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NOISE SPEED - UPS IN HIDDEN MARKOV speech , 2009 , pp . 2111-2114 ; Kaldi D. Povey , A. Ghoshal , 
MODELS WITH APPLICATIONS TO SPEECH G. Boulianne , L. Burget , O. Glembek , N. Goel , M. Hanne 

RECOGNITION mann , P. Mothcek , Y. Qian , P. Schwarz , et al . , “ The Kaldi 
speech recognition toolkit , ” in Proc . ASRU , 2011 ; Attila H. 

CROSS - REFERENCE TO RELATED 5 Soltau , G. Saon , and B. Kingsbury , “ The IBM Attila speech 
APPLICATION recognition toolkit , ” in Proc . SLT . IEEE , 2010 , pp . 97-102 ; 

Y. Chow , M. Dunham , O. Kimball , M. Krasner , G. Kubala , 
This application claims the benefit of U.S. provisional J. Makhoul , P. Price , S. Roucos , and R. Schwartz , “ BYB 

application Ser . No. 62 / 025,664 filed Jul . 17 , 2014 and LOS : The BBN continuous speech recognition system , ” in 
claims the benefit of U.S. provisional application Ser . No. 10 Proc . ICASSP . IEEE , 1987 , vol . 12 , pp . 89-92 ] ; and Watson 
62 / 032,385 filed Aug. 1 , 2014 , and is a continuation - in - part V. Goffin , C. Allauzen , E. Bocchieri , D. Hakkani - Tur , A. 
of U.S. application Ser . No. 13 / 949,048 filed Jul . 23 , 2013 , Ljolje , S. Parthasarathy , M. Rahim , G. Riccardi , and M. 
now U.S. Pat . No. 9,390,065 issued Jul . 12 , 2016 , which Saraclar , “ The AT & T Watson speech recognizer , ” in Proc . 
claims the benefit of U.S. provisional application Ser . No. ICASSP , 2005 , pp . 1033-1036 . 
61 / 674,615 filed Jul . 23 , 2012 , the disclosures of which are 15 HMMs relate to neural networks in several ways . The 
hereby incorporated in their entirety by reference herein . forward algorithm of Baum - Welch HMM training resembles 

the training of some recurrent neural networks . J. S. Bridle , 
BACKGROUND “ Alpha - Nets : A recurrent neural network architecture with a 

hidden Markov model interpretation , ” Speech Communica 
1. Technical Field 20 tion , vol . 9 , no . 1 , pp . 83-92 , 1990. Modern automatic speech 

recognition also relies on both HMMs and neural networks . 
This disclosure relates to the training of hidden Markov Neural - HMM hybrid architectures have improved the per 

models . formance of speech recognition in many cases . 
Earlier efforts , A. Krogh , M. Brown , I. S. Mian , K. 

2. Description of Related Art 25 Sjolander , and D. Haussler , “ Hidden Markov models in computational biology : Applications to protein modeling , " 
A hidden Markov model ( HMM ) is a probabilistic model Journal of molecular biology , vol . 235 , no . 5 , pp . 1501-1531 , 

for time series data . Its many applications include speech 1994 , S. R. Eddy et al . , " Multiple alignment using hidden 
recognition , computational biology , see A. Krogh , M. Markov models , ” in Proc . ISMB , 1995 , vol . 3 , pp . 114-120 , 
Brown , I. S. Mian , K. Sjolander , and D. Haussler , “ Hidden 30 used annealed noise to perturb the model parameters and to 
Markov models in computational biology : Applications to pick an alignment path between HMM states and the 
protein modeling , " Journal of molecular biology , vol . 235 , observed speech data . 
no . 5 , pp . 1501-1531 , 19 S. R. Eddy , “ Profile hidden Training hidden Markov models is computational inten 
Markov models . , " Bioinformatics , vol . 14 , no . 9 , pp . 755- sive , and can take a great deal of time . The prior art has not 
763 , 1998 , K. Karplus , C. Barrett , and R. Hughey , “ Hidden 35 addressed this drawbrack of such training in any fundamen 
Markov models for detecting remote protein homologies . , " tal , data - dependent way . 
Bioinformatics , vol . 14 , no . 10 , pp . 846-856 , 1998 ; com 
puter vision , see J. Yamato , J. Ohya , and K. Ishii , “ Recog SUMMARY 
nizing human action in time - sequential images using hidden 
Markov model , ” in Proc . CVPR . IEEE , 1992 , pp . 379-385 . , 40 A learning computer system may estimate unknown 
M. Brand , N. Oliver , and A. Pentland , “ Coupled hidden parameters and states of a stochastic or uncertain system 
Markov models for complex action recognition , ” in Proc . having a probability structure . The system may include a 
CVPR . IEEE , 1997 , pp . 994-999 , wavelet - based signal data processing system that may include a hardware pro 
processing , M. S. Crouse , R. D. Nowak , and R. G. Baraniuk , cessor . The system may : receive data ; generate random , 
“ Wavelet - based statistical signal processing using hidden 45 chaotic , fuzzy , or other numerical perturbations of the data , 
Markov models , ” IEEE Transactions on Signal Processing , one or more of the states , or the probability structure ; 
vol . 46 , no . 4 , pp . 886-902 , 1998 , control theory , R. J. Elliott , estimate observed and hidden states of the stochastic or 
L. Aggoun , and J. B. Moore , Hidden Markov models : uncertain system using the data , the generated perturbations , 
Estimation and Control , vol . 29 , Springer , 1994 ; Bayesian previous states of the stochastic or uncertain system , or 
reasoning , see C. M. Bishop , Pattern Recognition and 50 estimated states of the stochastic or uncertain system ; and 
Machine Learning , Springer , 2006 , and spatial and time cause perturbations or independent noise to be injected into 
series processing . the data , the states , or the stochastic or uncertain system so 
HMMs are especially widespread in speech processing as to speed up training or learning of the probability struc 

