
US011276009B2 

( 12 ) United States Patent ( 10 ) Patent No .: US 11,276,009 B2 
( 45 ) Date of Patent : Mar. 15 , 2022 Franzke et al . 

( 54 ) USING NOISE TO SPEED CONVERGENCE 
OF SIMULATED ANNEALING AND 
MARKOV MONTE CARLO ESTIMATIONS 

( 52 ) U.S. CI . 
CPC G06N 10/00 ( 2019.01 ) ; G06F 17/18 

( 2013.01 ) ; G06N 7/005 ( 2013.01 ) 
( 58 ) Field of Classification Search 

CPC GO6N 20/00 
USPC .... 706/15 , 45 
See application file for complete search history . 

( 71 ) Applicant : University of Southern California , 
Los Angeles , CA ( US ) 

( 72 ) Inventors : Brandon Franzke , Los Angeles , CA 
( US ) ; Bart Kosko , Los Angeles , CA 
( US ) ( 56 ) References Cited 

U.S. PATENT DOCUMENTS 
( 73 ) Assignee : University of Southern California , 

Los Angeles , CA ( US ) 7,547,367 B2 
8,744,185 B2 

2004/02 10417 A1 * 

6/2009 Suortti et al . 
6/2014 Chang et al . 

10/2004 Zakrzewski ( * ) Notice : Subject to any disclaimer , the term of this 
patent is extended or adjusted under 35 
U.S.C. 154 ( b ) by 732 days . 2005/0105682 A1 * 5/2005 Heumann 

GOON 3/08 
702/181 

GOIN 23/046 
378/58 

GOON 7/005 
706/52 

2010/0030721 A1 * 2/2010 Candy ( 21 ) Appl . No .: 15 / 751,078 
( Continued ) ( 22 ) PCT Filed : Aug. 8 , 2016 

PCT / US2016 / 046006 OTHER PUBLICATIONS ( 86 ) PCT No .: 
$ 371 ( c ) ( 1 ) , 
( 2 ) Date : Feb. 7 , 2018 

Alquier et al . “ Noisy Monte Carlo : Convergence of Markov chains 
with approximate transition kernels . ” In arXiv : 1403.5496 [ Stat . 
ME ] , Apr. 15 , 2014 [ online ] Retrieved from the Internet < URL : 
https://arxiv.org/abs/1403.5496 > . 

( Continued ) 
( 87 ) PCT Pub . No .: WO2017 / 069835 

PCT Pub . Date : Apr. 27 , 2017 

( 65 ) Prior Publication Data Primary Examiner David R Vincent 
( 74 ) Attorney , Agent , or Firm — Brooks Kushman P.C. US 2020/0090071 A1 Mar. 19 , 2020 

Related U.S. Application Data 
Provisional application No. 62 / 202,613 , filed on Aug. 
7 , 2015 . 

( 60 ) 
( 57 ) ABSTRACT 
The invention shows how to use noise - like perturbations to 
improve the speed and accuracy of Markov Chain Monte 
Carlo ( MCMC ) estimates and large - scale optimization , 
simulated annealing optimization , and quantum annealing 
for large - scale optimization . 

( 51 ) Int . Ci . 
GO6N 10/00 
GOON 7700 
G06F 17/18 

( 2019.01 ) 
( 2006.01 ) 
( 2006.01 ) 13 Claims , 14 Drawing Sheets 

?? 
Initial possible solution 1101 

1103 
Current solution 

X * 

Noiseless possible solution 1105 

N ( X * ) 
Noisy test solution 1107 

ET 
Compute effectiveness of n ( X * ) 1109 

EC 
Compute effectiveness of X -1111 

1113 Replace 
ET VS , EC 

Do Not 
Replace X = n ( X * ) 1117 

1115 No 
Terminate 

Yes 

Solution 1119 



US 11,276,009 B2 
Page 2 

( 56 ) References Cited 

U.S. PATENT DOCUMENTS 

2014/0025356 A1 1/2014 Kosko et al . 
2014/0304106 A1 * 10/2014 Dahan G060 30/0631 

705 / 26.7 

OTHER PUBLICATIONS 

Franzke et al . “ Using Noise to Speed up Markov Chain Monte Carlo 
Estimation . ” Procedia Computer Science vol . 52 , pp . 113-120 , Aug. 
8-10 , 2015 [ online ] < URL : https : //doi.org/10.1016/j.procs.2015.07 . 
285 > . 
International Search Report and Written Opinion prepared by the 
ISA / US for priority application PCT / US16 / 46006 dated May 24 , 
2017 . 

* cited by examiner 



U.S. Patent 

1800 1600 1400 

Mar. 15 , 2022 

Energy 

1200 1000 800 600 400 

Sheet 1 of 14 

200 
0 

600 
400 

600 

200 

400 

0 

200 

0 

X2 

- 200 

-400 

FIG . 1 

US 11,276,009 B2 

-200 

X1 

-400 

-600-600 



U.S. Patent Mar. 15 , 2022 Sheet 2 of 14 US 11,276,009 B2 

O ?? 
o L X1 

= 

? O 
O 

0 8 

FIG . 2A 



U.S. Patent Mar. 15 , 2022 Sheet 3 of 14 US 11,276,009 B2 

A 200 

0 X1 

Ol O - 200 

a 

00Z 009 

FIG . 2B 



Noise Power 

-50 

U.S. Patent 

0 

0.01 

0.02 

0.03 

0.04 

0.051 

-250 -450 

II . 

Mar. 15 , 2022 

-650 

Noise benefit 

Energy 

-850 -1050 

Sheet 4 of 14 

Estimate error 

-1250 -1450 

true ground state 

-1650 

US 11,276,009 B2 

- N - MCMC theorem 

--- Blind 

FIG . 3 



U.S. Patent Mar. 15 , 2022 Sheet 5 of 14 US 11,276,009 B2 

FIG . 4A 

FIG . 4B 

FIG . 40 



U.S. Patent Mar. 15 , 2022 Sheet 6 of 14 US 11,276,009 B2 

x 105 8 

7 

6 

5 

Convergence time 
3 

2 

1 

0 
0 0.5 1 1.5 3.5 4 4.5 5 2 2.5 3 

Noise power , 02 FIG . 5A 

6 

5 

4 

Emin 3 

2 

1 1 

0 
0 0.5 1 1.5 2 . 2.5 3 3.5 4 4.5 5 

FIG . 5B Noise power , o 2 vs. Noise power 



U.S. Patent Mar. 15 , 2022 Sheet 7 of 14 US 11,276,009 B2 

0.05 

0.045 

0.04 

0.035 

0.03 

failed fraction 0.025 

0.02 mir 0.015 

0.01 

0.005 ?? A 0 
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

FIG . 50 Noise power , o2 x 10-3 

x 104 X 9 

ar 8 

7 hr 6 

5 Convergence time 
4 

3 

2 - 

1 

namamahalanan 0 
0 0.5 1 1.5 2 2.5 3 3.5 4 . 4.5 5 

FIG . 6A Noise power , 02 



U.S. Patent Mar. 15 , 2022 Sheet 8 of 14 US 11,276,009 B2 

x 104 12 

10 

8 

Convergence time 6 

4 

2 

0 
0 0.5 1 1.5 2 2.5 3 3.5 ?? 4.5 5 

FIG , 6B Noise power , 02 

100 

50 

O • . • . • . • . 

Interaction energy ( cm - 1 ) 

-50 
1 Empirical 

Lennard - Jones 

-100 

3.0 4.0 5.0 6.0 7.0 8,0 

R ( Â ) 
FIG . 7 



U.S. Patent Mar. 15 , 2022 Sheet 9 of 14 US 11,276,009 B2 

350 

300 

250 

# MCMC steps 
200 

150 

0 
0 0.56 1 1.5 2 2.5 3 

Noise variance ( 02 ) o FIG . 8 

classical 
( over ) 

Energy ( lower is better ) 

local minimum 
( not optimal ) quantum 

( through ) 
global minimum 

( optimal ) 
Ensemble state FIG . 9 



U.S. Patent 

Trotter slice n - 1 

Trotter slice n . 

Trotter slice n + 1 

noise 

noise 

Sume 

Sum 

Sum 
2 

Mar. 15 , 2022 

2 

2 

5 

Dm Sune 

Omo am 

Denom 

Sheet 10 of 14 

FIG . 10 

US 11,276,009 B2 



U.S. Patent Mar. 15 , 2022 Sheet 11 of 14 US 11,276,009 B2 

?? 
Initial possible solution 

1101 

? 
Current solution 

1103 

X * 
Noiseless possible solution 

1105 

N ( X * ) 
Noisy test solution 

1107 

ET 
Compute effectiveness of n ( X * ) 1109 

EC 
Compute effectiveness of X 1111 

1113 Replace 
ET vs. EC 

Do Not 
Replace X = n ( X * ) 1117 

1115 
No 

Terminate 
? 

Yes 

Solution 1119 

FIG . 11 



U.S. Patent Mar. 15 , 2022 Sheet 12 of 14 US 11,276,009 B2 

1205 
1201 

Noise Module : 
Generate perturbations 

Nk 

1203 1207 

Input Module : 
Data samples or probability 

density of the model 
Yorf ) 

Estimation Module : 
Estimate sample statistic 
with perturbed samples 

N 

zlm ? ( x * , 
k = 1 

1209 
Signaling 
Module : 

Converged or 
terminated 

? 

FIG . 12 



U.S. Patent Mar. 15 , 2022 Sheet 13 of 14 US 11,276,009 B2 

1305 
1301 

Noise Module : 
Generate perturbations 

Nk 

1303 1307 . 

Estimation Module : 
Estimate the optimal 

configuration 
Input Module : 

Data samples or probability 
density of the model 

Yorf ) Xopt = argminy f ( x ) 

1309 
Signaling 
Module : 

Converged or 
terminated 

? 

FIG . 13 



U.S. Patent Mar. 15 , 2022 Sheet 14 of 14 US 11,276,009 B2 

1405 
1401 

Noise Module : 
Generate perturbations 

Nk 

1403 1407 

Input Module : 
Data samples or probability 

density of the model 
Yorf ) 

Sampler Module : 
Generate statistical 

samples from probability 
density 

Xk ~ f ( 0 ) 

1409 
Signaling 
Module : 

Converged or 
terminated 

? 

FIG . 14 



US 11,276,009 B2 
1 2 

USING NOISE TO SPEED CONVERGENCE Finite Range Tunneling ?. Arxiv , arXiv : 1512.02206 [ quant 
OF SIMULATED ANNEALING AND ph ] ] showed that quantum annealing can often substantially 

MARKOV MONTE CARLO ESTIMATIONS outperform classical annealing in optimization . But this 
work suffered from slowness in search convergence and 

CROSS - REFERENCE TO RELATED 5 inaccurate and poor of search results . Both classical and 
APPLICATION quantum annealing often failed to converge at all . 

This application is based upon and claims priority to SUMMARY 
International Patent Application No. PCT / US2016 / 046006 , 
entitled “ Using Noise to Speed Convergence of Simulated 10 A quantum or classical computer system may iteratively 
Annealing and Markov Monte Carlo Estimation , ” filed Aug. estimate a sample statistic from a probability density of a 
7 , 2016 , which claims priority to U.S. provisional patent model or from a state of a system . An input module may 
application 62 2,613 , entitled “ Noise Can Speed Conver- have a configuration that receives numerical data about the 
gence of Simulated Annealing and Markov Monte Carlo system . A noise module may have a configuration that 
Estimation , ” filed Aug. 7 , 2015. The entire content of this 15 generates random , chaotic , or other type of numerical per 
application is incorporated herein by reference . turbations of the received numerical data or that generates 

pseudo - random noise . An estimation module may have a 
BACKGROUND configuration that iteratively estimates the sample statistic 

from a probability density of the model or from the state of 
Technical Field 20 the system based on the numerical perturbations or the 

pseudo - random noise and the input numerical data during at 
This disclosure relates to the injection of noise in simu- least one of the iterative estimates of the sample statistic . A 

lated annealing and Markov chain Monte Carlo ( “ MCMC ” ) signaling module may have a configuration that signals 
estimations . when successive estimates of the sample statistic or infor 

25 mation derived from successive estimates of the sample 
Description of Related Art statistic differ by less than a predetermined signaling thresh 

old or when the number of estimation iterations reaches a 
The speed and accuracy of Markov Chain Monte Carlo predetermined number or when the length of time since 

( MCMC ) estimates and large - scale optimization , simulated commencing the iterative estimation meets or exceeds a 
annealing optimization , and quantum annealing for large- 30 threshold . The estimation module may have a configuration 
scale optimization , can be an important . that estimates the sample statistic from a probability density 
MCMC applications arose in the early 1950s when physi- of the model or state of the system using Markov chain 

cists modeled intense energies and high particle dimensions Monte Carlo , Gibbs sampling , quantum annealing , simu 
involved in the design of thermonuclear bombs . These lated quantum annealing , or another statistical sampling , or 
simulations ran on the first ENIAC and MANIAC computers 35 sub - sampling method . The noise module may have a con 
[ N. Metropolis , A. W. Rosenbluth , M. N. Rosenbluth , A. H. figuration that generates random , chaotic , or other type of 
Teller , and E. Teller . Equations of state calculations by fast numerical perturbations of the input numerical data that 
computing machines . Journal of Chemical Physics , fully or partially satisfy a noisy Markov chain Monte Carlo 
21 : 1087-1091 , 1953 ] . Some refer to this algorithm as the ( N - MCMC ) condition . The estimation module may have a 
Metropolis algorithm or the Metropolis - Hastings algorithm 40 configuration that estimates the sample statistic from a 
after Hastings ' modification to it in 1970 [ W. K. Hastings . probability density of the model or state of the system by 
Monte Carlo sampling methods using Markov chains and adding , multiplying , or otherwise combining the received 
their applications . Biometrika , 57 : 97-109 , 1970 ) . The origi- numerical data with the numerical perturbations . The pro 
nal 1953 paper [ N. Metropolis , A. W. Rosenbluth , M. N. duced samples may be used in one of nonlinear signal 
Rosenbluth , A. H. Teller , and E. Teller . Equations of state 45 processing , statistical signal processing , statistical numerical 
calculations by fast computing machines . Journal of Chemi- processing , or statistical analysis . 
cal Physics , 21 : 1087-1091 , 1953 ] . The original 1953 paper The estimation module may have a configuration that 
[ N. Metropolis , A. W. Rosenbluth , M. N. Rosenbluth , A. H. causes the magnitude of the generated numerical perturba 
Teller , and E. Teller . Equations of state calculations by fast tions to eventually decay during successive estimates of the 
computing machines . Journal of Chemical Physics , 50 sample statistic . 
21 : 1087-1091 , 1953 ] computed thermal averages for 224 The noise module may have a configuration that generates 
hard spheres that collided in the plane . Its high - dimensional numerical perturbations that do not depend on the received 
state space was R So even standard random - sample numerical data . The estimation module may have a configu 
Monte Carlo techniques were not feasible . ration that estimates the sample statistic from a probability 

