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This application is based upon and claims priority to U.S. 
provisional patent application 62 / 026,359 , entitled “ Noise where o denotes the element - wise Hadamard product 
Boosted Convolutional Neural Networks for Image Process- between two matrices . e is a vector of all is of length 
ing , " filed Jul . 18 , 2014. This application is also related to ( My + Mw - 1 ) ( NX + N -1 ) . The JK matrices Uk ( = 1 , ... , J 
U.S. patent application Ser . No. 14 / 802,760 , entitled “ Noise- and k = 1 , ... , K ) are the weights of the connections between 
Speed - Ups In Hidden Markov Models With Applications to the hidden and output neurons . The next section presents the 
Speech Recognition , ” filed Jul . 17 , 2015. The entire content back - propagation training algorithm for a CNN . 
of each of these applications is incorporated herein by Back - Propagation for CNN Training 
reference . The BP algorithm performs maximum likelihood ( ML ) 

estimation of the J convolution matrices W1 , ... , W , and the 
JK hidden - output weight matrices U ,. Let y denote the BACKGROUND 1 - in - K encoding vector of the target label for a given input 
image X. This means y = 1 when k corresponds to the correct 

Technical Field class and otherwise . BP computes the cross entropy 
This disclosure relates to convolution neural networks for between the soft - max activations of the output neurons and 

the target vector y : image and signal processing . 
Description of Related Art 
Convolutional Neural Networks ( CNNs ) are a practical ( 6 ) 

E ( O ) way to learn and recognize images because training CNNs Yky logía ) 
k1 = 1 with backpropagation scales with training data . Backpropa 

gation training may have only linear time complexity in the 
number of training samples . A CNN may convolve the input where denotes all the parameters of the CNN — the J 
data with a set of filters . This may be roughly analogous to convolution matrices W and the weight matrix U. 
the use of receptive fields in the retina as in the Neocogni- Minimizing this cross entropy is the same as minimizing the 
tron network . Consider the CNN in FIG . 1 with one hidden Kullback - Leibler divergence between the output soft - max 
layer for simplicity . The notation extends directly to allow 35 activations and the target vector because the Kullback 
“ deep ” or multiple hidden layers . Let X denote the input Liebler divergence expands as 
2 - dimensional data of size MyxNx where My and Ny are 
positive integers . Consider 2D filters W1 , ... , W , each of 
size MwxNw . The convolution of X with the filter W ; gives KL \ y II a ' ) = > 

k1 = 1 C ; = XW ; ( 1 ) 

where denotes 2D convolution . The 2D data matrix C ; has ? , - ??? Yky logyky - Yk , logak , 
size ( My + Mw - 1 ) × ( Ny + Ny - 1 ) with ( m , n ) -th entry 

-H ( y ) + E ( 0 ) 

30 

1 ... , 

' J K ( 7 ) 
W = 

40 Vk log Yk? aku 
K K 

= 
1 

= 1 
W 

45 

Mw Nw 
= 

a = 1 b = 1 

55 ( 8 ) 

( 2 ) 
C ; ( m , n ) = X ( a – m , b – n ) W ; ( a , b ) . where E ( O ) is the cross entropy in ( 7 ) and H ( y ) is the 

entropy of the target y . The entropy of the target does not 
50 depend on the CNN parameters O. So minimizing the 

Kullback - Liebler divergence or the cross - entropy gives the 
Pad X with zeros to define it at all points in the above same estimate © * of the CNN parameters . 

double sum . Then pass the J matrices C1 , . . C , element- Note that -E ( O ) is the log - likelihood 
wise through logistic sigmoid function s to give the hidden L ( O ) = log ( az ) = - E ( O ) ( neuron activations Z ;: of the correct class label k for the given input image . So the 

ML estimate of is 
Z ; ( m , n ) = s ( C ; ( m , n ) ) ( 3 ) 

* = argmax ( O ) . ( 9 ) 

BP performs gradient ascent on the log - likelihood surface 1 + exp ( -C ; ( m , n ) ) L ( O ) to iteratively find the ML estimate of O. This also holds 
when minimizing squared - error because BP is equivalent to 
ML estimation with a conditional Gaussian distribution Suppose the network has K output neurons . A ( My + Mw 

1 ) x ( N + N , -1 ) weight matrix U , " multiplies the j - th hidden 65 at the ( n + 1 ) -th iteration is bishop2006pattern ; audhkhasi2013noise . The estimate of 
neuron matrix Z ; element - wise . The soft - max or Gibbs 
activation of the k - th output neuron is ( n + 1 ) = A ( n ) -NVE ( A ) le = en ) ( 10 ) 

= 

1 ( 4 ) 60 
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a 
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where n is a positive learning rate . A forward pass in BP states , the received data , the processed data , the masked or 
computes the activations of all hidden and output neurons in filtered data , or the processing units . 
the CNN . Back - propagating the output neuron activation The learning computer system may unconditionally inject 
errors through the network gives the gradient of the data noise or chaotic or other perturbations into the estimated 
log - likelihood function with respect to the CNN parameters . 5 parameters or states , the received data , the processed data , 
Then gradient ascent in updates these parameters . the masked or filtered data , or the processing units . The hidden neuron activations in a CNN are “ latent ” or The unconditional injection may speed up learning by the 
unseen variables for the purposes of the EM algorithm . BP learning computer system and / or improve the accuracy of 
here performs ML estimation of a CNN's parameters . the learning computer system . The EM algorithm itself is a popular iterative method for 10 The received data may represent an image . such ML estimation . The EM algorithm uses the lower 
bound Q of the log - likelihood function L ( O ) : A learning computer system may include a data process 

ing system and a hardware processor and may estimate 
gelen ) = Epz ..... Z ; 1X.p.al ) { log p ( Z1 , ... , ) ) y , " parameters and states of a stochastic or uncertain system . 

