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Abstract. The probability mixture structure of additive fuzzy systems
allows uniform convergence of the generalized probability mixtures that
represent the if-then rules of one system or of many combined systems. A
new theorem extends this result and shows that it still holds uniformly for
any continuous function of such fuzzy systems if the underlying functions
are bounded. This allows fuzzy rule-based systems to approximate a far
wider range of nonlinear behaviors for a given set of sample data and still
produce an explainable probability mixture that governs the rule-based
proxy system.

1 Rule-Based Probability Mixtures and XAI

A new convergence theorem extends the scope of probabilistic mixture descrip-
tions of fuzzy and other function approximators.

The new theorem shows that the uniform convergence of fuzzy rule-based
approximators Fn carries over to their representing probability mixtures qn(y|x)
for any continuous function φ of the fuzzy systems. So Fn → f uniformly for some
bounded target function f implies not only that φ(Fn) → φ(f) uniformly. It also
implies that qn(y|x) → pφ(y|x) uniformly where now the Gaussian probability
mixture qn(y|x) exactly represents φ(Fn) on average and where the Gaussian
mixture pφ(y|x) exactly represents φ(f) on average. Both Gaussian mixtures
mix just two normal bell curves as in Fig. 1.

The mixture convergence theorem allows the same trained fuzzy system to
model a much wider range of functions from the same training data while still
using the explainability structure of the governing probability mixtures. These
continuous functions can include norms and functions of norms and many other
functions of the outputs of neural networks or other black-box approximators.

The converging mixtures track the convergence of the underlying fuzzy rule-
based systems. Each additive fuzzy system Fn sums and averages its m fired
if-then rules RA1→B1 , . . . , RAm→Bm

for each vector input x. The jth rule asso-
ciates the then-part fuzzy set Bj with the if-part fuzzy set Aj . The fuzzy sys-
tem’s corresponding governing probability mixture pn(y|x) mixes m rule like-
lihood probabilities pBj

(y|x) with m convex mixing weights or prior densities
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pj(x): pn(y|x) = p1(x)pB1(y|x) + · · · + pm(x)pBm
(y|x) [12]. The fuzzy systems

Fn can converge to some sampled neural classifier or to any other black-box
approximator.

The structured fuzzy system F acts as a proxy system for the otherwise
inscrutable neural black box. The fuzzy proxy system’s m rules RAj→Bj

are
inherently modular and their mixture structure further gives a statistical expla-
nation of their operation. The proxy system can also combine q-many fuzzy
systems F 1, . . . , F q and each of these subsystems has its own mixture and its
own rules.

The mixture structure endows both the fuzzy proxy system and the underly-
ing sampled black box with a form of XAI or explainable AI [1,22,24,25]. This
probabilistic description gets more accurate as the fuzzy system Fn at iteration n
converges to the sampled neural network N . The probability description includes
a complete Bayesian posterior probability p(j|y, x) over the rules for each input
x that fires the system. It also includes the higher-order moments such as the
conditional variance that describes the system’s uncertainty based on what the
system has learned and based on which of the if-then rules the current input x
fired.

The uniform convergence of additive fuzzy systems [9,10,15] lets the sequence
of fuzzy systems Fn converge to or near a sufficiently sampled neural network.
Uniform convergence lets the user pick an error tolerance level ε in advance that
holds for all inputs x. Feedforward multilayer neural classifiers are bounded. Both
such classifiers and neural regressors can also uniformly approximate continuous
functions on compact sets if their hidden units are sigmoidal [2,8] or in some
cases even if they are quasi-linear [4].
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Fig. 1. Gaussian 2-bell-curve mixture representation for the continuously transformed
target function f(x) = sin(x): φ(f(x)) = sin2(x). The generalized Gaussian mixture
is pφ(y|x) = wφ(x)Nαφ(y|αφ, σ2

α) + (1 − wφ(x))Nβφ(y|βφ, σ2
β) from (9) where αφ =

infx∈X φ(f(x)) = 0 and βφ = supx∈X φ(f(x)) = 1. The first panel shows the mixture
surface whose average is sin2(x): Epφ [Y |X = x] = sin2(x). The second panel shows the
two bell-curve likelihoods centered at αφ and βφ. The purple curve shows the particular
Gaussian mixture p(y|.51) that results if the input is x = .51.