The name “ simulated annealing ” has become used since 55 density of the model or from the state of the system using the 
Kirkpatrick's work on spin glasses and VLSI optimization in numerical perturbations that do not depend on the received 
1983 for MCMC that uses a cooling schedule [ Scott numerical data . 
Kirkpatrick , Mario P. Vecchi , and C. D. Gelatt . Optimization A quantum or classical computer system may iteratively 
by simulated annealing . Science , 220 ( 4598 ) : 671-680 , 1983 ] . generate statistical samples from a probability density of a 
Quantum annealing has more recently arisen as a way to use 60 model or from a state of a system . An input module may 
quantum tunneling to burrow through cost surfaces in search have a configuration that receives numerical data about the 
of global minima rather than ( as with classical simulated system . A noise module may have a configuration that 
annealing ) thermally guiding a random search that bounces generates random , chaotic , or other type of numerical per 
in and out of shallower minima . Google's Quantum Al team turbations of the received numerical data or that generates 
recently [ Vasil S. Denchev , Sergio Boixo , Sergei V. Isakov , 65 pseudo - random noise . A sampler module may have a con 
Nan Ding , Ryan Babbush , Vadim Smelyanskiy , John Mar- figuration that iteratively generates statistical samples from 
tinis , Hartmut Neven . What is the Computational Value of a probability density of the model or from the state of the 

448 . 
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system based on the numerical perturbations or the pseudo- adding , multiplying , or otherwise combining the received 
random noise and the input numerical data during at least numerical data with the numerical perturbations . The opti 
one of the iterative samplings from the probability density . mal configuration estimates may be used in one of nonlinear 
A signaling module may have a configuration that signals signal processing , statistical signal processing , nonlinear 
when information derived from successive samples of the 5 optimization , or noise enhanced search . probability density differ by less than a predetermined The estimation module may have a configuration that 
signaling threshold or when the number of iterations reaches causes the magnitude of the generated numerical perturba a predetermined number . The sampler module may have a tions to eventually decay during successive estimates of the configuration that samples from a probability density of the sample statistic . model or state of the system using Markov chain Monte 10 The noise module may have a configuration that generates Carlo , Gibbs sampling , quantum annealing , simulated quan 
tum annealing , or another statistical sampling , or sub - sam numerical perturbations that do not depend on the received 

numerical data . The estimation module may have a configu pling method . The noise module may have a configuration 
that generates random , chaotic , or other type of numerical ration that estimates the optimal configuration of the model 
perturbations of the input numerical data that fully or 15 or state of the system using the numerical perturbations that 
partially satisfy a noisy Markov chain Monte Carlo do not depend on the received numerical data . 
( N - MCMC ) condition . The sampler module may have a These , as well as other components , steps , features , 
configuration that samples from a probability density of the objects , benefits , and advantages , will now become clear 
model or state of the system by adding , multiplying , or from a review of the following detailed description of 
otherwise combining the received numerical data with the 20 illustrative embodiments , the accompanying drawings , and 
numerical perturbations . The produced samples may be used the claims . 
in one of nonlinear signal processing , statistical signal 
processing , statistical numerical processing , or statistical BRIEF DESCRIPTION OF DRAWINGS 
analysis . 

The sampler module may have a configuration that causes 25 The drawings are of illustrative embodiments . They do 
the magnitude of the generated numerical perturbations to not illustrate all embodiments . Other embodiments may be 
eventually decay during successive estimates of the sample used in addition or instead . Details that may be apparent or 
statistic . unnecessary may be omitted to save space or for more 

The noise module may have a configuration that generates effective illustration . Some embodiments may be practiced 
numerical perturbations that do not depend on the received 30 with additional components or steps and / or without all of the 
numerical data . The sampler module may have a configu- components or steps that are illustrated . When the same 
ration that generates statistical samples from a probability numeral appears in different drawings , it refers to the same 
density of the model or from the state of the system using the or like components or steps . 
numerical perturbations that do not depend on the received FIG . 1 illustrates Schwefel function in 2 dimensions . 
numerical data . FIGS . 2A and 2B illustrate how noise increases the 
A quantum or classical computer system may iteratively breadth of search in simulated annealing sample sequences 

estimate the optimal configuration of a model or state of a from a 5 - dimensional Schwefel function ( projected to 2 - D ) 
system . An input module may have a configuration that with a logarithmic cooling schedule . FIG . 2A illustrate the 
receives numerical data about the system . A noise module search without noise ; while FIG . 2B illustrates the search 
may have a configuration that generates random , chaotic , or 40 with noise . 
other type of numerical perturbations of the received FIG . 3 illustrates an example of simulated quantum 
numerical data or that generates pseudo - random noise . An annealing noise benefit in a 1024 Ising - spin simulation . 
estimation module may have a configuration that iteratively FIGS . 4A , 4B , and 4C illustrate illustrate an example of 
estimates the optimal configuration of the model or state of three panels that show evolution of the 2 - dimensional his 
the system based on the numerical perturbations or the 45 togram of MCMC samples from the 2 - D Schwefel function 
pseudo - random noise and the input numerical data during at ( FIG . 1 ) . 
least one of the iterative estimates of the optimal configu- FIGS . 5A , 5B , and 5C illustrate an example of simulated 
ration . A signaling module may have a configuration that annealing noise benefits with 5 - dimension Schwefel energy 
signals when successive estimates of the optimal configu- surface and log cooling schedule . 
ration or information derived from successive estimates of 50 FIGS . 6A and 6B illustrate how noise benefits decrease 
the optimal configuration differ by less than a predetermined convergence time under accelerated cooling schedules . 
signaling threshold or when the number of estimation itera- FIG . 7 shows how the two terms in equation ( 28 ) below 
tions reaches a predetermined number or when the length of interact to form the energy surface . 
time since commencing the iterative estimation meets or FIG . 8 shows that noise injection produces a 42 % reduc 
exceeds a threshold . The estimation module may have 55 tion in convergence time over the noiseless simulation . 
configuration that estimates the optimal configuration of the FIG . 9 illustrates quantum annealing ( QA ) that uses 
model or state of the system using Markov chain Monte tunneling to go through energy peaks ( lower line ) instead of 
Carlo , simulated annealing , quantum annealing , simulated over energy peaks ( upper line ) . 
quantum annealing , quantum simulated annealing , or FIG . 10 illustrates how the noisy quantum annealing 
another statistical optimization or sub - optimization method . 60 algorithm propagates noise along the Trotter ring . 
The noise module may have a configuration that generates FIG . 11 illustrates a method of speeding up convergence 
random , chaotic , or other type of numerical perturbations of to a solution for an optimization or search problem using 
the input numerical data that fully or partially satisfy a noisy Markov Chain Monte Carlo ( MCMC ) simulations . 
Markov chain Monte Carlo ( N - MCMC ) , noisy simulated FIG . 12 illustrates an example of a quantum or classical 
annealing ( N - SA ) , or noisy quantum annealing ( N - QA ) 65 computer system for iteratively estimating a sample statistic 
condition . The estimation module may have a configuration from a probability density of a model or from a state of a 
that estimates the optimal configuration of the system by system . 
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FIG . 13 illustrates an example of a quantum or classical The noise may be just that noise that makes a search jump 
computer system for iteratively estimating the optimal con- more probable and that obeys a Markov constraint . Such 
figuration of a model or state of a system . noise may satisfy an ensemble - average inequality that 
FIG . 14 illustrates an example of a quantum or classical enforces the detailed - balance conditions of a reversible 

computer system for iteratively generating statistical 5 Markov chain . The noise may perturb the current state and , 
samples from a probability density of a model or from a state on average , reduce the Kullback - Liebler pseudo - distance to 
of a system . the desired equilibrium probability density function . This 

may lead to a shorter “ burn in ” time before the user can 
DETAILED DESCRIPTION OF ILLUSTRATIVE safely estimate integrals or other statistics based on sample 

EMBODIMENTS 10 averages as in regular Monte Carlo simulation . 
The MCMC noise boost may extend to simulated anneal 

Illustrative embodiments are now described . Other ing with different cooling schedules . It may also extend to 
embodiments may be used in addition or instead . Details that quantum annealing that burrows or tunnels through cost 
may be apparent or unnecessary may be omitted to save surface , rather than thermally bounces over it as in classical 
space or for a more effective presentation . Some embodi- 15 annealing . The quantum - annealing noise may propagate the 
ments may be practiced with additional components or steps Trotter ring . It may conditionally flip the corresponding sites 
and / or without all of the components or steps that are on coupled Trotter slices . 
described . MCMC can be a powerful statistical optimization tech 

Carefully injected noise can speed the average conver- nique that exploits the convergence properties of Markov 
gence of Markov chain Monte Carlo ( MCMC ) simulation 20 chains . It may work well on high - dimensional problems of 
estimates and simulated annealing optimization . This noise- statistical physics , chemical kinetics , genomics , decision 
boost may include quantum - annealing search and the theory , machine learning , quantum computing , financial 
MCMC special cases of the Metropolis - Hastings algorithm engineering , and Bayesian inference [ Steve Brooks , Andrew 
and Gibbs sampling . The noise may make the underlying Gelman , Galin Jones , and Xiao - Li Meng . Handbook of 
search more probable given the constraints . MCMC may 25 Markov Chain Monte Carlo . CRC press , 2011 ] . Special 
equate the solution to a computational problem with the cases of MCMC may include the Metropolis - Hastings algo 
equilibrium probability density of a reversible Markov rithm and Gibbs sampling in Bayesian statistical inference . 
chain . The algorithm may cycle through a long burn - in MCMC can solve an inverse problem : How can the 
period until it reaches equilibrium because the Markov system reach a given solution from any starting point of the 
samples are statistically correlated . The injected noise may 30 Markov chain ? 
reduce this burn - in period . MCMC can draw random samples from a reversible 
A related theorem may reduce the cooling time in simu- Markov chain and then computes sample averages to esti 

lated annealing . Simulations show that optimal noise may mate population statistics . The designer may pick the 
give a 76 % speed - up in finding the global minimum in the Markov chain so that its equilibrium probability density 
Schwefel optimization benchmark . In one test , the noise- 35 function corresponds to the solution of a given computa 
boosted simulations found the global minimum in 99.8 % of tional problem . The correlated samples can require cycling 
trials , compared with 95.4 % in noiseless simulated anneal- through a long “ burn in ” period before the Markov chain 
ing . The simulations also show that the noise boost is robust equilibrates . Careful ( non - blind ) noise injection can speed 
to accelerated cooling schedules and that noise decreases up this lengthy burn - in period . It can also improve the 
convergence times by more than 32 % under aggressive 40 quality of the final computational solutions . geometric cooling . MCMC simulation itself arose in the early 1950s when 

Molecular dynamics simulations showed that optimal physicists modeled the intense energies and high particle 
noise gave a 42 % speed - up in finding the minimum potential dimensions involved in the design of thermonuclear bombs . 
energy configuration of an 8 - argon atom gas system with a These simulations ran on the first ENIAC and MANIAC 
Lennard - Jones 12-6 potential . The annealing speed - up may 45 computers [ N. Metropolis , A. W. Rosenbluth , M. N. Rosen 
also extend to quantum Monte Carlo implementations of bluth , A. H. Teller , and E. Teller . Equations of state calcu 
quantum annealing . Noise improved ground - state energy lations by fast computing machines . Journal of Chemical 
estimates in a 1024 - spin simulated quantum annealing simu- Physics , 21 : 1087-1091 , 1953 ] . Some refer to this algorithm 
lation by 25.6 % . It has been demonstrated that the Noisy as the Metropolis algorithm or the Metropolis - Hastings 
MCMC algorithm brings each Markov step closer on aver- 50 algorithm after Hastings ' modification to it in 1970 [ W. K. 
age to equilibrium if an inequality holds between two Hastings . Monte Carlo sampling methods using Markov 
expectations . Gaussian or Cauchy jump probabilities may chains and their applications . Biometrika , 57 : 97-109 , 1970 ) . 
reduce the inequality to a simple quadratic condition . It has The original 1953 paper [ N. Metropolis , A. W. Rosenbluth , 
also been demonstrated that noise - boosted simulated anneal- M. N. Rosenbluth , A. H. Teller , and E. Teller . Equations of 
ing may increase the likelihood that the system will sample 55 state calculations by fast computing machines . Journal of 
high - probability regions and accept solutions that increase Chemical Physics , 21 : 1087-1091 , 1953 ] computed thermal 
the search breadth based on the sign of an expectation . averages for 224 hard spheres that collided in the plane . Its 
Noise - boosted annealing may lead to noise - boosted quan- high - dimensional state space was R448 . So even standard 
tum annealing . The injected noise may flip spins along random - sample Monte Carlo techniques may not have been 
Trotter rings . Noise that obeyed the noisy - MCMC condition 60 feasible . The name “ simulated annealing ” has become com 
may improve the ground state solution by 25.6 % and reduce mon since Kirkpatrick's work on spin glasses and VLSI 
the quantum - annealing simulation time by many orders of optimization in 1983 for MCMC that uses a cooling sched 
magnitude . ule [ Scott Kirkpatrick , Mario P. Vecchi , and C. D. Gelatt . 

