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Abstract—We can combine expert knowledge by combining
the probability mixtures that represent the if-then rules of the
experts. Fuzzy rules define a generalized probability mixture
whose moments describe a fuzzy system and its uncertainty.
The mixture’s Bayesian structure gives a complete posterior
probability description of the if-then fuzzy-set rules as they fire. A
new theorem extends the uniform convergence of a fuzzy system’s
mixture to the uniform convergence of the sequence of expert
mixtures that represent any number of combined fuzzy systems
as they each converge to a target function. A mixture of just two
normal bell curves exactly represents the target function in the
scalar case and serves as the probabilistic target of the converging
mixture sequence. A sampled deep neural network can serve as
the target function. Then the mixture defines a proxy system
that gives a probabilistic form of explainable AI. The uniform
convergence result extends to any continuous transformation of
the converging fuzzy systems and further extends to the uniform
mixture convergence of any continuous function of the combined
systems and their continuous transformations.

Index Terms—probability mixtures, fuzzy systems, XAI, com-
bined systems, Bayesian rule posteriors, uniform convergence

I. MIXTURE REPRESENTATIONS OF COMBINED FUZZY
SYSTEMS FOR Probabilistic XAI

A core epistemic problem of artificial intelligence is knowl-
edge combination [1]–[7]: How do we combine the knowledge
of experts? Do we just combine or average what the experts
say? Or can we somehow combine what they know?

This paper models combining what experts know by com-
bining the express or implied if-then fuzzy rules that ap-
proximate the input-output behavior of the experts. We then
prove that generalized probability mixtures represent com-
bined fuzzy systems: The mixtures converge uniformly to the
mixture that represents some target function when each of
the combined fuzzy system converges to that target function.
This result gives a complete probabilistic description of the
fuzzy systems and of the combined system. The target function
can be a sampled trained neural network or other function
approximator or a sampled closed-form equation.

Figures 1 and 2 display some of this probabilistic de-
scription for lone and combined fuzzy systems. Figure 1
shows the three probability mixture surfaces p1(y|x), p2(y|x),
and p3(y|x) of the respective fuzzy systems F 1, F 2, and
F 3 after each adaptive fuzzy system F kn has converged to
the same sampled target function f(x) = sin(x). Fuzzy
system F 1 contains 10 if-then rules RA1

1→B1
1
, . . . , RA1

10→B1
10

with Gaussian if-part fuzzy sets A1
j ⊂ Rn. Fuzzy system

F 2 contains 15 Gaussian rules RA2
j→B2

j
. Fuzzy system F 3

contains 10 sinc rules RA3
j→B3

j
where the 10 if-part sets A3

j

have sinc or Shannon-wavelet form sinc(x) = sin(x)
x . The

fourth mixture p(y|x) corresponds to the converged combined
fuzzy system F that combines F 1, F 2, and F 3 by combining
their throughputs or rules rather than by just averaging their
outputs as with random forests [8]–[10]. Convergence of the
lone systems F kn to the target f drives the convergence of their
mixtures pkn(y|x) to pk(y|x). This drives the convergence of
the master mixture pn(y|x) of the combined system Fn.

Figure 2 shows some of the Bayesian rule and subsystem
posteriors for the 3 fuzzy systems F 1, F 2, and F 3 and their
combined system F . The posteriors pk(j|x, y) describe the
relative firings of all rules for each input x and observed output
y. A higher-level posterior p(k|x, y) describes the relative
importance of each fuzzy subsystem F k to the combined fuzzy
system F for each input x.

These mixture-based probability descriptions give a new
form of explainable AI (XAI) [11]–[14] that we here call
probabilistic XAI. The description includes Bayesian posterior
probabilities over both the combined fuzzy systems F k and
over their rules and over their conditional variances and other
higher moments. This information can help prune some of the
combined fuzzy systems or their rules and may suggest other
systems to add to the combination [15]. Combining fuzzy
systems can improve classification performance [16] just as
combining randomly generated trees can reduce variance and
improve other statistical measures [9]. Simulations likewise
showed that combined fuzzy systems tended to give better
performance than did their lone subsystems.