ZyX , 6 ) } " ( 11 ) The system may receive data from a user or other source ; 
The J matrices Z1 , .. Z , are the latent variables in the process only a portion of the received data through layers of 

algorithm's expectation ( E ) step . Then the Maximization processing units , thereby generating processed data ; process 
( M ) step maximizes the Q - function to find the next param- the masked or filtered data to produce one or more inter 
eter estimate mediate and output signals ; compare the output signals with 

20 reference signals to generate error signals ; send and process 1 ) = argmaxeQ ( 010 ( n ) ) . ( 12 ) the error signals back through the layers of processing units ; 
The generalized EM ( GEM ) algorithm performs this generate random , chaotic , fuzzy , or other numerical pertur 

optimization by stochastic gradient ascent . Theorem 1 below bations of the portion of the received data , the processed 
states that BP is a special case of the GEM algorithm . This data , or the output signals ; estimate the parameters and states 
key theorem and its proof is restated for completeness . 25 of the stochastic or uncertain system using the portion of the 
Theorem 1 Backpropagation is a Special Case of the GEM received data , the numerical perturbations , and previous Algorithm parameters and states of the stochastic or uncertain system ; The backpropagation update equation for a differentiable determine whether the generated numerical perturbations 
likelihood function p ( ylx , ) at epoch n satisfy a condition ; and , if the numerical perturbations 

( n + 1 ) = O ( n ) + n Velog ply \ x , 0 ) = en 30 satisfy the condition , inject the numerical perturbations into ( 13 ) the estimated parameters or states , the portion of the 
equals the GEM update equation at epoch n received data , the processed data , the masked or filtered 

O ( n + 1 ) = G ( ) + ngOlon ) ) = 0 ) data , or the processing units . 
( 14 ) A non - transitory , tangible , computer - readable 

where GEM uses the differentiable Q - function Q ( OB ( " ) ) in 35 medium may contain a program of instructions that may 
( 11 ) . cause a computer learning system comprising a data pro 

This BP - EM equivalency theorem lets the noisy EM cessing system that may include a hardware processor 
algorithm be used to speed up the BP training of a CNN . The running the program of instructions to estimate parameters 
next section details the noisy EM algorithm . A fundamental and states of a stochastic or uncertain system by performing 
computational problem of BP training is that it can be slow . 40 one or more of the functions described herein for the 
Processing images may only exacerbate this computational computer learning system . 
burden . There have been a few ad hoc attempts to improve These , as well as other components , steps , features , 
BP training , but no fundamental methods for speeding up BP objects , benefits , and advantages , will now become clear 
training from a review of the following detailed description of 

45 illustrative embodiments , the accompanying drawings , and 
SUMMARY the claims . 

a 

a 

a A learning computer system may include a data process BRIEF DESCRIPTION OF DRAWINGS 
ing system and a hardware processor and may estimate 
parameters and states of a stochastic or uncertain system . 50 The drawings are of illustrative embodiments . They do 
The system may receive data from a user or other source ; not illustrate all embodiments . Other embodiments may be 
process the received data through layers of processing units , used in addition or instead . Details that may be apparent or 
thereby generating processed data ; apply masks or filters to unnecessary may be omitted to save space or for more 
the processed data using convolutional processing ; process effective illustration . Some embodiments may be practiced 
the masked or filtered data to produce one or more inter- 55 with additional components or steps and / or without all of the 
mediate and output signals , compare the output signals with components or steps that are illustrated . When the same 
reference signals to generate error signals ; send and process numeral appears in different drawings , it refers to the same 
the error signals back through the layers of processing units ; or like components or steps . 
generate random , chaotic , fuzzy , or other numerical pertur- FIG . 1 illustrates an example of an architecture of a CNN 
bations of the received data , the processed data , or the output 60 with a single hidden layer . 
signals ; estimate the parameters and states of the stochastic FIG . 2 illustrates an example of backpropagation CNN 
or uncertain system using the received data , the numerical training as the EM algorithm . 
perturbations , and previous parameters and states of the FIG . 3 illustrates a defining NCNN hyperplane that passes 
stochastic or uncertain system ; determine whether the gen- through the origin of a network's output - layer noise space . 
erated numerical perturbations satisfy a condition ; and , if the 65 FIG . 4 shows training - set cross entropy of a CNN using 
numerical perturbations satisfy the condition , inject the standard noiseless BP , BP with blind noise ( Blind - BP ) , and 
numerical perturbations into the estimated parameters or BP with noisy - EM noise ( NEM - BP ) . 

a 
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a 

now 
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FIG . 5 plots training - set classification error rates as a hidden neuron activation matrices Z1 , Z2 , and Z3 with 
system trained . weight matrices U , " where j = 1 , 2 , 3 and k = 1 , 2 , 3. The 
FIG . 6 shows a noise - benefit inverted U - curve for NCNN soft - max Gibbs signal function gives the activations of the 

training of a CNN on the MNIST data set . output layer neurons . 
FIG . 7 illustrates samples of hand - drawn digit images . The NCNN algorithm may exploit two theoretical results . 
FIG . 8 illustrates a resulting decreasing bar chart : NEM The first result is that the BP algorithm may be a special case 

BP's performance fell as the number of training data of the generalized expectation - maximization ( EM ) algo 
samples increased . rithm for iteratively maximizing a likelihood . This result is 

FIG.9 summarizes the results of BP training of CNN with restated and proving below as Theorem 1. FIG . 1 shows this 
1,000 randomly sampled test images corresponds in squared 10 BP - EM correspondence at the system level . BP's forward 
error to NCNN training with only 700 samples . step corresponds to the expectation or E - step . Its backward 
FIG . 10 illustrates an example of a learning computer error pass corresponds to the maximization or M - step . BP's 

system that estimates unknown parameters and states of a hidden parameters from its hidden layers correspond to 
stochastic or uncertain system . EM's latent variables . Some “ deep ” neural nets can use on 

15 the order of 20 hidden layers of neurons . 
DETAILED DESCRIPTION OF ILLUSTRATIVE BP that minimizes training - sample squared error equally 

EMBODIMENTS maximizes a likelihood in the form of the exponential of the 
negative squared error . Better results were achieved with BP 

