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(57) ABSTRACT 

An estimating computer system may iteratively estimate an 
unknown parameter of a model or state of a system. An input 
module may receive numerical data about the system. A noise 
module may generate random, chaotic, or other type of 
numerical perturbations of the received numerical data and/or 
may generate pseudo-random noise. An estimation module 
may iteratively estimate the unknown parameter of the model 
or state of the system based on the received numerical data. 
The estimation module may use the numerical perturbations 
and/or the pseudo-random noise and the input numerical data 
during at least one of the iterative estimates of the unknown 
parameter. A signaling module may signal when Successive 
parameter estimates or information derived from Successive 
parameter estimates differ by less than a predetermined sig 
naling threshold or when the number of estimation iterations 
reaches a predetermined number. 
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1. 

TERATIVE ESTMATION OF SYSTEM 
PARAMETERSUSING NOISE-LIKE 

PERTURBATONS 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application is based upon and claims priority to U.S. 
provisional patent application 61/674,615, entitled "NOISE 
ENHANCED EXPECTATION-MAXIMIZATION ALGO 
RITHM... filed Jul. 23, 2012. The entire content of this appli 
cation is incorporated herein by reference. 

BACKGROUND 

1. Technical Field 
This disclosure relates to iterative estimates of an unknown 

parameter of a model or state of a system. 
2. Description of Related Art 
The expectation-maximization (EM) algorithm is an itera 

tive statistical algorithm that estimates maximum-likelihood 
parameters from incomplete or corrupted data. See A. P. 
Dempster, N. M. Laird and D. B. Rubin, “Maximum Likeli 
hood from Incomplete Data via the EM Algorithm (with dis 
cussion).” Journal of the Royal Statistical Society, Series B39 
(1977) 1-38; G. J. McLachlan and T. Krishnan, The EM 
Algorithm and Extensions (John Wiley and Sons, 2007); M. 
R. Gupta and Y. Chen, “Theory and Use of the EM Algo 
rithm. Foundations and Trends in Signal Processing 4 (2010) 
223-296. This algorithm has a wide array of applications that 
include data clustering, see G. Celeux and G. Govaert, “A 
Classification EMAlgorithm for Clustering and Two Stochas 
tic Versions. Computational Statistics & Data Analysis 14 
(1992) 315-332: C. Ambroise, M. Dang and G. Govaert, 
“Clustering of spatial data by the em algorithm. Quantitative 
Geology and Geostatistics 9 (1997) 493-504, automated 
speech recognition, see L. R. Rabiner, "A tutorial On hidden 
Markov models and selected applications in speech recogni 
tion.” Proceedings of the IEEE 77 (1989) 257-286; B. H. 
Juang and L. R. Rabiner, “Hidden Markov models for speech 
recognition. Technometrics 33 (1991) 251-272, medical 
imaging, see L. A. Shepp and Y. Vardi, “Maximum likelihood 
reconstruction for emission tomography.” IEEE Transactions 
on Medical Imaging 1 (1982) 113-122; Y. Zhang, M. Brady 
and S. Smith, “Segmentation of Brain MRImages through a 
Hidden Markov Random Field Model and the Expectation 
Maximization Algorithm. IEEE Transactions on Medical 
Imaging 20 (2001) 45-57, genome-sequencing, see C. E. 
Lawrence and A. A. Reilly, “An expectation maximization 
(EM) algorithm for the identification and characterization of 
common sites in unaligned biopolymer sequences.” Proteins: 
Structure, Function, and Bioinformatics 7(1990) 41-51; T. L. 
Bailey and C. Elkan, “Unsupervised learning of multiple 
motifs in biopolymers using expectation maximization.” 
Machine learning 21 (1995) 51-80, radar denoising, see J. 
Wang, A. Dogandzic and A. Nehorai, “Maximum likelihood 
estimation of compound-gaussian clutter and target param 
eters.” IEEE Transactions on Signal Processing 54 (2006) 
3884-3898, and infectious-disease tracking, see M. Reilly 
and E. Lawlor, “A likelihood-based method of identifying 
contaminated lots of blood product.” International Journal of 
Epidemiology 28 (1999) 787-792: P. Bacchetti, “Estimating 
the incubation period of AIDS by comparing population 
infection and diagnosis patterns.” Journal of the American 
Statistical Association 85 (1990) 1002-1008. A prominent 
mathematical modeler has even said that the EM algorithm is 
“as close as data analysis algorithms come to a free lunch'. 
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2 
see N.A. Gershenfeld, The Nature of Mathematical Modeling 
(Cambridge University Press, 1999). But the EM algorithm 
can converge slowly for high-dimensional parameter spaces 
or when the algorithm needs to estimate large amounts of 
missing information, see G. J. McLachlan and T. Krishnan, 
The EM Algorithm and Extensions (John Wiley and Sons, 
2007); M.A. Tanner, Tools for Statistical Inference: Methods 
for the Exploration of Posterior Distributions and Likelihood 
Functions, Springer Series in Statistics (Springer, 1996). 

SUMMARY 

An estimating system may iteratively estimate an unknown 
parameter of a model or state of a system. An input module 
may receive numerical data about the system. A noise module 
may generate random, chaotic, or other type of numerical 
perturbations of the received numerical data and/or may gen 
erate pseudo-random noise. An estimation module may itera 
tivel estimate the unknown parameter of the model or state of 
the system based on the received numerical data. The estima 
tion module may use the numerical perturbations and/or the 
pseudo-random noise and the input numerical data during at 
least one of the iterative estimates of the unknown parameter. 
A signaling module may determine whether Successive 
parameter estimates or information derived from Successive 
parameter estimates differ by less than a predetermined sig 
naling threshold and, if so, signal when this occurs. 
The estimation module may estimate the unknown param 

eter of the model or state of the system using maximum 
likelihood, expectation-maximization, minorization-maxi 
mization, or another statistical optimization or Sub-optimiza 
tion method. 
The noise module may generate random, chaotic, or other 

type of numerical perturbations of the input numerical data 
that fully or partially satisfy a noisy expectation maximiza 
tion (NEM) condition. The estimation module may estimate 
the unknown parameter of the model or state of the system by 
adding, multiplying, or otherwise combining the received 
numerical data with these numerical perturbations. 
The estimation module may cause the magnitude of the 

generated numerical perturbations to eventually decay during 
Successive parameter estimates. 
The noise module may generate numerical perturbations 

that do not depend on the received numerical data. The esti 
mation module may estimate the unknown parameter of the 
model or state of the system using the numerical perturba 
tions that do not depend on the received numerical data. 
The system may be a model that is a probabilistically 

weighted mixture of probability curves, including a scalar or 
vector Gaussian and Cauchy curves. The noise module may 
cause the generated numerical perturbations and/or pseudo 
random noise to fully or partially satisfy a mixture-based 
NEM condition, including a component-wise quadratic NEM 
condition. 

Non-transitory, tangible, computer-readable storage media 
may contain a program of instructions that may cause a com 
puter system running the program of instruction to function as 
any of the estimating computer systems that are described 
herein or any of their components. 

These, as well as other components, steps, features, 
objects, benefits, and advantages, will now become clear from 
a review of the following detailed description of illustrative 
embodiments, the accompanying drawings, and the claims. 

BRIEF DESCRIPTION OF DRAWINGS 

The drawings are of illustrative embodiments. They do not 
illustrate all embodiments. Other embodiments may be used 
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in addition or instead. Details that may be apparent or unnec 
essary may be omitted to save space or for more effective 
illustration. Some embodiments may be practiced with addi 
tional components or steps and/or without all of the compo 
nents or steps that are illustrated. When the same numeral 
appears in different drawings, it refers to the same or like 
components or steps. 

FIG. 1 illustrates an example of a possible EM noise benefit 
for a Gaussian mixture model. 

FIG. 2 illustrates an example of a possible EM noise benefit 
for a log-convex censored gamma model. 

FIG. 3 illustrates an example of comparing the possible 
effects of noise injection with and without the NEM sufficient 
condition. 

FIG. 4 illustrates an example of a computer estimation 
system for iteratively estimating an unknown parameter of a 
model or state of a system. 

FIG. 5 illustrates an example of computer-readable storage 
media that may contain a program of instructions that causes 
a computer system running the program of instructions to 
function as any of the types of estimating computer system 
described herein. 

DETAILED DESCRIPTION OF ILLUSTRATIVE 
EMBODIMENTS 

Illustrative embodiments are now described. Other 
embodiments may be used in addition or instead. Details that 
may be apparentorunnecessary may be omitted to save space 
or for a more effective presentation. Some embodiments may 
be practiced with additional components or steps and/or with 
out all of the components or steps that are described. 
Overview 
A noise-injected version of the Expectation-Maximization 

(EM) algorithm is presented: the Noisy Expectation Maximi 
zation (NEM) algorithm. The NEM algorithm may use noise 
to speed up the convergence of the EM algorithm. The NEM 
theorem shows that additive noise can speed up the average 
convergence of the EM algorithm to a local maximum of the 
likelihood surface if a positivity condition holds. Corollary 
results give special cases when noise improves the EM algo 
rithm Such as in the case of the Gaussian mixture model 
(GMM) and the Cauchy mixture model (CMM). The NEM 
positivity condition may simplify to a quadratic inequality in 
the GMM and CMM cases. A final theorem shows that the 
noise benefit for independent identically distributed additive 
noise may decrease with sample size in mixture models. This 
theorem implies that the noise benefit may be most pro 
nounced if the data is sparse. 
I. Introduction 

Careful noise injection can increase the average conver 
gence speed of the EM algorithm. It may also derive a general 
sufficient condition for this EM noise benefit. Simulations 
show this EM noise benefit include the ubiquitous Gaussian 
mixture model (FIG. 1), the Cauchy mixture model, and the 
censored gamma model (FIG. 2). The simulations in FIG. 3 
also show that the noise benefit may be faint or absent if the 
system simply injects blind noise that ignores the Sufficient 
condition. This Suggests that the noise benefit sufficient con 
dition may also be necessary for some data models. The 
discussion concludes with results that show that the noise 
benefittends to occur most sharply in sparse data sets. 