and recognition . Many popular speech recognition toolkits ture and of the system parameters or the states . 
use HMMs : Hidden Markov Model Toolkit ( HTK ) ; see S. 55 The data processing system may cause the perturbations 
Young , G. Evermann , D. Kershaw , G. Moore , J. Odell , D. of the data , states , or probability structure to speed up 
Ollason , V. Valtchev , and P. Woodland , “ The HTK book , " training of a hidden Markov model . 
Cambridge University Engineering Department , vol . 3 , The perturbations of the data , states , or probability struc 
2002 ; Sphinx , W. Walker , P. Lamere , P. Kwok , B. Raj , R. ture may satisfy the Noisy Expectation Maximization 
Singh , E. Gouvea , P. Wolf , and J. Woelfel , “ Sphinx - 4 : A 60 ( NEM ) condition . 
flexible open source framework for speech recognition , ” The system may make HMM state or parameter estimates 
2004 , SONIC B ; Pellom and K. Hacioglu , “ Recent improve- and the perturbations may be used to improve the accuracy 
ments in the CU SONIC ASR system for noisy speech : The of the estimates . 
SPINE task , ” in Proc . ICASSP . IEEE , 2003 , vol . 1 , pp . 1-4 ; The data processing system may cause the perturbations 
RASR D. Rybach , C. Gollan , G. Heigold , B. Hoffmeister , J. 65 of the data to speed up training of the hidden Markov model . 
Lf , R. Schlter , and H. Ney , “ The RWTH Aachen University The perturbations may train or update one or more 
open source speech recognition system , ” in Proc . Inter- mixture models in the probability structure . 
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One or more of the mixture models may include a mixture model at each state . The noise benefit condition is 
Gaussian mixture model . derived for the case of an HMM with a Binomial mixture 

The injected perturbations or noise may have a rate that model ( BMM ) at each state . Simulations show that a noisy 
decays as the training proceeds . HMM converges faster than a noiseless HMM on the TIMIT 

The injection may include adding , multiplying , exponen 5 data set . 
tiating the data , states , or probability structure with the Careful noise injection can speed the training process for 
perturbations or independent noise . a hidden Markov model ( HMM ) . The proper noise appears 
A non - transitory , tangible , computer - readable storage to help the training process explore less probable regions of 

media may contain a program of instructions that cause a the parameter space . The new system is called a noisy HMM 
computer system comprising a data processing system that 10 or NHMM . 
includes a hardware processor running the program of FIG . 1 illustrates an example of NHMM architecture 
instructions to estimate unknown parameters and states of a based on a noise - enhanced version of the expectation 
stochastic or uncertain system having a probability ure maximization ( EM ) algorithm . FIG . 2 illustrates an example 
using one or more of the approaches described herein . of noise that produces a 37 % reduction in the number of 

These , as well as other components , steps , features , 15 iterations that it takes to converge to the maximum - likeli 
objects , benefits , and advantages , will now become clear hood estimate . FIGS . 3A - 3B illustrate examples of simula 
from a review of the following detailed description of tion instances where the NHMM converges more quickly 
illustrative embodiments , the accompanying drawings , and than does the standard or noiseless HMM that uses Gaussian 
the claims . mixture models . FIG . 4 illustrates that the NHMM may 

20 converge faster than an HMM with simple annealed ? blind 
BRIEF DESCRIPTION OF DRAWINGS noise ? added to the training data . Such blind noise may not 

satisfy the key sufficient condition in the noise - enhanced 
The drawings are of illustrative embodiments . They do EM algorithm . 

