of successes
mgtc Management competence
prop Propaganda, advertising
efdoc Effectiveness of indoctrination, passing beliefs
hfail History of failures
PSOT Public support for insurgency and terrorism
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models. Further causal analyses may well find classes of

factor trees that FCM models cannot easily capture.

Augmenting the PSOT with cross-links in the dynamic

model allows richer representation of system dynamics.

The dynamic and static FCM models agree on many infer-

ence tasks. Both models often converged to similar fixed-

points or limit cycles given the same initial conditions. But

examples of diverging behavior did appear. Network-ana-

lytic measures such as vertex degree and vertex centrality

measures on the FCMs proved useful for inducing such

divergent behavior.

Consider a hypothetical al-Qa’ida-like insurgent group

that has similar PSOT model weights. Call the group the

Salafist United (SU). SU’s leadership is charismatic and

competent as well as effective. Imagine Osama bin Laden

or PKK’s Abdullah Öcalan with careful ideological fram-

ing of their group’s message and cause. This might be

Salafism itself. We may assume also that people already

inclined towards the group are culturally and ideologically

comfortable with SU’s violence. The group has embedded

in a community that shares the group’s strong Muslim

identity. And SU’s militant jihadi framing makes their

cause attractive to many Muslims.

Suppose that SU has a history of failed operations

despite its effective organization. Suppose further that the

group has not made good use of political opportunities.

The public believes that SU has a good chance of success.

But SU routinely intimidates the public with violent or

threatening tactics. These tactics impose social costs and

personal risk on many members of the community. The

group can bring only limited money and labor to bear on

their campaign.

The scenario gives the following coding for the model.

The factors lead, hfail, pkg, pres, MOTV, cprop, intl, intm,

and lvic remain active throughout the evolution of this sce-

nario. The factors rsrc, opp, prsk, and scst remain inactive

during the simulation.

Both the static and dynamic FCM-PSOT models

unfolded in time through the stated scenario constraints

and initial conditions using logistic activation functions.

And both models converged to fixed-point attractors

instead of to limit cycles. The static model converged in 4

iterations to a fixed state that predicts little public support

for SU. The dynamic FCM-PSOT converged in 11 itera-

tions to a fixed state that predicted medium-to-high public

support for SU. We also started the models from random

initial states under the same constraints. Most of these per-

turbations died out before the FCMs converged to one of

the fixed points.

The dynamic model predicts that a violent terrorist

group can retain public support in a community that shares

its religious or ideological beliefs and cultural propensi-

ties. It can retain that support in spite of a history of failure

or a lack of resources. It can do so at a high cost or even

Figure 6. Fuzzy cognitive map implementations of the PSOT factor-tree model. Left: FCM digraph for the original static (acyclic)
PSOT model. Right: FCM digraph of the dynamic PSOT model with cross-links. Table 1 gives the key for the concept-node labels in
both FCMs. We based the new FCM edges in the right digraph on the findings in Davis and O’Mahony1 or on expert input.
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violence to the community in which the group acts. The

static factor-tree-based model opposes this finding.

There is no easy way to validate the FCM-PSOT mod-

els because there is no clear ground-truth for such hypothe-

tical simulations. But a good causal model can still give

pattern predictions. It can help with exploratory analysis

and detecting trends.

Consider how the dynamic FCM-PSOT model can help

explore the effects of transient events. We omit the

detailed vector-matrix operations and just qualitatively

describe the resulting equilibrium FCM limit cycle.

Suppose the public does not support an insurgent

group’s cause (MOTV = 0). The group seems unlikely to

succeed (lvic= 0). The public does not find the costs and

risks of supporting this losing insurgency acceptable

(ACR= 0).

Suppose now that some short-term event or shock

occurs that both strongly motivates the public to support

the insurgency’s cause (MOTV → 1) and that causes the

public to believe that the group could win (lvic→ 1). Then

the FCM-PSOT model predicts that the cost and risk of

support will fall enough to become acceptable (ACR= 1).

This leads the group to become bolder in its use of intimi-

dation tactics (intm→ 1). But the group’s gains will be

short-lived and there will be no widespread public support

for the insurgency if the shocking event is too short-lived

to sustain public motivation for the cause (MOTV → 0 and

lvic→ 0). The public will once again find that the cost of

support is too high. But suppose instead that the public

motivation and the assessment of the likely victor remain

steady (MOTV = 1 and lvic= 1). This could reflect an abu-

sive government in rapid decline. Then the cost and risk

will stay acceptable (ACR= 1). The public will eventually

have sustained support for the insurgency (PSOT → 1).