Illustrative embodiments are described . Other that minimized the more common training - set cross entropy . 
embodiments may be used in addition or instead . Details that 20 Minimizing this performance measure is equivalent to maxi 
may be apparent or unnecessary may be omitted to save mizing a likelihood . Below is shown that minimizing cross 
space or for a more effective presentation . Some embodi- entropy here may also be equivalent to minimizing the 
ments may be practiced with additional components or steps Kullback - Liebler divergence . 
and / or without all of the components or steps that are The second theoretical result is that carefully chosen and 
described . 25 injected noise may speed up the EM algorithm on average as 

Injecting carefully chosen noise can speed convergence in the algorithm iteratively climbs the nearest hill of likelihood . 
the backpropagation training of a convolutional neural net- This result is stated below as Theorem 1. Below also shows 
work ( CNN ) . The Noisy CNN algorithm may speed up that this guaranteed EM noise - boost may give rise to a 
training on average because the backpropagation algorithm simple noise - space hyperplane condition for training CNNs 
turns out to be a special case of the expectation - maximiza- 30 with backpropagation : Noise chosen from above the hyper 
tion ( EM ) algorithm and because such noise may speed up plane may speed CNN training on average . Noise chosen 
the EM algorithm on average . The CNN framework may from below may slow it . 
give a practical way to learn and recognize images because This noise - hyperplane result may explain anecdotal 
backpropagation scales with training data . It may have only reports that randomly chosen noise sometimes gives a slight 
linear time complexity in the number of training samples . 35 boost in training performance . On average , such blind noise 
The Noisy CNN algorithm may find a separating hyperplane should contain roughly the same number of noise samples 
in the network's noise space . The hyperplane may arise from from above as from below the crucial NCNN hyperplane . 
the noise - benefit condition that boosts the EM algorithm . The NCNN algorithm may also be useful for big data 
The hyperplane may cut through a uniform - noise hypercube applications . There may be at least two reasons for this . 
or Gaussian ball in the noise space depending on the type of 40 The first reason is that training with BP may scale only 
noise used . Noise chosen from above the hyperplane may linearly with sample size . Training BP with n samples incurs 
speed the training algorithm on average . Noise chosen from only linear O ( n ) time complexity . Linear complexity holds 
below may slow it . The algorithm may inject noise any- because the forward or predictive pass of BP has only O ( 1 ) 
where in the multilayered network . Adding noise to the complexity . The more involved backward pass has O ( n ) 
output neurons reduced the average per - iteration training - set 45 complexity . BP's overall linear complexity contrasts with 
cross entropy by 39 % on a standard MNIST image test set the O ( n ? ) time complexity of modern support - vector kernel 
of handwritten digits . It also reduced the average per- methods kung2014kernel . The quadratic complexity of such 
iteration training - set classification error by 47 % . Adding kernel methods arises from the O ( n ) complexity of their 
noise to the hidden layers can also reduce these performance predictive pass . The recent Fastfood kernel algorithm 
measures . The noise benefit may be most pronounced for 50 reduces the O ( nº ) kernel complexity to O ( n log d ) for n 
smaller data sets because the largest EM hill - climbing gains nonlinear basis functions in d dimensions . Fastfood's log 
may tend to occur in the first few iterations . This noise effect linear complexity appears to be the current lower bound for 
can also assist random sampling from large data sets because kernel methods . 
it may allow a smaller random sample to give the same or The second reason is that noise - boosting enhances sam 
better performance than a noiseless sample gives . 55 pling from big - data data sets . A natural way to deal with ever 
A noisy convolutional neural network ( NCNN ) algorithm bigger data sets is to randomly sample from them and thus 

for speeding up the backpropagation ( BP ) training of con- throw away or ignore some or even much of the data . 
volutional neural networks ( CNNs ) is now presented . Sufficiently large sample sizes can give adequate statistical 
FIG . 1 illustrates an example of an architecture of a CNN precision in many cases . The laws of large numbers ensure 

with a single hidden layer . The figure shows a CNN with just 60 this when using sample means and variances or covariances . 
one hidden layer , although the noisy CNN algorithm applies This opens the door to an array of Monte Carlo sampling 
to deep CNNs with arbitrarily many hidden layers . The input techniques . Some big - data “ sketching ” algorithms already 
image X convolves with 3 masks W1 , W2 , and W3 . These use some form of sampling . 
masks act as receptive fields in the retina . The resulting The NCNN algorithm allows the user to take a smaller 
images pass pixel - wise through logistic sigmoid functions 65 random sample than in the noiseless case for a given level 
that give the hidden neuron activations . Then , the CNN of performance or take the same number of samples for a 
computes element - wise Hadamard products between the better level of performance . 

a 

a 
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FIG . 2 illustrates an example of backpropagation CNN iterations compared with noiseless BP . Adding blind noise 
training as the EM algorithm . BP's forward pass corre- only slightly improved cross entropy and classification accu 
sponds to the EM algorithm's E - step and its backward pass racy . 
corresponds to the M - step . The hidden neurons and param- FIG . 6 shows a noise - benefit inverted U - curve for NCNN 
eters correspond to EM's latent variables . The input is an 5 training of a CNN on the MNIST data set . This inverted 
image from the MNIST data set . A forward pass through the U - curve is the signature of a classic nonlinear noise benefit 
CNN computes the activations of the hidden and output or so - called stochastic resonance . The optimal uniform noise 
neurons . The error between the output activation vector a ' scale occurred at 1. NEM noise hurt or slowed CNN training 
and the true target vector ( 0,0,1 ) propagates back through the when the noise scale increased beyond 2.6 . 
CNN to compute the gradient of the cross entropy . Then 10 Noisy Expectation - Maximization ( NEM ) Algorithm 
gradient descent updates the weights of the CNN . The Noisy Expectation - Maximization ( NEM ) algorithm 
FIG . 2 shows that NCNN training with only 700 random ( “ The Noisy Expectation - Maximization Algorithm , " 

image samples had on average the same squared error that Osonde Osoba , Sanya Mitaim , and Bart Kosko , Fluctuation 
noiseless BP training of a CNN had with 1000 such random and Noise Letters , vol . 12 , no . 3 , 1350012-1-1350012-30 , 
samples . This 300 - sample noise benefit decreased to 100 15 September 2013 ) provably speeds up the EM algorithm on 
samples as the noiseless training approached 2000 random average . It adds noise to the data at each EM iteration . The 
image samples . noise decays with the iteration count to ensure convergence 