II. HOW COMBINED FUZZY SYSTEMS DEFINE
GENERALIZED PROBABILITY MIXTURES

Suppose the fuzzy system F : Rn → Rp combines q
fuzzy systems F 1, . . . , F q . The simplest way to combine the
systems is to combine their outputs through a fixed-weight
average: F = 1

n

∑1
k=1 F

k. This average is a special case of a
generalized convex combination of subsystem outputs:

F (x) =

q∑
k=1

λk(x)F k(x) (1)
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Fig. 1: Probability mixture pk(y|x) = pk1(x) pBk
1
(y|x)+· · ·+pkmk

(x) pB
mk

k

(y|x) surfaces of 3 converged additive fuzzy systems F 1, F 2, and

F 3 and the converged mixture surface of the fuzzy system F that combined these three fuzzy systems with throughput combination. The adaptive
fuzzy systems F k

n and Fn converged quickly to the same sampled target function f(x) = sin(x) on a 2π segment of its domain. The average
of each mixture surface gives back the target f : E[Y |X = x] = sin(x). (a) Mixture p1(y|x) of the converged 10-rule Gaussian additive fuzzy
system F 1. (b) Mixture p2(y|x) of the converged 15-rule Gaussian additive fuzzy system F 2. (c) Mixture p3(y|x) of the converged 10-rule sinc
fuzzy system F 3 where the scalar if-part fuzzy sets A3

j have the wavelet form sinc(x) = sin(x)
x

. (d) Mixture p(y|x) of the throughput-combined
fuzzy system F that combined F 1, F 2, and F 3 by combining their throughputs or rules rather than by averaging their outputs.

for generalized convex coefficients λk that depend on the input
vector x: λk(x) ≥ 0 and λ1(x) + · · · + λq(x) = 1 for all x.
The arithmetic mean results when λk(x) = 1

n for all k and all
x. A more powerful way to combine fuzzy systems combines
their throughputs or rules before averaging per (33) - (43). The
theorems below apply to both types of combination. Figures 1
and 2 show a fuzzy system F that uses throuput combination
to combine the additive fuzzy systems F 1, F 2, and F 3.

The kth additive fuzzy system F k combines mk rules
RAk

1→Bk
1
, . . . , RAk

mk
→Bk

mk
through some knowledge combi-

nation operator Ck: F k = Ck(RAk
1→Bk

1
, . . . , RAk

mk
→Bk

mk
). We

use an additive Ck throughout. The jth if-then rule RAk
j→Bk

j

of F k associates the jth if-part fuzzy set Akj ⊂ Rn to the
jth then-part fuzzy set Bkj ⊂ Rp. The associated sets Akj and
Bkj are fuzzy [17], [18] because their respective set indicator
functions akj and bkj are multivalued: akj : Rn → [0, 1] and
bkj : Rp → [0, 1].

The system F k adds the fired rule outputs bkj (y|x)
for input x. It then computes its output F k(x) as the
centroid or other average of these summed rule firings:
F k(x) = Centroid(Bk(y|x)). The fired rule sum bk(y|x) =
wk1b

k
1(y|x) + · · · + wkmk

bkmk
(y|x) uses the nonnegative rule

weights wkj ≥ 0 to weight the respective fired rule then-
parts bkj (y|x). It thereby weights the system’s stored jth
rule RAk

j→Bk
j

itself: RAk
j→Bk

j
(x) = wkj a

k
j (x)B

k
j and so

rAk
j→Bk

j
(x) = wkj b

k
j (y|x) = wkj a

k
j (x)b

k
j (y). Vector input x0

formally fires the jth rule RAk
j→Bk

j
when x0 as the vector delta

spike δ(x − x0) convolves with the rule function rAk
j→Bk

j
:

bj(y|x0) =
∫
Rn δ(x − x0) rAk

j→Bk
j
(x, y) dx =

∫
Rn δ(x −

x0) a
k
j (x) b

k
j (y) dx = bkj (y)

∫
Rn δ(x − x0) a

k
j (x) dx =

bkj (y) a
k
j (x0) by the sifting of the delta function. Almost all

fuzzy systems in practice have this additive form [19]–[22].
The fuzzy system F k gives rise to a generalized probability

mixture pk(y|x) so long as the combined fired then-part sets
are integrable and not negative. The mixture pk(y|x) mixes
mk generalized priors pkj (x) with mk likelihoods pkBj

(y|x):

pk(y|x) = pk1(x) pBk
1
(y|x) + · · ·+ pkmk

(x) pBk
mk

(y|x). (2)

The jth rule RAk
j→Bk

j
of the additive fuzzy system F k

corresponds to the jth mixed term pkj (x)pBk
j
(y|x) in the

sum. The mk prior probabilities pkj (x) are themselves convex
mixing weights for each input x.