Figure 1 shows the mixture surface and the two mixed Gaussian bell curves
that exactly represent the continuously transformed target function φ(f(x)) =
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f2(x) = sin2(x) on average. The figure reflects the representation result in The-
orem 1. Mixing two normal bell curves gives a generalized probability mix-
ture pφ(y|x) such that φ(f(x)) equals the conditional mean Epφ

[Y |X = x]
with respect to pφ(y|x) if the function f is bounded and φ is continuous:
Epφ

[Y |X = x] = sin2(x). The two mixed likelihood bell curves correspond
roughly to the two then-part sets of a two-rule additive fuzzy system. This
holds exactly when the bell-curve variances converge to zero and thus the nor-
mal densities converge to Dirac delta pulses centered at the set centroids. This
limiting case reflects the older practice of picking then-part sets as spike centered
at centroids.

Figures 2 and 3 illustrate the convergence result in Theorem 2. Figure 3 shows
the mixture surfaces that represent 3 different transformed 20-rule fuzzy systems.
Each fuzzy system approximates the transformed target function f2(x) = sin2(x)
after the fuzzy systems have converged. The 20 rules RA1→B1 , . . . , RA20→B20

in each system correspond to the 20 mixed likelihood probabilities pBj
in each

system’s controlling mixture p(y|x) = p1(x)pB1(y)+ · · ·+p20(x)pB20(y). Figure 2
shows what the 2-bell-curve mixture qn(y|x) of each converging fuzzy system Fn

in Fig. 2 looks like after n = 4, 000 epochs of supervised learning. The 3 types of
if-part fuzzy sets require 3 different supervised learning laws [11,16,19]. Figure 4
shows the Bayesian rule-posterior histograms for 4 different inputs to the 20-rule
Gaussian fuzzy system in Fig. 3.

Figure 5 shows how randomly sampling from the Gaussian fuzzy system’s
trained 2-bell-curve mixture p(y|x) can reproduce the transformed target func-
tion sin2(x) through Monte Carlo averaging. This amounts to drawing a finite
number of new if-then rules for each input x from a virtual rule continuum [12].
The rule histograms in Fig. 4 show that only a few of the stored or virtual rules
fire for a given input x. This helps reduce the sampling costs of Monte Carlo
averaging in high dimensions.

The next section presents the basic mathematical facts of the mixture app-
roach to rule-based systems.

2 Probability Structure of Additive Fuzzy Rule-Based
Systems

The new mixture convergence theorem exploits the fact that a generalized prob-
ability mixture p(y|x) of just two Gaussian bell curves can exactly represent any
bounded real function f as the average of the mixture: f(x) = E[Y |X = x] for
all x [12,13]. The conditional expectation E[Y |X = x] integrates or sums with
respect to the conditional Gaussian mixture p(y|x):

p(y|x) = w(x)N(y|α, σ2
α) + (1 − w(x))N(y|β, σ2

β) (1)

for normal probability density N(y|α, σ2
α) with mean or location α and with any

positive variance σ2
α > 0 and likewise for N(y|β, σ2

β).
The normal densities are likelihoods. The convex mixing weights w(x) and

1 − w(x) are priors or Watkins coefficients [11,26]. The mixing weights depend on
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Fig. 2. Two-bell-curve Gaussian mixture representation of 3 adaptive fuzzy systems
after they have converged to the sampled continuously transformed bounded target
function φ(f(x)) = sin2(x) Each fuzzy approximator used 20 rules but the mixture
plots in panel (b) mixed just two Gaussian bell curves to produce the mixture density
qn(y|x) whose average appears in panel (a). The plots show the mixtures and their
averages after n = 4, 000 epochs of supervised learning. The convergence plots illustrate
the qn(y|x) convergence result in Theorem 2.

the input vector x through the bounded target function f with distinct bounds
α ≤ f ≤ β:

w(x) =
β − f(x)
β − α

. (2)

So the dual mixing weight is 1 − w(x) = f(x)−α
β−α .