The NCNN algorithm was tested on standard MNIST test to the optimal parameters of the original data model . The 
images for image recognition . The test images were hand- additive noise must also satisfy the NEM condition below 
written digits from zero to nine . A substantial reduction in 20 that ensures that the NEM parameter estimates will climb 
training time was found when compared with ordinary or faster up the likelihood surface on average . 
noiseless backpropagation : NCNN reduced the average per- NEM Theorem 
iteration training - set cross entropy by 39 % . The NEM Theorem states when noise speeds up the EM 

These simulations achieved this noise boost by adding algorithm's convergence to a local optimum of the likeli 
noise only to the output neurons . The general algorithm 25 hood surface . The NEM Theorem uses the following nota 
presented below allows the user to add noise to any of the tion . The noise random variable N has probability density 
neurons in the multilayered network . Adding noise to hidden . function ( pdf ) p ( n | x ) . So the noise N can depend on the data 
or throughput neurons entails only slightly increased cost in x . Vector h denotes the latent or hidden variables in the 
terms of using a new scaling matrix and further speeds up model . { O ( n ) } is a sequence of EM estimates for . 
BP training . 
FIG . 3 illustrates a noise - benefit region for a CNN with 

soft - max output neurons : Noise speeds up the maximum 
likelihood parameter estimation of the CNN with soft - max 
output neurons if the noise lies above a CNN - based hyper 
plane that passes through the origin of the noise space . 35 
Independent and identically distributed uniform noise lies is the converged EM estimate for ® . Define the noisy Q 
inside the noise cube . The activation signal at of the output function as the expectation QM010 ) . " = Enxo , [ In p ( x + N , ) x + , 
layer controls the normal to the hyperplane . The hyperplane h | 0 ] . Assume that the differential entropy of all random 
changes as learning proceeds because the parameters and variables is finite and that the additive noise keeps the data 
hidden - layer neuron activations change . Adding noise from 40 in the support of the likelihood function . Then , the general 
below the hyperplane slows convergence on average . NEM theorem may be stated as ( “ The Noisy Expectation 

The hyperplane structure implies that the NCNN involves Maximization Algorithm , ” with Osonde Osoba , Sanya 
only a simple linear condition on the noise . The three Mitaim , and Bart Kosko , Fluctuation and Noise Letters , vol . 
dimensions of the noise space in this example correspond to 12 , no . 3 , 1350012-1-1350012-30 , September , 2013 ) Theo 
the three output neurons in FIG . 2. Adding uniform noise to 45 rem 2 Noisy Expectation Maximization ( NEM ) 
the output neurons defines the uniform noise cube . Adding The EM estimation noise benefit 
Gaussian noise defines a Gaussian noise ball and so on . g ( 0.10 . ) - 0 ( O ( n ) | O- ) Q ( 0.10 . ) - 2x ( @ ( n ) | @m ) ( 15 ) 

Noise above the hyperplane speeds BP training conver or equivalently gence on average because it is just the noise that increases 
the iterative likelihood steps in the corresponding EM algo- 50 QxO0 ) Q ( OM ) 6. ) ( 16 ) 
rithm . Noise below the hyperplane slows BP convergence on holds on average if an average positivity condition holds . average because it decreases the EM's likelihood steps Reversing the inequalities in the NEM Theorem gives a compared with the noiseless case . The noise benefit will dual theorem for noise harm on average . Injecting noise gradually shrink as the sample size increases . This means in from below the hyperplane in FIG . 3 slows convergence on 
effect that the noise boxes or balls will shrink as the noise 55 average . This result is stated as Corollary 1 . 
boost becomes fainter . Corollary 1 Noise Harm in Expectation Maximization 
FIG . 4 shows the training - set cross entropy of a CNN The EM estimation noise harm 

using standard noiseless BP , BP with blind noise ( Blind - BP ) , 
and BP with noisy - EM noise ( NEM - BP ) . Blind - BP ignores Q ( 0.10 . ) - ( 0 ) | O « ) 5Q ( 0x10x ) -Quorn ) | 0x ) ( 17 ) 
the NEM sufficient condition and adds all noise samples to 60 or equivalently 
the training data . NCNN or Noisy BP reduced the average Quom ) | @x ) sg ( O ( n ) o- ) ( 18 ) training - set cross entropy by 39.26 % compared with noise 
less back - propagation . holds on average if the nonnegative expectation ( of the 
FIG . 5 plots the training - set classification error rates as the logarithm of a ratio of conditional probability ) holds in the 

system trained . The testing - set classification error rate was 65 NEM Theorem . 
nearly the same at convergence . NEM - BP gave a 47.43 % The NEM Theorem states that each iteration of a properly 
reduction in training - set error rate averaged over the first 15 noisy EM algorithm gives higher likelihood estimates on 
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average than do the regular or noiseless EM estimates . So The simulations used at least 1000 images from the 
the NEM algorithm converges faster than EM for a given MNIST training set . An open - source Matlab toolbox was 
data model . The faster NEM convergence occurs both modified to add noise during CNN training . The CNN 
because the likelihood function has an upper bound and contained one convolution layer with three 3x3 pixel masks 
because the NEM algorithm takes larger average steps up the 5 each . The convolution layer was followed with factor - 2 
likelihood surface . NEM also speeds up the training of down - sampling to increase system robustness and to reduce hidden Markov models and the K - means clustering algo the number of CNN parameters lecun1998gradient . A full rithm used in big - data processing . The NEM positivity non - convolution connection matrix U connected the neurons condition has a much simpler form in the practical case of of the hidden layer to the output layer . a Gaussian or Cauchy mixture model because then the 10 
condition reduces to a quadratic inequality . The output - layer neurons used the soft - max or Gibbs 