The mixture result (2) follows from additivity and the
assumption that bk(y|x) ≥ 0 and not trivially equal to zero
and that its integral is finite. Then pk(y|x) = bk(y|x)∫

bk(y|x)dy
is a probability density function since pk(y|x) ≥ 0 and
pk(y|x) integrates to unity. The additive rule firings bk(y|x) =
wk1b

k
1(y|x) + · · · + wkmk

bkmk
(y|x) gives the result for the

standard-additive rule firing bkj (y|x) = akj (x)b
k
j (y) if akj (x) >



0 with then-part volume V kj =
∫
bkj (y)dy: pk(y|x) =∑mk

j=1

wk
j a

k
j (x)V

k
j∑mk

i=1 w
k
i a

k
i (x)V

k
i

bkj (y)

V k
j

=
∑mk

j=1 p
k
j (x)p

k
Bj

(y) with priors

pkj (x) =
wk

j a
k
j (x)V

k
j∑mk

i=1 w
k
i a

k
i (x)V

k
i

and likelihoods pkBj
(y) =

bkj (y)

V k
j

.
Putting this together gives the mixture result in (2):

pk(y|x) = bk(y|x)∫
bk(y|x)dy

=

∑mk

j=1 w
k
j b
k
j (y|x)∑mk

i=1 w
k
i

∫
bki (y|x)dy

(3)

=

mk∑
j=1

wkj a
k
j (x)V

k
j∑mk

i=1 w
k
i a
k
i (x)V

k
i

bkj (y)

V kj
=

mk∑
j=1

pkj (x)pBk
j
(y|x) .

(4)

The mixture sum (2) itself just states a generalized version
of the elementary theorem on total probability. So it implies a
rule-based Bayes theorem as a corollary. Suppose that vector
input x passes through fuzzy system F k and produces the
output scalar or vector y: y = F k(x). Then the posterior
probability pk(j|x, y) = P (RAk

j→Bk
j
|X = x, Y = y) gives

the probability or degree to which the kth fuzzy system’s jth
rule RAk

j→Bk
j

fires given the input x and output y:

pk(j|x, y) =
pkj (x) pBk

j
(y|x)

pk(y|x)
=

pkj (x) pBk
j
(y|x)∑m

l=1 p
k
l (x) pBk

l
(y|x)

. (5)

The Bayesian posterior (5) is a natural if unforeseen benefit
of the mixture structure. It describes a fuzzy system’s “gray
box” of parallel rules in a quantitative and principled way
because it gives an input-by-input and rule-by-rule description
of how the fuzzy system’s rule ensemble maps inputs to
outputs. Simulations confirmed what Figure 2 shows: Large-
rule fuzzy systems tend to fire only a small number of rules
to a nontrivial degree for a given input x.

The expectation or first moment of the mixture pk(y|x)
gives back the system F k itself:

F k(x) = Epk(y|x)[Y |X = x] =

∫
y pk(y|x)dy. (6)

This first-moment result follows from the structure of the
mixture pk(y|x) and so thereby avoids the earlier ad hoc
constructions of fuzzy systems as “fuzzifiers” that use output
centroids or other aggregation operations. The second moment
gives the system’s conditional variance V k[Y |X = x] as the
convex sum of then-part and interpolation uncertainties [23]:

V k[Y |X = x] =

mk∑
j=1

pkj (x) σ
2
Bk

j
+

mk∑
j=1

pkj (x) [c
k
j − F k(x)]2

(7)

for then-part set variance σ2
Bk

j
=
∫
(y − ckj )2pBk

j
(y) dy where

ckj is the centroid or raw first moment of the system F k’s jth

then-part set Bkj : ckj =

∫
y p

Bk
j
(y)dy

V k
j

.
Additive fuzzy systems are also universal function approx-

imators on compact sets [24], [25] just as are feedforward
neural networks with sigmoidal hidden units [26]–[28]. So
they can serve as proxy systems for sampled black boxes such
as trained neural classifiers or regressors if the user can control

the fuzzy system’s inherent exponential rule explosion and if
the learning laws are practical given the training samples taken
from the target black box.

Rule explosion is endemic because the rules form a graph
cover of the approximated target system f in the input-output
product space. Mixtures can ameliorate this problem in some
cases if the system draws its rules at random from a properly
trained mixture p(y|x) and thus if the system samples from
a virtual rule continuum for each input x. Then weighted
Monte Carlo can approximate the output F (x) because it is
an expectation [29].

III. UNIFORM CONVERGENCE OF MIXTURES THAT
REPRESENT OUTPUT -COMBINED FUZZY SYSTEMS

We start with the important special case of probability
mixtures that represent output-combined fuzzy systems F .

Suppose that each of the q fuzzy systems F kn converges
uniformly to the target function f . This convergence can
correspond to neural-like supervised or unsupervised learning
at discrete iterations n. So n indexes the family F kn of
fuzzy systems as it converges to f . Then for all ε > 0
there exists a positive integer nk0 such that for all n ≥ nk0 :
|F kn (x) − f(x)| < ε for all x. Uniform convergence entails
that the value nk0 does not depend on any given input value x.
This contrasts with pointwise convergence that does so depend.