We can also argue for the value of the dynamic FCM

model’s findings by identifying insurgent organizations

that resemble those in our scenario and that have managed

to maintain public support. Resource mobilization prob-

lems pose a common concern for smaller extra-legal

groups such as Uganda’s LRA. Online radicalization

appears to be replacing such resource mobilization prob-

lems. A related concern is a history of failure and the use

of intimidation and violence against the locals as with

Colombia’s FARC rebels.

Figure 7. Causal-edge connection matrices E for the original static PSOT FCM (left) and the dynamic PSOT FCM (right). Each
FCM’s causal-edge or connection matrix E is the adjacency matrix for the FCM’s fuzzy signed directed graph. Each square shows the
fuzzy causal-edge value eij that denotes how much the ith concept Ci influences the jth concept Cj. The matrix entries eij in these
FCMs are fuzzy values in the bipolar interval ½�1,1�. Blue squares represent negative causal influence and orange squares represent
positive causal influence as the color bars indicate. White squares represent the absence of causal influence. These matrix intensity
plots are larger-scale analogs of the matrix in Equation (22) except that they cover a larger set of concepts. The dynamic FCM-
PSOT is marginally less sparse than the static FCM-PSOT because the dynamic FCM-PSOT asserts more directed causal-edge values
between factors.
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This argument by analogy is not itself a robust method

of validation. It requires a comprehensive analysis of a

larger sampling of terrorist and insurgent operations. The

main way to build confidence in FCM inferences is to

carefully build the causal knowledge model from represen-

tative evidence and then compare these what-if inferences

or predictions with observed patterns or outcomes.

4.2 Causal knowledge updating by averaging expert
responses

The tree-structure of the original PSOT model implies that

it inherits a key structural limitation of AI decision trees.

There is no easy or natural way to combine or fuse several

expert trees into a representative knowledge structure that

is still a tree. Cycles too easily appear in general as the

number or sample size m of fused experts increases.

Combining even a small number of expert trees is likely to

produce some cycles and hence feedback loops in the

combined knowledge structure.

Some form of ad hoc cycle clipping must ensure that

the combined trees produce a tree. But removing causal

cycles removes some of the very expert knowledge that

the tree structure tries to capture. And it does so solely to

maintain the tree structure. FCM models are in this sense

at least as expressive as factor tree models. They also ben-

efit from the strong law of large numbers if the combined

experts behave at least approximately as independent and

identically distributed knowledge sources.12,14

Figure 4 gives a simple demonstration of how such

model updates can occur. The mixture or convex combina-

tion of FCMs creates a new fused FCM as the weighted

average of the FCMs’ augmented simply matrices. Users

can add new factors at will. Each new factor converts the

n-by-n adjacency matrices into n+ 1-by-n+ 1 adjacency

matrices. This amounts to adding a new zero-padded row

and column to an adjacency matrix if its corresponding

FCM does not include the factor as a concept node.

This fusion-averaging technique may not directly

account for such effects as active sabotage or extreme var-

iance in expert opinions. Highly variable expert inputs will

tend to produce a highly variable FCM causal knowledge

base. There may be no benefit from combining expert

edge values that approximate thick-tailed probability den-

sities. Cauchy probability bell curve closely resemble nor-

mal probability bell curves. Cauchy bell curves have

slightly thicker tails that give rise to far more variable rea-

lizations. But the sample average of Cauchy random vari-

ables is itself a Cauchy random variable. So there is no

benefit or decrease in system variance whatsoever in this

thick-tailed case. The combined result has the same infi-

nite variance that any one of the individual Cauchy edges

has. Combining knowledge sources with even thicker-

tailed probability densities can produce variability even

more extreme than the variability of any of the combined

knowledge sources.

Model averaging for FCMs helps update our knowledge

of causal edge values. But we may also want to update our

knowledge of the causal concepts Ck(t) as well. We can

use data from expert opinion surveys, from direct time-

series data on measurable factors, or from indirect instru-

mental variables linked to the factors of interest. Such

instrumental variables include social media trends, Google

trends, and topic modeling on news corpuses.

4.3 Learning causal structure with differential
Hebbian learning

We draw a learning distinction between factor correlation

and factor covariation. Consider first factor correlation.

Directed causal edges induce correlations between

linked factors. These correlations themselves need not

indicate a causal dependence. We can estimate these cor-

relations from observations given enough samples and

effort. This estimation of correlative links requires time-

series data about variation in the factors. The two learning

approaches below assume for simplicity that there are no

time delays between factors. Users can easily insert such

time delays as needed.