The mixture p(y|x) is generalized because it depends on the input x. Ordi-
nary mixtures p(y) combine likelihoods that do not depend on x and that have
constant convex mixing weights that also do not depend on x. The likelihoods
can also depend on x but often do not in practice as we discuss below. The mix-
ing weights always depend on x. The 2-bell-curve Gaussian mixture p(y|x) in (1)
gives an efficient way to represent a fuzzy or neural approximator and still have
access to the mixture’s XAI moment and Bayesian structure [13,20]. Figure 1
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shows the mixture representation pφ(y)|x) of the square of the target function
f(x) = sinx. The square-transformed function φ(f) composes the continuous
square function φ with f to give (φ ◦ f)(x) = φ(f(x)) = sin2 x.

(a) 20 Sinc rules (b) 20 Gaussians rules

(c) 20 Laplacian rules.

Fig. 3. Mixture representations for the 3 adaptive fuzzy approximators φ(Fn) in Fig. 2
as they learned the continuously transformed target function φ(f(x)) = sin2(x). Each
fuzzy approximator Fn(x) used 20 rules and so their governing mixtures pn(y|x) each
mixed 20 normal likelihoods with 20 convex mixing weights: pn(y|x) = p1(x)pB1(y) +
· · ·+p20(x)pB20(y). The panels show each generalized mixture pn(y|x) after n = 4, 000
epochs of learning.

This paper restricts the additive fuzzy systems to the important special case
of SAMs or standard additive model fuzzy systems. Almost all fuzzy systems in
practice are not just additive systems but are SAMs [5,11,18]. Older non-additive
(min-max) fuzzy systems [3,23] do not give rise to a rule mixture.

SAMs scale rules to fire them. The input pattern vector x fires a SAM fuzzy
system’s if-then rule RAj→Bj

by scaling the then-part fuzzy set Bj by the degree
aj(x) to which x belongs to the corresponding if-part fuzzy set Aj . The jth rule
RAj→Bj

has the if-part fuzzy set Aj ⊂ R
n with membership or multivalued

indicator function aj : Rn → [0, 1] so that aj(x) = Degree(x ∈ Aj). The rule has
the corresponding then-part fuzzy set Bj ⊂ R with membership function bj :
R → [0, 1]. Then the jth fired then-part set Bj(x) has SAM-scaled membership
function bj(y|x) = aj(x)bj(y).

The additive system’s total output set B(y|x) sums and weights the m fired
rule then-part sets B1(x), . . . , Bm(x) for respective nonnegative rule weights
w1, . . . , wm. The weights wj may depend on x or on other quantities in some
applications. Then normalized rule firings define a generalized probability mix-
ture [12] because we assume that the then-part set functions are nonnegative
and integrable:
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p(y|x) =
b(y|x)

∫
b(y|x)dy

=
m∑

j=1

wjaj(x)Vj∑m
k=1 wkak(x)Vk

bj(y)
Vj

=
m∑

j=1

pj(x)pBj
(y) (3)

with finite then-part set volume Vj =
∫

bj(y|x)dy > 0 and convex mix-
ing weights or priors pj(x) = wjaj(x)Vj∑m

k=1 wkak(x)Vk
. The SAM rule-firing scaling

bj(y|x) = aj(x)bj(y) gives the likelihood as pBj
(y|x) = pBj

(y). Then the fuzzy
system’s output F (x) is just the first noncentral moment of p(y|x) and thus the
output F (x) is a convex combination of the rule then-part set centroids cj :

F (x) = E[Y |X = x] =
∫

y p(y|x) dy =
m∑

j=1

pj(x)cj (4)

where cj =
∫

ypBj
(y)dy. A conditional variance V [Y |X = x] likewise describes

the fuzzy system’s second-order uncertainty for each input x.
Figure 3 shows the 3 20-rule mixture surfaces pn(y|x) that encode the squared

target function φ(f(x)) = sin2 x for 3 different adaptive additive fuzzy systems
based on 3 different types of rule if-part fuzzy sets: sinc, Gaussian, and Laplacian
fuzzy sets. Random samples from the target function tune these parametrized
sets along with other rule parameters [11]. The 2-bell-curve mixture compresses
this system information in a multi-rule mixture into a simpler mixture qn(y|x)
that can in turn mix with other such mixtures. Figure 2 shows this compression
as the 2-bell-curve representations of the three converging fuzzy systems each
approach the direct 2-bell-curve representation in Fig. 1.