not illustrate all embodiments . Other embodiments may be The NHMM may be a special case of a recent noisy EM 
used in addition or instead . Details that may be apparent or 25 ( NEM ) model , see 0. Osoba , S. Mitaim , and B. Kosko , 
unnecessary may be omitted to save space or for more “ Noise Benefits in the Expectation - Maximization Algo 
effective illustration . Some embodiments may be practiced rithm : NEM theorems and Models , ” in The International 
with additional components or steps and / or without all of the Joint Conference on Neural Networks ( IJCNN ) . IEEE , 2011 , 
components or steps that are illustrated . When the same pp . 3178-3183 ; and 0. Osoba , S. Mitaim , and B. Kosko , 
numeral appears in different drawings , it refers to the same 30 “ The Noisy Expectation - Maximization Algorithm , ” Fluc 
or like components or steps . tuation and Noise Letters , vol . 12 , no . 13 , 1350012-1 
FIG . 1 illustrates an example of NHMM architecture 1350012-30 , September 2013. The underlying NEM theo 

based on a noise - enhanced version of the expectation rem states that the noise - enhanced EM algorithm converges 
maximization ( EM ) algorithm . faster on average to the maximum - likelihood optimum than 
FIG . 2 illustrates an example of noise that produces a 37 % 35 does the noiseless EM algorithm if the noise obeys a 

reduction in the number of iterations that it takes to converge positivity condition . The condition reduces to a quadratic 
to the maximum - likelihood estimate . constraint on the injected noise in the special but important 

FIGS . 3A - 3B illustrate examples of simulation instances case of a Gaussian mixture model . The NEM algorithm 
where the NHMM converges more quickly than does the gives rise to the NHMM because the Baum - Welch algorithm 
standard or noiseless HMM that uses Gaussian mixture 40 that trains the HMM parameters is itself a special case of the 
models . EM algorithm . See L. E. Baum , T. Petrie , G. Soules , and N. 
FIG . 4 illustrates that the NHMM may converge faster Weiss , “ A maximization technique occurring in the statisti 

than an HMM with simple annealed “ blind noise ” added to cal analysis of probabilistic functions of Markov chains , ” 
the training data . Such blind noise may not satisfy the key The Annals of Mathematical Statistics , pp . 164-171 , 1970 . 
sufficient condition in the noise - enhanced EM algorithm . 45 Theorem 1 below states the corresponding sufficient condi 
FIG . 5 illustrates an example of a learning computer tion for an HMM noise boost . This is a type of “ stochastic 

system . resonance ” effect where a small amount of noise improves 
the performance of a nonlinear system while too much noise 

DETAILED DESCRIPTION OF ILLUSTRATIVE harms the system . 
EMBODIMENTS The simulations below confirm the theoretical prediction 

that proper injection of noise can improve speech recogni 
Illustrative embodiments are now described . Other tion . This is a deliberate use of noise injection in the speech 

embodiments may be used in addition or instead . Details that data itself . Earlier efforts , A. Krogh , M. Brown , I. S. Mian , 
may be apparent or unnecessary may be omitted to save K. Sjolander , and D. Haussler , “ Hidden Markov models in 
space or for a more effective presentation . Some embodi- 55 computational biology : Applications to protein modeling , ” 
ments may be practiced with additional components or steps Journal of molecular biology , vol . 235 , no . 5 , pp . 1501-1531 , 
and / or without all of the components or steps that are 1994 , and S. R. Eddy et al . , “ Multiple alignment using 
described . hidden Markov models , ” in Proc . ISMB , 1995 , vol . 3 , pp . 

Noise can speed training in hidden Markov models 114-120 , used annealed noise to perturb the model param 
( HMMs ) . A Noisy Expectation - Maximization ( NEM ) algo- 60 eters and to pick an alignment path between HMM states and 
rithm may inject noise when learning the maximum - likeli- the observed speech data . These earlier efforts neither added 
hood estimate of the HMM parameters because an under- noise to the speech data nor found any theoretical guarantee 
lying Baum - Welch training algorithm is a special case of the of a noise benefit . 
Expectation - Maximization ( EM ) algorithm . The NEM theo- The Noisy Expectation - Maximization Theorem 
rem may give a sufficient condition for such an average 65 The Noisy Expectation - Maximization ( NEM ) algorithm 
noise boost . The condition may be a simple quadratic ( see 0. Osoba , S. Mitaim , and B. Kosko , “ Noise Benefits in 
constraint on the noise when the HMM uses a Gaussian the Expectation - Maximization Algorithm : NEM theorems 

