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Abstract Forbidden interval theorems state whether a stochastic-resonance noise
benefit occurs based on whether the average noise value falls outside or inside an
interval of parameter values. Such theorems act as a type of screening device for
mutual-information noise benefits in the detection of subthreshold signals. Their
proof structure reduces the search for a noise benefit to the often simple task of
showing that a zero limit exists. This chapter presents the basic forbidden inter-
val theorem for threshold neurons and four applications of increasing complexity.
The first application shows that small amounts of electrical noise can help a carbon
nanotube detect faint electrical signals. The second application extends the basic
forbidden interval theorem to quantum communication through the judicious use of
squeezed light. The third application extends the theorems to noise benefits in stan-
dard models of spiking retinas. The fourth application extends the noise benefits in
retinal and other neuron models to Levy noise that generalizes Brownian motion
and allows for jump and impulsive noise processes.

1 Forbidden Interval Theorems for Stochastic Resonance

Stochastic resonance (SR) occurs in a nonlinear system when noise benefits the
system [3, 17, 33]. The noise benefit can take the form of an increase in mutual in-
formation or a signal-to-noise ratio or correlation or a decrease in an error measure.
But when will such a noise benefit occur?

Forbidden interval theorems answer that SR question for several nonlinear sys-
tems. The theorems act as a type of SR screening device because they can give suffi-
cient or necessary conditions for an SR noise benefit. We here restrict noise benefits
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to improvements in the system’s input-output Shannon mutual information given an
increase in the variance or dispersion of the exogenous noise. But forbidden interval
theorems do not show how to find such a noise benefit. Nor do they indicate the
magnitude of such a noise benefit if it occurs. They merely indicate whether such a
noise benefit exists in theory for a given combination of parameters.

Stochastic learning algorithms can often find the actual noise benefit that a for-
bidden interval theorem predicts. These adaptive algorithms can find the local noise
benefits if we take enough samples from the process and if we apply a sufficiently
robust SR learning algorithm of the form σk+1 = σk + μk φ( ∂ I

∂σ ) where I is mutual
information or some other performance measure, σ is the noise intensity, and φ is
a statistical “robustifier” such as signum or other impulse suppressor [18, 23, 24].
Both the learning algorithms and the forbidden interval theorems apply to many
other system performance measures other than mutual information.

The simplest forbidden interval theorem is the strongest because it gives both
necessary and sufficient conditions for an SR noise benefit while it requires only
a threshold nonlinearity. It applies to a threshold neuron or other threshold system
with threshold θ for subthreshold bipolar signal amplitudes A and −A: −A < A < θ .
The additive noise n has either a finite mean E[n] or comparable location parameter
a in the case of infinite-variance stable noise. Then the simplest forbidden inter-
val theorem fully characterizes the presence or absence of a noise benefit because
it gives both necessary and sufficient conditions for this SR effect: SR occurs if
and only if E[n] /∈ (θ −A,θ + A). So a noise benefit occurs just in case the mean
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Fig. 1 Forbidden interval effects. The graphs show the smoothed input-output mutual information
of a threshold system (1) as a function of the dispersion of additive white alpha-stable noise nt

with α = 1 (infinite-variance Cauchy noise). The system has threshold θ = 0.5. The bipolar input
Bernoulli signal st has amplitude A = 0.4 with success probability pA = 1

2 . Each trial produced
10,000 input-output samples {st ,yt} that estimated the probability densities to obtain the mutual
information. The vertical dashed lines show the absolute deviation between the smallest and largest
outliers in each sample average of 100 outcomes. (a): Stochastic resonance (SR) when the Cauchy
noise nt has location a = 0 and thus a lies outside the forbidden interval: a = 0 /∈ (θ −A,θ +A) =
(0.1,0.9). The system has a nonzero noise optimum at γopt ≈ 0.21 and thus shows the SR effect.
(b): No SR when the Cauchy noise nt has location a = 0.2 that lies in the forbidden interval:
a = 0.2 ∈ (θ −A,θ + A) = (0.1,0.9). The system is optimal when γ → 0 and thus does not show
the SR effect: The mutual information I(S,Y ) is maximum because it equals the input entropy
H(S) = 1
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or location-scale noise does not fall in an interval that depends on the threshold
and signal amplitudes (see Fig. 1). A reviewer of [20] referred to this interval as a
“forbidden interval.” We liked the colorful term and have used it ever since. The the-
orems below show just how complicated these interval conditions can become due
to the complexity of the system’s nonlinear dynamics and the nature of the noise or
diffusion processes.

2 Proof Strategy: What Goes Down Must Go Up

This section presents sufficient and necessary forbidden interval theorems for SR in
threshold systems. We use the discrete-time threshold system [4, 10, 16]

yt = sgn(st +nt −θ) (1)

where θ > 0 is the system’s threshold, yt is the system’s output, st is the bipolar
input Bernoulli signal with amplitude A > 0 and with success probability pA = 1

2 , nt

is the additive white noise with probability density p(n), and the signum function is

sgn(x) =
{

1 if x ≥ 0
−1 if x < 0

. (2)

Note that the theorems below hold for any two-symbol alphabet set Y for the
output yt . The Shannon mutual information I(S,Y ) has the form [8]

I(S,Y ) = H(Y )−H(Y |S) = ∑
s∈S

∑
y∈Y

PSY (s,y) log
PSY (s,y)

PS(s)PY (y)
. (3)

The idea behind forbidden interval theorems is that we can cast the proof in terms
of showing that a limit must go to zero as the noise intensity goes to zero.