It has been demonstrated that carefully injected noise can Optimization by simulated annealing . Science , 220 ( 4598 ) : 
speed convergence in Markov Chain Monte Carlo ( MCMC ) 65 671-680 , 1983 ] . 
simulations and related stochastic models . The injected The Noisy MCMC ( N - MCMC ) algorithm below 
noise may not be simple blind or dither noise . resembles earlier " stochastic resonance ” work on using 
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noise to speed up stochastic convergence . It has been shown 
how adding noise to a Markov chain's state density can Qly | x + n ) 77 ( x ) ( 0 ) 
speed convergence to the chain's equilibrium probability Qly | x ) 
density at if ut is known in advance [ Brandon Franzke and 
Bart Kosko . Noise can speed convergence in Markov chains . 5 
Physical Review E , 84 ( 4 ) : 041112 , 2011 ] . But that noise did Taking expectations over the noise random variable N and 
not add to the system state . Nor was it part of the MCMC over X gives a simple symmetric version of the sufficient 
framework that solves the following inverse problem : start condition in the Noisy MCMC Theorem for a speed - up : 
with it and then find a Markov chain that leads to it . 

The related Noisy Expectation - Maximization ( NEM ) ( 0 ) algorithm shows on average how to boost each iteration of En , x In a Qy ) ( y ) 
the EM algorithm as the estimator climbs to the top of the 
nearest hill on a likelihood surface [ Osonde Osoba , Sanya 
Mitaim , and Bart Kosko . The noisy expectation maximi- The inequality ( ( 0 ) ) has the form A2B and so generalizes 
zation algorithm . Fluctuation and Noise Letters , 12 ( 03 ) , the structurally similar sufficient condition A20 that governs 
2013 ] , [ Osonde Osoba and Bart Kosko . The noisy expecta- the NEM algorithm [ Osonde Osoba , Sanya Mitaim , and Bart 
tion - maximization algorithm for multiplicative noise injec- Kosko . The noisy expectation - maximization algorithm . 
tion . Fluctuation and Noise Letters , page 1650007 , 2016 ] . Fluctuation and Noise Letters , 12 ( 03 ) , 2013 ] . This is natural 
EM can be a powerful iterative algorithm that finds maxi- 20 since the EM algorithm deals with only the likelihood term 
mum - likelihood estimates when using missing or hidden P ( E / H ) on the right side of Bayes Theorem : 
variables . This result also showed how to speed up the 
popular backpropagation algorithm in neural networks , P ( H ) P ( E | H ) because it has been shown that the backpropagation gradi P ( HE ) = P ( E ) ent - descent algorithm can be a special case of the general- 25 
ized EM algorithm [ Kartik Audhkhasi , Osonde Osoba , and 
Bart Kosko . Noise - enhanced convolutional neural networks . for hypothesis H and evidence E. MCMC deals with the 
Neural Networks , 78 : 15-23 , 2016 ] , [ Kartik Audhkhasi , converse posterior probability P ( H | E ) on the left side . The 
Osonde Osoba , and Bart Kosko . Noise benefits in back- posterior requires the extra prior P ( H ) . This accounts for the 
propagation and deep bidirectional pre - training . In Neural 30 right - hand side of ( 0 ) . 
Networks ( IJCNN ) , The 2013 International Joint Confer The next sections review MCMC and then extend it to the 
ence on , pages 1-8 . IEEE , 2013 ] . The same NEM algorithm noise - boosted case . Theorem 1 proves that , at each step , the 1 
can also boost the popular Baum - Welch method for training noise - boosted chain is closer on average to the equilibrium 
hidden Markov models in speech recognition and elsewhere density than is the noiseless chain . Theorem 2 proves that 
[ Kartik Audhkhasi , Osonde Osoba , and Bart Kosko . Noisy 35 noisy simulated annealing increases the sample acceptance 
hidden Markov models for speech recognition . In Neural rate to exploit the noise - boosted chain . The first corollary 
Networks ( IJCNN ) , The 2013 International Joint Confer- uses an exponential term to weaken the sufficient condition . 
ence on , pages 1-6 . IEEE , 2013 ] and boosts the k - means- The next two corollaries state a simple quadratic condition 
clustering algorithm found in pattern recognition and big for the noise boost when the jump probability is either a 
data [ Osonde Osoba and Bart Kosko . Noise - enhanced clus- 40 Gaussian or Cauchy bell curve . A Cauchy bell curve has 
tering and competitive learning algorithms . Neural Net- thicker tails than a Gaussian and thus tends to have longer 
works , 37 : 132-140 , 2013 ] . jumps . The Cauchy curve has infinite variance because of 

The N - MCMC algorithm and theorem stem from an these thicker tails . So it can produce occasional jumps that 
intuition : Find a noise sample n that makes the next choice are extremely long . The corresponding Gaussian bell curve 
of location x + n more probable . Define the usual jump 45 gives essentially zero probability of such exceptional jumps . 
function Q ( ylx ) as the probability that the system moves or The next section presents the Noisy Markov Chain Monte 
jumps to state y if it is in state x . The Metropolis algorithm Carlo Algorithm and Noisy Simulated Annealing Algorithm 
may require a symmetric jump function : Q ( ylx ) Q ( xly ) . and demonstrates the MCMC noise benefit in three simula 
This may help explain the common choice of a Gaussian tions . The first simulation shows that noise reduces the 
jump function . Neither the Metropolis - Hastings algorithm 50 convergence time in Metropolis - Hastings optimization of 
nor the N - MCMC results may require symmetry . But all the highly nonlinear Schwefel function ( FIG . 1 ) by 75 % . 
MCMC algorithms may require that the chain is reversible . FIG . 1 illustrates Schwefel function in 2 dimensions : The 
Physicists call this detailed balance : Schwefel function f ( x ) = 419.9829d - 2 : - ' x , sin ( VIxl ) is a 

d - dimensional optimization benchmark on the hypercube 
Qly | x ) ) ( x ) = Q ( x | y ) n ( y ) ( 0 ) 55 -512sx_5512 [ Hans - Paul Schwefel . Numerical Optimiza 

for all x and y . tion of Computer Models . John Wiley & Sons , Inc. , New 
Now consider a noise sample n that makes the jump more York , N.Y. , USA , 1981 ] , [ Darrell Whitley , Soraya Ranaa , 

probable : Q ( y | x + nQ ( ylx ) . This is equivalent to In John Dzubera , and Keith E Mathias . Artificial Intelligence 
Evaluating evolutionary algorithms . Artificial Intelligence , 

60 85 ( 1-2 ) : 245-276 , 1996 ] , [ Johannes M. Dieterich . Empirical 
Review of Standard Benchmark Functions Using Evolution Qly | x + n ) 

Q ( y | x ) ary Global Optimization . Applied Mathematics , 03 ( Octo 
ber ) : 1552-1564 , 2012 ] . It has a single global minimum 
f ( xmin ) = 0 at Xmin = ( 420.9687 , K , 420.9687 ) . Energy peaks 

Replace the denominator jump term with its symmetric dual 65 separate irregular troughs on the surface . This leads to 
Q ( xly ) . Then eliminate this term with detailed balance and estimate capture in search algorithms that emphasize local 
rearrange to get the key inequality for a noise boost : search . 
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FIGS . 2A and 2B show two sample paths and describes State j is accessible from state i if and only if there is a 
the origin of the convergence noise benefit . Then , noise non - zero probability that the chain will transition from state 
benefits are shown in an 8 - argon - atom molecular - dynamics i to state j ( i- > j ) in a finite number of steps 
simulation that uses a Lennard - Jones 12-6 interatomic 
potential and a Gaussian - jump model . ( 0 ) 

FIGS . 2A and 2B illustrate how noise increases the for some n > 0 . A Markov chain is irreducible if and only if breadth of search in simulated annealing sample sequences each state is accessible from every other state [ Christian P from a 5 - dimensional Schwefel function ( projected to 2 - D ) Robert and George Casella . Monte Carlo statistical methods with a logarithmic cooling schedule . FIG . 2A illustrate the ( Springer Texts in Statistics ) . Springer - Verlag , 2nd edition , search without noise ; while FIG . 2B illustrates the search 2005 ] , [ Sean Meyn and Richard L. Tweedie . Markov Chains with noise . Noisy simulated annealing visited more local and Stochastic Stability . Cambridge University Press , 2nd minima than did noiseless SA and quickly moved from the edition , 2009 ] . Irreducibility implies that for all states i and 
minima that trapped noiseless SA . Both figures show sample j there exists m > O such that P ( Xn + m = j | X , = i ) = Pij ( m ) > 0 . This 
sequences with initial condition X = ( 0,0 ) and N = 106 . The 15 holds if and only if P is a regular stochastic matrix . lower left circle indicates the global minimum at Xmin = The period d , of state i is d ; = gcd n21 : P : / { " ) > 0 } or d = if 
420.9687 , -420.9687 ) . The noiseless algorithm FIG . 2A P : ( n ) = 0 for all nzl where gcd denotes the greatest common 
found the ( 205,205 ) local minima within the first 100 time divisor . State i is aperiodic if d = 1 . A Markov chain with steps . Thermal noise was not enough to induce the noiseless transition matrix P is aperiodic if and only if d? = 1 for all algorithm to search the space beyond three local minima . 20 states i . 
The noisy simulation in FIG . 2B followed the noiseless A sufficient condition for a Markov chain to have a unique simulation at the simulation start . It sampled the same stationary distribution is that all the state transitions satisfy egions , but with noise enhanced thermal jumps . This detailed balance : P [ j - k ] x® ; = P [ k - j ] x®k for all states j and allowed the simulation to increase its breadth . It visited the k . This can also be written as Q ( klj ) o ( j ) = Qqj | k ) ( k ) . 
same three minima as in FIG . 2A but it performed a local 25 Detailed balance is the reversibility condition of a Markov optimization for only a few hundred steps before jumping to chain . A Markov chain is reversible if and only if it satisfies the next minimum . The estimate settled at ( -310 , -310 ) . This the reversibility condition . was just one hop away from the global minimum Xmin . Markov Chain Monte Carlo algorithms exploit the FIG . 8 shows that the optimal noise gives a 42 % speed up : It took 173 steps to reach equilibrium with N - MCMC 30 Markov convergence guarantee in constructing Markov chains with samples drawn from complicated probability compared with 300 steps in the noiseless case . The third densities . But MCMC methods suffer from problem - specific simulation shows that noise - boosted path - integral Monte 
Carlo quantum annealing improved the estimated ground parameters that govern sample acceptance and convergence 
state of a 1024 - spin Ising spin glass system by 25.6 % . The assessment [ Yun Ju Sung and Charles J. Geyer . Monte Carlo 
decrease in convergence time was not able to be quantified 35 likelihood inference for missing data models . The Annals of 
because the noiseless quantum - annealing algorithm did not Statistics , 35 ( 3 ) : 990-1011 , 2007 ] , [ W. R. Gilks , Walter R. 
converge to a ground state this low in any trial . Gilks , Sylvia Richardson , and D. J. Spiegelhalter . Markov 
FIG . 3 illustrates an example of simulated quantum chain Monte Carlo in practice . CRC Press , 1996 ] . Strong 

annealing noise benefit in a 1024 Ising - spin simulation . The dependence on initial conditions also biases MCMC sam 
lower line shows that noise improved the estimated ground- 40 pling unless the simulation has a lengthy burn - in period 
state energy of a 32x32 spin lattice by 25.6 % . This plot during which the driving Markov chain mixes adequately . 
shows the ground state energy after 100 path - integral Monte FIGS . 4A , 4B , and 4C illustrate an example of three 
Carlo steps . The true ground state energy ( dashed ) was panels that show evolution of the 2 - dimensional histogram 
E = - 1591.92 . Each point is the average calculated ground of MCMC samples from the 2 - D Schwefel function ( FIG . 
state from 100 simulations at each noise power . The upper 45 1 ) . 
line shows that blind ( independent and identically distrib FIG . 4A illustrates a 1000 - sample histogram that explores 
uted sampling ) noise does not benefit the simulation . So the only a small region of the space . The simulation has not 
N - MCMC noise - benefit condition is central to the S - QA sufficiently burned in . The samples remained close to the 
noise benefit . initial state because the MCMC random walk proposed new 
Markov Chain Monte Carlo 50 samples near the current state . This early histogram does not 

The Markov chains that underlie the MCMC algorithm match the Schwefel density . 
are reviewed first [ Christian P Robert and George Casella . FIG . 4B illustrates a 10,000 - sample histogram that 
Monte Carlo statistical methods ( Springer Texts in Statis- matches the target density , but there were still large unex 
tics ) . Springer - Verlag , 2nd edition , 2005 ] . This includes the plored regions . FIG . 4C illustrates a 100,000 - sample histo 
important MCMC special case called the Metropolis - Hast- 55 gram , which shows that the simulation explored most of the 
ings algorithm . search space . The tallest peak shows that the simulation 
A Markov chain is a memoryless random process whose found the global minimum . Note that the histogram peaks 

transitions from one state to another obey the Markov corresponded to energy minima on the Schwefel surface . 
property Next presented is Hastings ' [ W.K. Hastings . Monte Carlo 

60 sampling methods using Markov chains and their applica 
P ( X : + 1 = X \ X1 = x? , K , X ; = x , ) = P ( X : + 1 = x \ X_ = x . ) . ( 0 ) tions . Biometrika , 57 : 97-109 , 1970 ] generalization of the 

MCMC Metropolis algorithm now called Metropolis - Hast P is the single - step transition probability matrix where ings . This starts with the classical Metropolis algorithm [ N. 
Metropolis , A. W. Rosenbluth , M. N. Rosenbluth , A. H. Pij = P ( X2 + 1 = j \ x_ = i ) ( 0 ) 65 Teller , and E. Teller . Equations of state calculations by fast 

is the probability that if the chain is in state i at time t then computing machines . Journal of Chemical Physics , 
it will move to state j at time t + 1 . 21 : 1087-1091 , 1953 ] . 
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Suppose one wants to sample x? , K , X , from a random Xn ) . It cycles through n 1 - dimensional conditional pdfs of the 
variable X with probability density function ( pdf ) p ( x ) . form p ( x2IX , X3 , X4 , K , x , ) at each sampling epoch . 
Suppose Simulated Annealing 

Simulated annealing is a time - varying version of the 
5 Metropolis - Hastings algorithm for global optimization . 

f ( x ) Kirkpatrick [ Scott Kirkpatrick , Mario P. Vecchi , and C. D. p ( x ) = K Gelatt . Optimization by simulated annealing . Science , 220 
( 4598 ) : 671-680 , 1983 ] first introduced this thermodynami 
cally inspired algorithm as a method to find optimal or for some function f ( x ) and normalizing constant K. The 

normalizing constant K may not be known or it may be hard 10 near - optimal layouts for VLSI circuits . 
Suppose one wants to find the global minimum of a cost to compute . The Metropolis algorithm constructs a Markov function C ( x ) . Simulated annealing maps the cost function chain that has the target density n as its equilibrium density . to a potential energy surface through the Boltzmann factor The algorithm generates a sequence of random - sample real 

izations from p ( x ) as follows : 
1. Choose an initial Xo with f ( x0 ) > 0 . C ( xt ) p ( xi ) o exp 2. Generate a candidate X4 + 1 * by sampling from the jump k? 

distribution Q ( ylx . ) . The jump pdf must be symmetric : 
Qtylx ) = Q ( x , y ) . 