We first prove as Lemma 1 that a generalized convex sum
of outputs Fn(x) =

∑q
k=1 λ

k(x)F kn (x) converges uniformly
to the same target function f for any such set of q generalized
convex coefficients λ1(x), . . . , λq(x).

Lemma 1: Uniform convergence of generalized convex sums:
The convexly combined system Fn converges uniformly to the
target function f if Fn(x) =

∑q
k=1 λ

k(x)F kn (x) and if the q
subsystems F 1

n , . . . , F
q
n converge uniformly to the same target

function f for any generalized convex coefficients λk(x) ≥ 0:∑q
k=1 λ

k(x) = 1 for each x.

Proof : Suppose that subsystem F kn converges uniformly to
the target function f . Pick any small ε > 0. Then there is some
positive integer nk0 such that for all n ≥ nk0 : |F kn (x)−f(x)| <
ε. Define n0 = max{n10, . . . , n

q
0}. Then for all k and for all

n ≥ n0: |F kn (x)− f(x)| < ε for all x. So

|Fn(x)− f(x)| = |
q∑

k=1

λk(x)F kn (x)−
q∑

k=1

λk(x)f(x)| (8)

≤
q∑

k=1

λk(x)|F kn (x)− f(x)| (9)

<

q∑
k=1

λk(x)ε = ε

q∑
k=1

λk(x) = ε (10)

for all x by the triangle inequality and because the q weights
λk(x) are convex and so λk(x) ≥ 0 and λ1(x)+· · ·+λq(x) =
1. So Fn converges uniformly to f . Q.E.D.

The same argument shows that Fn converges uniformly to
the mixed target functions

∑q
k=1 λ

kfk if each subsystem F kn
converges uniformly to a distinct target function fk.
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Fig. 2: Bayesian posteriors over the rules of the 3 separate additive fuzzy systems F k in Figure 1, over the 35 rules of the throughput-combined
fuzzy system F , and over its 3 combined fuzzy subsystems. Each converged fuzzy system closely approximated the sampled target function
sin(x). (a) Rule posterior p1(jth rule RA1

j→B1
j
|X = π, Y = 0) for the 10-rule Gaussian fuzzy system F 1 in Figure 1(a) when the input

X = x = π produced the observed output F 1(π) = 0. The 5th rule RA1
5→B1

5
fired by far to the highest degree when the input was π. (b) Rule

posterior p2(j|X = π, Y = 0) for the 15-rule Gaussian fuzzy system F 2 in Figure 1(b). The 7th and 8th rules RA2
7→B2

7
and RA2

8→B2
8

fired
to the highest degree. (c) Rule posterior p3(j|X = π, Y = 0) for the 10-rule sinc fuzzy system F 3 in Figure 1(c). The 5th rule RA3

5→B3
5

fired
by far to the highest degree. (d) Rule posterior p(j, k|X = π, Y = 0) for the 35 rules of the throughput combined system F in Figure 1(d). (e)
Subsystem posterior p(k|X = π, Y = 0) of F over its 3 subsystems F 1, F 2, and F 3 when input X = x = π produced the output F (π) = 0.
The 15-rule Gaussian-SAM subsystem F 2 contributed slightly more than did the other two subsystems F 1 and F 3 in this case. (f) Subsystem
posterior p(k|X = 1.5π, Y = 1) of F when input X = x = 1.5π produced F (1.5π) = 1.

The next convergence result is more complicated. It states
that the 2-bell-curve mixtures qn(y|x) that exactly represent
the combined fuzzy systems Fn converge uniformly to the
2-bell-curve mixture p(y|x) that exactly represents f if the
underlying fuzzy systems Fn converge uniformly to f .

This convergence result requires a basic inheritance fact
on uniform boundedness: A uniformly convergent sequence
of bounded functions is uniformly bounded. The fact follows
because we assume throughout that each fuzzy system F kn is
individually bounded for each k and each n as F kn converges
uniformly to the target function f . The function F kn is bounded

if there is a Bkn > 0 such that |F kn (x)| < Bkn for all x. This
will also imply that the target function f is itself bounded.
Suppose that F kn converges uniformly to f . So for all n ≥ n0:
|F kn (x) − f(x)| < ε

2 for all x. Then |F kn (x)| − |F kn0
(x)| ≤

||F kn (x)| − |F kn0
(x)|| ≤ |F kn (x) − F kn0

(x)| ≤ |F kn (x) −
f(x)| + |f(x) − F kn0

(x)| < ε
2 + ε

2 = ε. This bounds the tail:
|F kn (x)| < ε+|F kn0

(x)| < ε+Bkn0
for all x and all n ≥ n0. Put

B = 1+max{Bk1 , . . . , Bkn0
, ε+Bkn0

}. Then |F kn (x)| < B for
all n ≥ 1 and all x. So B uniformly bounds the fuzzy-system
sequence F kn . It also bounds the target function f because
|f(x)| ≤ |f(x)− F kn (x)|+ |F kn (x)| < ε

2 +B.