Theorem 1. Suppose that the threshold system (1) has noise probability density
function p(n) and that the input signal is subthreshold A < θ . Suppose that there is
some statistical dependence between input random variable S and output random
variable Y (so that I(S,Y ) > 0). Suppose that the noise mean E[n] does not lie
in the signal-threshold interval (θ −A,θ + A) if p(n) has finite variance. Then the
threshold system (1) exhibits the nonmonotone SR effect in the sense that I(S,Y )→ 0
as σ → 0.

Proof. Assume 0 < PS(s) < 1 to avoid triviality when PS(s) = 0 or 1. We show that
S and Y are asymptotically independent: I(σ)→ 0 as σ → 0. Recall that I(S,Y ) = 0
if and only if S and Y are statistically independent [8]. So we need to show only that
PSY (s,y) = PS(s)PY (y) or PY |S(y|s) = PY (y) as σ → 0 for all signal symbols s ∈ S
and y ∈ Y . The two-symbol alphabet set S = {0,1} gives

PY (y) = ∑
s∈S

PY |S(y|s)PS(s) = (PY |S(y|0)−PY |S(y|1))PS(0)+PY |S(y|1) . (4)

So we need to show only that PY |S(y|0)−PY |S(y|1) = 0 as σ → 0. This condition
implies that PY (y) = PY |S(y|1) and PY (y) = PY |S(y|0). We assume for simplicity that
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the noise density p(n) is integrable. The argument below still holds if p(n) is discrete
and if we replace integrals with appropriate sums.
Consider y = “0.” Then

PY |S(0|0)−PY |S(0|1) =
∫ θ+A

−∞
p(n)dn−

∫ θ−A

−∞
p(n)dn =

∫ θ+A

θ−A
p(n)dn . (5)

Similarly for y = “1”:

PY |S(1|0)−PY |S(1|1) =
∫ ∞

θ+A
p(n)dn−

∫ ∞

θ−A
p(n)dn = −

∫ θ+A

θ−A
p(n)dn . (6)

The result follows if we can show that∫ θ+A

θ−A
p(n)dn → 0 as σ → 0 . (7)

Denote the mean of the noise by μ = E[n] and the variance by σ2 = E[(n− μ)2].
Then μ /∈ (θ −A,θ +A) by hypothesis.

Now suppose that μ < θ −A. Pick ε = 1
2 (θ −A− μ) > 0. So θ −A− ε = θ −

A− ε+μ−μ = μ+(θ −A−μ)− ε = μ+2ε− ε = μ+ ε . Then

PY |S(0|0)−PY |S(0|1) =
∫ θ+A

θ−A
p(n)dn ≤

∫ ∞

θ−A
p(n)dn ≤

∫ ∞

θ−A−ε
p(n)dn (8)

=
∫ ∞

μ+ε
p(n)dn = P(n ≥ μ+ ε) = P(n−μ ≥ ε) ≤ P(|n−μ | ≥ ε) (9)

≤ σ2

ε2 by Chebyshev’s inequality (10)

→ 0 as σ → 0 . (11)

A symmetric argument shows that for μ > θ +A

PY |S(0|0)−PY |S(0|1) ≤ σ2

ε2 → 0 as σ → 0 . QED (12)

The next forbidden interval shows that a structurally similar interval condi-
tion holds for all types of infinite-variance stable noise [19]. Stable models apply
to a quantum alpha-stable noise source. Stable models apply to diverse physical
phenomena that include impulsive interrupts in phone lines, underwater acoustics,
low-frequency atmospheric signals, and gravitational fluctuations [25]. Symmetric
alpha-stable noise [25, 30] results from an impulsive noise source and describes a
family of thick-tailed bell-curve densities per (13) below. The parameter α (which
differs from the coherent state α in Sect. 4) lies in (0,2] and governs the thickness
of the distribution’s tail: α = 1 corresponds to the thick-tailed Cauchy random vari-
able and α = 2 corresponds to the familiar thin-tailed Gaussian random variable.
The bell curve’s tail thickness increases as α decreases. The generalized central
limit theorem states that all and only normalized stable random variables converge
in distribution to a stable random variable [2].

Theorem 2. Suppose I(S,Y ) > 0 and the threshold system (1) uses alpha-stable
noise with location parameter a /∈ (θ −A,θ +A). Then the system exhibits the non-
monotone SR effect if the input signal is subthreshold.