3. Calculate the density ratio a for X4 + 1 * : and then runs the Metropolis - Hastings algorithm with ; ( x2 ) 
in place of the pdf p ( x ) . This operation preserves the 
Metropolis - Hastings framework because º ( x , ) is an unnor 
malized pdf . p ( x + 1 ) f ( x + 1 ) Simulated annealing uses a temperature parameter T to p ( xt ) f ( x ) tune the Metropolis - Hastings acceptance probability a . The 
algorithm slowly cools the system according to a cooling 

So the normalizing constant K cancels . schedule T ( t ) in analogy to metallurgical annealing of a 
4. Accept the candidate point X + 1 + x + 1 * if the jump Xx = 1 substance to a low - energy crystalline configuration . This 

increases the probability and thus if > 1 . But also accept the reduces the probability of accepting candidate points with 
candidate point with probability a if the jump decreases the higher energy . The algorithm provably attains a global 
probability . Else reject the jump ( Xz + 1 = x , ) and return to step minimum in the limit but this requires an extremely slow 
2 . log ( t + 1 ) cooling [ S. Geman and D. Geman . Stochastic 
A key step is that the Metropolis algorithm sometimes relaxation , Gibbs distributions , and the Bayesian restoration 

accepts a new state that lowers the probability . But it does of images . IEEE Transactions on Pattern Analysis and 
so only with some probability a < 1 . This implies in optimi- Machine Intelligence , PAMI - 6 : 721-741 , 1984 ] . Accelerated 
zation that the random search algorithm sometimes picks a cooling schedules such as geometric or exponential often 
new state - space point that increases the cost function . So the yield satisfactory approximations in practice . The procedure 
Metropolis algorithm is not a simple " greedy " algorithm that below describes the simulated - annealing algorithm . The 
always picks the smallest value and never backtracks . Pick- algorithm attains the global minimum as t- > 00 : 
ing the occasional larger - cost state acts as a type of random 1. Choose an initial x , with C ( x . ) > 0 and initial tempera 
error correction . It can help the state bounce out of local cost ture To 
minima and bounce into deeper - cost minima . This jump 2. Generate a candidate Xz + 1 * by sampling from the jump 
property is exploited below by using alpha - stable jump pdfs distribution Q ( ylx , ) . 
that have thicker power - law tails than the Gaussian's thinner 3. Compute the Boltzmann factor exponential tails . 

Hastings ' [ W. K. Hastings . Monte Carlo sampling meth 
ods using Markov chains and their applications . Biometrika , C ( x + 1 ) - C ( x4 ) 
57 : 97-109 , 1970 ] replaced the symmetry constraint on the ?? 
jump distribution Q with a slightly more general a term : 

4. Accept the candidate point ( thus X4 + 1 = Xx + 1 * ) if the jump 
decreases the energy . Also accept the candidate point with f ( x + 1 ) ( x + | x + 1 ) probability a if the jump increases the energy . Else reject the f ( x ) Q ( x + 1 | xt ) jump and thus Xi + 1 = Xq . 

5. Update the temperature T = T ( t ) . T ( t ) is usually a 
A simple calculation shows that detailed balance still holds 55 monotonic decreasing function . 
[ Christian P Robert and George Casella . Monte Carlo sta- 6. Return to step 2 . 
tistical methods ( Springer Texts in Statistics ) . Springer- The next two sections show how to noise - boost MCMC 
Verlag , 2nd edition , 2005 ) . The resulting MCMC algorithm and simulated annealing algorithms . 
is the Metropolis - Hastings algorithm . Gibbs sampling is a Noisy Markov Chain Monte Carlo 
special case of the Metropolis - Hastings algorithm when a = 1 60 Theorem 1 next shows how carefully injected noise can 
always holds for each conditional pdf [ Christian P Robert speed the average convergence of MCMC simulations by 
and George Casella . Monte Carlo statistical methods reducing the relative - entropy ( Kullback - Liebler divergence ) 
( Springer Texts in Statistics ) . Springer - Verlag , 2nd edition , pseudo - distance . 
2005 ] , [ Steve Brooks , Andrew Gelman , Galin Jones , and Theorem 1 states the Noisy MCMC ( N - MCMC ) Theo 
Xiao - Li Meng . Handbook of Markov Chain Monte Carlo . 65 rem . It gives a simple inequality as a sufficient condition for 
CRC press , 2011 ] . Gibbs sampling uses a divide - and - con- the speed - up . The Appendix below gives the proof along 
quer strategy to estimate a joint n - dimensional pdf p ( x1 , K , with the proofs of all other theorems and corollaries . An 
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algorithm statement follows Theorem 2. Reversing inequali- for almost all x and n where 
ties in the N - MCMC Theorem leads to noise that on average 
slows convergence . This noise slow - down result parallels 
the related reversal of the inequality in the NEM Theorem TI ( X : + N ) ( 0 ) A = En In [ i * ) [ mentioned above [ Kartik Audhkhasi , Osonde Osoba , and 5 77 x ) 

Bart Kosko . Noise - enhanced convolutional neural networks . 
Neural Networks , 78 : 15-23 , 2016 ] , [ Osonde Osoba and Bart Corollary 2 
Kosko . The noisy expectation - maximization algorithm for The N - MCMC noise benefit condition holds if 
multiplicative noise injection . Fluctuation and Noise Let Q ( xlg ( x , n ) ) > e ̂  Q ( x | x ; ) ( 0 ) 
ters , page 1650007 , 2016 ] . for almost all x and n where 

Corollary 1 weakens the N - MCMC sufficient condition by 
way of a new exponential term . Corollary 2 generalizes the 
jump structure in Corollary 1. FIG . 8 shows simulation ( 0 ) 
instances of Corollary 2 for a Lennard - Jones model of the [ 77 ( xt ) 
interatomic potential of an eight argon atom gas . The graph 
shows the optimal Gaussian variance for the quickest con 
vergence to the global minimum of the potential energy . Corollary 3 

Suppose Q ( xlx . ) : N ( x ,, 0 ) : Corollary 3 shows that a Gaussian jump function reduces the 
sufficient condition to a simple quadratic inequality . Corol 
lary 4 generalizes Corollary 3 . ( 0 ) 

Corollary 5 states a similar quadratic inequality when the Q ( x | x1 ) = V 27 jump function is the thicker - tailed Cauchy probability bell 
curve . Earlier simulations showed without proof that a 
Cauchy jump function can lead to “ fast ” simulated annealing 25 Then the sufficient noise benefit condition ( ( 0 ) ) holds if 
because sampling from its thicker tails can lead to more n ( n - 2 ( x , -x ) ) s - 20 ° A . ( 0 ) 
frequent long jumps out of shallow local minima [ Harold Corollary 4 Szu and Ralph Hartley . Fast simulated annealing . Physics Suppose Q ( x | x . ) : N ( x , 0 ) and g ( x , n ) = nx ,. Then the suf letters A , 122 ( 3 ) : 157-162 , 1987 ] . Corollary 5 proves that this ficient noise benefit condition ( 0 ) ) holds if speed - up will occur in MCMC simulations if the N - MCMC 30 ( 0 ) condition holds and suggests a general proof strategy for nx ( 2x - 2x ) -x ( 2x - x , ) s - 20 ° A . 
using other closed - form symmetric alpha - stable jump den Corollary 5 
sities [ K. A. Penson and K. Górska . Exact and explicit Suppose Q ( xlx , ) : Cauchy ( m , d ) : 
probability densities for one - sided Lévy stable distributions . 
Phys . Rev. Lett . , 105 ( 21 ) : 210604 , November 2010 ] , [ J. P. 35 
Nolan . Stable Distributions Models for Heavy Tailed Data . ( 0 ) 

Q ( x | x1 ) = 
Birkhauser , Boston , 2011 ] , [ K. Górska and K. A. Penson . xd [ 1 + 6 **** ] Lévy stable distributions via associated integral transform . 
Journal of Mathematical Physics , 53 ( 5 ) : 053302 , 2012 ] . 

The N - MCMC Theorem and its corollaries are now 40 Then the sufficient condition ( 0 ) holds if 
stated . n + 2n ( x - x , ) s ( e - 4-1 ) ( d? + ( x - x , ) ? ) . ( 0 ) 
Theorm 1 ( Noisy Markov Chain Monte Carlo Theorem Noisy Simulated Annealing 

( N - MCMC ) ) Next shown is how to noise - boost simulated annealing . 
Suppose that Q ( xlx , ) is a Metropolis - Hastings jump pdf 45 Theorem and gives a simple inequality as a sufficient con Theorem 2 states the Noisy Simulated Annealing ( N - SA ) 

for time t and that satisfies detailed balance u ( x ) Q ( x | x , ) = 1 dition for the speed - up . The Appendix below gives the proof ( x ) Q ( x , x ) for the target equilibrium pdf f ( x ) . Then the based on Jensen's inequality for convex functions . An MCMC noise benefit d ( N ) zd occurs on average if algorithm statement follows the statement of Theorem 2 . 
Theorem 2 ( Noisy Simulated Annealing Theorem 

( N - SA ) 
Q ( x | x4 + N ) ( x + + N ) ( 0 ) En , x In Suppose C ( x ) is an energy surface with occupancy prob 
Q ( x | xt ) 7 ( x4 ) abilities given by 

1 

X - m 
?d 

) 

50 

2 En In A ( 
( x ) where d = D ( T ( x ) PQ ( x , x ) ) , , ( N ) = D ( T ( x ) PQ ( x , + N x ) ) , 55 

N : fxl ( nlx . ) is noise that may depend on x , and D ( -P . ) is the 
relative - entropy pseudo - distance : 

77 ( x ; T ) « exp expl - CP ) 

p ( x ) 60 ( 0 ) 
Then the simulated - annealing noise - benefit 

Ex [ an ( 7 ) ] za ( 7 ) 
occurs on average if D ( PPO ) = $ _P ( PIO S perla = Idx . 

9 ( x ) 

( 0 ) Corollary 1 
The N - MCMC noise benefit condition holds if 

T ( Xx + N ; T ) En In 7 ( X ;; T ) 
> 0 

65 

Q ( x | x , + n ) > e ̂  Q ( x \ x . ) ( 0 ) 
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where a ( T ) is the simulated annealing acceptance probabil -continued 
ity from state x , to the candidate Xx + 1 * that depends on a 
temperature T ( governed by the cooling schedule T ( t ) ) : Algorithm 5.1 The Noisy Metropolis Hastings Algorithm 

5 

?? ( 0 ) { 7 ) = min { 1 , exp ( -4 ) X4 + 1 

? 

* 
10 

and AE = E : + 1 * -E , = C ( x + 1 * ) - C ( x , ) is energy difference of 
states X4 + 1 * and x 
The next two corollaries extend the N - SA in different 

directions . Corollary 4 still ensures an annealing speed - up 
when an increasing convex function applies to the key ratio 
in the acceptance probability . Corollary 6 ensures such a 
speed - up when the equilibrium distribution f ( x ) has a Gibbs 
or continuous soft - max form . The Appendix below gives the 
proofs . 

Corollary 6 
Suppose m is an convex increasing function . Then an 

N - SA Theorem noise benefit 

X4 + 1 Sample ( x , ) 
procedure Sample ( x , ) 

+ X : + JumpQ ( x , ) + Noise ( x , ) 
77 ( x + 1 ) 
77 ( x ) 

if a > 1 , then 
return X4 + 1 

else if Uniform [ 0 , 1 ] < a 
return Xx + 1 * 

else 
return x ; 

Jump Q ( x4 ) 
return y : Q ( ylx , ) 

Noise ( x , ) 
return y : f ( y \ x , ) 

15 

20 
Algorithm 5.2 The Noisy Simulated Annealing Algorithm 

( 0 ) En [ Br ( 7 ) ] > B ( T ) 
occurs on average if xo a 

25 

NoisySimulatedAnnealing ( X , T . ) 
Initial ( X ) 

for t = 0 , N 
TE Temp ( t ) 

Sample ( x4 , T ) 
Sample ( X? , T ) 

- X , + JumpQ ( x , ) + Noise ( x , ) 
as I ( *** + 1 ) – I ( x , ) 
if aso 

X + 1s 
( 0 ) ( X + + N ; T ) 

En In T ( X ; T ) 
> 0 t + 1 

return X t + 1 where ß is the acceptance probability from state x , to the 30 
candidate X + 1 * : 

else if Uniform [ 0,1 ] < exp ( -a / T ) 
return x t + 1 

else 
return x ; 

JumpQ ( x4 ) 
return y : Q ( ylx . ) 

Noise ( x ; ) 
return y : f ( y \ x , ) 

BIT med ( 0 ) B ( T ) = min { 1 , = 
T ( ** + 1 ; T ) 

ml 
77 ( Xt ; T ) ; 2 ) } 35 

Corollary 7 
Suppose f ( x ) = A < 3 ( * ) where A is normalizing constant or 

partition function such that 
Noise Improves Complex Multimodal Optimization 

The first simulation shows a noise benefit in simulated 
40 annealing on a complex cost function . The Schwefel func 

tion [ Hans - Paul Schwefel . Numerical Optimization of Com 
puter Models . John Wiley & Sons , Inc. , New York , N.Y. , 
USA , 1981 ] is a standard optimization benchmark because 
it has many local minima and a single global minimum . The 
Schwefel function f has the form 

1 
A = 

Jy estada dx 

45 

Then there is an N - SA Theorem noise benefit if 

d 

i = 1 

En [ g ( x + 1 ) ] 2g ( x1 ) ( 0 ) 
( 0 ) Noisy MCMC Algorithms and Results f ( x ) = 419.9829d - Xx ; sin ( Vlxxl ) Next presented are algorithms for noisy MCMC and for 50 

noisy simulated annealing . Each is followed with simulation 
applications and results that show improvement over exist 
ing noiseless algorithms . where d is the dimension over the hypercube – 500sx_s500 
The Noisy MCMC Algorithms for i = 1 , K , d . The Schwefel function has a single global 