activation function for 10 - way classification . All hidden Noisy Backpropagation for CNN Training 
The next theorem states the noise - benefit sufficient con neurons used the logistic sigmoid function . Uniform noise 

dition for Gibbs - activation output neurons used in CNN was used over ( -0.5Vc / 44,0.5Vc14 ) where c = 0,0.2 , ... , 3 , / 0 , 
K - class classification . Such beneficial noise is added only to 15 d = 1 , 2 , ... , 5 , and t was the training epoch . So the noise 
the 1 - in - K encoding vector y of the target class labels . The variance decreased to 0 as training epochs proceed . 
end of this section shows how to add NEM noise to the FIG . 4 shows the training - set cross entropy of a CNN for 
hidden neurons as well . Theorem 3 Forbidden Hyperplane three algorithms : standard noiseless BP , BP with blind noise 
Noise - Benefit Condition for CNN ( Blind - BP ) , and BP with NEM noise ( NEM - BP ) . NEM - BP 

The NEM positivity condition holds for ML training of a 20 achieved a 39.26 % average reduction in training - set cross 
CNN with Gibbs activation output neurons if entropy over the first 15 iterations compared with noiseless 

BP . 
Ey , z1 , ... , Z3,1 \ x , e " { n + log ( a ' ) } = 0 ( 19 ) FIG . 5 plots the training - set classification error rates as the 

where the activation of the k - th output neuron is CNN learns . NEM - BP gave a 47.43 % reduction in training 
25 set error rate averaged over the first 15 iterations compared 

with noiseless BP . This significant reduction in cross - en 
( 20 ) tropy and training - set error results because NEM - BP takes 

e Z ; OUT bigger steps on average towards the maximum likelihood 
CNN parameters . Adding blind noise ( Blind - BP ) gave only ak 30 a comparatively minor improvement of 4.05 % . 

exp ez ; outte The relative average reduction in cross entropy for NEM 
BP was next plotted as the noise scale c varied from 0 to 3 
in steps of 0.2 . FIG . 6 shows the resulting characteristic 
noise - benefit inverted U - curve . The optimal uniform noise 

where o denotes the element - wise Hadamard product 35 scale occurred at c * = 1 and NEM - BP gives a 39.26 % 
between two matrices . e is a vector of all is of length improvement in average cross entropy . NEM noise hurt 
( My + Mw - 1 ) ( Ny + N - 1 ) . CNN training when the noise scale increased beyond 2.6 . A 
FIG . 3 illustrates the sufficient condition in ( 19 ) for a very large noise variance hurt convergence because EM is a 

CNN with three output neurons . All noise n above the fixed - point algorithm and so too much noise tends to shadow 
hyperplane { n : n * log ( a ) = 0 } speeds CNN training on aver- 40 or swamp the clean data . The noise benefit decreased to zero 
age . as the noise variance decreased because then the NEM 
A similar noise benefit result also holds for noise injection algorithm becomes the standard EM algorithm . 

into the hidden neurons in a CNN . The hidden neuron How the training - data set size affects NEM performance activations become visible data during the forward pass of was also explored . The MNIST training - set size was varied neural network training and behave as output neurons for 45 over 1000 , 2000 , 5000 and computed the relative 
earlier layers . Then the noise benefit condition becomes average reduction in training cross entropy for NEM - BP ( Un ) " log ( a ) 20 where U is the synaptic weight matrix that using the optimal noise variance . T 
connects the hidden and output layer and where a ' is the FIG . 7 illustrates sample hand - drawn digits used in train vector of hidden - layer activations . This permits adding ing . 
NEM noise to the hidden neurons . FIG . 8 illustrates a resulting decreasing bar chart : NEM Corollary 2 states a dual noise - harm result akin to Cor BP's performance fell as the number of training data ollary . It follows from reversing the inequalities in Theorem samples increased . This shows that NEM - BP is especially 3 and its proof . useful when the number of training data samples is small Corollary 2 relative to the number of estimated CNN parameters . 

The NEM negativity condition holds for ML training of a FIG . 4 shows NEM noise - benefit in BP training of a CNN CNN with Gibbs activation output neurons if using MNIST data : NEM - BP training reduced the average 
training - set cross entropy of the MNIST data set compared 

Ey , z? , Z3,1lXje " { n + log ( a ) } 20 ( 21 ) with standard noiseless BP training . The NEM - BP algorithm 
where the activation of the k - th output neuron is given in achieved a 39.26 % average reduction in cross entropy 
( 20 ) . 60 compared with standard BP over the first 15 training itera 
Simulation Results tions . Adding blind noise gave only a minor average reduc 

All simulations used the MNIST data set of handwritten tion of 4.02 % in cross entropy . Training used 1000 images 
digits . The MNIST data set contains 28x28 gray - scale pixel from the MNIST data for a CNN with one convolution 
images with pixel intensities between 0 and 1. FIG . 7 shows hidden layer . The convolutional layer used three 3x3 masks 
20 sample images from this data set . FIG . 1 shows a 65 or filters . Factor - 2 downsampling followed the convolu 
schematic diagram of the BP training of a CNN using tional layer by removing all even index rows and columns of 
images from the MNIST data set . the hidden neuron images . The hidden layer fully connected 
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to 10 output neurons that predicted the class label of the NCNN at different training set sizes . Each plotted error 
input digit . Uniform noise was used over [ -0.5N5,0.5N7 ] value averaged 20 error measurements . 
where t was the training iteration number for both NEM The simulation ended with the 500 - sample training - set 
noise and blind noise . case . The dashed curve in FIG . 9 shows the average test - set 
FIG . 5 : NEM noise benefit in BP training of a CNN using 5 squared error at each training sample size . Each point 

MNIST data : NEM - BP training reduced the training - set averaged 20 test - set squared error values . The solid curve in 
FIG . 9 arose from a similar experiment that used NEM noise classification error rate of the MNIST data set compared in the CNN training procedure and thus that ran the NCNN with standard noiseless BP training . NEM - BP achieved a algorithm . 