The EM noise benefit may be an example of stochastic 
resonance in Statistical signal processing. Stochastic reso 
nance may occur when noise improves a signal systems 
performance, see A. R. Bulsara and L. Gammaitoni, “Tuning 
in to Noise.” Physics Today (1996) 39-45; L. Gammaitoni, P. 
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Hänggi, P. Jung and F. Marchesoni, “Stochastic Resonance. 
Reviews of Modern Physics 70 (1998) 223-287; B. Kosko, 
Noise (Viking, 2006): Small amounts of noise may improve 
the performance while too much noise may degrade it. Much 
early work on noise benefits involved natural systems in 
physics, see J. J. Brey and A. Prados, “Stochastic Resonance 
in a One-Dimension Ising Model.” Physics Letters A 216 
(1996) 240-246, chemistry, see H. A. Kramers, “Brownian 
Motion in a Field of Force and the Diffusion Model of Chemi 
cal Reactions.” Physica VII (1940) 284-304; A. Förster, M. 
Merget and F. W. Schneider, “Stochastic Resonance in Chem 
istry. 2. The Peroxidase-Oxidase Reaction.” Journal of Physi 
cal Chemistry 100 (1996) 4442-4447, and biology, see F. 
Moss, A. Bulsara and M. Shlesinger, eds. Journal of Statis 
tical Physics, Special Issue on Stochastic Resonance in Phys 
ics and Biology (Proceedings of the NATO Advanced 
Research Workshop), volume 70, no. 1/2 (Plenum Press, 
1993); P. Cordo, J.T. Inglis, S. Vershueren, J.J. Collins, D.M. 
Merfeld, S. Rosenblum, S. Buckley and F. Moss, “Noise in 
Human Muscle Spindles”, Nature 383 (1996) 769-770; R. K. 
Adair, R. D. Astumian and J. C. Weaver, “Detection of Weak 
Electric Fields by Sharks, Rays and Skates.” Chaos: Focus 
Issue on the Constructive Role of Noise in Fluctuation Driven 
Transport and Stochastic Resonance 8 (1998) 576-587: P. 
Hänggi, “Stochastic resonance in biology. ChemPhysChem 
3 (2002) 285-290. This work inspired the search for noise 
benefits in nonlinear signal processing and statistical estima 
tion. See A. R. Bulsara and A. Zador, “Threshold Detection of 
Wideband Signals: A Noise-Induced Maximum in the Mutual 
Information.” Physical Review E54 (1996) R2185R2188: F. 
Chapeau-Blondeau and D. Rousseau, “Noise-Enhanced Per 

s 

formance for an Optimal Bayesian Estimator.” IEEE Trans 
actions on Signal Processing 52 (2004) 1327-1334; M. 
McDonnell, N. Stocks, C. Pearce and D. Abbott, Stochastic 
resonance: from Suprathreshold stochastic resonance to sto 
chastic signal quantization (Cambridge University Press, 
2008); H. Chen, P. Varshney, S. Kay and J. Michels, “Noise 
Enhanced Nonparametric Detection. IEEE Transactions on 
Information Theory 55 (2009) 499-506; A. Patel and B. 
Kosko, “Noise Benefits in Quantizer-Array Correlation 
Detection and Watermark Decoding.” IEEE Transactions on 
Signal Processing 59 (2011) 488-505; B. Franzke and B. 
Kosko, “Noise can speed convergence in Markov chains. 
Physical Review E 84 (2011) 041112. The EM noise benefit 
may not involve a signal threshold unlike almost all SR noise 
benefits, see L. Gammaitoni, P. Hanggi, P. Jung and F. 
Marchesoni, “Stochastic Resonance.” Reviews of Modern 
Physics 70 (1998) 223-287. 
The next sections develop theorems and algorithms for 

Noisy Expectation-Maximization (NEM). Section 2 Summa 
rizes the key facts of the Expectation-Maximization algo 
rithm. Section 3 introduces the theorem and corollaries that 
underpin the NEM algorithm. Section 4 presents the NEM 
algorithm and some of its variants. Section 5 presents a theo 
rem that describes how sample size may affect the NEM 
algorithm for mixture models when the noise is independent 
and identically distributed (i.i.d.). 
II. The EM Algorithm 
The EM algorithm is an iterative maximum-likelihood esti 

mation (MLE) method for estimating pdf parameters from 
incomplete observed data. See A. P. Dempster, N. M. Laird 
and D. B. Rubin, “Maximum Likelihood from Incomplete 
Data via the EM Algorithm (with discussion).” Journal of the 
Royal Statistical Society, Series B 39 (1977) 1-38; G. J. 
McLachlan and T. Krishnan, The EM Algorithm and Exten 
sions (John Wiley and Sons, 2007); M. R. Gupta andY. Chen, 
“Theory and Use of the EM Algorithm. Foundations and 
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Trends in Signal Processing 4 (2010) 223-296, EM may com 
pensate for missing information by taking expectations over 
all missing information conditioned on the observed incom 
plete information and on current parameter estimates. A goal 
of the EM algorithm is to find the maximum-likelihood esti 
mate 6 for the pdf parameter 0 when the data Y has a known 
parametric pdf f(y10). The maximumlikelihood estimate 6 is 

argm (1) 8 “(a () (ey) 

where 1(0ly)=ln f(y10) is the log-likelihood (the log of the 
likelihood function). 
The EM Scheme may apply when an incomplete data ran 

dom variable Y-r(X) is observered instead of the complete 
data random variable X. The function r: X->Y may model 
data corruption or information loss. X=(Y,Z) can denote the 
complete data X, where Z is a latent or missing random 
variable. Z may represent any statistical information lost dur 
ing the observation mapping r(X). This corruption may make 
the observed data log-likelihood 10ly) complicated and dif 
ficult to optimize directly in (1). 
The EM algorithm may address this difficulty by using the 

simpler complete log-likelihood 10ly,Z) to derive a Surrogate 
function Q(00) for 10ly). Q(00) is the average of 100 ly, Z) 
over all possible values of the latent variable Z, given the 
observation Y=y and the current parameter estimate 0: 

Q(66) = EZL (6 y, Z) Y = y, 6. (2) 

A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum 
Likelihood from Incomplete Data via the EM Algorithm (with 
discussion). Journal of the Royal Statistical Society, Series B 
39 (1977) 1-38, first showed that any 0 that increases Q(00) 
cannot reduce the log-likelihood difference 100ly)-l(0ly). 
This “ascent property led to an iterative method that per 
forms gradient ascent on the log-likelihood 100ly). This result 
underpin the EM algorithm and its many variants, see G. 
Celeux and J. Diebolt, “The SEM algorithm: A Probabilistic 
Teacher Algorithm Derived from the EM Algorithm for the 
Mixture Problem. Computational Statistics Quarterly 2 
(1985) 73-82; G. Celeux and G. Govaert, “A Classification 
EM Algorithm for Clustering and Two Stochastic Versions.” 
Computational Statistics & Data Analysis 14 (1992) 315-332; 
X. L. Meng and D. B. Rubin, “Maximum Likelihood Estima 
tion via the ECM algorithm. A general framework.” 
Biometrika 80 (1993) 267: C. Liu and D. B. Rubin, “The 
ECME algorithm: a simple extension of EM and ECM with 
faster monotone convergence” Biometrika 81 (1994) 633; J. 
A. Fessler and A. O. Hero, “Space-Alternating Generalized 
Expectation-Maximization Algorithm. IEEE Transactions 
on Signal Processing 42 (1994) 2664-2677; H. M. Hudson 
and R. S. Larkin, ''Accelerated Image Reconstruction using 
Ordered Subsets of Projection Data.” IEEE Transactions on 
Medical Imaging 13 (1994) 601-609. 
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6 
The following notation for expectations to avoid cumber 

Some equations are used: 

Estag (S. i. (9) = Esg(S, T, (9) T = i. d 

where S and T are random variables, (p and 0 are deterministic 
parameters, and g is integrable with respect to the conditional 
pdffsz. 
A standard EM algorithm may perform the following two 

steps iteratively on a vectory (y. . . . . y) of observed 
random samples of Y: 

Algorithm 1 6er- EM-Estimate(y) 