50 
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and Models , ” in The International Joint Conference on Osoba , S. Mitaim , and B. Kosko , “ Noise Benefits in the 
Neural Networks ( IJCNN ) . IEEE , 2011 , pp . 3178-3183 , and Expectation - Maximization Algorithm : NEM theorems and 
0. Osoba , S. Mitaim , and B. Kosko , “ The Noisy Expecta- Models , " . Consider the GMM pdf in ( ?? ) . The model 
tion - Maximization Algorithm , ” Fluctuation and Noise Let- satisfies the positivity condition ( 3 ) when the additive noise 
ters , vol . 12 , no . 13 , 1350012-1-1350012-30 , September 5 sample N = ( N1 , .. , ND ) for each observation vector 
2013 ) modifies the EM scheme and achieves faster conver- 0 = ( 01 , ... , 0p ) satisfies the following quadratic constraint : 
gence times on average . The NEM algorithm injects additive 
noise into the data at each EM iteration . The noise must Na [ Na - 2 ( likd - 0d ) ] 50 for all k . ( 4 ) 

decay with the iteration count to guarantee convergence to The Noise - Enhanced HMM 
the optimal parameters of the original data model . The 10 The state sequence S and the Gaussian index Z are the 
additive noise must also satisfy the NEM condition below . latent variables L for an HMM . The noisy Q - function for 
The condition guarantees that the NEM parameter estimates the NHMM is 
will climb faster up the likelihood surface on average . 
NEM Theorem 

The NEM Theorem ( see 0. Osoba , S. Mitaim , and B. 15 ( 5 ) 
Kosko , “ Noise Benefits in the Expectation - Maximization ON ( 8 | 0 ) ) = 2 ( 1 ) log Pi ( 1 ) + 
Algorithm : NEM theorems and Models , ” in The Interna 
tional Joint Conference on Neural Networks ( IJCNN ) IEEE ) 
states a general sufficient condition when noise speeds up the + logN ( 0 , + ng | Miko Ex } + ? } 
EM algorithm's convergence to the local optimum of the 20 
likelihood surface . The NEM Theorem uses the following 
notation . The noise random variable N has pdf f ( n?o ) . So the ??? < / blogA .; noise N can depend on the observed data O. L are the latent 
variables in the model . { Dm } is a sequence of EM estimates 
for ® . 0 * is the converged EM estimate for O : 25 

O ( n ) . Define the noisy Qy function Qu ( 010 ( n ) ) where n ERP is the noise vector for the observation 07 . Then 
= EL 0,0 » [ In f ( 0 + N , L10 ) ] . Assume that all random vari the dih element n , d of this noise vector satisfies the following 
ables have finite differential entropy . Assume further that the positivity constraint : 
additive noise keeps the data in the likelihood function's Ny , a [ 11,02 ( link , d ( n - 1 ) -07 , d ) ] 50 for all k ( 6 ) 
support . Then we can state the NEM theorem . ( n - 1 ) 
Theorem 1. Noisy Expectation Maximization ( NEM ) is the mean estimate at iteration n - 1 . We also 
The EM Estimation Iteration Noise Benefit note that noise can provably speed convergence of the 

Markov chain ( see B. Franzke and B. Kosko , “ Noise Can 
Q ( 0-10 ~ ) -Q ( O ( n ) O- ) 2 ( 0.10 . ) - Qu ( On ) | 0x ) ( 1 ) Speed Convergence in Markov Chains , ” Physical Review E , 

vol . 84 , no . 4 , pp . 041112 , 2011 ) . 
or equivalently Maximizing the noisy Q - function ( 5 ) gives the update 

equations for the M - step . Only the GMM mean and cova 
Onion ) | Ox ) Q on | Ox ) ( 2 ) riance update equations differ from the noiseless EM 

because the noise enters the noisy Q - function ( 5 ) only holds on average if the following positivity condition holds : through the Gaussian pdf . But the NEM algorithm requires 
modifying only the covariance update equation ( 14 ) because 
it uses the noiseless mean estimates ( 13 ) to check the f ( O + N , LOM ) ( 3 ) positivity condition ( 20 ) . Then the NEM covariance esti 

f ( 0 , L | ( n ) ) mate is 

T - 1 MM 

1 = l i = 1 j = 1 

O * = lim , - > 

, c 
30 

where Wink 

35 

40 

Eo.co L ) > 0 . * 

45 

( ) ( ) 
( n ) < || 

? 
i , k ? 