47.43 % average reduction in classification error rate for the 
NEM - BP case compared with the standard BP over the first SUMMARY 
15 training iterations . Adding blind noise gave only a minor 
average reduction of 4.05 % in classification error rate . Careful noise injection speeds up the backpropagation 
Training used 1000 images from the MNIST data for a CNN training of a convolutional neural network ( CNN ) . This 
with one convolution hidden layer . The convolutional layer 15 result follows because the BP algorithm is a special case of 
used three 3x3 masks or filters . Factor - 2 downsampling the generalized EM algorithm and because the recent noisy 
followed the convolutional layer by removing all even index EM theorem gives a sufficient condition for noise to speed 
rows and columns of the hidden neuron images . The hidden up the average convergence of the EM algorithm . The Noisy 
layer fully connected to 10 output neurons that predicted the CNN ( NCNN ) algorithm uses this noisy - EM result to pro 
class label of the input digit . Uniform noise was used over 20 duce a hyperplane in noise space that separates helpful noise 
( -0.5N5,0.5N7 ] where t was the training iteration number from harmful noise . NCNN noise - injection experiments on 
for both NEM noise and blind noise the MNIST image data set show substantial reduction in 
FIG . 6 : NEM noise - benefit inverted U - curve for NEM - BP training - set cross entropy and in classification error rate as 

training of a CNN : The figure shows the mean percent compared with the noiseless BP algorithm . Blind noise gave 
reduction in per - iteration training - set cross entropy for 25 at best a small noise benefit . Simulations show that the NEM 
NEM - BP training of a CNN with different uniform noise noise benefit was largest for smaller data sets . This suggests 
variances . The invered - U is the signature of a stochastic exploiting these noise benefits in random sampling from 

large data sets . Noise injection in different combinations of 
hidden layers in deep networks may also be utilized . Vc / to ) noise was added where c = 0,0.2 , ... , 2.8 , 3 , t was the 30 FIG . 10 illustrates an example of a learning computer 

training epoch , and d = 5 was the noise annealing factor . The system 101 that estimates unknown parameters and states of 
noise benefit increased when c increased from 0 to 1 and a stochastic or uncertain system . The learning computer 
tended to decrease for values greater than 1. The optimal system is configured to implement the various algorithms 
noise scale was c * = 1 . Injecting NEM noise hurt the training- that have been discussed herein . The learning computer 
set cross entropy when c22.6 . 35 system may include a data processing system 103 , which 
FIG . 8 : Variation of NEM - BP performance benefit with may include one or more hardware processors 105. The 

increasing training - set size : The bar chart shows the relative learning computer system may also include one or more 
average reduction in training - set cross entropy for NEM - BP tangible memories ( e.g. , random access memories ( RAMs ) , 
as the training - set size increased . The noise benefit was read - only memories ( ROMs ) , and / or programmable read 
largest for smaller training - data set sizes . 40 only memories ( PROMS ) ) , tangible storage devices ( e.g. , 
How the NCNN algorithm favors subset sampling with hard disk drives , CD / DVD drives , and / or flash memories ) , 

CNN image recognition was also simulated . FIG . 9 sum- system buses , video processing components , network com 
es the results : BP training CNN th 1,000 ran- munication components , input / output ports , and / or user 

domly sampled test images corresponds in squared error to interface devices ( e.g. , keyboards , pointing devices , dis 
NCNN training with only 700 samples . So the noise benefit 45 plays , microphones , sound reproduction systems , and / or 
was roughly 300 samples . This benefit fell to 100 samples as touch screens ) . 
the noiseless samples approached 2,000 . The learning computer system may include one or more 

The simulations first trained the CNN on a random computers at the same or different locations . When at 
selection of 1000 MNIST sample images from the full 60000 different locations , the computers may be configured to 
sample training set . 20 separate training runs were run at the 50 communicate with one another through a wired and / or 
same sample size and recorded the final squared error on the wireless network communication system . 
test set for each run . The next step repeated the same The learning computer system may include software ( e.g. , 
simulation setup but with 5 % fewer samples for training . one or more operating systems , device drivers , application 
The experiment was repeated reducing the training set by programs , and / or communication programs ) . When software 
5 % on each simulation epoch . 55 is included , the software includes programming instructions 
FIG . 9 illustrates random - sampling noise boost : The two and may include associated data and libraries . When 

curves show the relative effects of training - set sample size included , the programming instructions are configured to 
on CNN and NCNN for the NMIST images . Noise training implement one or more algorithms that implement one or 
improved the performance of the CNN at given training more of the functions of the computer system , as recited 
sample sizes . NCNN training with only 700 random image 60 herein . The description of each function that is performed by 
samples had on average the same squared error that noise- each computer system also constitutes a description of the 
less BP training of a CNN had with 1000 random image algorithm ( s ) that performs that function . 
samples . This 300 - sample noise benefit decreased to 100 The software may be stored on or in one or more 
samples as the noiseless training approached 2000 random non - transitory , tangible storage devices , such as one or more 
image samples . The dashed line shows the average test - set 65 hard disk drives , CDs , DVDs , and / or flash memories . The 
squared error for the CNN at different training set sizes . The software may be in source code and / or object code format . 
solid line shows the average test - set squared error for the Associated data may be stored in any type of volatile and / or 
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non - volatile memory . The software may be loaded into a The abstract is provided to help the reader quickly ascer 
non - transitory memory and executed by one or more pro- tain the nature of the technical disclosure . It is submitted 

with the understanding that it will not be used to interpret or 
The components , steps , features , objects , benefits , and limit the scope or meaning of the claims . In addition , various 

advantages that have been discussed are merely illustrative . 5 features in the foregoing detailed description are grouped 
None of them , nor the discussions relating to them , are together in various embodiments to streamline the disclo 
intended to limit the scope of protection in any way . Numer- sure . This method of disclosure should not be interpreted as 
ous other embodiments are also contemplated . These requiring claimed embodiments to require more features 
include embodiments that have fewer , additional , and / or than are expressly recited in each claim . Rather , as the 
different components , steps , features , objects , benefits , and / 10 following claims reflect , inventive subject matter lies in less 
or advantages . These also include embodiments in which the than all features of a single disclosed embodiment . Thus , the 
components and / or steps are arranged and / or ordered dif- following claims are hereby incorporated into the detailed 
ferently . description , with each claim standing on its own as sepa 