1: E-Step: Q (00) <-Szoln f(y.Z10) 
2: M-Step: 01 - argmaxaQ (00)} 

The algorithm may stop when Successive estimates differ 
by less than a given tolerance |0-0 ||<10" or when 
l(0ly)-l(0|y)<e. The EM algorithm may converge 
(0->0) to a local maximum 0, see C. F. J. Wu. “On the 
Convergence Properties of the EMAlgorithm. The Annals of 
Statistics 11 (1983) 95-103; R. A. Boyles, “On the conver 
gence of the EM algorithm.” Journal of the Royal Statistical 
Society. Series B (Methodological) 45 (1983)47-50. 0->0. 
The EM algorithm may be a family of MLE methods for 

working with incomplete data models. Such incomplete data 
models may include mixture models, see R. A. Redner and H. 
F. Walker, "Mixture Densities, Maximum Likelihood and the 
EM algorithm.” SIAM Review 26 (1984) 195-239; L. Xu and 
M. I. Jordan, “On convergence properties of the EM algo 
rithm for gaussian mixtures. Neural computation 8 (1996) 
129-151, censored exponential family models, see R. Sund 
berg, “Maximum likelihood theory for incomplete data from 
an exponential family. Scandinavian Journal of Statistics 
(1974) 49-58, and mixtures of censored models, see D. Chau 
veau, “A stochastic EM algorithm for mixtures with censored 
data.” Journal of Statistical Planning and Inference 46 (1995) 
1-25. The next subsection describes examples of such incom 
plete data models. 
Users may have a good deal of freedom when they specify the 
EM complete random variables X and latent random vari 
ables Z for probabilistic models on the observed data Y. This 
freedom in model selection may allow users to recast many 
disparate algorithms as EM algorithms, see R. J. Hathaway, 
“Another interpretation of the EM algorithm for mixture dis 
tributions. Statistics & Probability Letters 4 (1986) 53-56:J. 
P. Delmas, “An equivalence of the EM and ICE algorithm for 
exponential family.” IEEE Transactions on Signal Processing 
45 (1997) 2613-2615; M. A. Carreira-Perpiñán, “Gaussian 
mean shift is an EM algorithm. IEEE Trans. on Pattern 
Analysis and Machine Intelligence 29 (2005) 2007: G. 
Celeux and G. Govaert, “A Classification EM Algorithm for 
Clustering and Two Stochastic Versions. Computational Sta 
tistics & Data Analysis 14 (1992) 315-332. Changes to the E 
and M steps give another degree of freedom for the EM 
scheme, see A. P. Dempster, N. M. Laird and D. B. Rubin, 
“Maximum Likelihood from Incomplete Data via the EM 
Algorithm (with discussion.” Journal of the Royal Statistical 
Society, Series B39 (1977) 1-38;J. A. Fessler and A. O. Hero, 
“Space-Alternating Generalized Expectation-Maximization 
Algorithm. IEEE Transactions on Signal Processing 42 
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(1994) 2664-2677; H. M. Hudson and R. S. Larkin, “Accel 
erated Image Reconstruction using Ordered Subsets of Pro 
jection Data.” IEEE Transactions on Medical Imaging 13 
(1994) 601-609; X. L. Meng and D. B. Rubin, “Using EM to 
obtain asymptotic variance-covariance matrices: the SEM 
algorithm.. Journal of the American Statistical Association 
86 (1991) 899-909; G. Celeux, S. Chrétien, F. Forbes and A. 
Mkhadri. “A component-wise EM algorithm for mixtures.” 
Journal of Computational and Graphical Statistics 10 (2001) 
697-712. 
A. Incomplete Data Models for EM: Mixture and Censored 
Gamma Models 
Now described is the finite mixture model, an example of 

an incomplete data model which may be used to compare the 
EM and the NEM algorithms: 
A finite mixture model, see R. A. Redner and H. F. Walker, 

“Mixture Densities, Maximum Likelihood and the EM algo 
rithm.” SIAM Review 26 (1984) 195-239; G. J. McLachlan 
and D. Peel, Finite Mixture Models, Wiley series in probabil 
ity and statistics: Applied probability and statistics (Wiley, 
2004), may be a convex combination of a finite set of sub 
populations. The Sub-population pdfs may come from the 
same parametric family. Mixture models may be useful for 
modeling mixed populations for statistical applications such 
as clustering, pattern recognition, and acceptance testing. The 
following notation for mixture models are used. Y is the 
observed mixed random variable. K is the number of Sub 
populations. Ze1, . . . . K} is the hidden Sub-population 
index random variable. The convex population mixing pro 
portions C.,..., C. form a discrete pdf for Z: P(Z-j)-C. The 
pdf f(y|Z j,0) is the pdf of the j" sub-population where 
0,..., 0 are the pdf parameters for each sub-population. 0 
is the vector of all model parameters 0={C., . . . , C, 
0, ..., 0}. The joint pdf f(y,z10) is 

(3) K 

f(y,z) 0) = X of cyli, 9)013 - i). 

The marginal pdf forY and the conditional pdf for Z given y 
a 

f(y | 0) =X of y i. 9;) (4) 
i 

and 

Z = i. 6; 5 pacily, 0) = 104 it (5) 

by Bayes theorem. The joint pdf in exponential form for ease 
of analysis are rewritten 

f(y,z, 0) = es), In(a) + Inf(y | i. 6)log-il. (6) 
f 

Thus 

Inf(y,z 0) = X013 - illna, f(y | j, 0)). (7) 
i 

EM algorithms for finite mixture models may estimate 0 
using the Sub-population index Z as the latent variable. An 
EM algorithm on a finite mixture model may use (5) to derive 
the Q-function 
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=X (), is-line follo) nicle) () 
(8) 

B Noise Benefits in the EM Algorithm 
FIG.1 illustrates an example of a possible EM noise benefit 

for a Gaussian mixture model. The plot used the noise-an 
nealed NEM algorithm. Low intensity initial noise decreased 
convergence time while higher intensity starting noise 
increased it. The optimal initial noise level had standard 
deviation O*=2.5. The average optimal NEM speed-up over 
the noiseless EM algorithm is 27.2%. This NEM procedure 
added noise with a cooling schedule. The noise cools at an 
inverse-square rate. The Gaussian mixture density was a con 
vex combination of two normal Sub-populations N and N. 
The simulation used 200 samples of the mixture normal dis 
tribution to estimate the standard deviations of the two sub 
populations. The additive noise used samples of Zero-mean 
normal noise with standard deviation O screened through the 
GMM-NEM condition in (42). Each sampled point on the 
curve is the average of 100 trials. The vertical bars are 95% 
bootstrap confidence intervals for the mean convergence time 
at each noise level. 
Theorem 1 below states a general sufficient condition for a 

noise benefit in the average convergence time of the EM 
algorithm. FIG. 1 shows a simulation instance of this theorem 
for the important EM case of Gaussian mixture densities. 
Small values of the noise variance may reduce convergence 
time while larger values may increase it. This possible 
U-shaped noise benefit may be the non-monotonic signature 
of stochastic resonance. The optimal noise speeds may con 
verge by 27.2%. Other simulations on multidimensional 
GMMs have shown speed increases of up to 40%. 
The possible EM noise benefit may differ from almost all 

stochastic resonance (SR) noise benefits because it may not 
involve the use of a signal threshold, see L. Gammaitoni, P. 
Hänggi, P. Jung and F. Marchesoni, “Stochastic Resonance.” 
Reviews of Modern Physics 70 (1998) 223-287. The possible 
EM noise benefit may also differ from most SR noise benefits 
because the additive noise can depend on the signal. Indepen 
dent noise can lead to weaker noise benefits than dependent 
noise in EM algorithms. This may also happen with enhanced 
convergence in noise-injected Markov chains, see B. Franzke 
and B. Kosko, “Noise can speed convergence in Markov 
chains,”, Physical Review E 84 (2011) 041112. 
The idea behind the EM noise benefit is that sometimes 

noise can make the signal data more probable. This occurs at 
the local level when 

for probability density function (pdf) f. realization y of ran 
dom variable Y, realization n of random noise N, and param 
eter 0. This condition holds if and only if the logarithm of the 
pdfratio is positive: 

(14) 

In(R)- 0 (15) 
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The logarithmic condition (15) in turn occurs much more 
generally if it holds only on average with respect to all the 
pdfs involved in the EM algorithm: 

f(Y + N, Z8) (16) E lin Y,ZNie." Foy, Zo, 

where random variable Z represents missing data in the EM 
algorithm and where 0. is the limit of the EM estimates 0: 
0->0. The positivity condition (16) may be precisely the 
sufficient condition for a noise benefit in Theorem 1 below, 
called the NEM or Noisy EM Theorem. 
III. Noisy Expectation Maximization Theorems 
The EM noise benefit may be defined by first defining a 

modified Surrogate log-likelihood function 

Qy(00)=Ezo. In f(y+N.Z10) (17) 

and its maximizer 

The modified Surrogate log-likelihood Q(00) equals the 
regular surrogate log-likelihood Q(00) when N=0. Q(010.) 
is the final surrogate log-likelihood given the optimal EM 
estimate 0. So 0, may maximize Q(00). Thus 

Q(0.10.)sG(00.) for all 0. (18) 

An EM noise benefit occurs when the noisy surrogate 
log-likelihood Q(0,0) is closer to the optimal value 
Q(0,0) than the regular Surrogate log-likelihood Q(0,0,...) 
is. This holds when 

Q(0,0)-eg(0,0.) (19) 