We use the recent exact mixture representation of any
bounded function f : Rn → R as a convex combination of
just 2 normal bell curves [23] centered at the infimum α and
the supremum of β in the general case when f is not constant
so that α < β:

p(y|x) = w(x)Nα(y|α, σ2
α) + (1− w(x))Nβ(y|β, σ2

β) (11)

for any variances σ2
α > 0 and σ2

β > 0. The generalized convex
weights w(x) and 1− w(x) are Watkins coefficients [30]:

w(x) =
β − f(x)
β − α

(12)

and thus 1 − w(x) = f(x)−α
β−α . Then the mixture average

Ep[Y |X = x] exactly represents the bounded function f :
Ep[Y |X = x] =

∫
y p(y|x) dy = (β−f(x)β−α )α + ( f(x)−αβ−α )β =

f(x) since integrating y against the normal bell curves gives
back the respective modes or centroids α and β. The two
mixed bell curves collapse to delta spikes at α and β when
their variances σ2

α and σ2
β shrink to zero. This limiting

case gives back the original Watkins deterministic two-rule
representation of f [30].

Define the 2-bell-curve mixture qkn(y|x) of the kth fuzzy
system F kn at iteration n of its convergence or learning:

qkn(y|x) = vkn(x)nαk(y) + (1− vkn(x))nβk(y) (13)

where we write nαk(y) = Nαk(y|αk, σ2
αk) and nβk(y) =

Nβk(y|βk, σ2
βk) for the two normal probability densities. The

mixtures use the Watkins coefficients vkn(x) =
βk−Fk

n (x)
βk−αk and

1 − vkn(x) =
Fk

n (x)−αk

βk−αk . The uniform boundedness of the
sequence {F kn} allows us to write αk ≤ F kn (x) ≤ βk for all
x. Again we assume that the fuzzy systems are not constant
and so αk < βk. Then F kn (x) = Eqkn [Y |X = x].

Define likewise the 2-bell-curve mixture qn(y|x) of the
combined fuzzy system Fn as

qn(y|x) = vn(x)nα(y) + (1− vn(x))nβ(y) (14)

where α = min{α1, . . . , αq} and β = max{β1, . . . , βq} and
so α < β. The Watkins mixing coefficients or priors are
vn(x) =

β−Fn(x)
β−α and 1− vn(x) = Fn(x)−α

β−α .
Lemma 2 states that the 2-bell-curve Gaussian mixtures

qn(y|x) are convex combinations of the individual 2-bell-
curve Gaussian mixtures qkn(y|x) if Fn convexly combines
the q fuzzy systems F kn with the same generalized convex
coefficients λk(x) for each x at iteration n.
Lemma 2: Convexity of Gaussian mixtures for mixed systems:

qn(y|x) =
q∑

k=1

λk(x) qkn(y|x) (15)

for any generalized convex coefficients λk(x) and for any x
if the system Fn convexly combines q bounded nonconstant
systems F kn : Fn(x) =

∑q
k=1 λ

k(x) F kn (x).

Proof : Use the 2-bell-curve mixtures (14) and (13) and the
convex combination Fn(x) =

∑q
k=1 λ

k(x) F kn (x) to give

qn(y|x) = vn(x)nα(y) + (1− vn(x))nβ(y) (16)

=
β − Fn(x)
β − α

nα(y) +
Fn(x)− α
β − α

nβ(y) (17)

=
1

β − α
[

q∑
k=1

λk(x)(β − F kn (x))nα(y)

+

q∑
k=1

λk(x)(F kn (x)− α)nβ(y)] (18)

=

q∑
k=1

λk(x) [vkn(x)nαk(y) + (1− vkn(x))nβk(y)]

(19)

=

q∑
k=1

λk(x) qkn(y|x) (20)

where α = min{α1, . . . , αq} and β = max{β1, . . . , βq} and
so α < β. Q.E.D.