For example , the injected perturbations can be based on rately claimed subject matter . 
noise , or chaos , or fuzz , or uncertain random variables . The 15 The invention claimed is : 
injection itself need not be additive . It can also be multipli- 1. A learning computer system that estimates parameters 
cative or have any functional form . The perturbations that and states of a stochastic or uncertain system comprising a 
boost the random sampling of training samples can exploit data processing system that includes a hardware processor 
bootstrapping and general forms of Monte Carlo sampling . that has a configuration that : 

Unless otherwise stated , all measurements , values , rat- 20 receives data from a user or other source ; 
ings , positions , magnitudes , sizes , and other specifications processes the received data through layers of processing 
that are set forth in this specification , including in the claims units , thereby generating processed data ; 
that follow , are approximate , not exact . They are intended to applies masks or filters to the processed data using 
have a reasonable range that is consistent with the functions convolutional processing ; 
to which they relate and with what is customary in the art to 25 processes the masked or filtered data to produce one or 
which they pertain . more intermediate and output signals ; 

All articles , patents , patent applications , and other publi- compares the output signals with reference signals to 
cations that have been cited in this disclosure are incorpo generate error signals ; 
rated herein by reference . sends and processes the error signals back through the 

The phrase “ means for ” when used in a claim is intended 30 layers of processing units ; 
to and should be interpreted to embrace the corresponding generates random , chaotic , fuzzy , or other numerical 
structures and materials that have been described and their perturbations of the received data , the processed data , 
equivalents . Similarly , the phrase “ step for ” when used in a or the output signals ; 
claim is intended to and should be interpreted to embrace the estimates the parameters and states of the stochastic or 
corresponding acts that have been described and their 35 uncertain system using the received data , the numerical 
equivalents . The absence of these phrases from a claim perturbations , and previous parameters and states of the 
means that the claim is not intended to and should not be stochastic or uncertain system ; 
interpreted to be limited to these corresponding structures , determines whether the generated numerical perturbations 
materials , or acts , or to their equivalents . satisfy a Noisy Expectation - Maximization condition ; 

The scope of protection is limited solely by the claims that 40 and if the numerical perturbations satisfy the Noisy 
now follow . That scope is intended and should be interpreted Expectation - Maximization condition , injects the - 
to be as broad as is consistent with the ordinary meaning of numerical perturbations into the estimated parameters 
the language that is used in the claims when interpreted in or states , the received data , the processed data , the 
light of this specification and the prosecution history that masked or filtered data , or the processing units . 
follows , except where specific meanings have been set forth , 45 2. The learning computer system of claim 1 wherein the 
and to encompass all structural and functional equivalents . learning computer system unconditionally injects noise or 

Relational terms such as " first ” and “ second ” and the like chaotic or other perturbations into the estimated parameters 
may be used solely to distinguish one entity or action from or states , the received data , the processed data , the masked 
another , without necessarily requiring or implying any or filtered data , or the processing units . 
actual relationship or order between them . The terms “ com- 50 3. The learning computer system of claim 2 wherein the 
prises , " " comprising , ” and any other variation thereof when unconditional injection speeds up learning by the learning 
used in connection with a list of elements in the specification computer system . 
or claims are intended to indicate that the list is not exclusive 4. The learning computer system of claim 2 wherein the 
and that other elements may be included . Similarly , an unconditional injection improves the accuracy of the learn 
element preceded by an “ a ” or an “ an ” does not , without 55 ing computer system . 
further constraints , preclude the existence of additional 5. The learning computer system of claim 1 wherein the 
elements of the identical type . received data represents an image . 
None of the claims are intended to embrace subject matter 6. The learning computer system of claim 1 wherein the 

that fails to satisfy the requirement of Sections 101 , 102 , or injection speeds up learning by the learning computer sys 
103 of the Patent Act , nor should they be interpreted in such 60 tem . 
a way . Any unintended coverage of such subject matter is 7. The learning computer system of claim 1 wherein the 
hereby disclaimed . Except as just stated in this paragraph , injection improves the accuracy of the learning computer 
nothing that has been stated or illustrated is intended or system . 
should be interpreted to cause a dedication of any compo- 8. A learning computer system that estimates parameters 
nent , step , feature , object , benefit , advantage , or equivalent 65 and states of a stochastic or uncertain system comprising a 
to the public , regardless of whether it is or is not recited in data processing system that includes a hardware processor 
the claims . that has a configuration that : 

a 



5 

10 

US 11,256,982 B2 
15 16 

receives data from a user or other source ; program of instructions to estimate parameters and states of 
processes only a portion of the received data through a stochastic or uncertain system by : 

layers of processing units , thereby generating pro- receiving data from a user or other source ; 
cessed data ; processing the received data through layers of processing 

processes the masked or filtered data to produce one or units , thereby generating processed data ; 
more intermediate and output signals ; applying masks or filters to the processed data using 

compares the output signals with reference signals to convolutional processing ; 
generate error signals ; processing the masked or filtered data to produce one or 

sends and processes the error signals back through the more intermediate and output signals ; 
layers of processing units ; comparing the output signals with reference signals to 

generates random , chaotic , fuzzy , or other numerical generate error signals ; 
perturbations of the portion of the received data , the sending and processing the error signals back through the 
processed data , or the output signals ; layers of processing units ; 

receives data from a user or other source ; generating random , chaotic , fuzzy , or other numerical 
processes only a portion of the received data through 15 perturbations of the received data , the processed data , 

layers of processing units , thereby generating pro- or the output signals ; 
cessed data ; estimating the parameters and states of the stochastic or 

processes the masked or filtered data to produce one or uncertain system using the received data , the numerical 
more intermediate and output signals ; perturbations , and previous parameters and states of the 

compares the output signals with reference signals to 20 stochastic or uncertain system ; 
generate error signals ; determining whether the generated numerical perturba 