O 

So the noisy perturbation Q(00) of the current Surrogate 
log-likelihood Q(00) may be a better log-likelihood func 
tion for the data than Q is itself. An average noise benefit 
results when the expectations of both sides of inequality (20): 

(20) 

are taken. 
The average noise benefit (21) occurs when the final EM pdf 
f(y,z10) is closer in relative-entropy to the noisy pdf f(y+N. 
Z10) than it is to the noiseless pdf f(y,z10). Define the rela 

(21) 

tive-entropy pseudo-distances 

c(N)=D(f(y,z10.)f(y+Nz|0)) (22) 

c=c(0)=D(f(y,z10.)f(y,z10)). (23) 

Then noise benefits the EM algorithm when 

Caci (N) (24) 

holds for the relative-entropy pseudo-distances. The relative 
entropy itself has the form, see T. M. Cover and J. A. Thomas, 
Elements of Information Theory (Wiley & Sons, New York, 
1991), 1 edition, 
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for positive pdfs hand gover the same Support. Convergent 
Sums can replace the integrals as needed. 
A. NEM Theorem 

The Noisy Expectation Maximization (NEM). Theorem 
below uses the following notation. The noise random variable 
N has pdf f(nly). So the noise N can depend on the data Y. 
Independence implies that the noise pdf becomes f(nly) f. 
(n). {0} is a sequence of EM estimates for 0.0-lim -.0 is 
the converged EM estimate for 0. Assume that the differential 
entropy of all random variables is finite. Assume also that the 
additive noise keeps the data in the likelihood functions 
support. The Appendix below gives proof of the NEM Theo 
rem and its three corollaries. 

Theorem 1: Noisy Expectation Maximization (NEM). The 
EM estimation iteration noise benefit 

may occur on average if 

A-0. (27) E I rz. f(Y, Z (9) 

The NEM theorem also applies to EM algorithms that use the 
complete data as their latent random variable. The proof for 
these cases follows from the proof in the appendix. The NEM 
positivity condition in these models may changes to 

(28) Export - 0. 

The theorem also holds for more general methods of noise 
injection like using noise multiplication y.N instead of noise 
addition y+N. The NEM condition for generalized noise 
injection is 

A Erzvin, 
where p (YN) is some generalized function for combining 
data with noise. 

The NEM Theorem may imply that each iteration of a 
Suitably noisy EM algorithm moves closer on average 
towards the EM estimate 0, than does the corresponding 
noiseless EM algorithm, see O. Osoba, S. Mitaim and B. 
Kosko, “Noise Benefits in the Expectation-Maximization 
Algorithm. NEM Theorems and Models.” in The International 
Joint Conference on Neural Networks (IJCNN) (IEEE, 
2011), pp. 3178–3183. This may hold because the positivity 
condition (27) implies that Exc. (N) scat each step k since 
c does not depend on N from (23). The NEM algorithm may 
use larger overall steps on average than does the noiseless EM 
algorithm for any numberk of steps 
The NEM theorems stepwise possible noise benefit may 

lead to a noise benefit at any point in the sequence of NEM 
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estimates. This is because the following inequalities may be 
had when the expected value of inequality (19) takes the form 

Q(0.0-)s Ex/Oy(0.10.) for any k. (29) 

Thus 

Q(0.10.)-Q(0.10.)>9(0.0-)-Ex/Ox(0.10.) for any 
k. (30) 

The EM (NEM) sequence may converge when the left (right) 
side of inequality (30) equals Zero. Inequality (30) implies 
that the difference on the right side is closer to Zero at any step 
k. 
NEM sequence convergence may be even stronger if the 

noise N decays to Zero as the iteration count k grows to 
infinity. This noise annealing implies N->0 with probability 
one. Continuity of Q as a function of Y implies that 
Q(00)->Q(010,) as N.->0. This may hold because 
Q(010)=|Ezeln f(y.Z10) and because the continuity of Q 
implies that 

Ezya, inflim y +N), ZI 9)= Eza (Inf(y, Z10) = Q(9|8). 

The evolution of EM algorithms may guarantee that limO 
(0,0)=Q(0.10.). This may give the probability-one limit 

Jim Q, (0, 0) = Q(0.10.). (32) 

So for any 6-0 there may exist a ko such that for all k>ko: 
Q(0.0-)-Q(0.10.)|<e and Q (0.10.)-Q(0.10.)|<e 

with probability one. 

Inequalities (29) and (33) may imply that Q(0,0) is 6-close 
to its upper limit Q(0,0) and 

EQ (0.0-)-Q(0.10.) and Q(0.10.)>Q(0.10.) 
So the NEM and EM algorithms may converge to the same 
fixed-point by (32). And the inequalities (34) may imply that 
NEM estimates are closer on average to optimal than EM 
estimates are at any step k. 
B. NEM: Dominated Densities and Mixture Densities 
The first corollary of Theorem 1 gives a dominated-density 

condition that satisfies the positivity condition (27) in the 
NEM Theorem. This strong pointwise condition is a direct 
extension of the pdf inequality in (14) to the case of an 
included latent random variable Z. 
Corollary 1: 

(33) 

(34) 

f(Y + N, Z8) (35) 

f 

for almost ally, Z, and n. 
The Corollary 1 may be used to derive conditions on the 

noise N that produce NEM noise benefits for mixture models. 
NEM mixture models may use two special cases of Corollary 
1. These special cases as Corollaries 2 and 3 are stated below. 
The corollaries use the finite mixture model notation in Sec 
tion 2.1. Recall that the joint pdf of Y and Z is 
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12 
Define the population-wise noise likelihood difference as 

Corollary 1 implies that noise benefits the mixture model 
estimation if the dominated-density condition holds: 

(37) 

f(y+n,z10)ef(y,z10). (38) 

This may occur if 

Af,(y,n)=0 for all j. (39) 

The Gaussian mixture model (GMM) may use normal pdfs 
for the sub-population pdfs, see V. Hasselblad, “Estimation of 
Parameters for a Mixture of Normal Distributions. Techno 
metrics 8 (1966) 431-444; R. A. Redner and H. F. Walker, 
“Mixture Densities, Maximum Likelihood and the EM algo 
rithm.” SIAM Review 26 (1984) 195-239. Corollary 2 states 
a simple quadratic condition that may ensure that the noisy 
sub-population pdf f(y+n|Z-j.0) dominates the noiseless 
sub-population pdf f(y|Z-i,0) for GMMs. The additive noise 
samples n may depend on the data samples y. 
Corollary 2: Suppose Y12 -N(L.O.) and thus f(yj.0) is a 
normal pdf. Then 

holds if 

n’s2n(1-y). (41) 

Now apply the quadratic condition (41) to (39). Then f(y+ 
n.Z0)-f(y,z10) may hold when 

n’s2n(1-y) for all j. (42) 

The inequality (42) gives the GMM-NEM noise benefit 
condition (misstated in O. Osoba and B. Kosko, “Noise 
Enhanced Clustering and Competitive Learning Algo 
rithms. Neural Networks37 (2013) 132-140, but corrected in 
O. Osoba and B. Kosko, “Corrigendum to Noise enhanced 
clustering and competitive learning algorithms (Neural 
Netw: 37 (2013) 132-140). Neural Networks (2013)) when 
the NEM system more quickly estimates the standard devia 
tions o, than does noiseless EM. This can also benefit expec 
tation-conditional-maximization (ECM), see X. L. Meng and 
D. B. Rubin, “Maximum Likelihood Estimation via the ECM 
algorithm: A general framework. Biometrika 80 (1993) 267, 
methods. 

FIG. 1 shows an example of a simulation instance of pos 
sible noise benefits for GMM parameter estimation based on 
the GMM-NEM condition (42). The simulation estimates the 
Sub-population standard deviations O and O from 200 
samples of a Gaussian mixture of two 1-D sub-populations 
with known means L-2 and u2 and mixing proportions 
C=0.5 and C-0.5. The true standard deviations may be 
O*=2 and O*=2. Each EM and NEM procedure may start at 
the same initial point with O (0)=4.5 and O (0)=5. The simu 
lation runs NEM on 100 GMM data sets for each noise level 
Oy and counts the number of iterations before convergence 
for each instance. The average of these iteration counts is the 
average convergence time at that noise level Oy. The EM and 
NEMsimulations use the NArgMax numerical maximization 
routine in Mathematica for the M-step. Simulations (not 
shown) also confirm that both the Cauchy mixture model 
(CMM) and non-Gaussian noise may show a similar pro 
nounced noise benefit. 
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Corollary 3 gives a similar quadratic condition for the 
Cauchy mixture model. 
Corollary 3: Suppose Y12 -C(med) and thus f(yj.0) is a 
Cauchy pdf. Then 

Af,(y,n)=0 (43) 

holds if 

n’s2n(m-r). (44) 
Again apply the quadratic condition (44) to (39). Then 

f(y--n,z10)-f(y,z10) may hold when 
n’s2n(my) for all j. 