This section introduces two noise - boosted versions of 55 minimum f ( xmin ) = 0 at Xmin = ( 420.9687 , K , 420.9687 ) . FIG . 1 
MCMC algorithms . Algorithm 5.1 shows how to inject shows a representation of the surface for d = 2 . 
helpful noise into the Metropolis - Hastings MCMC algo- The simulation used a zero - mean Gaussian jump pdf with 
rithm for sampling . Algorithm 5.1 shows how to inject noise Ojump = 5 and zero - mean Gaussian noise pdf with ( < Onoise 55 . 
that improves stochastic optimization with simulated FIGS . 5A - 5C illustrate an example of simulated annealing 
annealing 60 noise benefits with 5 - dimension Schwefel energy surface 

and log cooling schedule . The noise benefited three distinct 
performance metrics . FIG . 5A illustrates noise reduced 

Algorithm 5.1 The Noisy Metropolis Hastings Algorithm convergence time by 76 % . Convergence time is defined as 
the number of steps that the simulation takes to estimate the NoisyMetroloplisHastings ( X ) 

Xo = Initial ( X ) 65 energy global minimum with error less than 10-3 . Simula 
for t = 0 , N tions with faster convergence usually found better estimates 

given the same computational time . FIG . 5B illustrates how 
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noise improved the estimate of the minimum system energy together at longer distances . Three parameters characterize 
by two orders of magnitude in simulations with a fixed run the potential : ( 1 ) ? is the depth of the potential well , ( 2 ) rm 
time ( tmax = 10 % ) . FIGS . 2A and 2B shows how the estimated is the interatomic distance corresponding to the minimum 
minimum corresponds to samples . Noise increased the energy , and ( 3 ) o is the zero potential interatomic distance . 
breadth of the search and pushed the simulation to make 5 Table 1 lists parameter values for argon : 
good jumps toward new minima . FIG . 5C illustrates how 
noise decreased the likelihood of failure in a given trial by TABLE 1 
almost 100 % . A simulation failure is defined as if it did not 
converge by t = 107 . This was about 20 times longer than the Argon Lennard - Jones 12-6 parameters 
average convergence time . 4.5 % of noiseless simulations 10 
failed under this definition . Noisy simulated annealing pro 3.404 x 10-1 
duced only 2 failures in 1000 trials ( 0.2 % ) . 3.405 Å 
FIG . 5A shows that noisy simulated annealing converges 

76 % faster than noiseless simulated annealing when using The Lennard Jones ( 12-6 ) potential well approximates the log - cooling . FIG . 5B shows that the estimated global mini- 15 
mum from noisy simulated annealing is almost two orders of interaction energy between two neutral atoms [ John Edward 

Lennard - Jones . On the determination of molecular fields . i . magnitude better than noiseless simulations on average from the variation of the viscosity of a gas with temperature . ( 0.05 versus 4.6 ) . 
The simulation annealed a 5 - dimensional Schwefel sur Proceedings of the Royal Society of London A : Mathemati 

cal , Physical and Engineering Sciences , 106 ( 738 ) : 441-462 , face . So d = 5 in the Schwefel function in ( 0 ) ) . The simula- 20 
tion estimated the minimum energy configuration and then 1924 ] , [ John Edward Lennard - Jones . On the determination 

of molecular fields . ii . from the equation of state of a gas . averaged the result over 1000 trials . We defined the conver 
gence time as the number of steps that the simulation Proceedings of the Royal Society of London A : Mathemati 
required to reach the global minimum energy within 10-3 : cal , Physical and Engineering Sciences , 106 ( 738 ) : 463-477 , 

1924 ] , [ L. A. Rowley , D. Nicholson , and N. G. Parsonage . 
If ( x , ) - f ( xmin ) | s10-3 ( 0 ) Monte Carlo grand canonical ensemble calculation in a 

gas - liquid transition region for 12-6 argon . Journal of Com FIG . 2A projects trajectories from a noiseless simulation , putational Physics , 17 ( 4 ) : 401-414 , 1975 ) : while FIG . 2B projects trajectories from a noise - boosted 
simulation . Each simulation was initialized with the same 
Xo . The figures show the global minimum circled in the 30 ( 0 ) lower left . They show that noisy simulated annealing Vw = ) -27 ) 
boosted the sequences through more local minima while the 
noiseless simulation could not escape cycling between three = 4e69 " -01 
local minima . 
FIG . 5C shows that noise lowered the failure rate of the 35 

simulation . A failed simulation is defined as a simulation that where ? is the depth of the potential well , r is the distance 
did not converge before t < 10 % . The failure rate was 4.5 % for between the two atoms , rm is the interatomic distance that 
noiseless simulations . Even moderate injected noise brought corresponds to the minimum energy , and o is the zero 
the failure rate to less than 1 in 200 ( < 0.5 % ) . potential interatomic distance . 

FIGS . 6A and 6B illustrate how noise decreased conver- 40 FIG . 7 shows how the two terms in ( 0 ) ) interact to form 
gence time under accelerated cooling schedules . Simulated the energy surface . The 12 - term dominates at short distances 
annealing algorithms often use an accelerated cooling sched- because overlapping electron orbitals cause strong Pauli 
ule such as exponential cooling Texp ( t ) = T , ' A ' or geometric repulsion to push the atoms apart . The 6 - term dominates at 
cooling Tgeom ( t ) = T , exp ( -Atd ) where A < 1 and T , are user longer distances because van der Waals and dispersion 
parameters and d is the sample dimension . Accelerated 45 forces pull the atoms toward a finite equilibrium distance rm . 
cooling schedules do not have convergence guarantees like Table 1 lists the value of the Lennard - Jones parameters for 
log cooling Tlog ( t ) = log ( t + 1 ) but often give better estimates argon . 
given a fixed run time . Noise - enhanced simulated annealing The Lennard - Jones simulation estimated the minimum 
reduced convergence time under an ( a ) exponential cooling energy coordinates for 8 argon atoms in 3 dimensions . 200 
schedule as shown in FIG . 6A by 40.5 % and under a ( b ) 50 trials were performed at each noise level . Each trial is 
geometric cooling schedule as shown in FIG . 6B by 32.8 % . summarized as the average number of steps that the system 
The simulations had comparable solution error and failure required to estimate the minimum energy within 10-2 . 
rates ( 0.05 % ) across all noise levels . Noise speeds Lennard- FIG . 8 shows that noise injection produces a 42 % reduc 
Jones 12-6 simulations tion in convergence time over the noiseless simulation . FIG . 

Next is shown how noise can speed up simulations of an 55 8 shows MCMC noise benefit for an MCMC molecular 
MCMC molecular dynamics model . The noise - boosted dynamics simulation . Noise decreased the convergence time 
Metropolis - Hastings algorithm ( Algorithm 2 ) searched a for an MCMC simulation to find the energy minimum by 
24 - dimensional energy landscape . It used the Lennard - Jones 42 % . The plot shows the number of steps that an MCMC 
12-6 potential well to model the pairwise interactions simulation needed to converge to the minimum energy in a 
between an 8 - argon atom gas . 60 eight - argon - atom gas system . The optimal noise had a 

The Lennard - Jones 12-6 potential well approximated standard deviation of 0.64 . The plot shows 100 noise levels 
pairwise interactions between two neutral atoms . FIG . 7 with standard deviations between 0 ( no noise ) and o = 3 . 
shows the energy of a two - atom system as a function of the Each point averaged 200 simulations and shows the average 
interatomic distance . The well is the result of two competing number of MCMC steps required to estimate the minimum 
atomic effects : ( 1 ) overlapping electron orbitals cause strong 65 to within 0.01 . The interaction was modeled between two 
Pauli repulsion to push the atoms apart at short distances and argon atoms with the Lennard - Jones 12-6 model e = 1.654x 
( 2 ) van der Waals and dispersion attractions pull the atoms 10-21 J and o = 3.405x10-10 m = 3.405 Å [ L. A. Rowley , D. 
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Nicholson , and N. G. Parsonage . Monte Carlo grand canoni- QA can greatly outperform classical simulated annealing 
cal ensemble calculation in a gas - liquid transition region for when the potential - energy landscape contains many high but 
12-6 argon . Journal of Computational Physics , 17 ( 4 ) : 401- thin energy barriers between shallow local minima [ P. Ray , 
414 , 1975 ) . B. K. Chakrabarti , and Arunava Chakrabarti . Sherrington 
Quantum Simulated Annealing 5 kirkpatrick model in a transverse field : Absence of replica 

symmetry breaking due to quantum fluctuations . Phys . Rev. 
An algorithm was developed to noise - boost quantum B , 39 ( 16 ) : 11828-11832 , 1989 ] , [ Vasil S Denchev , Sergio 

annealing ( QA ) . The noise - boosted QA algorithm is far Boixo , Sergei V Isakov , Nan Ding , Ryan Babbush , Vadim 
more complex than the above noise - injection algorithms for Smelyanskiy , John Martinis , and Hartmut Neven . What is 
classical MCMC and annealing . It requires a review of the 10 the computational value of finite range tunneling ? arXiv 
main quantum structure of QA . preprint arXiv : 1512.02206 , 2015 ] . QA favors problems in 
QA is a quantum - based search technique that tries to discrete search spaces where the cost surface has vast 

minimize a multimodal cost function defined on several numbers of local minima . This holds when trying to find the 
ground state of an Ising spin glass . variables . QA uses quantum fluctuations and tunneling to Lucas [ Andrew Lucas . Ising formulations of many NP evolve the system state in accord with the quantum Hamil problems . Frontiers in Physics , 2 ( February ) : 1-15 , 2014 ] tonian . Classical simulated annealing uses thermodynamic recently found Ising versions for Karp's 21 NP - complete excitation . problems . The NP - complete problems include standard opti 

Simulated QA uses an MCMC framework to simulate mization benchmarks such as graph - partitioning , finding an 
draws from the square amplitude of the wave function Y?r , 20 exact cover , integer weight knapsack packing , graph color 
t ) This sampling avoids the often insurmountable task of ing , and the traveling salesman . NP - complete problems are 
solving the time - dependent Schrödinger wave equation : a special class of decision problem . Their time complexity is 

super - polynomial ( NP - hard ) in the input size but they have 
only polynomial time to verify the solution ( NP ) . D - Wave 

-h² ( 0 ) 25 Systems has made quantum annealers commercially avail 
ihY ( r , 1 ) = -72 + V ( r , 1 ) Y ( r , 1 ) 2? able and shown how adiabatic quantum computers can solve 

some real - world problems [ Troels F. R Ã knnow Sergio 
Boixo , Sergei V. Isakov , Zhihui Wang , David Wecker , Dan 

where u is the particle reduced mass , V is the potential iel A. Lidar , John M. Martinis , and Matthias Troyer . Evi 
energy , and V2 is the Laplacian differential operator ( the 30 dence for quantum annealing with more than one hundred 
divergence of the gradient ) . qubits . Nature Physics , 10 : 218-224 , 2014 ] . Characteristi 

cally , the quantum annealer includes superconducting flux The acceptance probability in classical simulated anneal qubits with programmable couplings . 
ing depends on the ratio of a function of the energy of the Spin glasses are systems with localized magnetic 
old and the new states . This dependence can prevent ben- 35 moments [ Marc Mézard and Montanari Andrea . Information 
eficial hops if energy peaks lie between minima . QA uses Theory , Physics and Computation . Oxford University Press , 
probabilistic tunneling to allow occasional jumps through 2009 ] . Quenched disorder characterizes the steady - state 
high - energy regions of the cost surface . interactions between atomic moments . Thermal fluctuations 
QA arose when Ray and Chakrabarti [ P. Ray , B. K. drive moment changes within the system . Ising spin glass 

40 models use a 2 - D or 3 - D lattice of discrete variables to Chakrabarti , and Arunava Chakrabarti . Sherrington - kirkpat 
rick model in a transverse field : Absence of replica symme represent the coupled dipole moments of atomic spins . The 

discrete variables take one of two values : +1 ( up ) or -1 try breaking due to quantum fluctuations . Phys . Rev. B , 
39 ( 16 ) : 11828-11832 , 1989 ) recast Kirkpatrick's thermody ( down ) . The 2 - D square - lattice Ising model is the simplest 
namic simulated annealing using quantum fluctuations . The nontrivial statistical models that shows a phase transition 
quantum algorithm uses a transverse magnetic field 1 in 45 [ Giovanni Gallavotti . Statistical mechanics . Springer - Verlag 
place of temperature T in classical simulated annealing . The Berlin Heidelberg , 1999 ] . 
strength of the magnetic field governs the transition prob Simulated QA for an Ising spin glass usually applies the 
ability of the system . The adiabatic theorem ensures that the Edwards - Anderson ( Samuel Frederick Edwards and Phil W 
system remains near the ground state during slow changes of Anderson . Theory of spin glasses . Journal of Physics F : 
the field strength [ Edward Farhi , Jeffrey Goldstone , Sam 50 Metal Physics , 5 ( 5 ) : 965 , 1975 ] model Hamiltonian H with a 
Gutmann , J Laplan , Andrew Lundgren , Daniel Preda , Joshua transverse magnetic field st : 
Lapan , Andrew Lundgren , Daniel Preda , J Laplan , Andrew 
Lundgren , and Daniel Preda . A Quantum Adiabatic Evolu ( 0 ) tion Algorithm Applied to Random Instances of an NP- H = U + K = - Jjs ; 8 ; – 1 + ?s 
Complete Problem . Science , 292 ( 5516 ) : 472 , 2001 ] , [ Cath 
erine C McGeoch . Adiabatic quantum computation and 
quantum annealing : Theory and practice . Synthesis Lectures where Si and S ; are the Pauli matrices for the ith and jth spin on Quantum Computing , 5 ( 2 ) : 1-93 , 2014 ] . The adiabatic and the notation < ij > denotes the distinct spin pairs . The temperature decrease of the Hamiltonian H ( t ) in transverse field it and classical Hamiltonian J ,, have in 

general a nonzero commutator : 
( 0 ) [ J - J , -0 ( 0 ) H ( t ) = ( 1 – 5 ) Ho + Hp + 

with commutator operator [ A , B ] = AB - BA . The path - inte 
gral Monte Caro method is a standard QA method [ Roman 

leads to the minimum energy of the underlying potential Marto in ák , Giuseppe Santoro , and Erio Tosatti . Quantum 
energy surface as time t approaches a fixed large value T. annealing by the path - integral Monte Carlo method : The 
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two - dimensional random Ising model . Physical Review B , to induce strong coupling between the slices . So the Trotter 
66 ( 9 ) : 1-8 , 2002 ] that uses the Trotter approximation for slices tend to behave more independently than if they 
non - commuting quantum operators : evolved under the increased coupling from longer simula 

e - B ( K + U ) e - BK - BU ( 0 ) tions . 

where [ K , U ] +0 and High Trotter numbers ( N = 40 ) show substantial improve 
ments for very long simulations . Marto n ak [ Roman Marto 
i ák , Giuseppe Santoro , and Erio Tosatti . Quantum anneal 

??? ing by the path - integral Monte Carlo method : The two 
dimensional random Ising model . Physical Review B , 66 ( 9 ) : 
1-8 , 2002 ] compared high - Trotter - number simulations to The Trotter approximation gives an estimate of the partition classical annealing and computed that path - integral QA gave function Z : a relative speed - up of four orders of magnitude over clas 
sical annealing : " one can calculate using path - integral QA in 

Z = Tre - BH ) ( 0 ) one day what would be obtained by plain classical annealing 
in about 30 years . " 

B ( U ) ( 0 ) The Noisy Quantum Simulated Annealing Algorithm 
? This section develops a noise - boosted version of path 

20 integral simulated QA . Algorithm 3 lists the pseudo - code for ( 0 ) the Noisy QA Algorithm . 