Applications of Forbidden Interval Theorems 75

Proof. Again the result follows if
∫ θ+A

θ−A
p(n)dn → 0 as γ → 0. The characteristic

function ϕ(ω) of alpha-stable density p(n) has the exponential form

ϕ(ω) =
{

exp
{

iaω− γ|ω|α
(
1+ iβ sign(ω) tan απ

2

)}
for α �= 1

exp
{

iaω− γ|ω|(1− i 2
π β ln |ω|sign(ω))

}
for α = 1

. (13)

This reduces to a simple complex exponential in the zero-dispersion limit: lim
γ→0

ϕ(ω)

= exp{iaω} for all α’s, skewness β ’s, and location a’s. So Fourier transformation
gives the corresponding density function in the limiting case (γ → 0) as a translated
delta function lim

γ→0
p(n) = δ (n−a). Then

PY |S(0|0)−PY |S(0|1) =
∫ θ+A

θ−A
p(n)dn =

∫ θ+A

θ−A
δ (n−a)dn = 0 (14)

because a /∈ (θ −A,θ +A). QED

Similar proofs give converses in Theorems 3 and 4 [20].

Theorem 3. Suppose that the threshold system (1) has noise probability density
function p(n) and that the input signal S is subthreshold. Suppose that the noise
mean E[n] lies in the signal-threshold interval (θ −A,θ +A) if p(n) has finite vari-
ance. Then the threshold system (1) does not exhibit the nonmonotone SR effect in
the sense that I(S,Y ) achieves its maximum when σ → 0: I(S,Y ) = H(Y ) = H(S)
when σ → 0.

Theorem 4. Suppose that the threshold system (1) has subthreshold input signal
and use alpha-stable noise with location parameter a ∈ (θ −A,θ + A). Then the
threshold system (1) does not exhibit the nonmonotone SR effect: I(S,Y ) achieves
its maximum when γ → 0: I(S,Y ) = H(Y ) = H(S) when γ → 0.

3 SR in a Carbon Nanotube Signal Detector

A carbon nanotube signal detector benefits from small amounts of added electri-
cal noise in accord with the forbidden interval Theorems 1 and 2 above [21]. Our
experiments used a carbon nanotube field-effect transistor to detect noisy subthresh-
old electrical signals. Two new SR hypothesis tests in [21] also confirmed the SR
effect in the nanotube transistor. Three measures of detector performance showed
the SR effect: Shannon’s mutual information, the normalized correlation measure,
and an inverted bit error rate compared the input and output discrete-time random se-
quences. The nanotube detector had a threshold-like input-output characteristic in its
gate effect (see Fig. 2). It produced little current for subthreshold digital input volt-
ages that fed the transistor’s gate. Three types of synchronized white noise corrupted
the subthreshold Bernoulli sequences that fed the detector. Gaussian, uniform, and
impulsive Cauchy noise combined with the random input voltage sequences to help
the detector produce random output current sequences.
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Fig. 2 Less than ideal carbon nanotube transistor gate effect. (a) plots the drain-source current
versus the drain-source voltage for different gate voltages. (b) plots the experimental input-output
pairs and shows the transistor’s current-voltage I-VG characteristics in response to noisy input
signals. Linear regression fit the data to the transistor equation, extrapolated the nonlinearity, and
estimated the threshold voltage VT ≈−2.3 V

The experiments observed the SR effect by measuring how well an output se-
quence matched its input sequence. Shannon’s mutual information used histograms
to estimate the probability densities and computed the entropies. The correlation
measure was a scalar inner product of the input and output sequences. The inverted
bit error rate computed how often the bits matched between the input and output
sequences. The observed nanotube SR effect was robust: it persisted even when
infinite-variance Cauchy noise corrupted the signal stream.

Simulations and lab experiments both showed that the above forbidden interval
theorems apply to threshold detectors. The simulations modeled transistors in gen-
eral. They used a threshold-like ramp function that often models an ideal transistor’s
current-to-gate-voltage (I-VG) characteristics: Y = G(S−VT ) where Y is the output
current, S is the input voltage, VT is the threshold voltage, and G is a nonzero gain for
suprathreshold inputs and zero otherwise. The negative threshold voltage VT gives
the forbidden voltage intervals of the form (VT + x,VT − x) for threshold voltage
VT = −2.3 for x = −2, −1.8, −1.6, and −1.4 volts. So E[n] = 0 fell outside all
intervals.

The experiments tested single-walled carbon nanotube transistors. The prototype
transistors had non-ideal characteristics such as the I-V curves in Fig. 2. The labora-
tory data generated SR-curves Fig. 3(b), (c), (d) that qualitatively agreed with those
generated in simulation Fig. 3(a).