sends and processes the error signals back through the tions satisfy a Noisy Expectation - Maximization condi 
layers of processing units ; tion ; 

generates random , chaotic , fuzzy , or other numerical if the numerical perturbations satisfy the Noisy Expecta 
perturbations of the portion of the received data , the 25 tion - Maximization condition , injecting the numerical 
processed data , or the output signals ; perturbations into the estimated parameters or states , 

estimates the parameters and states of the stochastic or the received data , the processed data , the masked or 
uncertain system using the portion of the received data , filtered data , or the processing units . 
the numerical perturbations , and previous parameters 17. The storage medium of claim 16 wherein the program 
and states of the stochastic or uncertain system ; 30 of instructions causes the computer learning system to 

determines whether the generated numerical perturbations unconditionally inject noise or chaotic or other perturbations 
satisfy a Noisy Expectation - Maximization condition ; into the estimated parameters or states , the received data , the 

determines whether the generated numerical perturbations processed data , the masked or filtered data , or the processing 
satisfy a Noisy Expectation - Maximization condition ; units . 

and if the numerical perturbations satisfy the Noisy 35 18. The storage medium of claim 17 wherein the uncon 
Expectation - Maximization condition , injects the ditional injection speeds up learning by the learning com 
numerical perturbations into the estimated parameters puter system . 
or states , the portion of the received data , the processed 19. The storage medium of claim 17 wherein the uncon 
data , the masked or filtered data , or the processing ditional injection improves the accuracy of the learning 
units . 40 computer system . 

9. The learning computer system of claim 8 wherein the 20. The storage medium of claim 16 wherein the received 
system applies masks or filters to the processed data using data represents an image . 
convolutional processing . 21. The storage medium of claim 16 wherein the injection 

10. The learning computer system of claim 8 wherein the speeds up learning by the learning computer system . 
injection speeds up learning by the learning computer sys- 45 22. The storage medium of claim 16 wherein the injection 
tem . improves the accuracy of the learning computer system . 

11. The learning computer system of claim 8 wherein the 23. A non - transitory , tangible , computer - readable storage 
injection improves the accuracy of the learning computer medium containing a program of instructions that causes a 
system . computer learning system comprising a data processing 

12. The learning computer system of claim 8 wherein the 50 system that includes a hardware processor running the 
system injects the random , chaotic , fuzzy , or other numerical program of instructions to estimate parameters and states of 
perturbations into the portion of the received data . a stochastic or uncertain system by : 

13. The learning computer system of claim 8 wherein the receiving data from a user or other source ; 
learning computer system unconditionally injects noise or processing only a portion of the received data through 
chaotic or other perturbations into the estimated parameters 55 layers of processing units , thereby generating pro 
or states , the portion of the received data , the processed data , cessed data ; 
the masked or filtered data , or the processing units . processing the masked or filtered data to produce one or 

14. The learning computer system of claim 13 wherein the more intermediate and output signals ; 
unconditional injection speeds up learning by the learning comparing the output signals with reference signals to 
computer system . generate error signals ; 

15. The learning computer system of claim 13 wherein the sending and processing the error signals back through the 
unconditional injection improves the accuracy of the learn layers of processing units ; 
ing computer system . generating random , chaotic , fuzzy , or other numerical 

16. A non - transitory , tangible , computer - readable storage perturbations of the portion of the received data , the 
medium containing a program of instructions that causes a 65 processed data , or the output signals ; 
computer learning system comprising a data processing estimating the parameters and states of the stochastic or 
system that includes a hardware processor running the uncertain system using the portion of the received data , 
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the numerical perturbations , and previous parameters 31. A learning computer system that estimates parameters 
and states of the stochastic or uncertain system , and and states of a stochastic or uncertain system comprising a 

determining whether the generated numerical perturba- data processing system that includes a hardware processor 
tions satisfy a Noisy Expectation - Maximization condi that has a configuration that : 

receives data from a user or other source ; tion ; 
if the numerical perturbations satisfy the Noisy Expecta processes the received data through layers of processing 

tion - Maximization condition , injecting the numerical units , thereby generating processed data ; 
perturbations into the estimated parameters or states , applies masks or filters to the processed data using 

convolutional processing ; the portion of the received data , the processed data , the 
masked or filtered data , or the processing units . processes the masked or filtered data to produce one or 

more intermediate and output signals ; 24. The storage medium of claim 23 wherein the program 
of instructions causes the computer learning system to apply compares the output signals with reference signals to 
masks or filters to the processed data using convolutional generate error signals ; 
processing sends and processes the error signals back through the 

25. The storage medium of claim 23 wherein the injection 15 layers of processing units ; 
speeds up learning by the learning computer system . generates random , chaotic , fuzzy , or other numerical 

26. The storage medium of claim 23 wherein the injection perturbations of the received data , the processed data , 
or the output signals ; improves the accuracy of the learning computer system . 

27. The storage medium of claim 23 wherein the program estimates the parameters and states of the stochastic or 
of instructions causes the computer learning system to inject 20 uncertain system using the received data , the numerical 
the random , chaotic , fuzzy , or other numerical perturbations perturbations , and previous parameters and states of the 

stochastic or uncertain system ; into the portion of the received data . 
28. The storage medium of claim 23 wherein the program determines whether the generated numerical perturbations 

of instructions causes the computer learning system to satisfy a Noisy Expectation- Maximization condition ; 
and unconditionally inject noise or chaotic or other perturbations 25 

into the estimated parameters or states , the portion of the if the numerical perturbations satisfy the Noisy Expecta 
tion - Maximization condition , injects the numerical per received data , the processed data , the masked or filtered turbations into the estimated parameters or states , the data , or the processing units . 

29. The storage medium of claim 28 wherein the uncon received data , the processed data , the masked or filtered 
ditional injection speeds up learning by the learning com data , or the processing units ; 

wherein the learning computer system injects noise or puter system . 
30. The storage medium of claim 28 wherein the uncon chaotic or other perturbations into the estimated param 

ditional injection improves the accuracy of the learning eters or states for an output neuron layer . 
computer system . 
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