10 

15 

= 

P = Tr ( expl – BUK +03 = 
L 

st 

) / { { stle = k + UXP \ 32 ) x ( 5 ? ] e = A x + UXP \ S ” ) x Lx ( s ” le = f4K + UYP 15 " ) + x - 8 K + ] { > Algorithm 3 The Noisy Quantum Annealing Algorithm 
SP 

25 

??? ? LS *** e 

30 

35 

C = and 

( 0 ) 40 
Hd + 1 ????? , « ? " ) k + 

k = 1 

45 

NoisySimulatedQuantumAnnealing ( X , 10 , P , T ) 
( 0 ) ?? Initial ( X ) 

for te - 0 , N 
TE Transverse Field ( t ) 
JA TrotterScale ( P , T , T ) 

= Zp ( 0 ) for all Trotter slices 
for all | spins s 

Xx + 1 [ 1 , s ] Sample ( x ,, J + , s , 1 ) 
where N is the number of lattice sites in the d - dimensional TrotterScale ( P , T , T ) 

PT Ising lattice , P is the number of imaginary - time slices called return logtanh 
2 the Trotter number , Sample ( X , J + , s , 1 ) 

E = LocalEnergy ( 5+ , X ,, s , 1 ) 
if E > O 

1 21 ( 0 ) return -X , [ l , s ] 
sinh else if Uniform [ 0 , 1 ] exp ( E / T ) PT 

return -x , [ l , s ] 
else 

if Uniform [ 0 , 1 ] < NoisePower 
+ + E LocalEnergy ( J + , X , S , 1 + 1 ) 

Er LocalEnergy ( J + , xq , s , 1 – - 1 ) 
if E > E 

X4 + 1 [ 1 + 1 , s ] -x [ 1 + 1 , s ] 
if E > E FIG . 9 illustrates quantum annealing ( QA ) that uses Xx + 1 [ 1 – 1 , s ] = -x , [ 1 – 1 , s ] tunneling to go through energy peaks ( lower line ) instead of return x ; [ l , s ] 

over energy peaks ( upper line ) . Compare this to classical 
simulated annealing ( SA ) that must generate a sequence of FIG . 10 illustrates how the noisy quantum annealing states to scale the peak ( upper line ) .This example shows that algorithm propagates noise along the Trotter ring . The a local minimum has trapped the state estimate ( left ) SA will 50 algorithm inspects the local energy landscape after each time require a sequence of unlikely jumps to scale the potential 
energy hill . This might be an unrealistic expectation at low step . It injects noise in the ring by conditionally flipping the 

spin of neighbors . The spin flips diffuse the noise across the SA temperatures . This would trap the estimate in the sub network because quantum correlations between the neigh optimal valley forever . QA uses quantum tunneling to 
escape the local minimum . This illustrates why QA often bors encourage convergence to the optimal solution . Noise 
produces far superior estimates over SA while optimizing 55 improves quantum MCMC 

The third simulation shows a noise benefit in simulated complex potential energy surfaces that contain many high quantum annealing . The simulation shows that noise energy states . 
The product PT determines the spin replica couplings improves the ground - state energy estimate if the noise obeys 

a condition similar to that of the N - MCMC theorem . between neighboring Trotter slices and between the spins 
within slices . Shorter simulations did not show a strong Path - integral Monte Carlo quantum annealing was used to 
dependence on the number of Trotter slices P [ Roman Marto calculate the ground state of a randomly coupled 1024 - bit 

( 32x32 ) Ising quantum spin system . The simulation used 20 
ák , Giuseppe Santoro , and Erio Tosatti . Quantum anneal- Trotter slices to approximate the quantum coupling at tem 

ing by the path - integral Monte Carlo method : The two- perature T = 0.01 . It used 2 - D periodic horizontal and vertical 
dimensional random Ising model . Physical Review B , 66 ( 9 ) : 65 boundary conditions ( toroidal boundary conditions ) with 
1-8 , 2002 ] . This is likely because shorter simulations spend coupling strengths Jij drawn at random from Uniform ( -2 , 
relatively less time under the lower transverse magnetic field 2 ] . 

60 
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Each trial used random initial spin states ( s ; € -1,1 ) . 100 Markov Chain Monte Carlo ( MCMC ) simulations . An XO 
pre - annealing steps were used to cool the simulation from an initial possible solution step 1101 may identify at least one 
initial temperature of To = 3 to T , 30.01 . The quantum anneal- possible solution to the problem . This can be a fixed starting 
ing linearly reduced the transverse magnetic field from point or a randomly selected state . A current solution step 
Bo = 1.5 to Bfinal = 10-8 over 100 steps . A Metropolis - Hastings 5 1103 may designate the starting point for the current solu 
pass was performed for each lattice across each Trotter slice tion . During a noiseless possible solution step 1105 , 
after each update . T , = 0.01 was maintained for the entirety of noiseless possible solution may be selected based on the 
the quantum annealing . The simulation used the standard current solution . This may involve selecting a random state 
slice coupling between Trotter lattices in the vicinity of the current state according to a probability 

distribution , choosing a specific state according to a selec 
tion rule , or choosing several possible states and selecting 

Bi ( 0 ) In tanh one . During a noisy test solution step 1107 , the noiseless 
2 possible solution may be perturbed from the current solution 

step 1103. The noise perturbation may have a specific 
where B , is the current transverse field strength , P is the functional form , such as additive or multiplicative . The 
number of Trotter slices , and T = 0.01 . noise may come from a probability density fixed during the 

The simulation injected noise into the model using a method , from a family of related probably densities that may 
power parameter p such that 0 < p < 1 . The algorithm extended depend on the current solution , or from a set of unrelated 
the Metropolis - Hastings test to each lattice site . It condi- 20 probability densities . Noise perturbations that satisfy the 
tionally flipped the corresponding site on the coupled Trotter conditions in 
slices . and specifically satisfy the inequality in equation ( 8 ) may 
The results were benchmarked against the true ground be good choices because this may guarantee a computational 

state Ev = -1591.92 [ University of Cologne . Spin glass speed - up on average . During a compute effectiveness of 
server ] . FIG . 3 shows that noise that obeys the N - MCMC 25 noisy test solution step 1109 , a functional form of the model 
benefit condition improved the ground - state solution by may be evaluated , sending the noisy test solution to an 
25.6 % . This injected noise reduced simulation time by many external process and then receiving the effectiveness in 
orders of magnitude because the estimated ground state response , using interpolation to estimate the effectiveness , or 
largely converged by the end of the simulation . The decrease using general estimation methods to calculate the effective 
in convergence time could not be quantified because the 30 ness . The process may store the effectiveness for recall in 
noiseless QA algorithm did not converge near the noisy QA repeated iterations . During a compute effectiveness of cur 
estimate during any trial . rent solution step 1111 , this may be similar to step 1105 , but 
FIG . 3 also shows that the noise benefit was not a simple may use the current solution in place of the noisy test 

diffusive benefit . Each trial computed the result of using solution . During a noisy test solution step 1107 , the effec 
blind noise . Noise that was the same as the above noise 35 tiveness of the noisy test solution may be compared with the 
except that the noise did not satisfy the N - MCMC condition . effectiveness of the current solution . This process may 
FIG . 3 shows that such blind noise reduced the accuracy of involve a heuristic or method to determine whether to 
the ground - state estimate by 41.6 % . replace the current solution with the noisy test solution or 

retain the current solution . Some heuristics include the 
CONCLUSION 40 Metropolis - Hastings selection rule , physical interpretations 

such as simulated annealing that relate the effectiveness to a 
It has been shown that noise can speed MCMC conver- cost function , or Gibbs sampling which always replaces the 

gence in reversible Markov chains that are aperiodic and current solution with the noisy test solution . During a 
irreducible . This noise - boosting of the Metropolis - Hastings comparison ET vs EC decision step 1113 , the noisy test 
algorithm does not require symmetric jump densities . The 45 solution may be made the current solution : This may be 
proofs that the noise boost holds for Gaussian and Cauchy conditional based on the result of the comparison 1113 . 
jump densities suggest that the more general family of During a terminated decision step 1115 , a decision may be 
symmetric stable thick - tailed bell - curve densities [ V M made about whether to terminate the process after some 
Zolotarev . One - dimensional stable distributions , volume 65 . number of repeats . A user may prescribe a maximum number 
American Mathematical Soc . , 1986 ] , [ Chrysostomos L 50 of repeats at which the process may terminate . They may 
Nikias and Min Shao . Signal processing with alpha - stable also prescribe a maximum computation time before termi 
distributions and applications . Wiley - Interscience , 1995 ] , nating . Termination may also depend on the convergence 
[ K. A. Penson and K. Górska . Exact and explicit probability properties of the current solution or be based on either the 
densities for one - sided Lévy stable distributions . Phys . Rev. current solution or the effectiveness of the current with 
Lett . , 105 ( 21 ) : 210604 , November 2010 ] , [ J. P. Nolan . Stable 55 respect to some additional heuristic . During a produce 
Distributions Models for Heavy Tailed Data . Birkhauser , solution step 1119 , the solution itself may be outputted . Only 
Boston , 2011 ] , [ K. Górska and K. A. Penson . Lévy stable the effectiveness of the current solution may be outputted as 
distributions via associated integral transform . Journal of an answer to the search or optimization problem . 
Mathematical Physics , 53 ( 5 ) : 053302 , 2012 ] should also FIG . 12 illustrates an example of a quantum or classical 
produce noise - boosted MCMC with varying levels of jump 60 computer system 1201 for iteratively estimating a sample impulsiveness . statistic from a probability density of a model or from a state 

The noise - injected MCMC result extends to the more of a system . The estimating quantum or classical computer 
complex time - varying case of simulated annealing . Modi- system may include an input module 1203 , a noise module 
fying the noise - boosted annealing result allows in turn a 1205 , an estimation module 1207 , and a signaling module 
noise - boosted quantum - annealing algorithm . 65 1209. The quantum or classical computer system 1201 may 
FIG . 11 illustrates a method of speeding up convergence include additional modules and / or not all these modules . 

to a solution for an optimization or search problem using Collectively , the various modules may be configured to 
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implement any or all of the algorithms that have been all of the algorithms that have been discussed herein . Now 
discussed herein . Now set forth are examples of these set forth are examples of these implementations . 
implementations . The input module 1303 may have a configuration that 
The input module 1203 may have a configuration that receives numerical data about the model or state of the 

receives numerical data about the model or state of the 5 system . The input module 1303 may include a network 
system . The input module 1203 may include a network interface card , a data storage system interface , any other 
interface card , a data storage system interface , any other type of device that receives or generates data , and / or any 
type of device that receives or generates data , and / or any combination of these . 
combination of these . The noise module 1305 may have a configuration that 

The noise module 1205 may have a configuration that generates random , chaotic , or other type of numerical per 
generates random , chaotic , or other type of numerical per- turbations of the received numerical data and / or that gener 
turbations of the received numerical data and / or that gener- ates pseudo - random noise . 
ates pseudo - random noise . The noise module 1305 may have a configuration that 

The noise module 1205 may have a configuration that generates random , chaotic , or other type of numerical per 
generates random , chaotic , or other type of numerical per- turbations of the input numerical data that fully or partially 
turbations of the input numerical data that fully or partially satisfy a noisy Markov chain Monte Carlo ( N - MCMC ) , 
satisfy a noisy Markov chain Monte Carlo ( N - MCMC ) , noisy simulated annealing ( N - SA ) , or noisy quantum 
noisy simulated annealing ( N - SA ) , or noisy quantum annealing ( N - QA ) condition . 
annealing ( N - QA ) condition . The noise module 1305 may have a configuration that 

The noise module 1205 may have a configuration that generates numerical perturbations that do not depend on the 
generates numerical perturbations that do not depend on the received numerical data . 
received numerical data . The estimation module 1307 may have a configuration 

The estimation module 1207 may have a configuration that iteratively estimates the optimal configuration of the 
that iteratively estimates a sample statistic from a probability 25 model or state of the system based on the numerical pertur 
density of the model or from a state of the system based on bations or the pseudo - random noise and the input numerical 
the received numerical data and then uses the numerical data during at least one of the iterative estimates of the 
perturbations in the input numerical data and / or the pseudo- optimal configuration . 
random noise and the input numerical data during at least The estimation module 1307 may have a configuration 
one of the iterative estimates of the sample statistic . 30 that estimates the optimal configuration of the model or state 