Both quadratic NEM inequality conditions in (42) and (45) 
may reduce to the following inequality (replace L with m for 
the CMM case): 

(45) 

(46) 

So the noise n may fall in the set where the parabola n°-2n 
(L-y) is negative for allj. There are two possible solution sets 
for (46) depending on the values of , and y. These solution 
SetS are 

N',(v)=(0.2(1-y)). 
A goal may be to find the set N(y) of n values that satisfy the 
inequality in (42) for all j: 

where N(y)-N'-(y) or N,(y)-N-(y). N(y)z {0} may hold 
only when the sample y lies on one side of all Subpopulation 
means (or location parameters) u. This may hold for 

(48) 

y<!, for allior y <1, for all j. (50) 

The NEM noise N may take values in nN, if the data 
sampley falls to the right of all sub-population means (you, 
for alli). The NEM noise N may take values in nN, if the 
data sampley falls to the left of all subpopulation means (ysu, 
for alli). And N=0 may only be valid value for N wheny falls 
between Sub-populations means. Thus, the noise N may tend 
to pull the data sampley away from the tails and towards the 
cluster of Sub-population means (or locations). 
IV. The Noisy Expectation-Maximization Algorithm 
The NEM Theorem and its corollaries give a general 

method for modifying the noiseless EM algorithm. The NEM 
Theorem also may imply that, on average, these NEM vari 
ants outperform the noiseless EM algorithm. 

Algorithm 2 gives the Noisy Expectation-Maximization 
algorithm schema. The operation NEMNoiseSample(y) gen 
erates noise samples that satisfy the NEM condition for the 
current data model. The noise sampling distribution may 
depend on the vector of random samplesy in the Gaussian and 
Cauchy mixture models. The noise can have any value in the 
NEM algorithm for censored gamma models. The E-Step 
may take a conditional expectation of a function of the noisy 
data samples y given the noiseless data samplesy. 

Require: y = (y1,.. 
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Algorithm 2 over- NEM-Estimate(y) 

Require: y = (y1,...,y): vector of observed incomplete data 
Ensure: over NEM estimate of parameter 0 
1: while (10 - 0 || > 10) do 
2: N-Step: n - k" x NEMNoiseSample(y) 
3: N-Step: y - y + n 
4: E-Step: Q(00) - Ezo (In fy, Z10) 

5: M-Step: 61 - argmax {Q(66)} 
G 

6: ke-k+ 1 
7: end while 

6.NEA s 6. 

A deterministic decay factork" scales the noise on the k" 
iteration. T is the noise decay rate. The decay factor k" 
reduces the noise at each new iteration. This factor drives the 
noise N to Zero as the iteration step k increases. The simula 
tions in this presentation use T-2 for demonstration. Values 
between t=1 and t=3 also work. N. still needs to satisfy the 
NEM condition for the data model. The cooling factor k" 
must not cause the noise samples to violate the NEM condi 
tion. This may means that 0<k's 1 and that the NEM condi 
tion Solution set is closed with respect to contractions. 
The decay factor may reduce the NEM estimator's jitter 

around its final value. This may be important because the EM 
algorithm converges to fixed-points. So excessive estimator 
jitter may prolong convergence time even when the jitter 
occurs near the final solution. The simulations in this presen 
tation use polynomial decay factors instead of logarithmic 
cooling schedules found in annealing applications, see S. 
Kirkpatrick, C. Gelatt Jr and M. Vecchi, “Optimization by 
simulated annealing. Science 220 (1983) 671-680; V. Cerny, 
“Thermodynamical approach to the Traveling Salesman 
Problem: An efficient simulation algorithm.” Journal of Opti 
mization Theory and Applications 45 (1985) 41-51; S. 
Geman and C. Hwang, “Diffusions for global optimization.” 
SIAM Journal on Control and Optimization 24 (1986) 1031 
1043; B. Hajek, “Cooling schedules for optimal annealing.” 
Mathematics of operations research (1988) 311-329; B. 
Kosko, Neural Networks and Fuzzy Systems: A Dynamical 
Systems Approach to Machine Intelligence (Prentice Hall, 
1991). 

Deterministic and/or chaotic samples can achieve effects 
similar to random noise in the NEM algorithm.NEM variants 
that use deterministic or chaotic perturbations instead of ran 
dom noise may be called Deterministic Interference EM or 
Chaotic EM respectively. 
The next algorithm is an example of the full NEM algo 

rithm for 1-D GMMS using an inverse square cooling rate on 
the additive noise. The N-step combines both Nsand N steps 
in the NEM algorithm. 

Algorithm 3 GMM-NEM Algorithm (1-D) 

..,y): vector of observed incomplete data 

Ensure: Over NEM estimate of parameter 0 
1: while (10 - 0 || > 10) do 
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-continued 

Algorithm 3 GMM-NEM Algorithm (1-D) 

such that n,n, –2(1, -y)s 0 for all i,j 

3: E-Step: Q(ele(t) = x, x^ Inc., ? (z,j, 0)p-Gly, e(t)) 
M-Step: 6.1 = arginax {Q(88)} 

5: k = k + 1 
6: end while 

7: Over = 0. 

The NEM algorithm may inherit variants from the classical 
EM algorithm schema. A NEM adaptation to the Generalized 

N-Step: y = y; + n, where n; is a sample of the truncated Gaussian ~ N(0, 

Expectation Maximization (GEM) algorithm may be one of 20 
the simpler variations. The GEM algorithm replaces the EM 
maximization step with a gradient ascent step. The Noisy 
Generalized Expectation Maximization (NGEM) algorithm 
(Algorithm 3) may use the same M-step: 

Algorithm 3 Modified M-Step for NGEM: 

1: M-Step: 0 <- 6 such that Q (00.) e Q (0-0) 

The NEM algorithm schema may also allow for some varia 
tions outside the scope of the EM algorithm. These involve 
modifications to the noise sampling step Ns-Step or to the 
noise addition step N-Step. One such modification may not 
require an additive noise term n, for each y. This may be 
useful when the NEM condition is stringent because then 
noise sampling can be time intensive. This variant changes 
the Ns-Step by picking a random or deterministic Sub-selec 
tion of y to modify. Then, it samples the noise subject to the 
NEM condition for those sub-selected samples. This is the 
Partial Noise Addition NEM (PNA-NEM). 

Algorithm 4 Modified N-Step or PNA-NEM 

i – 1 ... M. 
if s- SubSelection(i) 
for all ie: do 

in s-kx NEMNoiseSample(y) 
end for 

The NEM noise generating procedure NEMNoiseSample 
(y) may return a NEMcompliant noise sample in at a given 
noise level O for each data sample y. This procedure may 
change with the EM data model. The noise generating proce 
dure for the GMMs and CMMs comes from Corollaries 2 and 
3. The following 1-D noise generating procedure may be used 
for the GMM simulations: 

NEMNoiseSample for GMM- and CMM-NEM 

Require: y and Oy: current data sample and noise level 
Ensure: n: noise sample satisfying NEM condition 
N (y) - n.N.(y) 
n is a sample from the distribution T N (0, oN(y)) 

where TN(0,OIN(y)) is the normal distribution N(0.O.) 
truncated to the support set N(y). The set N(y) is the interval 
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N F) 

intersection from (49). Multi-dimensional versions of the 
generator can apply the procedure component-wise. 
V. NEMSample Size Effects: Gaussian and Cauchy Mixture 
Models 
The noise-benefit effect may depend on the size of the 

GMM data set. Analysis of this effect may depend on the 
probabilistic event that the noise satisfies the GMM-NEM 
condition for the entire sample set. This analysis also applies 
to the Cauchy mixture model because its NEM condition is 
the same as the GMMs. Define A as the event that the noise 
Nsatisfies the GMM-NEM condition for the k" data sample: 

Then define the event A that noise random variable N satis 
fies the GMM-NEM condition for each data sample as 

(53) i 

AM = (A. 
k 

This construction may be useful for analyzing NEM when the 
independent and identically distributed (i.i.d.) noise 

N, a N 

for ally is used while still enforcing the NEM condition. 
A Large Sample Size Effects 
The next theorem shows that the set A shrinks to the 

singleton set {0} as the number M of samples in the data set 
grows. So the probability of satisfying the NEM condition 
with i.i.d. noise samples goes to zero as M->OO with probabil 
ity one. 
Theorem 2: Large Sample GMM and CMM-NEM 
Assume that the noise random variables are i.i.d. Then the 

set of noise values 

that satisfy the Gaussian NEM condition for all data samples 
y decreases with probability one to the set {0} as M->Oo: 

(55) 

PJim AM = {0}) = 1. (56) 
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The proof shows that larger sample sizes M may place 
tighter bounds on the size of A with probability one. The 
bounds shrink A. all the way downto the singleton set {0} as 
M->OO. A is the set of values that identically distributed 
noise N can take to satisfy the NEM condition for all y. 
A-0} means that N. must be zero for all k because the N. 
are identically distributed. This corresponds to cases where 
the NEM Theorem cannot guarantee improvement over the 
regular EM using just i.i.d. noise. So identically distributed 
noise may have limited use in the GMM- and CMM-NEM 
framework. 
Theorem 2 is a “probability-one' result. But it also implies 

the following convergence-in-probability result. Suppose N 
is an arbitrary continuous random variable. Then the prob 
ability P(NeA) that N satisfies the NEM condition for all 
samples may fall to P(Ne{0})=0 as M->0. 