Theorem 1 states the main theorem on the uniform con-
vergence of the 2-bell-curve mixture qn(y|x) that represents
the combined fuzzy system Fn as it converges to the 2-bell-
curve mixture p(y|x) that represents the target function f if
each convex-combined bounded fuzzy system F kn converges
uniformly to f . The proof uses a bound on the mixed normal
likelihoods nα(y) and nβ(y) in terms of their respective mode
values nα(α) and nβ(β):

|nα(y)− nβ(y)| ≤ max(nα(α), nβ(β)) (21)
< max(nα(α), nβ(β)) + 1 ≡ D (22)

for all y.

Theorem 1: Uniform Mixture Convergence of Convexly
Combined Bounded Fuzzy Systems.

The mixture sequence qn(y|x) in (14) of the combined fuzzy
system Fn converges uniformly to the 2-bell-curve mixture
p(y|x) in (11) of the target function f if each fuzzy system
F kn converges uniformly to f for any generalized convex
coefficients λk(x) for any x if the combined system Fn is
a convex combination of q bounded nonconstant systems F kn :
Fn(x) =

∑q
k=1 λ

k(x) F kn (x).

Proof : Suppose that the bounded fuzzy system F kn converges
uniformly to f for each k. Then the target function f inherits
the boundedness of F kn systems as shown above because the
convergence is uniform.

The uniform convergence of subsystem F kn means that for
all ε > 0 there is a positive integer nk0 such that for all n ≥ nk0 :
|F kn (x)−f(x)| <

β−α
D ε for all x. The finite constant D > 0 is

the bound in (22) on the difference of the mixed likelihoods
|nα(y) − nβ(y)| < D for all y. Define the positive integer
n0 as n0 = max{n10, . . . , n

q
0}. The theorem follows from this



bound and Lemma 2 and the definition of the 2-bell-curve
mixtures (12) - (13) because then for all n ≥ n0:

|qn(y|x)− p(y|x)| = |
q∑

k=1

λk(x)qkn(y|x)− p(y|x)| (23)

= |
q∑

k=1

λk(x)qkn(y|x)−
q∑

k=1

λk(x)p(y|x)| (24)

≤
q∑

k=1

λk(x)|qkn(y|x)− p(y|x)| (25)

=

q∑
k=1

λk(x)|[vkn(x)nα(y) + (1− vkn(x))nβ(y)]

− [w(x)nα(y) + (1− w(x))nβ(y)]| (26)

=

q∑
k=1

λk(x)

β − α
|(F kn (x)− f(x))nβ(y)

− (F kn (x)− f(x))nα(y)| (27)

=

q∑
k=1

λk(x)

β − α
|F kn (x)− f(x)||nβ(y)− nα(y)| (28)

<

q∑
k=1

λk(x)

β − α
|F kn (x)− f(x)|D (29)

<

q∑
k=1

λk(x)

β − α
β − α
D

εD (30)

= ε

q∑
k=1

λk(x) (31)

= ε (32)

because α = min{α1, . . . , αq} < β = max{β1, . . . , βq}
and because the coefficients λk(x) ≥ 0 are convex and
so
∑q
k=1 λ

k(x) = 1 for all x. So for all n ≥ n0 =
max{n10, . . . , n

q
0}: |qn(y|x) − p(y|x)| < ε holds both for all

x and for all y. So qn(y|x) converges uniformly to p(y|x).
Q.E.D.

The boundedness of the combined fuzzy systems F kn ex-
tends Theorem 1 to the far richer case of uniform convergence
of any continuously transformed system φk(F kn ) for any
continuous real function φk on the closed and bounded and
thus compact domain [−B,B] because then φk is uniformly
continuous [31]. So learning a given system F kn lets the user
thereby learn any φk(F kn ) as well [32]. This result also applies
to throughput combination of fuzzy subsystems F kn as we now
sketch. A result in analysis [33] further lets us take a contin-
uous function of any finite number of continuous functions
and still get a continuous function. So composition of these
continuous functions with the uniformly converging bounded
fuzzy systems still gives uniform mixture convergence of the
continuously transformed fuzzy systems.

IV. UNIFORM CONVERGENCE OF MIXTURES OF
THROUGHPUT -COMBINED FUZZY SYSTEMS

Uniform mixture convergence still holds for the throughput
combination of any finite number q of additive fuzzy systems

F 1, . . . , F q . We first review how the additive structure of the
fuzzy systems F 1

n , . . . , F
q
n leads to a simple convex structure

for the combined system Fn and its moments and its Bayesian
posteriors over its subsystems and over their rules. This
convex structure further lets us use Theorem 1 to prove the
uniform mixture convergence in the richer case of throughput
combination in Theorem 2 below.