The estimation module 1207 may have a configuration of the system using Markov chain Monte Carlo , simulated 
that estimates the sample statistic from a probability density annealing , quantum annealing , simulated quantum anneal 
of the model or state of the system using Markov chain ing , quantum simulated annealing , or another statistical 
Monte Carlo , Gibbs sampling , quantum annealing , simu- optimization or sub - optimization method . 
lated quantum annealing , or another statistical sampling , or 35 The estimation module 1307 may have a configuration 
sub - sampling method . that estimates the optimal configuration of the model or state 

The estimation module 1207 may have a configuration of the system by adding , multiplying , or otherwise combin 
that estimates the sample statistic from a probability density ing the received numerical data with the numerical pertur 
of the model or state of the system by adding , multiplying , bations . 
or otherwise combining the received numerical data with the 40 The estimation module 1307 may have a configuration 
numerical perturbations . that estimates the optimal configuration of the model or state 

The estimation module 1207 may have a configuration of the system using the numerical perturbations that do not 
that estimates the sample statistic from a probability density depend on the received numerical data . 
of the model or from the state of the system using the The estimation module 1307 may have a configuration 
numerical perturbations that do not depend on the received 45 that causes the magnitude of the generated numerical per 
numerical data . turbations to eventually decay during successive estimates 

The estimation module 1207 may have a configuration of the optimal configuration . 
that causes the magnitude of the generated numerical per- The signaling module 1309 may have a configuration that 
turbations to eventually decay during successive estimates signals when successive estimates of the optimal configu 
of the sample statistic . 50 ration or information derived from successive estimates of 

The signaling module 1209 may have a configuration that the optimal configuration differ by less than a predetermined 
signals when successive estimates of the sample statistic or signaling threshold or when the number of estimation itera 
information derived from successive estimates of the sample tions reaches a predetermined number or when the length of 
statistics differ by less than a predetermined signaling time since commencing the iterative estimation meets or 
threshold or when the number of estimation iterations 55 exceeds a threshold . 
reaches a predetermined number or when the length of time FIG . 14 illustrates an example of a quantum or classical 
since commencing the iterative estimation meets or exceeds computer system 1401 for iteratively generating statistical 
a threshold . samples from a probability density of a model or from a state 
FIG . 13 illustrates an example of a quantum or classical of a system . 

computer system 1301 for iteratively estimating the optimal 60 The sampling quantum or classical computer system may 
configuration of a model or state of a system . include an input module 1403 , a noise module 1405 , a 

The estimating quantum or classical computer system sampler module 1407 , and a signaling module 1409. The 
may include an input module 1303 , a noise module 1305 , an quantum or classical computer system 1401 may include 
estimation module 1307 , and a signaling module 1309. The additional modules and / or not all the modules . Collectively , 
quantum or classical computer system B01 may include 65 the various modules may be configured to implement any or 
additional modules and / or not all the modules . Collectively , all of the algorithms that have been discussed herein . Now 
the various modules may be configured to implement any or set forth are examples of these implementations . 



10 

Ex [ 1396 % EN ) S Ex.x ( LO68 , MAD ) 

15 

J. in Pl * ; ) In 

SS 20 In 
N , X 

a 

US 11,276,009 B2 
27 28 

The input module 1403 may have a configuration that 
receives numerical data about the model or state of the f ( x , n | x = x1 ) = 77 ( * | X = x ) $ N \ x { ( n | X1 ) ( 0 ) 
system . The input module 1403 may include a network 
interface card , a data storage system interface , any other = 7 ( x ) fNx , ( n | xz ) ( 0 ) 

type of device that receives or generates data , and / or any 5 
combination of these . since the equilibrium pdf does not depend on the state xc . 

The noise module 1405 may have a configuration that Suppose that 
generates random , chaotic , or other type of numerical per 
turbations of the received numerical data and / or that gener 
ates pseudo - random noise . ( X + ) Q ( x + N | x ) ( 0 ) 

The noise module 1405 may have a configuration that In ( x4 ) Q ( x | x ) 
generates random , chaotic , or other type of numerical per 
turbations of the input numerical data that fully or partially 
satisfy a noisy Markov chain Monte Carlo ( N - MCMC ) , Expand this inequality with the factored joint pdf ( ( 0 ) ) ' : 
noisy simulated annealing ( N - SA ) , or noisy quantum 
annealing ( N - QA ) condition . ( X + + N ) ( 0 ) 

The noise module 1405 may have a configuration that -fNx , ( n | x , dn ý 7 ( xt ) generates numerical perturbations that do not depend on the 
received numerical data . Q ( x + + n | x ) + ( x ) fN \ x ( n | X , ) dxdn . Q ( x + | x ) The sampler module 1407 may have a configuration that 
iteratively generates statistical samples from the model or 
state of the system based on the numerical perturbations or Then split the log ratios : 
the pseudo - random noise and the input numerical data 
during at least one of the iterative estimates of the optimal 25 Sy In ( x , + n ) f Nix , ( n1 \ x , ) dn - Sv In a ( f Nixx ( n \ x . ) dn 
configuration . 

sflv.x In Q ( x + n \ x ) o ( x ) f Mix , ( n \ x , ) dxdn The sampler module 1407 may have a configuration that 
generates statistical samples from the model or state of the -Inx In Q ( x_ [ x ) ( x ) f Nix , ( n | xy ) dxdn . ( 0 ) system using Markov chain Monte Carlo , Gibbs sampling , 
quantum annealing , simulated quantum annealing , or 30 Reorder the terms and factor the pdfs : 
another statistical sampling , or sub - sampling method . Jy In ( x , + n ) Nix , ( nlx , dn 

The sampler module 1407 may have a configuration that 
generates statistical samples from the model or state of the -SIN , x In Q ( x , + n \ x ) ( x ) fNlxp ) ( n | x . ) dxdn 
system by adding , multiplying , or otherwise combining the 
received numerical data with the numerical perturbations . 35 sln In ( x ) f ( nlx.dn ( \ ) 

The sampler module 1407 may have a configuration that 
generates statistical samples from the model or state of the -In , x In Q ( x_ { x } u ( x ) f Nix , ( n | x , ) dxdn . ( 0 ) 
system using the numerical perturbations that do not depend 
on the received numerical data . This gives 

The sampler module 1407 may have a configuration that Nnx In T ( x , + n ) ( x ) f Mix , ( n \ x , ) dxdn causes the magnitude of the generated numerical perturba 
tions to eventually decay during successive generated -Sn.x In Q ( x + n \ x ) + ( x ) f Mix , ( n | x , ) dxdn samples . 

The signaling module 1409 may have a configuration that 45 < In x In T ( x , ) f ( x ) f Nix , { n } \ x , ) dxdn 
signals when information derived from successive generated 
samples of the probability density differ by less than a -Sn.x In Q ( x , lx ) ( x ) f Mix , ( n | x , ) dxdn . ( 0 ) predetermined signaling threshold or when the number of Then iterations reaches a predetermined number or when the 
length of time since commencing the iterative sampler meets 50 
or exceeds a threshold . 

( X + n ) ( 0 ) 
APPENDIX : Proofs of Noise Theorems and Corollaries 577 ( x ) f } \ x ( n | X : ) dxdn Q ( x ++ n | x ) 

Proof of Theorem 1. Observe first that 
( x ) fixy , ( | x ; } n -7 ( x ) dx . Q ( x ) 

J Nix 

40 

I 

Nlxt ' 

SL o 269 felix , ) In 

( n | xydin Sanok , 1.25 " In 
55 

1 4 4 4 44 2 4 4 4 4 43 
( 0 ) 

di = Son Dakilan ( x ) 
In -f Q ( x + | x ) A ( x ) dx = Ex [ 1n 28,1x = 

( ) 
Q ( | ) 

= 1 

( 0 ) d ; ( N ) = = Sin 77 ( x ) ( x ) In -7 ( x ) dx = Ex In Q ( x + + N | x ) Q ( x : + N | x ) 
= W13 60 Apply the MCMC detailed balance condition ( x ) Q ( y x ) = r ( y ) Q ( xly ) : 

( 0 ) a 
Take expectations over N : Ex [ d ] = d , and En [ d , ( N ) ] = Ex [ d , 
( N ) ] . Then d , ( N ) sd , guarantees that a noise benefit occurs on 
average : En [ d , ( N ) ] sd , 

Rewrite the joint probability density function f ( x , nlx = x , ) 
as the product of the marginal and conditional : 

SS . T ( X : + n ) 
In 
77 ( x + + n ) Q ( x | Xx + n ) - ( x ) fN \ x ; ( n | X + ) dxdn s 

N.X 
T ( x ) 
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-continued -continued 
1 1 ( x - xx - n ) 2 

202 
( 0 ) Si T ( x4 ) -7 ( x ) dx . T ( xt ) Q ( x | xt ) 

T ( x ) 
e Sell 

X ?2? OV 27 
5 

Simplifying gives 
( x - xz - n ) 2 ( 0 ) A- ( - 2 ) 2 

e > e 202 

77 ( x ) ( 0 ) 10 I S on 77 ( x ) In 577 ( x ) fN \ x : ( n | x ; dxdn s Q ( x | x4 + n ) 
iff In 

UN.X x 0 ( x14,7 # ( x ) dx . 
( 0 ) ( x – Xt – n ) 2 > A 202 

( x – X ; ) 2 
202 

Then 
iff 15 

( x ) ( 0 ) SubS . , an ac ( 0 ) ? ( x ) In 
Q ( x | x4 + n ) A ( x ) dx | fw.1x , ( n | x ) dn fun tex 1 x ) - ( x – X? – n ) 2 > 202A - ( x – x ; ) 2 In 

? Q ( x | x , ) * ( x ) dx 
iff 

20 
( 0 ) ( 0 ) – x2 + 2xXx + 2xn - x - 2x?n - n2 > 20²A - x² + 2xx ; – x Spa D ( 1 ( x ) PQ ( x | x : + n ) ) [ N \ xy ( n | Xx ) dn = D ( ( x ) PQ ( x | x ; ) ) . ] fxx D 

iff 

So 2xn – 2x?n - n ? > 20²A > ( 0 ) 
25 

( 0 ) ( 0 ) nin – 2 ( x4 – x ) ) < -202A . NIX Und ( ) Nx ( nx , ) dnsd , 
This just restates the noise benefit : 

Proof of Corollary 3. Assume 
30 En [ d , ( N ) ] sd ) ( 0 ) 

Proof of Corollary 1. The following inequalities need hold 
only for almost all x and n : ( x = x ; ) ? Q ( x | xt ) = = 202 

( 0 ) ?2? Q ( xlx , + n ) ze Q ( xlx . ) 
if and only if ( iff ) 35 

Then 

In [ Q ( x | x4 + n ) ] 2 A + In [ Q ( x | x ; ) ] ( 0 ) 

iff Q ( x | nx ) e ̂  Q ( x | x ) 40 

In [ Q ( x | Xx + n ) ] – In [ Q ( x | x ; ) ] 2 A ( 0 ) 
( 0 ) 

e 20-2 Det 202 
OV 27 oV21 

( 0 ) Q ( x | x4 + n ) In > A. 
Q ( x | xt ) 

45 

_ ( x = nxp . ) 2 ( 0 ) 4-4-4 ) 2 e 202 > e 202 
Thus 

iff 
50 ( 0 ) ( x – nx . ) 2 > A 202 ( 0 ) Q ( x | Xx + N ) En , x In Q ( x | xr ) [ 

( x – x ; ) 2 
202 EX [ 2 Exlin + [ x ; + N 

7 [ x4 ] 
iff 

- ( x – nx ; ) 2 > 202A - ( x – X ; ) ? > ( 0 ) Proof of Corollary 2. Assume 55 

iff 

( x - xp ) 2 – x2 + 2xnx ; = n²x } > 202A – x2 + 2xx ; – x + ( 0 ) 1 
Q ( x | x1 ) = OV27 

? 202 
T iff 

60 

2xnx , = n ̂ x } – 2xXx + x? > 202A ( 0 ) = 

Then 
iff 

nx ) ( 2x – nx , ) – x ( 2x – x ) < - 20A . ( 0 ) Q ( x | Xx + n ) > e Q ( x | x ; ) 
iff 
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Proof of Corollary 4 . 
( 0 ) 

-continued 
1 
- A ( x + 1 : 1 ) 

min 1 , Z 1 
· I ( Xt ; T ) z 

1 ( 0 ) 
Q ( x | x ) = 

?? X ra 1 + ( ̂ - ̂  mi ] 5 
d 

( 0 ) 
= - min { 1 , ( x + 1 ; T ) ( x ;; T ) 

Therefore 
10 where the normalizing constant Z is 

Q ( x | x4 + n ) 2 e ̂  Q ( x | x + ) ( 0 ) 

iff ( x ) ( 0 ) Z 2 = f exol - C19 ) dt . x 
1 1 ( 0 ) 15 

X – - td [ 1 + ( * - * X – Xt * * xd [ 1 + ( - ) 1 d d a Let N be a noise random variable that perturbs the candidate 
* . We want to show that state Xt - 1 iff 

Xp - n X – Xt ( 0 ) 20 + < 
( 0 ) 1 + ( * - = " ) * se1 [ 1 + ( ** ) ) 

se * + e + 44 *** 
En [ QN ( T ) ] = EN - Ex [ min { 1 , T ( x + 1 + N ; T ) , 7 ( Xt ; T ) 

étte ( 0 ) -A 

( 0 ) min { 1 , , 77 ( x + 1 ; T ) 7 ( Xt ; T ) iff 
25 

= 2 ( 0 ) = a ( T ) . X ( 0 ) ( * = * = * ) * -e **** sen - 1 " - - – Xt 
d Se A 

iff It suffices to show that 

( x – X ; – n ) 2 – ( -4 ( x – x ; ) ? s ? ( e - A – 1 ) ( 0 ) 30 

( x – X ; ) 2 + + 2n ( x – X : ) - 2-4 ( x – x ; ) ? 5 ( 0 ) ( 0 ) 1 + - e [ T ( X + 1 + N ; T ) EN ( xt ; T ) 
77 ( x + 1 ; T ) 
77 ( xz ; T ) 

( 1 – e - A ) ( x – xx ) 2 + 12 + 2n ( x – X ; ) < ( 0 ) 
iff 

iff 35 
En [ 7 ( x + 1 + N ; T ) ] 2 7 ( x + 1 ; T ) ( 0 ) 

? na s dle - – 1 ) + ( e - A – 1 ) ( x – X ; ) 2 – 2n ( x – X ; ) ( 0 ) 

s ( e - A – 1 ) ( d ? + ( x – xz ) 2 ) - 2n ( x – x ; ) ( 0 ) since y ( x , ) 20 because it is a pdf . Suppose 
40 

( 0 ) ( Xx + N ) En In ( xt ) [ 0 . Proof of N - SA Theorem and Corollaries 
Proof of Theorem 2. The proof uses Jensen's inequality 

for concave function g [ William Feller . An Introduction to 
Probability Theory and Its Applications , Volume 2. John- 45 Then 
Wiley & Sons , 2nd edition , 2008 ] . 

g ( E [ X ] ) E [ g ( x ) ] ( 0 ) EN [ In7 ( X + + N ) – In7 ( x ) ] > 0 ( 0 ) 
for integrable random variable X. The concavity of the 
natural logarithm gives 50 

En [ Inf ( x + + N ) ] 2 En [ 117 ( xt ) ] ( 0 ) 
In E [ X ] 2E [ ln X ] . ( 0 ) iff ( Jensen's inequality ) 

Then 
55 InEn [ 7 ( X + + N ) ] 2 En [ 1n7 ( xt ) ] ( 0 ) 

AE ( 0 ) a ( T ) = min { 1 , exp ( -45 ) = ( 0 ) InEx [ + ( x + N ) ] 2 Int ( x , Dfw ( n | x ; } dn 
) ( 0 ) 1 

T 
60 min { l , exp ( -ER E . iff 

( 0 ) E * + 1 F 
+ 
7 

( 0 ) InEn [ 7 ( X + + N ) ] = ln7 ( xt ) | fn ( n | xz ) dn of foreni Sa = min 1 , 
exp { - 
expl ) 
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since m is convex and so Jensen's inequality applies . 
Proof of Corollary 6. Suppose 

( 0 ) 
En [ g ( x + ) ] g ( x4 ) . 