Experiments confirmed the SR prediction: noise helped a pristine (undoped)
single-walled carbon nanotube transistor [32] detect subthreshold signals. The
experiments applied different Bernoulli input sequences that used different com-
binations of subthreshold gate voltages as their ON/OFF symbols. Synchronized
Gaussian, uniform, and infinite-variance Cauchy noise added to the input sequences
and helped the nanotube transistor detect the subthreshold input. The performance
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Fig. 3 Noise-enhanced detector performance. (a) A simulated threshold detector exhibits the sig-
nature SR modes with additive white Gaussian noise. The experiments found the SR effect for three
different measures, for three different types of noise, and for multiple combinations of voltage-
symbols. (b) shows the SR effect for Gaussian noise and binary symbols (−1.6,−1.4) V, (c) for
uniform noise and binary symbols (−2.0,−1.8) V, and (d) for impulsive Cauchy noise and binary
symbols (−2.0,−1.8) V. The subthreshold symbols were more positive than the threshold voltage
(VT = −2.3 V) consistent with p-type semiconductors. Each pair of voltage symbols had a 0.2V
separation because sensitivity analysis showed that the separation gave complete SR modes within
the range of noise levels. A linear regression of the transistor’s gate effect estimated the threshold
voltage and aided the selection of the subthreshold ON/OFF symbols. (b) The SR mode of the
mutual-information curve is six times the value at minimal noise. The SR mode of the correlation-
measure curve is three times the value at minimal noise. The SR mode of the inverted bit-error-rate
curve shows a 40% improvement over the value at minimal noise. (d) Cauchy noise. We passed
impulsive or infinite-variance white Cauchy noise through the nanotube detector to test whether it
was robust to occasional large noise spikes. We chose the highly impulsive Cauchy noise for this
task. Not all Cauchy experiments produced a measurable SR effect

measures were Shannon’s mutual information I(S,Y ) in (3), an input-output corre-
lation measure C(S,Y ), and an inverted bit error rate 1−BER.

Both the experimental and simulated nanotube detectors had correlated SR
curves. The correlation coefficient R measured the strength of the correlation. The
simulated SR curves in Fig. 3(d) had correlation coefficients of R = 0.9367 for
I(S,Y ) and C(S,Y ), R = 0.8265 for I(S,Y ) and 1−BER, and R = 0.9541 for C(S,Y )
and 1−BER. The experimental SR curves in Fig. 3(a) had correlation coefficients



78 B. Kosko et al.

of R = 0.9830 for I(S,Y ) and C(S,Y ), R = 0.9774 for I(S,Y ) and 1−BER, and
R = 0.9877 for C(S,Y ) and 1−BER. The correlations were statistically significant
for p-value < 0.001.

We observed the nanotube SR effect in Fig. 3(b) as one of four such successful
combinations of input binary values with the parameter choices ON = −1.6 V and
OFF = −1.4 V. Figures 3(c) and (d) each represents a selection from successful com-
binations. [21] contains additional details of the experimental setup and parameters.
This SR effect occurred despite the nanotube instabilities that caused fluctuations in
the stochastic I-VG curve in Fig. 2(b). [21] discusses the generation of the stochastic
current-voltage curve in the presence of hysteresis.

The nanotube experiments produced the SR effect for Shannon’s mutual infor-
mation [31], an input-output correlation measure [6, 7], and an inverted bit error
rate that measured how well the output sequences matched the input Bernoulli se-
quences. The input signal S was a sequence of random binary voltages that pro-
duced a random output sequence in the form of a transistor current. Histograms
of the sequences estimated the probability density functions that computed the
entropies. The correlation measure normalized the zero-lag value (l = 0) of the
cross-correlation sequence

rSY (l) =
N

∑
k=1

s(k)y(k− l) (15)

of the two sequences with subtracted means. These two measures did not assume
that the nanotube detector had a special structure and did not impose a threshold
scheme on the experiment. But the inverted bit error rate 1−BER decided whether
each output yi was a “0” or “1” by applying a threshold scheme: a Baye’s discrim-
inant function in a two-class minimum-distance classifier [9] that used complete
knowledge of the input. The rate 1−BER measured how often the input and output
bits agreed: 1−BER = 1−Nerror/N = Ncorrect/N where Nerror counted the number
of bits that differed between the length-N input and output sequences and Ncorrect

counted the number of bits that agreed.
The experimental observation of nanotube SR used the nonlinear field effect of

carbon nanotubes. A semiconductor single-walled carbon nanotube (SWNT) can
change its conductivity in response to an external electric field in a gate effect [32].
The SR experiments used a chemical-vapor-deposition (CVD) grown SWNT [15].
The reference contains the details of the fabrication.

The semiconductor SWNT forms a Schottky diode at the interface with metal
so that a metal-nanotube-metal contact forms a field-effect transistor (FET) with an
adjacent gate electrode [35]. The typical current-voltage I-VG characteristics

I =
{

G(VG −VT ) for VG < VT

0 else
(16)

indicate that the pristine semiconductor nanotubes act as hole-doped semiconduc-
tors at room temperatures and that the nanotube devices are p-type FETs [32].
The transconductance G is negative and the gate voltage VG < VT is suprathresh-
old for p-type FETs. Equation (16) modeled the ideal p-type FET in the simulated
experiments.
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We provide a terse summary of the laboratory setup— [21] contains the details.
Each of the nanotube experiments applied 25 sampled noise levels that ranged from
0.001 to 1 standard deviation σ (dispersion γ for infinite-variance Cauchy) linearly
in logarithmic scale. The noisy input S was a synchronized Bernoulli sequence si =
bi +ni of the sum of random subthreshold binary values bi and additive white noise
ni of three types. So there was no timing noise in the pulse train as in the FHN
neuron model [28, 29]. Synchronization allows the nanotube systems to implement
a variety of algorithms from signal processing and communications.