The fuzzy system’s governing mixture p(y|x) itself states a form of the basic
theorem on total probability. So it gives rise at once to a Bayesian posterior
distribution p(j|y, x) over the fuzzy system’s m rules RAj→Bj

:

p(j|y, x) = p(RAj→Bj
|y, x) =

pj(x) pBj
(y|x)

p(y|x)
=

pj(x) pBj
(y|x)

∑m
k=1 pk(x) pBk

(y|x)
. (5)

The rule posterior p(j|y, x) gives a complete description of the relative impor-
tance of each rule for each input x and observed output value y = F (x). It is a
powerful XAI tool that earlier rule-based systems simply ignored. Figure 4 shows
the rule-posterior histograms for the 20-rule Gaussian fuzzy systems in Figs. 2
and 3 for 4 different inputs x after n = 4, 000 epochs of supervised learning from
the target function. This Bayesian posterior description becomes still more pow-
erful when an adaptive fuzzy system approximates a neural black box because
then the rule posterior gives a proxy posterior over the inner workings of the
approximated black box. An additive fuzzy system can uniformly approximate
any continuous (or bounded) target function on a compact domain [10,15]. This
holds in practice if the fuzzy system trains with enough samples from the target
function.

The posterior structure holds at a meta level if the fuzzy system F combines
the rule throughputs of q fuzzy subsystems F 1, . . . , F q. Then the meta-level pos-
terior p(k|y, x) describes the relative firing of the q systems for each input x and
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Fig. 4. Bayesian rule posteriors for the adaptive Gaussian fuzzy system in Figs. 2 and 3.
The transformed fuzzy system φ(Fn) at iteration n used Gaussian if-part fuzzy sets for
its 20 rules. The panels show the posterior p(j|y, x) after n = 4, 000 epochs of learning
for 4 different input-output pairs (x, y). The posterior histograms show that just one
rule contributed the most to the fuzzy system’s rule-interpolated output φ(Fn(x)).
Most rules do not fire for a given input.

observed combined output y. The sub-level posterior p(j, k|y, x) describes the
relative rule firings of the mk rules in the kth combined fuzzy system F k:

p(j, k|y, x) =
pk

j (x)pBk
j
(y)

∑q
k=1

∑mk

j=1 pk
j (x)pBk

j
(y)

(6)

for the meta-level combined generalized mixture p(y|x):

p(y|x) =
q∑

k=1

mk∑

j=1

pk
j (x)pBk

j
(y). (7)

This telescoping posterior structure holds for any finite number of hierarchically
combined additive fuzzy systems. Each layer adds another sum to the mixture.

The higher moments of a mixture p(y|x) describe the higher-order statistical
behavior of the rule-based proxy system. The conditional variance V [Y |X = x]
describes the uncertainty of a given output prediction F (x) in terms of the
inherent uncertainty in the then-parts of the if-then rules and the extent to
which the output F (x) interpolates over missing rules. The additive structure
also gives a telescoping conditional variance when combining q additive fuzzy
systems:
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V [Y |X = x] =
q∑

k=1

mk∑

j=1

pk
j (x)σ2

Bk
j

+
q∑

k=1

mk∑

j=1

pk
j (x)(ck

j − F (x))2 (8)

where σ2
Bk

j
is the variance of kth SAM’s jth then-part fuzzy set Bk

j . These
variance measures can help prune less-certain rules or help prune entire fuzzy
subsystems as in random fuzzy foams [20].

A trained mixture p(y|x) also lets one grow a fuzzy system by drawing if-
then rules at random from the mixture. This implies sampling from a virtual rule
continuum to estimate the output F (x) for each input x. Figure 5 shows how such
virtual rules can estimate the transformed target function sin2 x by Monte Carlo
averaging. The mixture becomes a compound in this case because the discrete
rule index j becomes the continuous index θ [12]: p(y|x) =

∫
Θ

pθ(x)pBθ
(y)dθ.