1 = 1 

The NEM Theorem states that each iteration of a suitably ( 7 ) noisy EM algorithm gives higher likelihood estimates on min ( 1 ( 04 + n - Meno : + ne - re nyt average than the noiseless EM algorithm gives at each 
iteration . So the NEM algorithm converges faster than EM 
does if the data model can be identified . The faster NEM 50 Yn ( 1 ) 
convergence occurs both because the likelihood function has 
an upper bound and because the NEM algorithm takes larger 
average steps up the likelihood surface . NEM technique can apply more generally to other mix 
Many latent - variable models ( such as GMM and HMM ) ture models and exponential family PDFs . O. Osoba and B. 

are not identifiable , H. Teicher , “ On the mixture of distri- 55 Kosko , “ The Noisy Expectation - Maximization Algorithm 
butions , ” The Annals of Mathematical Statistics , pp . 55-73 , for Multiplicative Noise Injection , " Fluctuation and Noise 
1960. , H. Teicher , “ Identifiability of finite mixtures , ” The Letters , vol . 12 , no . 13 , 1350012-1-1350012-30 , September 
Annals of Mathematical Statistics , vol . 34 , no . 4 , pp . 1265- 2013. The next section applies it to the Binomial mixture 
1269 , 1963 , and thus do not have global likelihood optima . model . 
The EM and NEM algorithms converge to local optima in 60 
these cases . But the added noise in the NEM algorithm may 
cause the NEM estimates to search nearby local optima . The Algorithm NHMM Noise - Injection Training 
NEM Theorem still guarantees that NEM estimates have Initialize parameters : O ( 1 ) higher likelihood on average than the EM estimates have for for n = 1 ? Nmax such non - identifiable models . function E - STEPO , O " ) 

Gaussian mixture model ( GMM ) parameter estimation for t = 1 ? T , i , j = 1 ? M , and k = 1 ? K do 
greatly simplifies the NEM positivity condition in ( 3 ) O. 

init 
do 

65 

1 : 
2 : 
3 : 
4 : 
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-continued Theorem 2. BMM - HMM Noise Benefit Condition 
Non - negative integer noise n added to the observation o of 

Algorithm NHMM Noise - Injection Training a BMM - HMM speeds - up Baum - Welch estimation of its 
parameters if 

Y ( n ) ( 1 ) – P [ S ( 1 ) = i10 , on ] 
Nick " ) ( t ) — P [ S ( t ) = i , Z ( t ) = k \ 0 , on ) ] 
Sij " ( t ) P [ S ( t + 1 ) = j , S ( t ) = i10 , on ) D D ( 9 ) 

for all k . 
function M - STEP O , Y , n , Š , T ) 

? M and k 1 ? K do 

YA n ) ( 1 ) Proof . The NEM positivity condition gives 

5 5 : 
6 : ( n ) = 

7 : n ( 0 pm ] py ( 1 – P : d ] * 2 ) Pall - ) ( ) 8 : 0 + n 

9 : 1 for i , j 
P ( n ) ( 1 ) 

10 
10 : ( n ) 4 

11 : T - 1 

? ( t ) ( 10 ) 
in ) t = 1 filo + n , Z. ( n ) log 

filo , Z O ( n ) 
> 0 . 

15 T - 1 
? ? ' ( t ) 
t = 1 

The ratio simplifies into the following component - wise 
condition for all k : 12 : ? 

n ? ( ) 20 
t = 1 

f 

T 

y act ) ( 11 ) D - o ( opm ) Piejawn = ( ) Pink ( Pick ( 1 – Pik ) -o 
t = 1 

13 : 25 T 

? 2010 or equivalently 
no ( t ) o 

I = 1 ( n ) 
dik 

" ( t ) ( 11 ) Com Doud Puw ) ( 0 ) ik ( l for all k . d . t = 0 + 30 

14 : ( 
nt ON 

15 : ? 

TN ( n ) ? ( n ) 
( n ) 35 

t = 1 

ik ?roce 
I = 

40 16 : 
17 : N ns 
18 : for d = 1 ? D do 

19 : 

20 : nt.d = 0 
21 : return n ; 

GENERATE NOISE ( Hina ) , 0 , n - I on ? ) 
Simulation Results 
The Hidden Markov Model Toolkit ( HTK ) ( see S. Young , 

ne ( ) ( , + n – Hue ( 0 , + n , – det G. Evermann , D. Kershaw , G. Moore , J. Odell , D. Ollason , 
V. Valtchev , and P. Woodland , “ The HTK book , " Cambridge 
University Engineering Department , vol . 3 , 2002 ) may be Y { m } ( t ) modified to train the NHMM . HTK provides a tool called 
“ HERest " that performs embedded Baum - Welch training for 
an HMM . This tool first creates a large HMM for each function GENERATE NOISE ( Hina ) training speech utterance . It concatenates the HMMs for the 

( 0 , 0 ) sub - word units . The Baum - Welch algorithm tunes the 
par meters of this large HMM . 

if n , d [ nça - 2 ( Uikan ( n - 1 ) - 0 , d ) ] > 0 for some k then The NHMM algorithm used ( 7 ) to modify covariance 
45 matrices in HERest . We sampled from a suitably truncated 

Gaussian pdf to produce noise that satisfied the NEM 
positivity condition ( 6 ) . We used noise variances in < 0.001 , 
0.01 , 0.1 , 1 } . A deterministic annealing factor n = ” scaled the 

Noise Benefits in Binomial Mixture Model ( BMM ) HMM noise variance at iteration n . The noise decay rate was t > 0 . 
A Binomial mixture model ( BMM ) HMM contains a 50 We used te [ 1 , ... , 10 ] . We then added the noise vector to 

mixture of Binomial PDFs at each HMM state . It is espe the observations during the update of the covariance matri 
cially popular in bio - informatics and genomics . The PDF f ; ces ( 7 ) . 
of an observation oeZot in a BMM - HMM is The simulations used the TIMIT speech dataset ( see J. S. 