The experiments updated the noisy input symbols si about once every 10 ms. A
200 mV drain-source voltage biased the nanotube at room temperature in vacuum.
The experiments measured and averaged ten samples of the detector output at 100
kilosamples/s near the end of each symbol interval to estimate the output symbols
yi. This allows the transistor output to settle. A gate voltage is subthreshold if it is
more positive than a p-type FET’s threshold voltage and produces picoamp current
in an OFF state. The experiment tested whether noise could enhance subthreshold
signals to produce measurable currents.

The detector consisted of a single-walled semiconductor carbon nanotube bridg-
ing two electrodes [15]. The CVD technique combined with e-beam lithography
to grow a single-walled nanotube that was 3–5 μm long and less than 2 nm in di-
ameter between two electrodes. The gap between the electrodes was approximately
3 μm wide but the single-walled nanotube was not straight as it spanned the gap.
Atomic force microscopy examined the detector and showed that the nanotube had
a diameter d < 2 nm that was consistent with a single-walled nanotube.

A PC-based National Instruments PCI-MI0-16XE-10 data acquisition (DAQ)
board converted the noise-corrupted signal S from digital to analog (DA) and con-
verted the conditioned noisy output Y from analog to digital (AD). The AD-DA
conversion has a 16-bit resolution and a 10 μs rise time. A DL 1211 current-voltage
preamplifier conditioned the detector output current before data acquisition sampled
it as a voltage. The amplifier converts a small current (10 nA) into a large voltage
(1 V) with the 10−8 A/V gain setting. The analog voltage has a maximal time delay
of 0.1 ms with the 0.1 ms rise-time setting.

Two new hypothesis tests verified that the SR curves were nonmonotonic and
confirmed the nanotube SR effect. A chi-square test and a Kolmogorov-Smirnov
test both rejected the similarity between a monotonically decreasing β -probability
density function and each of the three SR curves with p-value < 0.001. The statisti-
cal tests were goodness-of-fit tests that treated the SR curves as candidate pdfs and
compared them against the benchmark pdf. The parameters of the benchmark β -pdf
were α = 0.5 and θ = 5 among many others that we tested [21].

4 Forbidden Interval Theorem for Quantum Communication

Quantum optics and “squeezed light” [22] extend the basic or classical forbidden
interval theorems above for detecting subthreshold signals [34]. The new quan-
tum forbidden interval theorem shows that a noise benefit occurs if and only if the
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position quadrature of the noise mean or location does not lie in a given interval.
The result holds for all types of finite-variance noise and for all infinite-variance
stable noise.

The quantum forbidden-interval theorem applies to the quantum-optical
communication system of Fig. 4. This system assumes weak or subthreshold sig-
nals and further assumes that noise corrupts these signals. Alice sends a squeezed
displaced vacuum as a binary signal to Bob. Then Bob decodes the binary mes-
sage by position-quadrature homodyning and thresholding. Figure 5 shows the
non-monotonic signature of the predicted SR noise benefit in the quantum-optical
communication system.

We develop the quantum-optical model in the Heisenberg picture. Suppose Al-
ice possesses a vacuum mode. Let x̂ denote the position-quadrature operator of
this vacuum state. This operator collapses to a zero-mean 1/2-variance Gaussian
random variable X if Alice measures her state. Suppose that Alice does not mea-
sure it. Suppose instead that she sends her mode through a squeezer. Suppose fur-
ther that she can control the strength of squeezing with a squeezing parameter r.
Her position-quadrature operator x̂ evolves under the squeezer to become x̂e−r.
She encodes a random message bit S ∈ {0,1} by displacing her state by α ∈ C

if S = 1 or by −α if S = 0. Her operator evolves under the displacement to become
x̂e−r +(−1)S+1αx where αx = Re{α}. She sends her state to Bob over an additive
noisy bosonic channel [12]. A noisy bosonic channel affects any annihilation op-
erator âin by âout = âin +ν . Annihilation operator âout represents the output mode.
Complex random variable ν represents the noisy effects of the bosonic channel.
Random variable ν need not be Gaussian for the SR effect to occur—it can have
finite variance or possess an alpha-stable distribution [25].

Bob receives the state x̂e−r +(−1)S+1αx +νx from the noisy channel where νx =
Re{ν}. Bob performs a position-quadrature homodyne detection so that the state
collapses to the random variable (−1)S+1αx + N where N = Xe−r +νx sums both
noisy random variables. Bob thresholds the result of this homodyne detection with
threshold θ to retrieve a bit Y . This bit Y should be the message bit S that Alice first
sent.