The continuous mixture exists so long as either density pθ or pBθ
is

bounded. This sufficient condition holds because the bound pθ(x) ≤ d
implies pθ(x)pBθ

(y) ≤ pBθ
(y)d and because that inequality integrates to∫

Θ
pθ(x)pBθ

(y)dθ ≤ d for positive constant d since pBθ
is a density. The fuzzy

system’s output F (x) is again just the realized conditional expectation but with
respect to the rule-continuous mixture p(y|x): F (x) = E[Y |X = x]. So Monte
Carlo approximates the output F (x) as it uses the law of large numbers to
approximate the expectation [7]. Each input x requires its own Monte Carlo
sampling estimate to approximate the output F (x).

Monte Carlo estimation does not depend on the input dimension but it does
converge slowly [6]. The figure confirms that the standard error in the estimate
falls off with the inverse square root of the number n of samples or rules drawn
at random from p(y|x) for a fixed x. So this virtual-rule technique carries a new
computational burden to estimate F (x). But it can mitigate rule explosion in
high dimensions and it allows one to work with an estimated mixture p(y|x).

3 Uniform Convergence of Mixtures of Transformed
Fuzzy Systems

We now show first that a 2-bell-curve Gaussian mixture p(y|x) can exactly rep-
resent any continuously transformed bounded real function f for any continuous
function φ. This result extends the recent result of representing just a bounded
target function f [13]. We present this and other results only for the scalar-valued
case even though they extend componentwise to vector-valued systems.

Let f : X → R be any bounded real function. So there exists a constant
Bf > 0 such that |f(x)| ≤ Bf for all x. Let φ : R → R be any continuous real
function. The function φ is continuous at each real value x0 just in case for all
ε > 0 there is a δ = δ(ε, x0) > 0 such that |φ(x0)−φ(x)| < ε if |x0 −x| < δ for all
real x. Define the infimum α = inf f and supremum β = sup f of the bounded
function f . Assume that f is not constant and so α < β even though the results
below still hold for constant functions if we subtract some constant c > 0 from
α and add it to β. Assume likewise that αφ = inf φ(f) < βφ = supφ(f) in all
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Fig. 5. Monte Carlo fuzzy-system approximation of the continuously transformed
target function φ(f(x)) = sin2(x) for the transformed rule-continuum fuzzy system

φ(F ) based on sampling from the mixture pφ(y|x) = β−φ(f(x))
β−α

1√
2π

exp[− (y−α)2

2
] +

φ(f(x))−α
β−α

1√
2π

exp[− (y−β)2

2
] if α = infx∈X φ(f(x)) = 0 and β = supx∈X f(x) = 1

and unit variances. The blue lines in panels (a)-(c) show the transformed target
φ(f(x)) = sin2(x). The red lines plot the Monte Carlo estimates of the transformed
fuzzy system. Panel (a) plots the sample average of 100 y values drawn at random
from [0, 1] for each of 8,000 input values x 0.01 apart. Panel (b) plots the better
approximation for 10,000 samples at each input x value. Panel (c) plots the still finer
approximation for 1,000,000 such samples. Panel (d) shows the Monte Carlo approx-
imation’s slow inverse-square-root decay of the average squared error. Each plotted
point averaged 10 runs.

the results that follow. The boundedness of f ensures that φ(f) is bounded on
the restricted compact domain [−B,B] since the continuous image of a compact
set is itself compact [17] and hence bounded.

Theorem 1 shows how a 2-bell-curve Gaussian mixture pφ(y|x) can exactly
represent φ(f) on average for any bounded target function f . It technically
assumes only that αφ < βφ. It replaces the raw Watkins coefficients w and 1−w
in (2) with

wφ(x) =
βφ − φ(f(x))

βφ − αφ
. (9)

with dual convex mixing weight 1 − wφ(x) = φ(f(x))−αφ

βφ−αφ
.
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Theorem 1: Gaussian Mixture Representation of Continuously Trans-
formed Bounded Functions.