Garofolo , TIMIT : Acoustic - phonetic Continuous Speech 
55 Corpus , Linguistic Data Consortium , 1993. with the stan 

( 8 ) dard setup in A. K. Halberstadt and J. R. Glass , “ Heteroge 
fi ( o ) neous acoustic measurements for phonetic classification , ” in Pink ( 1 – Proc . Eurospeech , 1997 , vol . 97 , pp . 401-404 ) . The speech 

signal was parameterized with 12 Mel - Frequency Cepstral 
60 Coefficients ( MFCC ) computed over 20 - msec Hamming 

where Pink is the parameter of the k - th Binomial distribution windows with a 10 - msec shift . The first- and second - order 
finite differences of the MFCC vector were appended with at state i of the HMM . We restrict the discussion to non the energies of all three vectors . 3 - state left - to - right HMMs negative integer noise n for addition to the BMM - HMM 

since Binomial random variables are non - negative integers . 65 GMM at each state . K was varied over 1 , 4 , 8 , 16 , 32 for the were used to model each phoneme with a K - component 
Next presented is the NEM sufficient condition for a experiments and used two performance metrics to compare 

BMM - HMM . NHMM with HMM . 

+ 

K 

150Joelle 5.60 W ( ( 1 Pixelbo Wink 
k = 1 
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The first metric was the percent reduction in EM iterations software may be in source code and / or object code format . 
for the NHMM to achieve the same per - frame log - likelihood Associated data may be stored in any type of volatile and / or 
as does the noiseless HMM at iterations 10 , 20 , and 30. The non - volatile memory . The software may be loaded into a 
second metric was the median improvement in per - frame non - transitory memory and executed by one or more pro 
log - likelihood over 30 training iterations . cessors . The components , steps , features , objects , benefits , 
FIG . 2 illustrates an example of the percent reduction in and advantages that have been discussed are merely illus 

the number of training iterations for the NHMM compared trative . None of them , nor the discussions relating to them , 
to the HMM log - likelihood at iterations 10 , 20 , and 30 . are intended to limit the scope of protection in any way . 
Noise substantially reduced the number of iterations for 16- Numerous other embodiments are also contemplated . These 
and 32 - component GMMs . But it only marginally improved 10 include embodiments that have fewer , additional , and / or 
the other cases . This holds because the noise is more likely different components , steps , features , objects , benefits , and / 
to satisfy the NEM positivity condition when the number of or advantages . These also include embodiments in which the 
data samples is small relative to the number of parameters . components and / or steps are arranged and / or ordered dif 
0. Osoba , S. Mitaim , and B. Kosko , “ The Noisy Expecta- ferently . 
tion - Maximization Algorithm , ” Fluctuation and Noise Let- 15 For example , noise is not the only injected perturbation 
ters , vol . 12 , no . 13 , 1350012-1-1350012-30 , September that the invention can use . Other perturbations include 
2013. FIGS . 3A - 3B compare the per - frame log - likelihood of chaos , fuzz , and scaled random variables . Nor is adding 
the training data for the HMM and the NHMM . The NHMM noise to the data the only form of injection . Multiplicative 
has a substantially higher log - likelihood than does the HMM noise or perturbations will also work as will any other 
for the 16- and 32 - component GMM cases . 20 combination of the data with such perturbations . These 
FIG . 4 shows the comparison between NHMM and HMM injections can also reach the probability structure of the 

with blind noise added to the training data . We did not model as well as the data . 
constrain the blind noise samples to satisfy the noise benefit Unless otherwise stated , all measurements , values , rat 
inequality in ( 6 ) . The annealed blind noise followed the ings , positions , magnitudes , sizes , and other specifications 
same cooling schedule and used the same mean and variance 25 that are set forth in this specification , including in the claims 
as the NEM noise . This figure shows that NHMM gives that follow , are approximate , not exact . They are intended to 
significantly better log - likelihood than the blind noise have a reasonable range that is consistent with the functions 
HMM . Simulated annealing and blind annealed noise injec- to which they relate and with what is customary in the art to 
tion also do not guarantee the faster - than - EM convergence which they pertain . 
that NEM guarantees . The figures in the paper show that 30 All articles , patents , patent applications , and other publi 
NEM gives better likelihoods at each iteration and that NEM cations that have been cited in this disclosure are incorpo 
converges faster in the long run . rated herein by reference . 
FIG . 5 illustrates an example of a learning computer The phrase “ means for ” when used in a claim is intended 