Random variables Xe−r and νx are independent because random variable Xe−r

originates from vacuum fluctuations and because νx represents Bob’s loss of knowl-
edge due to the state’s propagation through a noisy quantum channel. The density

Homodyne
Detection

with Thresholding

Squeezed
Light

Weak
Displacement

Noisy
Quantum
Channel

vac

Alice Bob

|0 S(r) D N

Fig. 4 Noisy quantum-optical communication channel for stochastic resonance
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Fig. 5 Quantum SR noise benefits for (a) Gaussian noise and (b) Cauchy noise

pN (n) of random variable N is pN (n) = (pXe−r ∗ pνx)(n) where pXe−r (n) is the
density of a zero-mean (e−2r/2)-variance Gaussian random variable, pνx (n) is the
density of νx, and ∗ denotes convolution.

The quantum forbidden interval theorem below gives necessary and sufficient
conditions for the nonmonotone SR effect to occur under both finite-variance and
infinite-variance alpha-stable noise. We state the parameters for the finite-variance
case without parentheses and the parameters for the infinite-variance case with
parentheses.

Theorem 5. Suppose the channel noise’s position quadrature has finite variance
σ2

x (dispersion γx) and mean μx (location ax). Suppose the input signal’s position
quadrature αx is subthreshold: αx < θ . Suppose there is some statistical dependence
between input signal S and output signal Y so that the mutual information obeys
I(S,Y ) > 0. Then the quantum communication system exhibits the nonmonotone SR
effect if and only if the position quadrature of the noise mean does not lie in the
forbidden interval: μx /∈ (θ −αx,θ +αx) (or ax /∈ (θ −αx,θ +αx) in the stable
case). The nonmonotone SR effect is that I(S,Y ) → 0 as σx → 0 (or γx → 0) and as
squeezing parameter r → ∞.

Proof. The finite-variance proof for sufficiency and necessity follows the proof
method in [19] and [20] respectively if we use pN (n) as the noise density. The
infinite-variance proof for sufficiency and necessity follows the stable proof method
in [19] and [20] respectively if we use pN (n) as the noise density and if νx is an
alpha-stable random variable. QED

Figure 5 shows simulation instances of Theorem 5. Figure 5 displays the full
“inverted-U” curve for realistic squeezing values [36]. The theorem guarantees only
that the nonmonotone SR effect occurs. It does not give the optimal combination of
channel noise and squeezing or guarantee a large increase in mutual information.

One criticism is that the theorem is not realistic because it requires infinite
squeezing and thus requires infinite energy to produce the SR effect. But the theorem
guarantees that the SR effect occurs for some finite squeezing. The simulations in
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Fig. 5 display the full joint σ2 and r nonmonotone SR signature for experimentally
plausible squeezing values and for realistic channel noise levels.

5 Forbidden Interval Theorem for Spiking Retinal Neurons

A different forbidden interval theorem guarantees an SR noise benefit for spiking
retinal neurons [26]. Figure 6 below shows an SR noise benefit in a spiking retinal
neuron. The neuron should emit more spikes when the brightness contrast level is
low rather than high. The right amount of Gaussian noise helps the neuron discrim-
inate between two levels of brightness contrast. The retinal neuron emits too few
spikes if no noise corrupts the Bernoulli sequence of contrast levels. The neuron
also emits too many spikes and emits many of them at the wrong time if too much
noise corrupts the sequence.

The retina model of Fig. 6 is a noisy version of a common Wiener-type cascade
model [5, 14]:

r(t) = r0h

[∫ ∞

−∞
f (z){S(t − z)+n1(t)}dz+n2(t)

]
(17)

where S is the input stimulus defined below, r is the instantaneous Poisson spike
rate that gives the exponential interspike-interval density function as p(t) = r(t)

exp[−
∫ t

0
r(τ)dτ], f is a band-pass linear filter function, and h is a memory-

less monotone–nondecreasing function. Here n1 denotes the combined stimulus
and photoreceptor noise and n2 denotes the combined ion-channel noise and the
synaptic noise.

The input stimulus S is Michelson’s visual contrast signal: S = (Lc−Ls)/(Lc +Ls).
Lc is the amount of light that falls on the center of the ganglion cell’s receptive field.
Ls is the light that falls on its surround region. The sigmoid-shaped memoryless
function h approximates the spike threshold and saturation level. We define h as a
piecewise-linear approximation of a sigmoidal nonlinearity [37]:

h(x) =

⎧⎨
⎩
θ2 −θ1 if x > θ2

x−θ1 if θ1 ≤ x ≤ θ2

0 if x < θ1

(18)

and so

r(w(t)) =

⎧⎨
⎩

r0(θ2 −θ1) if w(t) > θ2

r0(w(t)−θ1) if θ1 ≤ w(t) ≤ θ2

0 if w(t) < θ1

. (19)

The subthreshold contrast signal S(t) ∈ {A,B} is a random Bernoulli sequence with
P(S(t) = A) = p and P(S(t) = B) = 1− p. The time duration of each signal value
A and B in S(t) is much larger than the time constant of the linear filter f (t). We
define v(t) as the filtered output of the contrast signal S(t) without noise n1(t) and
such that

v(t)|S(t)=A = v1 and v(t)|S(t)=B = v2 (20)
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in steady-state where v1 > v2 and max(v1,v2) < θ1 < θ2. So the input signal S(t)
is subthreshold. We measure the average spike rate for each symbol only when the
corresponding value of v(t) is in steady-state. Theorem 6 below gives necessary and
sufficient conditions for an SR noise effect in the retina neuron model (17), (18), (19)
for either noise source n1 or n2. It states that standard spiking retinal models benefit
from additive white noise if and only if a joint noise mean or location parameter
does not fall in a forbidden interval of threshold-based values. Theorem 6 holds for
all finite-variance noise and for all impulsive or infinite-variance stable noise [26].