We can learn causal edge strengths through the conco-

mitant activation among the set of factor pairs. This

approach assumes that events (factor activities) are more

likely to involve a causal connection if the events occur

together.13,37,38 This suggests the well-known Hebbian

correlation learning law (neurons that fire together wire

together) for training neural network synaptic weights13:

_eij = � eij +CiCj ð26Þ

where _x denotes the time derivative of the signal x. The

passive decay term �eij stabilizes the learning in the

differential-equation model. It also models a ‘‘forgetting’’

constraint that helps the network prune inactive connec-

tions. The product term CiCj directly models concomitant

correlation.

We can alternatively use concomitant variation39 in

time between factors as partial evidence of a causal rela-

tion between those factors. Suppose that the data indicate

that increases in factor Ci occur at the same time as

increases in the factor Cj. This concomitant increase sug-

gests that the edge value eij should be positive. Suppose

similarly that decreases in Ci occur with decreases in Cj.

Then such concomitant decrease suggests a negative

causal-edge value eij (even a slight time lag between the

two concept nodes can indicate the direction of causality

in practice). Such concomitant variation leads to the differ-

ential Hebbian learning law12,13,38:
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_eij = � eij + _Ci
_Cj ð27Þ

Both Hebbian learning and Differential Hebbian

Learning (DHL) methods can learn causal edge values in a

FCM. But Hebbian learning grows spurious causal rela-

tions between any two concept nodes that occur at the

same time. This quickly leads to a matrix of nearly all

unity values if most of the nodes are active. DHL corre-

lates node velocities and thus has a type of arrow of time

built into it. DHL correlates the signs of the time deriva-

tives. So it grows a positive causal edge value eij if and

only if the concept nodes Ci and Cj both increase or both

decrease. It grows a negative edge value if and only if one

of the nodes increases and the other decreases.

We can combine both learning laws to give a more gen-

eral version of DHL12:

_eij = � eij +CiCj + _Ci
_Cj ð28Þ

This hybrid learning law fills in expected values for edge

weights when there is no signal variation in the factor

set.40 It takes advantage of the relatively rarer variation

events to update the edge weights. It tends to produce limit

cycles or other attractors but can produce fixed-point

attractors given some strong assumptions.12,13

We can use the DHL learning scheme to infer causal

weights in FCM-PSOT models if we have access to ade-

quate time-series data. Such data can again come from

expert opinion surveys, from direct time-series data on

measurable factors, or from indirect instrumental variables

linked to the factors of interest: social media trends,

Google trends, or topic modeling on news corpuses.

Figure 3 shows a DHL learning path for a single causal

edge value. The algorithm used data under a hypothetical

relationship for the uncertain link lvic→ACR in the

PSOT model. Complete concept-node data allows the

DHL algorithm to learn the causal edge matrix E. We

found that DHL training gave a close approximation of the

true causal-edge values after only a few iterations.

Our simulations with adaptive FCMs used the following

discretized version of the DHL learning law10 in Equation

(27):

eij(t+ 1)= eij(t)+μ �Ci(t)�Cj(t)� eij(t)
� �

if �Ci(t) 6¼ 0

eij(t) else

�
ð29Þ

where �Ck(t)=Ck(t)� Ck(t � 1).

We note that we can fuse soft and hard knowledge

sources through the above averaging technique in Equation

(25). Let Edata denote the data-driven FCM. Let Eexp

denote the expert-elicited FCM. Then the fused causal-

edge matrix Efusion is a simple mixture of the two edge

matrices:

Efusion =ωdataEdata +ωexpEexp ð30Þ

Then Equation (29) or some other statistical learning law

can continue the adaptation process using new numerical

data or occasional opinion updates from experts.

5 Conclusions

We developed static and dynamic FCM versions of a factor

tree model of public support for insurgency and terrorism.

The FCM models allow forward-chaining causal inference

as well as updates based on numerical training data or

expert opinions. Their underlying matrix structure permits

natural knowledge fusion that tends to improve with the

number of combined experts.

Current FCM learning techniques involve two major

limitations. FCMs do not easily permit backward chaining

to answer which input cause produced an observed output

effect. Users cannot simply run the FCM in reverse

because of the node nonlinearities. The best that current

techniques allow is to find one of the many input states

that map to an observed output equilibrium. Future

research needs to address this limitation with new inferen-

cing or other techniques. The second limitation is even

more challenging. Current adaptive techniques infer and

tune causal-edge values only for a known set of concept

nodes. An open research question is how to use data-based

techniques to infer new or missing concept nodes in large-

scale FCM causal models.
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