system that estimates unknown parameters and states of a to and should be interpreted to embrace the corresponding 
stochastic or uncertain system having a probability structure . 35 structures and materials that have been described and their 
The learning computer system is configured to implement equivalents . Similarly , the phrase “ step for ” when used in a 
the various algorithms that have been discussed herein . The claim is intended to and should be interpreted to embrace the 
learning computer system includes a data processing system , corresponding acts that have been described and their 
and one or more hardware processors . The learning com- equivalents . The absence of these phrases from a claim 
puter system may also include one or more tangible memo- 40 means that the claim is not intended to and should not be 
ries ( e.g. , random access memories ( RAMs ) , read - only interpreted to be limited to these corresponding structures , 
memories ( ROMs ) , and / or programmable read only memo- materials , or acts , or to their equivalents . 
ries ( PROMS ) ) , tangible storage devices ( e.g. , hard disk The scope of protection is limited solely by the claims that 
drives , CD / DVD drives , and / or flash memories ) , system now follow . That scope is intended and should be interpreted 
buses , video processing components , network communica- 45 to be as broad as is consistent with the ordinary meaning of 
tion components , input / output ports , and / or user interface the language that is used in the claims when interpreted in 
devices ( e.g. , keyboards , pointing devices , displays , micro- light of this specification and the prosecution history that 
phones , sound reproduction systems , and / or touch screens ) . follows , except where specific meanings have been set forth , 

The learning computer system may include one or more and to encompass all structural and functional equivalents . 
computers at the same or different locations . When at 50 Relational terms such as " first ” and “ second ” and the like 
different locations , the computers may be configured to may be used solely to distinguish one entity or action from 
communicate with one another through a wired and / or another , without necessarily requiring or implying any 
wireless network communication system . actual relationship or order between them . The terms “ com 

The learning computer system may include software ( e.g. , prises , ” “ comprising , ” and any other variation thereof when 
one or more operating systems , device drivers , application 55 used in connection with a list of elements in the specification 
programs , and / or communication programs ) . When software or claims are intended to indicate that the list is not exclusive 
is included , the software includes programming instructions and that other elements may be included . Similarly , an 
and may include associated data and libraries . When element preceded by an “ a ” or an “ an ” does not , without 
included , the programming instructions are configured to further constraints , preclude the existence of additional 
implement one or more algorithms that implement one or 60 elements of the identical type . 
more of the functions of the computer system , as recited None of the claims are intended to embrace subject matter 
herein . The description of each function that is performed by that fails to satisfy the requirement of Sections 101 , 102 , or 
each computer system also constitutes a description of the 103 of the Patent Act , nor should they be interpreted in such 
algorithm ( s ) that performs that function . a way . Any unintended coverage of such subject matter is 

The software may be stored on or in one or more 65 hereby disclaimed . Except as just stated in this paragraph , 
non - transitory , tangible storage devices , such as one or more nothing that has been stated or illustrated is intended or 
hard disk drives , CDs , DVDs , and / or flash memories . The should be interpreted to cause a dedication of any compo 

a 

2 
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nent , step , feature , object , benefit , advantage , or equivalent 6. The learning computer system of claim 5 wherein one 
to the public , regardless of whether it is or is not recited in or more of the mixture models includes a Gaussian mixture 
the claims . model . 

The abstract is provided to help the reader quickly ascer- 7. The learning computer system of claim 2 wherein 
tain the nature of the technical disclosure . It is submitted 5 injected perturbations or independent noise has a rate that 
with the understanding that it will not be used to interpret or decays as training proceeds . 
limit the scope or meaning of the claims . In addition , various 8. The learning computer system of claim 1 wherein 
features in the foregoing detailed description are grouped injection includes adding , multiplying , exponentiating the 
together in various embodiments to streamline the disclo- data , states , or probability structure with the perturbations or 
sure . This method of disclosure should not be interpreted as 10 independent noise . 
requiring claimed embodiments to require more features 9. The learning computer system of claim 1 wherein the 
than are expressly recited in each claim . Rather , as the data is speech data . 
following claims reflect , inventive subject matter lies in less 10. The learning computer system of claim 1 wherein the 
than all features of a single disclosed embodiment . Thus , the states are the observed states , the hidden states , the previous 
following claims are hereby incorporated into the detailed 15 states , and / or the estimated states . 
description , with each claim standing on its own as sepa- 11. A non - transitory , tangible , computer - readable storage 
rately claimed subject matter . media containing a program of instructions that cause a 