Theorem 6. Suppose that the noise sources n1 and n2 in the retina model (17),
(18),(19) are white and have finite-variance (or finite-dispersion in the stable
case) probability density functions p1(n) and p2(n) with corresponding variances
(dispersions) σ2

1 and σ2
2 (γ1 and γ2). Suppose that the input signal S is subthreshold

(v2 < v1 < θ1 < θ2) and that there is some statistical dependence between the input
contrast random variable S and the output random variable R so that I(S,R) > 0.
Then the retina model (17),(18),(19) exhibits the nonmonotone SR effect in the
sense that I(S,R) → 0 as σ2

1 and σ2
2 (or γ1 and γ2) decrease to zero if and only if

the mean sum E[n1]
∫

f (τ)dτ + E[n2] (or the location parameter sum in the stable

case) does not lie in the interval (θ1 − v1,θ2 − v2). The only-if part holds in the
sense that the system performs better without noise than with it when the interval
condition fails.

6 Forbidden Interval Theorems for Levy Noise Diffusions

The most complex forbidden interval theorems apply to nonlinear stochastic dif-
ferential equations with additive Levy diffusions. Levy processes generalize Brow-
nian motions to allow for jumps and other impulsive behavior [1]. Levy processes
include not only Brownian processes but also compound Poisson processes, infinite-
variance α-stable processes, generalized inverse Gausssian processes, and
generalized hyperbolic processes. A random process Lt is a Levy process if it has
independent increments Lt −Ls, if it is stationary (Lt −Ls has the same distribution
as Lt−s), and if it is continuous in probability (Ls → Lt in probability if s → t). A
Levy process Lt has a drift component, a Brownian (Gaussian) component, and a
jump component. Figure 7 shows sample paths from four different types of Levy
processes.

The forbidden interval results of Theorems 7 and 8 below show that a broad
class of additive white Levy noise [27] with finite second moments can benefit a
wide range of noisy feedback continuous and sensory spiking neuron models of the
general form

dXt = b(Xt−)dt + c(Xt−)dLt (21)

Yt = g(Xt) . (22)

Here c(Xt−) is a bounded Levy diffusion term, dLt is a white Levy noise with noise
scale κ , and b(Xt−) is a Lipschitz continuous drift term that has the additive net
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Fig. 7 Sample paths from one-dimensional Levy processes: (a) Brownian motion with drift μ =
0.1 and variance σ = 0.15, (b) jump diffusion with μ = 0.1, σ = 0.225, Poisson jump rate λ = 3,
and uniformly distributed jump magnitudes in the interval [−0.2,0.2] (and so with Levy measure
ν(dy) = (3/0.4)dy for y ∈ [−0.2,0.2] and zero else in [27]]), (c) normal inverse Gaussian (NIG)
process with parameters α = 20, β = 0, δ = 0.1, and μ = 0, (d) infinite-variance α-stable process
with α = 1.9 and dispersion κ = 0.0272 (μ = 0, σ = 0, and ν(dy) is of the form k

|y|1+α dy [27])

excitatory or inhibitory input forcing signal St—either s1 or s2. The neuron feeds
its activation or membrane potential signal Xt back to itself through the drift term
b(Xt−) and emits the (observable) thresholded or spike signal Yt as output. Here g is
a static transformation. We use the threshold g(Xt) = 1 if Xt > 0 and zero else for
continuous neuron models. We use a related threshold g in spiking neuron models
where g determines the spike occurrence. The drift term b(Xt−) is −Xt− + f (Xt−)
+St for continuous neuron models where the neuronal signal function f (x) in-
cludes common signal functions such as the logistic, bistable, linear-threshold, and
Gaussian or “radial basis” [16]. The drift term b(Xt−) of sensory spiking neurons in-
cludes popular spiking neuron models such as the FitzHugh-Nagumo (FHN) model,
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the leaky integrate-and-fire model, and the reduced Type I neuron model. There ex-
ist θ1 and θ2 for continuous neuron models such that the input St is subthreshold
when θ1 ≤ s1 < s2 ≤ θ2 while there exists B for spiking neuron models such that
St is subthreshold when St < B. The values of θ1, θ2, and B depend on the model
parameters.