InEn [ 7 ( X + + N ) ] 2 In7 ( xt ) 
( 0 ) 

5 
Then 

En [ 7 ( X + + N ) ] 2 7 ( x ) ( 0 ) 
( 0 ) Ex [ ln € 8 ( x ++ M ) ] = ln € 8 ( xt ) 

and the following inequalities are equivalent : Proof of Corollary 5. We want to show that 10 

( 0 ) 
1 + 1 1 EN [ Br ( 7 ) = Ex [ min { 1 , m ( 7 ( xjt? + N ; 7 ) ; " } ] 

2 min { 1 , ma ) 
15 

Ex [ m ( > ml 

En [ In ( @ 8 ( x4 + N ) ) ] > In ( e8 ( x ) ) 
( 0 ) 

7 ( Xt ; T ) 
Unless otherwise indicated , the various modules that have 

( 77 ( x + 1 ; T ) ( 0 ) 1 been discussed herein are implemented with a specially 
T ( x ; } ) configured computer system specifically configured to per 

form the functions that have been described herein for the . = B ( T ) ( 0 ) component . The computer system includes one or more 
20 processors , tangible memories ( e.g. , random access memo 

It suffices to show that ries ( RAMs ) , read - only memories ( ROMs ) , and / or program 
mable read only memories ( PROMS ) ) , tangible storage 
devices ( e.g. , hard disk drives , CD / DVD drives , and / or flash 
memories ) , system buses , video processing components , TO ( X 1 + N ; T ) ( 77 ( x + 1 ; T ) ( 0 ) 25 network communication components , input / output ports , 77 ( x ;; T ) 7 ( Xt ; T ) and / or user interface devices ( e.g. , keyboards , pointing 
devices , displays , microphones , sound reproduction sys 

Suppose tems , and / or touch screens ) . 
The computer system may include one or more computers 

30 at the same or different locations . When at different loca 
77 ( X + + N ; T ) ( 0 ) tions , the computers may be configured to communicate 

En In Ex [ in " > 0 . 77 ( Xt ; T ) with one another through a wired and / or wireless network 
communication system . 

The computer system may include software ( e.g. , one or 
Then we proceed as in the proof of the N - SA Theorem : 35 more operating systems , device drivers , application pro 

grams , and / or communication programs ) . When software is 
Ex [ T ( x + N ) ] 2+ ( x4 ) . ( 0 ) included , including the software that has been described 

herein , the software includes programming instructions and 
Then the inequality may include associated data and libraries . When included , 

40 the programming instructions are configured to implement 
one or more algorithms that implement one or more of the 

EN [ 77 ( X + + N ) ] ( xt ) ( 0 ) functions of the computer system , as recited herein . The 
77 ( x ; T ) ( x ; T ) description of each function that is performed by each 

computer system also constitutes a description of the algo 
45 rithm ( s ) that performs that function . 

holds because it ( x , ) 20 since t is a pdf . We can rewrite this The software may be stored on or in one or more 
inequality as non - transitory , tangible storage devices , such as one or more 

hard disk drives , CDs , DVDs , and / or flash memories . The 
software may be in source code and / or object code format . 

( X + + N ) ??x , ) EN ( 0 ) 50 Associated data may be stored in any type of volatile and / or 
( Xt ; T ) 77 ( Xz ; T ) non - volatile memory . The software may be loaded into a 

non - transitory memory and executed by one or more pro 

> 

cessors . 
So 

( 0 ) ( X + + N ) m ( EN ( Xt ; T ) 
TT ( X + ) > ml 

77 ( Xt ; T ) 

since m is increasing and 

The components , steps , features , objects , benefits , and 
55 advantages that have been discussed are merely illustrative . 

None of them , nor the discussions relating to them , are 
intended to limit the scope of protection in any way . Numer 
ous other embodiments are also contemplated . These 
include embodiments that have fewer , additional , and / or 

60 different components , steps , features , objects , benefits , and / 
or advantages . These also include embodiments in which the 
components and / or steps are arranged and / or ordered dif 
ferently . 

Unless otherwise stated , all measurements , values , rat 
65 ings , positions , magnitudes , sizes , and other specifications 

that are set forth in this specification , including in the claims 
that follow , are approximate , not exact . They are intended to 

( 0 ) Ex [ mal het D ) ] z m ( 77x : 1 ) ( X + + N ) 
( xz ; T ) > ( x ) 

( X ;; T 
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have a reasonable range that is consistent with the functions a noise module that has a configuration that generates 
to which they relate and with what is customary in the art to random , chaotic , or other type of numerical perturba 
which they pertain . tions of the received numerical data or that generates 

All articles , patents , patent applications , and other publi- pseudo - random noise ; 
cations that have been cited in this disclosure are incorpo- an estimation module that has a configuration that itera 
rated herein by reference . tively estimates the sample statistic from the probabil 

The phrase “ means for ” when used in a claim is intended ity density of the model or from the state of the system 
to and should be interpreted to embrace the corresponding based on numerical perturbations or pseudo - random 
structures and materials that have been described and their noise and the received numerical data during at least 
equivalents . Similarly , the phrase “ step for ” when used in a one of the iterative estimates of the sample statistic , the 
claim is intended to and should be interpreted to embrace the estimation module including a quantum annealer con 
corresponding acts that have been described and their figured to model quantum annealing as a spin glass ; and 
equivalents . The absence of these phrases from a claim a signaling module that has a configuration that signals 
means that the claim is not intended to and should not be when successive estimates of the sample statistic or 
interpreted to be limited to these corresponding structures , information derived from successive estimates of the 
materials , or acts , or to their equivalents . sample statistic differ by less than a predetermined 
The scope of protection is limited solely by the claims that signaling threshold or when a number of estimation 

now follow . That scope is intended and should be interpreted iterations reaches a predetermined number or when a 
to be as broad as is consistent with the ordinary meaning of length of time since commencing the iterative estimates 
the language that is used in the claims when interpreted in meets or exceeds a time threshold , 
light of this specification and the prosecution history that wherein : 
follows , except where specific meanings have been set forth , the estimation module has a configuration that estimates 
and to encompass all structural and functional equivalents . the sample statistic from the probability density of the 

Relational terms such as “ first ” and “ second ” and the like model or state of the system using Markov chain Monte 
may be used solely to distinguish one entity or action from Carlo , Gibbs sampling , quantum annealing , simulated 
another , without necessarily requiring or implying any quantum annealing , or another statistical sampling , or 
actual relationship or order between them . The terms “ com sub - sampling method ; 
prises , " " comprising , ” and any other variation thereof when the noise module has a configuration that generates ran 
used in connection with a list of elements in the specification 30 dom , chaotic , or other type of numerical perturbations 
or claims are intended to indicate that the list is not exclusive of the received numerical data that fully or partially 
and that other elements may be included . Similarly , an satisfy a noisy Markov chain Monte Carlo ( N - MCMC ) 
element proceeded by an “ a ” or an “ an ” does not , without dition ; and 
further constraints , preclude the existence of additional the estimation module has a configuration that estimates 
elements of the identical type . the sample statistic from the probability density of the 
None of the claims are intended to embrace subject matter model or state of the system by adding , multiplying , or 

that fails to satisfy the requirement of Sections 101 , 102 , or otherwise combining the received numerical data with 
103 of the Patent Act , nor should they be interpreted in such numerical perturbations . 
a way . Any unintended coverage of such subject matter is 2. The quantum or classical computer system of claim 1 
hereby disclaimed . Except as just stated in this paragraph , 40 wherein the estimation module has a configuration that 
nothing that has been stated or illustrated is intended or causes the magnitude of generated numerical perturbations 
should be interpreted to cause a dedication of any compo- to eventually decay during successive estimates of the 
nent , step , feature , object , benefit , advantage , or equivalent sample statistic . 
to the public , regardless of whether it is or is not recited in 3. The quantum or classical computer system of claim 1 
the claims . 45 wherein : 

The abstract is provided to help the reader quickly ascer- the noise module has a configuration that generates 
tain the nature of the technical disclosure . It is submitted numerical perturbations that do not depend on the 
with the understanding that it will not be used to interpret or received numerical data ; and 
limit the scope or meaning of the claims . In addition , various the estimation module has a configuration that estimates 
features in the foregoing detailed description are grouped 50 the sample statistic from the probability density of the 
together in various embodiments to streamline the disclo model or from the state of the system using the numeri 
sure . This method of disclosure should not be interpreted as cal perturbations that do not depend on the received 
requiring claimed embodiments to require more features numerical data . 
than are expressly recited in each claim . Rather , as the 4. A quantum or classical computer system for iteratively 
following claims reflect , inventive subject matter lies in less 55 estimating an optimal configuration of a model or state of a 
than all features of a single disclosed embodiment . Thus , the system comprising : 
following claims are hereby incorporated into the detailed an input module that has a configuration that receives 
description , with each claim standing on its own as sepa numerical data about the system ; 
rately claimed subject matter . a noise module that has a configuration that generates 

random , chaotic , or other type of numerical perturba 
The invention claimed is : tions of the received numerical data or that generates 
1. A quantum or classical computer system for iteratively pseudo - random noise ; 

estimating a sample statistic from a probability density of a an estimation module that has a configuration that itera 
model or from a state of a system comprising : tively estimates the optimal configuration of the model 

an input module that has a configuration that receives 65 or state of the system based on numerical perturbations 
numerical data about the system as received numerical or the pseudo - random noise and the received numerical 
data ; data during at least one of the iterative estimates of the 
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optimal configuration , the estimation module including 7. A non - transitory , tangible , computer - readable storage 
a quantum annealer configured to model quantum media containing a program of instructions that causes a 
annealing as a spin glass ; computer system having a processor running the program of 

a signaling module that has a configuration that signals instructions to implement functions of the modules 
when successive estimates of the optimal configuration described in claim 1 . 
or information derived from successive estimates of the 8. The storage media of claim 7 wherein the estimation 
optimal configuration differ by less than a predeter module has a configuration that causes the magnitude of 
mined signaling threshold or when a number of esti generated numerical perturbations to eventually decay dur 
mation iterations reaches a predetermined number or ing successive estimates of the sample statistic . 
when the length of time since commencing the iterative 10 9. The storage media of claim 7 wherein the noise module 
estimation meets or exceeds a time threshold , has a configuration that generates numerical perturbations 

wherein : that do not depend on the received numerical data ; and 
the estimation module has a configuration that estimates the estimation module has a configuration that estimates 

the optimal configuration of the model or state of the the sample statistic from the probability density of the 
system using Markov chain Monte Carlo , simulated 15 model or from the state of the system using the numeri 
annealing , quantum annealing , simulated quantum cal perturbations that do not depend on the received 

numerical data . annealing , quantum simulated annealing , or another 
statistical optimization or sub - optimization method ; 10. A non - transitory , tangible , computer - readable storage 

the noise module has a configuration that generates ran media containing a program of instructions that causes a 
dom , chaotic , or other type of numerical perturbations 20 computer system having a processor running the program of 
of the received numerical data that fully or partially instructions to implement functions of the modules 

described in claim 4 . satisfy a noisy Markov chain Monte Carlo ( N - MCMC ) , 
noisy simulated annealing ( N - SA ) , or noisy quantum 11. The storage media of claim 10 wherein the instruc 
annealing ( N - QA ) condition ; and tions cause the computer system to implement functions of 

the estimation module has a configuration that estimates 25 the modules in which the estimation module has a configu 
the optimal configuration of the system by adding , ration that causes the magnitude of generated numerical 
multiplying , or otherwise combining the received perturbations to eventually decay during successive esti 
numerical data with numerical perturbations . mates of the optimal configuration . 

5. The quantum or classical computer system of claim 4 12. The storage media of claim 7 wherein the instructions 
wherein the estimation module has a configuration that 30 cause the computer system to implement functions of the modules in which : causes the magnitude of generated numerical perturbations the noise module has a configuration that generates to eventually decay during successive estimates of the 
optimal configuration . numerical perturbations that do not depend on the 

6. The quantum or classical computer system of claim 4 received numerical data ; and 
wherein : the estimation module has a configuration that estimates 

the noise module has a configuration that generates the optimal configuration of the model or state of the 
numerical perturbations that do not depend on the system using the numerical perturbations that do not 
received numerical data ; and depend on the received numerical data . 

the estimation module has a configuration that estimates 13. The quantum or classical computer system of claim 1 , 
the optimal configuration of the model or state of the 40 wherein the quantum annealer includes superconducting flux qubits with programmable couplings . system using the numerical perturbations that do not 
depend on the received numerical data . 
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