Suppose that f : R
n → R is bounded and that αφ = infx∈X φ(f) < βφ =

supx∈X φ(f) for some continuous function φ : R → R. Suppose that the gen-
eralized Gaussian mixture density pφ(y|x) mixes two normal probability density
functions with Watkins coefficients wφ and 1 − wφ in (9):

pφ(y|x) = wφ(x)Nαφ
(y|αφ, σ2

α) + (1 − wφ(x))Nβφ
(y|βφ, σ2

β) . (10)

Then pφ(y|x) represents the composite continuous function φ(f) exactly on aver-
age: Epφ

[Y |X = x] = φ(f(x)) for all x.

Proof : The centroid of the normal random variable Y ∼ Nαφ
(y|αφ, σ2

α) =
nαφ

(y) is its location parameter αφ for an positive scale or variance σ2
α > 0.

The centroid of nβφ
(y) is likewise βφ. Then taking the conditional expectation

with respect to the mixture density pφ(y|x) gives the result:

Eφ[Y |X = x] =
∫

y pφ(y|x) dy (11)

= (
βφ − φ(f(x))

βφ − αφ
)
∫

y nαφ
(y) dy + (

φ(f(x)) − αφ

βφ − αφ
)
∫

y nβφ
(y) dy

(12)

= (
βφ − φ(f(x))

βφ − αφ
)αφ + (

φ(f(x)) − αφ

βφ − αφ
)βφ (13)

=
φ(f(x))[βφ − αφ]

βφ − αφ
(14)

= φ(f(x)) (15)

since αφ < βφ. Q.E.D.

We next state and prove two lemmas required to prove the main theorem: the
2-bell-curve Gaussian mixtures qn(y|x) that represent continuously transformed
approximators φ(Fn) converge uniformly to the 2-bell-curve mixture pφ(y|x) that
represents the transformed target function φ(f). So uniform convergence of the
transformed systems implies uniform convergence of their 2-bell-curve mixtures.

The two lemmas jointly show why we need only assume that the fuzzy approx-
imators Fn are individually bounded if they converge uniformly to the target
function f . This will imply that the continuously transformed approximators
φ(Fn) converge uniformly to φ(f). This follows from the result of Lemma 1 that
the uniform convergence of Fn to f promotes the individual boundedness of each
Fn to the much stronger property of uniform boundedness.

Lemma 1: Bounded functions are uniformly bounded if they converge
uniformly.

Suppose that each Fn : Rn → R is bounded and that Fn converges uniformly
to f . Then the functions {Fn} are uniformly bounded and f is bounded.

Proof : Say that Fn is bounded. So there is a bound Bn > 0 such that |Fn(x)| ≤
Bn for all x. Suppose that Fn converges uniformly to f . Then for all ε > 0 there
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is a positive integer n0 such that for all n ≥ n0: |Fn(x)−f(x)| < ε for all x. Then
we can bound the tail of the sequence with the triangle inequalities for all n ≥ n0

and for all x: |Fn(x)| − |Fn0(x)| ≤ | |Fn(x)| − |Fn0(x)| | ≤ |Fn(x) − Fn0(x)| ≤
|Fn(x) − f(x)| + |f(x) − Fn0(x)| < 2ε from uniform convergence. Take ε = 1

2 for
convenience since ε > 0 was arbitrary. This gives the tail bound: |Fn(x)| < 1 +
|Fn0(x)| ≤ 1+Bn0 since Fn0 is bounded. Put B = max(B1, . . . , Bn0−1, 1+Bn0).
Then |Fn(x)| ≤ B for all n and all x. So {Fn} is uniformly bounded.

The target function f inherits the boundedness of the functions Fn because of
uniform convergence: |f(x)| = |f(x)−Fn(x)+Fn(x)| ≤ |Fn(x)−f(x)|+|Fn(x)| <
1
2 + B for all x from the uniform boundedness of the sequence {Fn}. Q.E.D.