Equation (21) is shorthand for the system of stochastic differential equations

dXi
t = bi(Xt−)dt +

m

∑
j=1

ci
j(Xt−)dL j

t for i = 1, ..,d (23)

with initial condition Xi
0. Here Xt = (X1

t , ...,Xd
t )′, b(Xt) = (b1(Xt), ...,bd(Xt))′, and c

is a d ×m matrix with rows ci(Xt) = (ci
1(Xt), ...,ci

m(Xt)). The functions bi: R
d → R

are locally or globally Lipschitz measurable functions. The functions ci
j: R

d → R

are bounded globally Lipschitz measurable functions such that |ci
j|2 ≤ Hi

j ∈ R
+.

The L j
t terms are independent Levy processes for j = 1, ...,m.

Levy noise has advantages over standard Gaussian noise in neuron models de-
spite its increased mathematical complexity. A Levy noise model more accurately
describes how the neuron’s membrane potential evolves than does a simpler diffu-
sion model because the more general Levy model includes not only pure-diffusion
and pure-jump models but jump-diffusion models as well. Neuron models with ad-
ditive Gaussian noise are pure-diffusion models. These neuron models rely on the
classical central limit theorem for their Gaussian structure and thus they rely on
special limiting-case assumptions of incoming Poisson spikes from other neurons.
These assumptions require at least that the number of impinging synapses is large
and that the synapses have small membrane effects due to the small coupling coeffi-
cient or the synaptic weights [11]. The Gaussian noise assumption may be more
appropriate for signal inputs from dendritic trees because of the sheer number
of dendrites. But often fewer inputs come from synapses near the post-synaptic
neuron’s trigger zone and these inputs produce impulses in noise amplitudes be-
cause of the higher concentration of voltage-sensitive sodium channels in the trig-
ger zone [13]. Engineering applications also favor the more general Levy model
because physical devices may be limited in their number of model-neuron connec-
tions and because real signals and noise can often be impulsive. Adding Levy noise
to enhance faint signals could apply to a variety of signal and image processing
problems that include low-light imaging in satellites and other sensor devices, night
vision, artificial vision and olfaction, neural prosthetics, infrared imaging, impulsive
signal detection, and some types of pattern recognition.

Theorems 7 and 8 below generalize the forbidden interval Theorem 6 for con-
tinuous and sensory spiking neuron models [26] to a broad class of Levy noise that
may depend on the neuron’s membrane potential. The next two forbidden interval
theorems require the following Ito-theoretic lemma and corresponding limitation
that the Levy process have finite second moments [27].

Lemma. Let bi : R
d → R and ci

j : R
d → R in (23) be measurable functions that

satisfy the respective local and global Lipschitz conditions
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‖bi(z)−bi(y)‖ ≤ Cn‖z− y‖ when ‖z‖ ≤ n and ‖y‖ ≤ n (24)

‖ci
j(z)− ci

j(y)‖ ≤ K1‖z− y‖ for all z and y ∈ R
d (25)

and |ci
j|2 ≤ Hi

j for i = 1, ...,d and j = 1, ...,m. (26)

Suppose dXt = b(Xt)dt +c(Xt−)dLt and dX̂t = b(X̂t)dt where dLt is a Levy noise
with μ = 0 and finite second moments. Then for every T ∈ R

+ and for every ε > 0:

E[ sup
0≤t≤T

‖Xt − X̂t‖2 > ε] → 0 as σ j → 0 and ν j → 0 for all j = 1, ...,m, (27)

and hence

P( sup
0≤t≤T

‖Xt − X̂t‖2 > ε) → 0 as σ j → 0 and ν j → 0 for all j = 1, ...,m (28)

since mean-square convergence implies convergence in probability.

Theorem 7. Suppose that the continuous neuron models of the form (21) and (22)
have a bounded globally Lipschitz Levy diffusion term c(Xt−)≤H and that the addi-
tive Levy noise has drift velocity μ . Suppose also that the input signal S(t) ∈ {s1,s2}
is subthreshold: θ1 ≤ s1 < s2 ≤ θ2 and that there is some statistical dependence be-
tween the input random variable S and the output spike-rate random variable R so
that I(S,R) > 0. Then such continuous neuron models exhibit the nonmonotone SR
effect in the sense that I(S,R) → 0 as the Levy noise parameters σ → 0 and ν → 0
if θ1 − s1 ≤ Hμ ≤ θ2 − s2.

Theorem 8. Suppose that the spiking neuron models of the form (21) and (22) have
a locally Lipschitz drift term b(Xt−) and a bounded globally Lipschitz Levy diffusion
term c(Xt−) ≤ H. Suppose also that the additive Levy noise has drift velocity μ and
that the input signal S(t) ∈ {s1,s2} is subthreshold: S(t) < B. Suppose there is some
statistical dependence between the input random variable S and the output spike-
rate random variable R so that I(S,R) > 0. Then such spiking neuron models exhibit
the SR effect in the sense that I(S,R)→ 0 as the Levy noise parameters σ → 0 and
ν → 0 if Hμ < B− s2.

These forbidden interval theorems still require that the Levy process have a finite
second moment. Simulations show that often we can drop this condition in the case
of infinite-variance stable processes and still produce an SR noise benefit [27]]. But
it is an open question whether some form of forbidden interval theorem holds for
more general Levy diffusions.
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