Throughput combination combines the weighted rule firings
vkbk(y|x) of the q additive fuzzy systems F k and then com-
putes an output given a vector input x. Here the nonnegative
weights v1, . . . , vq weight the respective fuzzy subsystems
F 1, . . . , F q and may depend on x and on other parameters.
This gives the master rule firing b(y|x) of the throughput-
combined system F as

b(y|x) =
q∑

k=1

vkbk(y|x) =
q∑

k=1

mk∑
j=1

vkbkj (y|x) (33)

=

q∑
k=1

mk∑
j=1

vkwkj a
k
j (x)b

k
j (y) (34)

for standard additive fuzzy systems where input x fires the jth
rule RAk

j→Bk
j

of the kth subsystem Fk to degree bkj (y|x) =

wkj a
k
j (x)b

k
j (y) for rule weight wkj . Then the master mixture

p(y|x) of F has the convex form

p(y|x) = b(y|x)∫
b(y|x)dy

=

∑q
k=1

∑mk

j=1 v
kbkj (y|x)∑q

k=1

∑mk

j=1 v
k
∫
bkj (y|x)

(35)

=

q∑
k=1

mk∑
j=1

pkj (x)pBk
j
(y) (36)

where the local prior or generalized mixture weight pkj (x) is

pkj (x) =
vkakj (x) w

k
j V

k
j∑q

k=1

∑mk

l=1 v
kakl (x) w

k
l V

k
l

. (37)

Then the Bayesian posterior p(j, k|y, x) over the mk rules
RAk

j→Bk
j

of the kth combined fuzzy subsystem F k is

p(j, k|x, y) =
pkj (x)pBk

j
(y)

p(y|x)
(38)

=
pkj (x)pBk

j
(y)∑q

k=1

∑mk

j=1 p
k
j (x)pBk

j
(y)

. (39)

Marginalizing out the rule random variable gives the higher-
level subsystem posterior p(k|x, y) over the q subsystems
F 1, . . . , F q for the input x that produces output y = F (x):

p(k|x, y) =
mk∑
j=1

p(k, j|x, y) (40)

=

∑mk

j=1 p
k
j (x) p

k
Bj

(y|x)∑q
k=1

∑mk

j=1 p
k
j (x) p

k
Bj

(y|x)
. (41)

Figure 2 displays both the subsystem posterior p(k|x, y) and
the rule or telescoped posterior p(j, k|x, y) for the 3 combined
additive fuzzy systems in Figure 1. Further combining addi-
tively combined systems will give a new triple-summed master



mixture p(y|x) with triple-summed rule posterior p(j, k, l|x, y)
and so on for any finite number of hierarchically combined
additive fuzzy systems.

The throughput-combined fuzzy system F is just the first
moment of the master mixture p(y|x):

F (x) = Ep(y|x)[Y |X = x] =

∫
yp(y|x)dy (42)

=

q∑
k=1

mk∑
j=1

pkj (x)c
k
j (x). (43)

This throughput-combined fuzzy system F also arises through
the ad hoc technique of identifying the centroid of the
total rule firings b(y|x) with the output F (x): F (x) =
Centroid(B(y|x)) = Centroid(v1B1(y|x)+ · · ·+ vqBq(y|x)).
A telescoped second central moment or conditional variance
arises over the subsystems and here over the total set of rules:

V [Y |X = x] =

q∑
k=1

mk∑
j=1

pkj (x)σ
2,k
Bj(x)

+

q∑
k=1

mk∑
j=1

pkj (x)[c
k
j (x)− F (x)]2 . (44)

Theorem 2 shows that the uniform mixture approximation of
Theorem 1 still holds for the case of throughput combination.
The key idea of the proof is to reduce the throughput technique
to a new form of convex combination of the combined systems
F 1, . . . , F q: F (x) =

∑q
k=1 θ

k(x)F k(x). Now the mixture
sequence qn(y|x) in (14) has Watkins mixing coefficients
vn(x) and 1− vn(x):

vn(x) =
β − F (x)
β − α

and 1− vn(x) =
F (x)− α
β − α

(45)

for the throughput combined fuzzy system F in (43).

Theorem 2: Uniform Mixture Convergence of Throughput
Combined Bounded Fuzzy Systems.

The 2-bell-curve mixture sequence qn(y|x) in (45) of the
throughput combined fuzzy system Fn in (43) converges uni-
formly to the 2-bell-curve mixture p(y|x) in (11) of the target
function f if each bounded nonconstant fuzzy system F kn
converges uniformly to f .