Lemma 2 uses the crucial real-analytical fact that a continuous function on
a compact set is uniformly continuous [17,21]. So then for all ε > 0 there is a
δ = δ(ε) > 0 such that |φ(u) − φ(v)| < ε if |u − v| < δ for all u and all v. The
uniform bound B > 0 in Lemma 1 for the functions {Fn} gives the compact
interval [−B,B]. So φ is uniformly continuous on [−B,B]. Then the δ condition
lets the same ε hold for |φ(Fn(x))−φ(f(x))| < ε for all x and thus gives uniform
convergence of φ(Fn) to φ(f). The proof of Theorem 2 shows how this uniform
convergence then leads to the uniform convergence of the 2-bell-curve mixtures
qn(y|x) to pφ(y|x).

Lemma 2: Uniform convergence of bounded functions implies uniform
convergence of their continuous transformations.

Suppose that φ : R → R is continuous. Suppose that each Fn : Rn → R is
bounded and that Fn converges uniformly to f . Then φ(Fn) converges uniformly
to φ(f).

Proof : Suppose that Fn is bounded and that Fn converges uniformly to f : For all
ε > 0 there is a positive integer n0 such that for all n ≥ n0: |Fn(x) − f(x)| < ε for
all x. Then Lemma 1 states that the sequence {Fn} has the uniform bound B > 0:
|Fn(x)| ≤ B for all n and for all x. So −B ≤ Fn(x) ≤ B holds for all positive n.
The real interval [−B,B] is compact because it is closed and bounded. Then the
restricted continuous function φ : [−B,B] → R on the compact interval [−B,B]
is uniformly continuous [17]. So for all ε > 0 there is a δ > 0 that depends only on
ε and not any x and such that |φ(u) − φ(v)| < ε if |u − v| < δ for all u and for all
v in [−B,B]. Put u = Fn(x) and v = f(x). Then |φ(Fn(x)) − φ(f(x))| < ε holds
because |Fn(x)− f(x)| = |u− v| < δ. So for every ε > 0 there is a positive integer
n0 such that for all n ≥ n0: |φ(Fn(x)) − φ(f(x))| < ε for all x. So the composite
function φ ◦ Fn converges uniformly to the composite function φ ◦ f . Q.E.D.

Theorem 2 uses the 2-bell-curve Gaussian mixture qn(y|x) for each continu-
ously transformed fuzzy approximator φ(Fn). Let qn(y|x) denote the 2-bell-curve
Gaussian mixture for φ(Fn(x)) for fuzzy system Fn with Watkins coefficients vn

and 1 − vn of the transformed system φ(Fn):

vn(x) =
βφ − φ(Fn(x))

βφ − αφ
(16)

1 − vn(x) =
φ(Fn(x)) − βφ

βφ − αφ
(17)
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such that αφ ≤ φ(Fn) ≤ βφ for all n. Then the 2-bell-curve Gaussian mixture
qn(y|x) has the form

qn(y|x) = vn(x)Nαφ
(y|αφ, σ2

α) + (1 − vn(x))Nβφ
(y|βφ, σ2

β) . (18)

Theorem 2: Uniform Convergence of Gaussian Mixtures that Repre-
sent Continuously Transformed Systems.

Suppose that f : R
n → R is bounded and that αφ = infx∈X φ(f) < βφ =

supx∈X φ(f) for some continuous function φ : R → R and that αφ ≤ φ(Fn(x)) ≤
βφ for all n and for all x. Suppose that the bounded additive fuzzy systems Fn

uniformly converge to the target function f . Suppose that the 2-bell-curve Gaus-
sian mixture density pφ(y|x) that represents φ(f) mixes two normal probability
density functions with Watkins coefficients wφ and 1 − wφ in (9):

pφ(y|x) = wφ(x)Nαφ
(y|αφ, σ2

α) + (1 − wφ(x))Nβφ
(y|βφ, σ2

β) . (19)

Suppose further that the Gaussian mixture qn(y|x) with Watkins coefficients vn

and 1 − vn in (16)–(17) that represents φ(Fn) has the like 2-bell-curve form

qn(y|x) = qn(x)Nαφ
(y|αφ, σ2

α) + (1 − vn(x))Nβφ
(y|βφ, σ2

β) . (20)

Then qn(y|x) converges uniformly to pφ(y|x) uniformly in x and y.