Using non-identically distributed noise N may avoid the 
reduction in the probability of satisfying the NEM-condition 
for large M. The NEM condition may still hold when NeA 
for each k even if N'fa'? A. This noise sampling model 
may adapt the k" noise random variable N to the k" data 
sampley. This is the general NEM noise model. FIG. 1 and 
FIG. 2 use the NEM noise model. This model may be equiva 
lent to defining the global NEM event A as a Cartesian 
product of sub-events A-II, 'A instead of the intersection 
of sub-events A?h, A. Thus, the bounds of A and its 
coordinate projections may no longer depend on sample size 
M. 

FIG. 3 illustrates an example of comparing of the possible 
effects of noise injection with and without the NEM sufficient 
condition. The data model is a GMM with sample size 
M=225. The blind noise model added annealed noise without 
checking the NEM condition. The plot shows that NEM noise 
injection outperformed the blind noise injection. NEM con 
verged up to about 20% faster than the blind noise injection 
for this model. And blind noise injection produced no reduc 
tion in average convergence time. The Gaussian mixture den 
sity had mean L=0,1, standard deviations O-11, and 
weights C=0.5,0.5 with M=225 samples. 

FIG. 3 compares the performance of the NEM algorithm 
with a simulated annealing version of the EM algorithm. This 
version of EM adds annealed i.i.d. noise to data samples y 
without screening the noise through the NEM condition, 
called blind noise injection. FIG. 3 shows that NEM may 
outperform blind noise injection at a single sample size 
M=225. But it also shows that blind noise injection may fail to 
give any benefit even when NEM achieves faster average EM 
convergence for the same set of samples. Thus blind noise 
injection (or simple simulated annealing) may perform worse 
than NEM and may sometimes performs worse than EM 
itself. 
B. Small Sample Size: Sparsity Effect 
The i.i.d noise model in Theorem 2 has an important cor 

ollary effect for sparse data sets. The size of A decreases 
monotonically with M because A-?n''A. Then for 
M-M: 

P(NeA)eP(NeA) 57) 

since Mo-M, implies that ACA. Thus arbitrary noise N 
(i.i.d and independent of Y) is more likely to satisfy the NEM 
condition and produce a noise benefit for Smaller samples 
sizes Mo than for larger samples sizes M. The probability 
that NeA falls to zero as M->OO. So the strength of the i.i.d. 
noise benefit falls as M->OO. 
Possible Hardware 

FIG. 4 illustrates an example of a computer estimation 
system 401 for iteratively estimating an unknown parameter 
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18 
of a model or state of a system. The estimating computer 
system 401 may include an input module 403, a noise module 
405, and estimation module 407, and a signaling module 409. 
The computer estimated system 401 may include additional 
modules and/or not all of these modules. Collectively, the 
various modules may be configured to implement any or all of 
the algorithms that have been discussed herein. Now set forth 
are examples of these implementations. 
The input module 403 may have a configuration that 

receives numerical data about a model or state of the system. 
The input module 403 may consist of or include a network 
interface card, a data storage system interface, any other type 
of device that receives data, and/or any combination of these. 
The noise module 405 may have a configuration that gen 

erates random, chaotic, or other type of numerical perturba 
tions of the received numerical data and/or that generates 
pseudo-random noise. 
The noise module 405 may have a configuration that gen 

erates random, chaotic, or other type of numerical perturba 
tions of the input numerical data that fully or partially satisfy 
a noisy expectation maximization (NEM) condition. 
The noise module 405 may have a configuration that gen 

erates numerical perturbations that do not depend on the 
received numerical data. 
The estimation module 407 may have a configuration that 

iteratively estimates the unknown parameter of the model or 
state of the system based on the received numerical data and 
then uses the numerical perturbations in the input numerical 
data and/or the pseudo-random noise and the input numerical 
data during at least one of the iterative estimates of the 
unknown parameter. 
The estimation module 407 may have a configuration that 

estimates the unknown parameter of the model or state of the 
system using maximum likelihood, expectation-maximiza 
tion, minorization-maximization, or another statistical opti 
mization or Sub-optimization method. 
The estimation module 407 may have a configuration that 

estimates the unknown parameter of the model or state of the 
system by adding, multiplying, or otherwise combining the 
input data with the numerical perturbations. 
The estimation module 407 may have a configuration that 

estimates the unknown parameter of the model or state of the 
system using the numerical perturbations that do not depend 
on the received numerical data. 
The estimation module 407 may have a configuration that 

causes the magnitude of the generated numerical perturba 
tions to eventually decay during Successive parameter esti 
mates. 

FIG. 5 illustrates an example of computer-readable storage 
media that may contain a program of instructions that cause a 
computer system running the program of instructions to func 
tion as any of the types of estimating computer system 
described herein. 

Other documents that disclose details about the technology 
that has been described herein include: 

O. Osoba, S. Mitaim, B. Kosko, “The Noisy Expectation 
Maximization Algorithm. Fluctuation and Noise Let 
ters, June 2013 

K. Audhkhasi, O. Osoba, and B. Kosko, “Noise Benefits in 
Back-Propagation and Deep Bidirectional Pre-Train 
ing.” International Joint Conference on Neural Net 
works (IJCNN), 2013 

K. Audhkhasi, O. Osoba, and B. Kosko, “Noisy Hidden 
Markov Models for Speech Recognition.” International 
Joint Conference on Neural Networks (IJCNN), 2013 

O. Osoba, B. Kosko, “Noise-enhanced Clustering and 
Competitive Learning Algorithms. Neural Networks, 
vol. 37, pp. 132-140, January 2013 
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O. Osoba, S. Mitaim, B. Kosko, “Noise Benefits in the Take the noise expectation of c and c(N): 
Expectation-Maximization Algorithm: NEM Theorems Ewell-c. (76) 
and Models.” International Joint Conference on Neural 
Networks (IJCNN), pp. 3178-3183, August 2011 E?c.(N)-fc.(N)). (77) 

Osoba, Osonde Adekorede. Noise Benefits in Expectation- 5 So the distance inequality Maximization Algorithms. Dissertation, University of 
Southern California, August 2013 caE?c.(N) (78) 

VI. Conclusion guarantees that noise benefits occur on average: 
Careful noise injection can speed up the average conver IE 0.10.)-O(0.10.) Is E 0.0)- gence time of the EM algorithm. The various sufficient con- 10 N.' )-Q(0.0.)le IE wre/Q(0.10.)-Qw (79) 

ditions for Such a noise benefit may involve a director average 
effect where the noise makes the signal data more probable. 
Special cases may include mixture density models and log 
convex probability density models. Noise injection for the 
Gaussian and Cauchy mixture models may improve the aver- 15 
age EM convergence speed when the noise satisfies a simple 

The inequality condition (78) may be used to derive a more 
useful sufficient condition for a noise benefit. Expand the 
difference of relative entropy terms c-c(N): 

quadratic condition. Even blind noise injection can some- ck - c. (N) = ?? (nAC (80) 
times benefit these systems when the data set is sparse. But YZ y, 3, tik 
NEM noise injection still outperforms blind noise injection in In J's 50.) ) n- f(y,z, 6.) dydz, 
all data models tested. 2O f(y + N, 36.) 

f(y, 2, 6) 
In 81 APPENDIX II (in E: (81) 

Proof of Theorems in E)f(y. 36.)dydz, 
25 f(y, a 6...) 

Theorem 1: Noisy Expectation Maximization (NEM) ?? in? (y, 36.)f(y + N, z, te (82) 
An EM estimation iteration noise benefit TJ Jy.z f(y, 36)f(y, 36.) 

(9(0.0)-2(0-0))e(O(0.0)-gy(0-0) (67) f(y, 36.)dydz, 

occurs on average if 30 Intry. 36.)dydz. (83) 
YZ f(y, 36.) 

f(Y + N, Z (, ) (68) Take the expectation with respect to the noise term N: Eyzvoir(?)=0 
k 35 

Evci - c. (N) = c-Eyck (N) (84) 
Proof. Each expectation of Q-function differences in (21) is a 
distance pseudo-metric. Rewrite Q as an integral: ? ?? in? (y + n, z, t (85) 

NJ Jyz f(y, 36.) 
(y, 36.)f(ny)dydad c=D(f(y,z10)f(y,z10)) is the expectation over Y because f(y, 36.)f(ny)dydz, din 

c = | infty, :10)-in f(y,z10) O f(ny)f(y, 36.)din dydz, 
f(Y + N, Zi (; ) 

(y, 36.)dad - - - . f(y,z, 3Gy EYZ.Nie, in f(Y, Z 0.) (87) 

= ?infty: 0.)-in ?ty, :10) (71) 
f(zy, (...)f(y | 6.)dzady 50 The assumption of finite differential entropy for Y and Z 

may ensure that In f(y,z10)f(y,z10) is integrable. Thus the 
= Eye, Q(0. |0.)- Q(0, 0)). (72) integrand may be integrable. So Fubini's theorem, see G. B. 