Proof : Suppose that each bounded nonconstant fuzzy sys-
tem F kn converges uniformly to f for each k. The result
follows from Theorem 1 if we can write the throughput
combined fuzzy system Fn as some convex combination
F (x) =

∑q
k=1 θ

k(x)F k(x) of the q fuzzy subsystems F kn .
The proof trick is a new normalization. Rewrite the

master mixture p(y|x) in (35) of the throughput-combined
fuzzy system F (and thus of Fn for a sequence index

n) as the equivalent subsystem-level convex sum p(y|x) =∑q
k=1 θ

k(x)pk(y|x):

p(y|x) =
∑q
k=1 v

kbk(y|x)∑q
k=1

∫
vkbk(y|x)dy

(46)

=

∑q
k=1

∫
vkbk(y|x)dy

[ vkbk(y|x)∫
vkbk(y|x)dy

]∑q
k=1

∫
vkbk(y|x)dy

(47)

=

∑q
k=1

∫
vkbk(y|x)dy∑q

l=1

∫
vlbl(y|x)dy

pk(y|x) (48)

=

q∑
k=1

θk(x)pk(y|x) . (49)

Now the priors or convex coefficients θk(x) are

θk(x) =

∫
vkbk(y|x)dy∑q

l=1

∫
vlbl(y|x)dy

. (50)

So the generalized subsystem likelihoods pk(y|x) are

pk(y|x) = vkbk(y|x)∫
vkbk(y|x)dy

=
bk(y|x)∫
bk(y|x)dy

(51)

for any subsystem weight vk > 0 since vk does not depend
on y. The kth subsystem F k is just the conditional mean
Epk(y|x)[Y |X = x] with respect to the likelihood pk(y|x).
Then taking expectations with respect to p(y|x) at iteration n
gives Fn(x) =

∑q
k=1 θ

k(x) F kn (x). The result follows from
Theorem 1 by putting θk(x) = λk(x) for all k and all x. So
qn(y|x) converges uniformly to p(y|x). Q.E.D.

The new convex coefficient θk(x) in (50) sums all the kth
subsystem’s priors pkj (x) in F k:

θk(x) =
vk
∫
bk(y|x)dy∑q

l=1 v
l
∫
blj(y)dy

(52)

=
vk
∑mk

j=1 a
k
j (x)w

k
j

∫
bkj (y)dy∑q

l=1 v
l
∑ml

i=1 a
l
i(x)w

l
i

∫
bli(y)dy

(53)

=

mk∑
j=1

vkakj (x)w
k
j V

k
j∑q

l=1

∑ml

i=1 v
lali(x)w

l
iV

l
i

(54)

=

mk∑
j=1

pkj (x) (55)

from (37). So the new convex weight θk(x) contains the
complete rule-throughput information of F 1, . . . , F q after all
even though it simply weights the kth lone subsystem mixture
pk(y|x) in the master mixture p(y|x): F (x) =

∫
yp(y|x)dy =∑1

k=1 θ
k(x)

∫
ypk(y|x)dy =

∑q
k=1 θ

k(x)F k(x).
The convex weights θk in (54) also show that throughput

combination defines q meta-rules RF 1

X→Y , . . . ,RF
q

X→Y . The
output F (x) combines the q total rule firings per subsystem
through the q convex mixing weights θk(x) = Ak(x)∑q

i=1Ai(x)
if

Ak =
∑mk

j=1 v
kakj (x)w

k
j V

k
j . So θk(x) describes how x fires

the kth meta-rule RFk

X→Y in direct ratio analogy to how the
lone mixing weight pkj (x) describes how x fires the jth rule
RAk

j→Bk
j

in F k.



V. CONCLUSIONS

Combining q fuzzy systems F 1, . . . , F q can often improve
how well the combined rule-based system F approximates a
sampled target function f . The target function f can be a
trained deep neural classifier or any other source of represen-
tative input-output training data for the adaptive fuzzy systems.

The mk if-then rules RAk
j→Bk

j
of a given fuzzy system F k

define a generalized probability mixture pk(y|x) that gives
back the system F k as its first moment and whose higher
moments describe the inherent uncertainty of the rule-based
system.

The rules of any number q of fuzzy systems F k define
a higher-order probability mixture p(y|x) that describes both
the q individual subsystems F k and the performance of each
of their rules. The combination technique scales because
ultimately mixing mixtures produces a new mixture. The older
min-max fuzzy systems do not produce a probability mixture
because they lack the needed additive structure.

Uniform convergence of the combined systems gives uni-
form convergence of both their direct mixtures and the mixture
that describes the combined system. It also gives uniform
convergence of the combined system’s two-normal-curve mix-
tures. This gives in turn the uniform convergence of the
mixtures that describe their continuous transformations. That
holds because the boundedness of each combined fuzzy system
gives uniform boundedness of the sequences of fuzzy systems
and that gives uniform continuity of the transformations.
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