Proof : The two normal bell-curve likelihoods Nαφ
(y|αφ, σ2

α) and Nβφ
(y|βφ, σ2

β)
are bounded functions for any fixed variances σ2

α > 0 and σ2
β > 0. So |nαφ

(y) −
nβφ

(y)| ≤ max(nαφ
(αφ), nβφ

(βφ)) holds for all y values for the modes αφ and
βφ. Then |nα(y) − nβ(y)| < D if D = max(nα(α), nβ(β)) + 1.

Lemmas 1 and 2 and the boundedness of Fn imply that φ(Fn) converges
uniformly to φ(f) because φ is continuous and because Fn converges uniformly
to f . So for all ε > 0 there is a positive integer n0 such that for all integers
n ≥ n0: |φ(Fn(x)) − φ(f(x))| <

βφ−αφ

D ε for all x ∈ X. Then using the Watkins
coefficients wφ and vn for the two respective Gaussian mixtures pφ(y|x) and
qφ(y|x) gives for n ≥ n0:

|qn(y|x)− pφ(y|x)| =
1

βφ − αφ
|(βφ − φ(Fn(x)))nαφ (y) + (φ(Fn(x))− αφ)nβφ

(y)

− (βφ − φ(f(x)))nαφ (y)− (φ(f(x))− αφ)nβφ
(y)| (21)

=
1

βφ − αφ
|φ(Fn(x))(nβφ

(y)− nαφ (y))− φ(f(x))(nβφ
(y)− nαφ (y))|

(22)

=
1

βφ − αφ
|φ(Fn(x))− φ(f(x))||nαφ (y)− nβφ

(y)| (23)

<
1

βφ − αφ
|φ(Fn(x))− φ(f(x))| D (24)

<
1

βφ − αφ

βφ − αφ

D
ε D (25)

= ε (26)
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for all x and all y. So qn(y|x) converges to pφ(y|x) uniformly in x and y. Q.E.D.
Figure 2 illustrates Theorem 2 for 3 adaptive SAM approximators that each

use 20 rules. The figure shows the 3 different adaptive-SAM 2-bell-curve Gaus-
sian mixtures qn(y|x) after they have converged to the transformed target func-
tion’s 2-bell-curve Gaussian mixture pφ(y|x).

4 Conclusions

The additive structure of a fuzzy rule-based system F with m if-then rules
RA1→B1 , . . . , RAm→Bm

yields a controlling generalized mixture p(y|x) that mixes
m likelihood probability densities: p(y|x) = p1(x)pB1(y|x)+· · ·+pm(x)pBm

(y|x).
The mixture’s first noncentral moment Ep[Y |X] gives back the fuzzy system
F as F (x) = Ep[Y |X = x] for all inputs x. So the mixture structure itself
avoids the many earlier ad hoc definitions of F and reveals a natural and useful
connection to probability theory. The mixture’s higher moments give a statistical
description of the system’s uncertainty for each input x based on what the system
has learned in its encoded rule structure. The mixture’s convex structure further
gives a Bayesian posterior probability that describes the m rules and any of its
rule-based subsystems.

These mixture properties allow an adaptive additive fuzzy system to learn a
rule-based and statistically explainable proxy version of a sampled neural black
box. A 2-bell-curve Gaussian mixture pφ(y|x) can further represent any continu-
ously transformed bounded scalar function φ(f). The result extends componen-
twise to vector-valued functions.

A new convergence theorem shows that the uniform convergence of continu-
ously transformed fuzzy systems φ(Fn) to a bounded continuously transformed
target function or black box φ(f) implies that the generalized 2-bell-curve Gaus-
sian mixtures qn(y|x) that characterize the transformed fuzzy systems φ(Fn)
converge uniformly to the like mixture pφ(y|x) that characterizes the trans-
formed target φ(f). A major research challenge is to extend these rule-based
convergence results to the XAI proxy modeling of converging feedback neural
dynamical systems as in [14].
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