The invention claimed is : computer system comprising a data processing system that 
1. A learning computer system that estimates unknown includes a hardware processor running the program of 

parameters and states of a stochastic or uncertain system 20 instructions to estimate unknown parameters and states of a 
having a probability structure comprising a data processing stochastic or uncertain system having a probability structure 
system that includes a hardware processor that has a con- that : 
figuration that : receives data ; 

receives data ; generates perturbations or independent noise of the data , 
generates perturbations or independent noise of the data , 25 one or more of the states , or the probability structure , 

one or more of the states , or the probability structure , wherein the perturbations are random , chaotic , fuzzy , 
wherein the perturbations are random , chaotic , fuzzy , or other numerical perturbations ; 
or other numerical perturbations ; estimates states of the stochastic or uncertain system 

estimates states of the stochastic or uncertain system using the data , perturbations , previous states of the 
using the data , perturbations , independent noise , pre- 30 stochastic or uncertain system , or estimated states of 
vious states of the stochastic or uncertain system , or the stochastic or uncertain system ; and 
estimated states of the stochastic or uncertain system ; causes the perturbations or the independent noise to be 
and injected into the data , the states , or the stochastic or 

causes the perturbations or the independent noise to be uncertain system so as to speed up training or learning 
injected into the data , the states , or the stochastic or 35 of the probability structure and of system parameters or 
uncertain system so as to speed up training or learning the states ; the perturbations or independent noise sat 
of the probability structure and of system parameters or isfying the Noisy Expectation Maximization ( NEM ) 
the states ; the perturbations or independent noise sat- prescriptive condition defined by equation 3 : 
isfying the Noisy Expectation Maximization ( NEM ) 
prescriptive condition defined by equation 3 : 

EO , L , N10 * f ( 0 + N , Llon ) ) 
f ( 0 , Ljon ) ) 

( 3 ) 
EO , L , NO * > 0 f ( 0 , LjO ( n ) ) 

45 wherein E is an E step of an expectation - maximization 
iteration ; O is observed data ; L is the latent variables ; N is 

wherein E is an E step of an expectation - maximization a noise random variable ; O * is a converged value of O ( n ) ; 
iteration ; O is observed data ; L is the latent variables ; N is on ) is a sequence of EM estimates ; f is a probability 
a noise random variable ; * is a converged value of O ( n ) ; distribution function . 
an ) is a sequence of EM estimates ; f is a probability 50 12. The non - transitory , tangible , computer - readable stor 
distribution function . age media of claim 11 wherein the program of instructions 

2. The learning computer system of claim 1 wherein the when run causes the perturbations of the data , states , or 
data processing system has a configuration that causes the probability structure to speed up training of a hidden 
perturbations or independent noise of the data , states , or Markov model . 
probability structure to speed up training of a hidden 55 13. The non - transitory , tangible , computer - readable stor 
Markov model . age media of claim 12 wherein the perturbations or inde 

3. The learning computer system of claim 2 wherein pendent noise of the data , states , or probability structure 
system makes HMM state or parameter estimates and the satisfy a Noisy Expectation Maximization ( NEM ) condition . 
perturbations or independent noise are used to improve 14. The non - transitory , tangible , computer - readable stor 
accuracy of the estimates . 60 age media of claim 13 wherein the program of instructions 

4. The learning computer system of claim 2 wherein the when run makes HMM state or parameter estimates and the 
data processing system has a configuration that causes the perturbations or independent noise are used to improve 
perturbations or independent noise of the data to speed up accuracy of the estimates . 
training of the hidden Markov model . 15. The non - transitory , tangible , computer - readable stor 

5. The learning computer system of claim 4 wherein the 65 age media of claim 12 wherein the program of instructions 
perturbations or independent noise train or update one or when run causes the perturbations or independent noise of 
more mixture models in the probability structure . the data to speed up training of the hidden Markov model . 

40 

( 3 ) = Liceo > 0 
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16. The non - transitory , tangible , computer - readable stor 

age media of claim 15 wherein perturbations or independent 
noise train or update one or more mixture models in the 
probability structure . 

17. The non - transitory , tangible , computer - readable stor- 5 
age media of claim 16 wherein one or more of the mixture 
models includes a Gaussian mixture model . 

18. The non - transitory , tangible , computer - readable stor 
age media of claim 12 wherein injected perturbations or 
independent noise has a rate that decays as training pro- 10 
ceeds . 

19. The non - transitory , tangible , computer - readable stor 
age media of claim 11 wherein injection includes adding , 
multiplying , exponentiating the data , states , or probability 
structure with the perturbations or independent noise . 

20. The non - transitory , tangible , computer - readable stor 
age media of claim 11 , wherein the states are the observed 
states , the hidden states , the previous states , and / or the 
estimated states . 

15 

20 
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