Folland, Real Analysis: Modern Techniques and Their Appli 
- 0 cations (Wiley-Interscience, 1999), 2nd edition, permits the 

c. (N) is likewise the expectation over Y. 55 change in the order of integration in (87): 

c. (N) = | ?infty, :10)-in f(y+ N, ; 19.) (73) f(Y + N, Z (; ) (88) k 4 v^k X, Ok ck 2 ENick (N) if EyZN 9, | 1. ) > 0. 
f(y, 36.)dzady 

60 

infty, 36.)) - ln f(y + N, 36.) (74) Then an EM noise benefit may occur on average if 

= Eye O(6, 6) - ON (66). (75) f(Y + N. Z10) |- (89) Y19. Witik 65 Erzy. f(Y, Z 0.) ) > 0. 
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Corollary 1: 

E YZNie. In ?y. Zo 5 

for almost ally, Z, and n. 
Proof: The following inequalities need hold only for almost 
ally, Z, and n: 10 

15 

if ln(f(y + n, z, 6) - ln(f(y,z, 6) > 0 (93) 

f(y + n, z, 6) (94) 
In a 0. if int." 

2O 

Thus 

Y+ N, Z8 95 Ey.Z.Nie, f(x + N. Z10) > 0. (95) 25 

Corollary 2: Suppose Y12 -N(L.O.) and thus f(yj.0) is a 
normal pdf. Then 

30 

Af,(y,n)=0 (96) 

holds if 

35 

n°52n(1-y) (97) 

Proof: The proof compares the noisy and noiseless normal 
pdfs. The normal pdf is 

40 

1 (y – up (98) 
f(y | 8) = sel- 2cr. 

45 So f(y--n0)-f(y10) 

9 all 9: (99) if exp- > exp- 2 
2O: 2O: 50 

y + n - ui Y y - ui Y (100) 
iff -( O - O 
if - (y-ui + n) > -(y-a;). (101) 

55 

Inequality (101) may hold because O, is strictly positive. 
Expand the left-hand side to get (97): 

(y-u)^+n’+2n(y-u)s(y-u) (102) 60 

if n^+2n(y-u)=0 (103) 

if n’s-2n(y-u) (104) 65 

ifn’s2n(I-y) (105) 

22 
Corollary 3: Suppose Y12 -C(med) and thus f(ylj.0) is a 

Cauchy pdf. Then 
Af,(y,n)=0 (106) 

holds if 

n°52n(my). (107) 
Proof: The proof compares the noisy and noiseless Cauchy 

pdfs. The Cauchy pdf is 

1 (108) 
f(y | 8) = 2 

td; 1+( ) di 

Then f(y--n 0)-f(y10) 

-- -- (109) 
iff td; 2 td; 

(110) 

(111) 

Proceed as in the last part of the Gaussian case: 

(112) 

(113) 

if (y – m) > (y – m) + n + 2n(y-mi) (114) 

if () > n+2n(y-mi) (115) 

if n < 2n(mi-y). (116) 

The estimating computer system 401 that has been 
described herein, including each of its modules (except for 
the input module 403), is implemented with a computer sys 
tem configured to perform the functions that have been 
described herein for the component. The computer system 
includes one or more processors, tangible memories (e.g., 
random access memories (RAMs), read-only memories 
(ROMs), and/or programmable read only memories 
(PROMS)), tangible storage devices (e.g., hard disk drives, 
CD/DVD drives, and/or flash memories), system buses, video 
processing components, network communication compo 
nents, input/output ports, and/or user interface devices (e.g., 
keyboards, pointing devices, displays, microphones, Sound 
reproduction systems, and/or touch screens). Each module 
may have its own computer system or some or all of the 
modules may share a single computer system. 

Each computer system may be a desktop computer or a 
portable computer, or part of a larger system, such a system 
that clusters algorithms for Big Data; Trains hidden Markov 
models for speech, natural language, and other kinds of 
sequential data (including DNA); that trains neural networks 
for speech and computer vision; identifies sequences for 
genomics and proteomics; reconstructs medical image in 
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positron emission tomography; segments images for medical 
imaging and robotics; or estimates risks for portfolio man 
agement. 

Each computer system may include one or more computers 
at the same or different locations. When at different locations, 
the computers may be configured to communicate with one 
another through a wired and/or wireless network communi 
cation system. 

Each computer system may include Software (e.g., one or 
more operating systems, device drivers, application pro 
grams, and/or communication programs). When software is 
included, the software includes programming instructions 
and may include associated data and libraries. When 
included, the programming instructions are configured to 
implement one or more algorithms that implement one or 
more of the functions of the computer system, as recited 
herein. The description of each function that is performed by 
each computer system also constitutes a description of the 
algorithm(s) that performs that function. 
The Software may be stored on or in one or more non 

transitory, tangible storage devices. Such as one or more hard 
disk drives, CDs, DVDs, and/or flash memories. The software 
may be in source code and/or object code format. Associated 
data may be stored in any type of volatile and/or non-volatile 
memory. The Software may be loaded into a non-transitory 
memory and executed by one or more processors. 
The components, steps, features, objects, benefits, and 

advantages that have been discussed are merely illustrative. 
None of them, nor the discussions relating to them, are 
intended to limit the scope of protection in any way. Numer 
ous other embodiments are also contemplated. These include 
embodiments that have fewer, additional, and/or different 
components, steps, features, objects, benefits, and advan 
tages. These also include embodiments in which the compo 
nents and/or steps are arranged and/or ordered differently. 

For example, the use of Bayesian priors and penalized 
likelihood functions in Maximum A Posteriori and Penalized 
EM algorithms, other variants of the EM algorithm, and the 
more general class of minorization-maximization algorithms. 

Unless otherwise stated, all measurements, values, ratings, 
positions, magnitudes, sizes, and other specifications that are 
set forth in this specification, including in the claims that 
follow, are approximate, not exact. They are intended to have 
a reasonable range that is consistent with the functions to 
which they relate and with what is customary in the art to 
which they pertain. 

All articles, patents, patent applications, and other publi 
cations that have been cited in this disclosure are incorporated 
herein by reference. 

The phrase “means for when used in a claim is intended to 
and should be interpreted to embrace the corresponding struc 
tures and materials that have been described and their equiva 
lents. Similarly, the phrase “step for when used in a claim is 
intended to and should be interpreted to embrace the corre 
sponding acts that have been described and their equivalents. 
The absence of these phrases from a claim means that the 
claim is not intended to and should not be interpreted to be 
limited to these corresponding structures, materials, or acts, 
or to their equivalents. 
The scope of protection is limited solely by the claims that 

now follow. That scope is intended and should be interpreted 
to be as broad as is consistent with the ordinary meaning of 
the language that is used in the claims when interpreted in 
light of this specification and the prosecution history that 
follows, except where specific meanings have been set forth, 
and to encompass all structural and functional equivalents. 
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Relational terms such as “first and “second’ and the like 

may be used solely to distinguish one entity or action from 
another, without necessarily requiring or implying any actual 
relationship or order between them. The terms “comprises.” 
“comprising, and any other variation thereof when used in 
connection with a list of elements in the specification or 
claims are intended to indicate that the list is not exclusive and 
that other elements may be included. Similarly, an element 
preceded by an “a” or an “an does not, without further 
constraints, preclude the existence of additional elements of 
the identical type. 
None of the claims are intended to embrace subject matter 

that fails to satisfy the requirement of Sections 101, 102, or 
103 of the Patent Act, nor should they be interpreted in such 
a way. Any unintended coverage of Such subject matter is 
hereby disclaimed. Except as just stated in this paragraph, 
nothing that has been stated or illustrated is intended or 
should be interpreted to cause a dedication of any component, 
step, feature, object, benefit, advantage, or equivalent to the 
public, regardless of whether it is or is not recited in the 
claims. 
The abstract is provided to help the reader quickly ascertain 

the nature of the technical disclosure. It is submitted with the 
understanding that it will not be used to interpret or limit the 
Scope or meaning of the claims. In addition, various features 
in the foregoing detailed description are grouped together in 
various embodiments to streamline the disclosure. This 
method of disclosure should not be interpreted as requiring 
claimed embodiments to require more features than are 
expressly recited in each claim. Rather, as the following 
claims reflect, inventive subject matter lies in less than all 
features of a single disclosed embodiment. Thus, the follow 
ing claims are hereby incorporated into the detailed descrip 
tion, with each claim standing on its own as separately 
claimed Subject matter. 

The invention claimed is: 
1. An estimating computer system for iteratively estimat 

ing an unknown parameter of a model or state of a system 
comprising: 

an input module that has a configuration that receives 
numerical data about the system; 

a noise module that has a configuration that generates 
random, chaotic, or other type of numerical perturba 
tions of the received numerical data or that generates 
pseudo-random noise; 

an estimation module that has a configuration that itera 
tively estimates the unknown parameter of the model or 
state of the system based on the received numerical data 
and that uses the numerical perturbations or the pseudo 
random noise and the input numerical data during at 
least one of the iterative estimates of the unknown 
parameter, and 

a signaling module that has a configuration that signals 
when Successive parameter estimates or information 
derived from successive parameter estimates differ by 
less than a predetermined signaling threshold or when 
the number of estimation iterations reaches a predeter 
mined number, 

wherein: 
the estimation module has a configuration that estimates 

the unknown parameter of the model or state of the 
system using maximum likelihood, expectation-maxi 
mization, minorization-maximization, or another statis 
tical optimization or Sub-optimization method, 

the noise module has a configuration that generates ran 
dom, chaotic, or other type of numerical perturbations of 
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the input numerical data that fully or partially satisfy a 
noisy expectation maximization (NEM) condition; and 

the estimation module has a configuration that estimates 
the unknown parameter of the model or state of the 
system by adding, multiplying, or otherwise combining 
the received numerical data with the numerical pertur 
bations; 

wherein the parameter estimates are used in one of nonlin 
ear signal processing, statistical signal processing, pat 
tern recognition and noise enhanced clustering. 

2. The estimating computer system of claim 1 wherein: 
the noise module has a configuration that generates ran 

dom, chaotic, or other type of numerical perturbations of 
the received numerical data; and 

the estimation module has a configuration that iteratively 
estimates the unknown parameter of the model or state 
of the system based on the received numerical data and 
that uses the numerical perturbations and the input 
numerical data during at least one of the iterative esti 
mates of the unknown parameter. 

3. The estimating computer system of claim 1 wherein: 
the noise module has a configuration that generates 

pseudo-random noise; and 
the estimation module has a configuration that iteratively 

estimates the unknown parameter of the model or state 
of the system based on the received numerical data and 
that uses the pseudo-random noise and the input numeri 
cal data during at least one of the iterative estimates of 
the unknown parameter. 

4. The estimating computer system of claim 1 wherein the 
estimation module has a configuration that causes the mag 
nitude of the generated numerical perturbations to eventually 
decay during Successive parameter estimates. 

5. The estimating computer system in claim 1 wherein: 
the noise module has a configuration that generates 

numerical perturbations that do not depend on the 
received numerical data; and 

the estimation module has a configuration that estimates 
the unknown parameter of the model or state of the 
system using the numerical perturbations that do not 
depend on the received numerical data. 

6. The estimating computer system in claim 1 wherein: 
the system is a model and the model is a probabilistically 

weighted mixture of probability curves including a sca 
lar or vector Gaussian and Cauchy curves; and 

the noise module has a configuration that causes the gen 
erated numerical perturbations or pseudo-random noise 
to fully or partially satisfy a mixture-based NEM con 
dition, including a component-wise quadratic NEM 
condition. 

7. An estimating computer system for iteratively estimat 
ing an unknown parameter of a model or state of a system 
comprising: 

an input module that has a configuration that receives 
numerical data about the system; 

a noise module that has a configuration that generates 
random, chaotic, or other type of numerical perturba 
tions of the received numerical data or that generates 
pseudo-random noise; 

an estimation module that has a configuration that itera 
tively estimates the unknown parameter of the model or 
state of the system based on the received numerical data 
and that uses the numerical perturbations or the pseudo 
random noise and the input numerical data during at 
least one of the iterative estimates of the unknown 
parameter; and 
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a signaling module that has a configuration that signals 
when Successive parameter estimates or information 
derived from successive parameter estimates differ by 
less than a predetermined signaling threshold or when 
the number of estimation iterations reaches a predeter 
mined number, 

wherein: 
the estimation module has a configuration that estimates 

the unknown parameter of the model or state of the 
system using maximum likelihood, expectation 
maximization, minorization-maximization, or 
another statistical optimization or Sub-optimization 
method, 

the noise module has a configuration that generates 
numerical perturbations that do not depend on the 
received numerical data, the estimation module has a 
configuration that estimates the unknown parameter 
of the model or state of the system using the numerical 
perturbations that do not depend on the received 
numerical data, and 

the estimation module has a configuration that causes the 
magnitude of the generated numerical perturbations that 
do not depend on the received numerical data to even 
tually decay during Successive parameter estimates; 

wherein the parameter estimates are used in one of nonlin 
ear signal processing, statistical signal processing, pat 
tern recognition and noise enhanced clustering. 

8. Non-transitory, tangible, computer-readable storage 
media containing a program of instructions that causes a 
computer system running the program of instructions to func 
tion as an estimating computer system for iteratively estimat 
ing an unknown parameter of a model or state of a system that: 

receives numerical data about the system; 
generates random, chaotic, or other type of numerical per 

turbations of the received numerical data or that gener 
ates pseudo-random noise; 

iteratively estimates the unknown parameter of the model 
or state of the system based on the received numerical 
data and that uses the numerical perturbations or the 
pseudo-random noise and the input numerical data dur 
ing at least one of the iterative estimates of the unknown 
parameter, and 

determines whether Successive parameter estimates or 
information derived from Successive parameter esti 
mates differ by less than a predetermined signaling 
threshold and, if so, signals when this occurs, 

wherein the program of instructions causes the computer 
system running the program of instructions to function 
as an estimating computer system that: 
estimates the unknown parameter of the model or state 

of the system using maximum likelihood, expecta 
tion-maximization, minorization-maximization, or 
another statistical optimization or Sub-optimization 
method; 

generates random, chaotic, or other type of numerical 
perturbations of the input numerical data that fully or 
partially satisfy a noisy expectation maximization 
(NEM); and 

estimates the unknown parameter of the model or state 
of the system by adding, multiplying, or otherwise 
combining the input data with the numerical pertur 
bations; 

wherein the parameter estimates are used in one of nonlin 
ear signal processing, statistical signal processing, pat 
tern recognition and noise enhanced clustering. 
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9. The storage media of claim 8 wherein the program of 
instructions causes the computer system running the program 
of instructions to function as the estimating computer system 
that: 

generates random, chaotic, or other type of numerical per- 5 
turbations of the received numerical data; and 

iteratively estimates the unknown parameter of the model 
or state of the system based on the received numerical 
data and that uses the numerical perturbations and the 
input numerical data during at least one of the iterative 
estimates of the unknown parameter. 

10. The storage media of claim 8 wherein the program of 
instructions causes the computer system running the program 
of instructions to function as an estimating computer system 
that: 

generates pseudo-random noise; and 
iteratively estimates the unknown parameter of the model 

or state of the system based on the received numerical 
data and that uses the pseudo-random noise and the input 
numerical data during at least one of the iterative esti 
mates of the unknown parameter. 

11. The storage media of claim 8 wherein the program of 
instructions causes the magnitude of the generated numerical 
perturbations to eventually decay during successive param 
eter estimates. 

12. The storage media of claim 8 wherein the program of 
instructions causes the computer system running the program 
of instructions to function as an estimating computer system 
that: 

generates numerical perturbations that do not depend on 30 
the received numerical data; and 

estimates the unknown parameter of the model or state of 
the system using the numerical perturbations that do not 
depend on the received numerical data. 

13. Non-transitory, tangible, computer-readable storage 
media containing a program of instructions that causes a 
computer system running the program of instructions to func 
tion as an estimating computer system for iteratively estimat 
ing an unknown parameter of a model or state of a system that: 

receives numerical data about the system; 
generates random, chaotic, or other type of numerical per 

turbations of the received numerical data or that gener 
ates pseudo-random noise; 

iteratively estimates the unknown parameter of the model 
or state of the system based on the received numerical 
data and that uses the numerical perturbations or the 
pseudo-random noise and the input numerical data dur 
ing at least one of the iterative estimates of the unknown 
parameter; and 

determines whether successive parameter estimates or 
information derived from successive parameter esti 
mates differ by less than a predetermined signaling 
threshold and, if so, signals when this occurs, 

wherein the program of instructions causes the computer 
System running the program of instructions to function 
as an estimating computer system that: 
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28 
estimates the unknown parameter of the model or state of 

the system using maximum likelihood, expectation 
maximization, minorization-maximization, or another 
statistical optimization or sub-optimization method; 
generates numerical perturbations that do not depend on 

the received numerical data; 
estimates the unknown parameter of the model or state 

of the system using the numerical perturbations that 
do not depend on the received numerical data; and 

causes the magnitude of the generated numerical pertur 
bations to eventually decay during successive param 
eter estimates; 

wherein the parameter estimates are used in one of nonlin 
ear signal processing, statistical signal processing, pat 
tern recognition and noise enhanced clustering. 

14. Non-transitory, tangible, computer-readable storage 
media containing a program of instructions that causes a 
computer system running the program of instructions to func 
tion as an estimating computer system for iteratively estimat 
ing an unknown parameter of a model or state of a system that: 

receives numerical data about the system; 
generates random, chaotic, or other type of numerical per 

turbations of the received numerical data or that gener 
ates pseudo-random noise; 

iteratively estimates the unknown parameter of the model 
or state of the system based on the received numerical 
data and that uses the numerical perturbations or the 
pseudo-random noise and the input numerical data dur 
ing at least one of the iterative estimates of the unknown 
parameter; and 

determines whether successive parameter estimates or 
information derived from successive parameter esti 
mates differ by less than a predetermined signaling 
threshold and, if so, signals when this occurs, 

wherein the program of instructions causes the computer 
system running the program of instructions to function 
as an estimating computer system that: 
estimates the unknown parameter of the model or state 

of the system using maximum likelihood, expecta 
tion-maximization, minorization-maximization, or 
another statistical optimization or sub-optimization 
method; 

the system is a model and the model is a probabilistically 
weighted mixture of probability curves including a 
scalar or vector Gaussian and Cauchy curves; and 

the program of instructions causes the computer system 
running the program of instructions to function as an 
estimating computer system that causes the generated 
numerical perturbations or pseudo-random noise to 
fully or partially satisfy a mixture-based noisy expec 
tation maximization (NEM) condition, including a 
component-wise quadratic NEM condition: 

wherein the parameter estimates are used in one of nonlin 
ear signal processing, statistical signal processing, pat 
tern recognition and noise enhanced clustering. 


