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Optimal Mean-Square Noise Benefits in
Quantizer-Array Linear Estimation

Ashok Patel and Bart Kosko

Abstract—A new theorem shows that additive quantizer noise
decreases the mean-squared error of threshold-array optimal and
suboptimal linear estimators. The initial rate of this noise ben-
efit improves as the number of threshold sensors or quantizers
increases. The array sums the outputs of identical binary quan-
tizers that receive the same random input signal. The theorem fur-
ther shows that zero-symmetric uniform quantizer noise gives the
fastest initial decrease in mean-squared error among all finite-vari-
ance zero-symmetric scale-family noise. These results apply to all
bounded continuous signal densities and all zero-symmetric scale-
family quantizer noise with finite variance.

Index Terms—Noise benefit, quantizer array, scale-family noise,
suprathreshold stochastic resonance.

I. QUANTIZER NOISE BENEFITS IN PARALLEL

THRESHOLD ARRAYS

T HE noise-benefit theorem below shows that small
amounts of additive quantizer noise can reduce the initial

rate of the mean-squared quantization error of an array of par-
allel connected threshold sensors or quantizers. Fig. 1 displays
this array noise benefit for several types of quantizer noise.
This result extends to the mean-square case recent results for
Neyman–Pearson and maximum-likelihood quantization noise
benefits in array correlation detectors [1]. These results are
array or collective noise benefits and thus examples of what
Stocks has called “suprathreshold SR” effects [2], [3].

Noise can benefit many signal processing systems if the user
judiciously adds noise or exploits the noise already present in
the system [2], [4]–[8]. This noise benefit or stochastic reso-
nance (SR) effect requires some form of nonlinear signal pro-
cessing [9], [10]. Then a small amount of noise improves the
system performance while too much noise degrades it. Such
noise benefits in threshold arrays can increase the mutual in-
formation between the array input and output [11], decrease the
mean-squared error [12], [13] or increase the Fisher information
in signal or parameter estimation [14], or improve the detection
performance in signal detection or hypothesis testing [15]–[18].
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Each threshold element in the quantizer array receives the
same random input signal but with independent additive sym-
metric scale-family noise . The continuous signal random
variable has bounded probability density function (pdf)
and has a finite variance . The th quantizer output is
1 or 0 depending on whether the noisy input exceeds
the quantization threshold :

if
else

(1)

The overall array output just sums the
quantizer outputs. Such quantizer arrays can apply in stochastic
analog-to-digital converters [12], [19], stochastic pooling net-
works [16], [20], or in digital data acquisition in noisy sensor
networks that use binary sensors with independent and identi-
cally distributed (i.i.d.) noise [21], [22]. The independent quan-
tizer noise variables may be present near the threshold sen-
sors or the user may deliberately add them before quantization.

The noise variables are i.i.d. and have a zero-sym-
metric (thus zero-mean) scale-family [23] pdf

with finite standard deviation . The
standard noise variable of this family has unit variance as
well as zero mean. So the symmetric scale-family cumulative
distribution function (CDF) is if
is the CDF of . The noise can be discrete or continuous.
Scale-family densities include many common pdfs such as the
Gaussian and uniform. They do not include Poisson or binomial
pdfs.

The overall array output is a discrete random variable
that takes values in . The conditional quan-
tizer outputs are independent. The probability that

equals 1 is and that it equals 0
is . So is a binomial random variable
and thus has mean

(2)

and variance

(3)

We focus on noise benefits in terms of the mean-squared error
(MSE) between the input signal and its

linear estimators . The SR effect or noise ben-
efit occurs if an increase in the quantizer noise intensity de-
creases the MSE for the same input signal . We define the SR
effect as an initial SR effect if there exists some such
that for all . We define the
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Fig. 1. Initial SR noise benefits in the mean-squared error (MSE) of the
quantizer-array linear minimum MSE (LMMSE) estimator (4) for a standard
Gaussian input signal � . Each curve shows the LMMSE where sample
statistics estimated the population statistics in (5) using �� random-sample
realizations. (a) Initial SR effects for zero-mean uniform quantizer noise. The
solid lines show that the LMMSE decreases at first as the quantizer noise
intensity � increases. The dashed line shows that the SR effect does not occur
if � � � as part (a) of the theorem predicts. The solid lines also show that
the rate of the initial SR effect ��� ��������� ���� � improves
as the number � of quantizers increases as part (b) of the theorem predicts.
� � 	
 quantizers gave 0.085 as the MSE minimum. It thus gave a 76%
decrease over the noiseless MSE of 0.36. (b) compares the initial rates of the
LMMSE SR effect in the quantizer-array LMMSE estimator for different types
of symmetric quantizer noise when � � ��. Zero-symmetric uniform noise
gave the fastest initial decrease in MSE as part (c) of the theorem predicts.
Zero-symmetric discrete bipolar noise gave the smallest SR effect.

initial rate of the SR effect as the rate of the SR effect in the
small-noise limit: .

II. MSE NOISE BENEFITS IN QUANTIZER-ARRAY

LINEAR ESTIMATION

The MSE noise-benefit theorem uses only linear estimators
of based on the output of the parallel quantizer array.

The conditional expectation is the minimum mean-
squared-error (MMSE) estimator [2] as well as the Bayesian
estimator for a squared-error loss measure. It can have a com-
plicated form because it averages against the conditional pdf

. The conditional pdf may be hard to compute
or may not even be known. The related linear minimum mean-
squared-error (LMMSE) estimator is suboptimal in
general but requires only the population covariance ,
variance , and expected values and [24]:

(4)

with coefficients and
. We use the sum of quantizer outputs instead of

their vector . This causes no loss of infor-
mation because both give the same LMMSE estimate of from
the orthogonality principle since all the quantizers receive the
same input signal and use i.i.d. quantizer noise. The LMMSE
term is [24]

(5)

The proof of the MSE noise-benefit theorem uses two
lemmas. The first lemma gives the initial rate of the LMMSE
SR effect. Its proof is in the Appendix. All the results assume

that the signal pdf is bounded: there exists a constant
such that for all .

Lemma 1: The initial rate of the SR effect in the LMMSE is

(6)

if the bounded signal pdf is continuous at .
Lemma 2 involves the linear mean-squared error (LMSE)

term of a simple but suboptimal

linear estimator :

(7)

where for quantizer-array outputs. This estimator
is useful if we know only that the input signal lies in the range

for some constant .
Lemma 2 uses Lemma 1 and shows that the initial rate of the

LMSE and LMMSE SR effects are proportional. Its proof is also
in the Appendix.

Lemma 2:

(8)

for

if
the bounded signal pdf is continuous at .

The MSE noise-benefit theorem states that it takes more than
one quantizer to produce the initial SR effect in the LMMSE
or LMSE estimators and that the rate of the initial SR effect in-
creases as the number of quantizers increases. It further states
that uniform quantizer noise gives the fastest initial decrease in
MSE among all finite-variance symmetric scale-family quan-
tizer noise. The theorem holds for both optimal and suboptimal
linear estimators. These results on the initial rate of noise bene-
fits can apply in practice when the user has only a small amount
of noise to enhance preferred signals. They resemble but differ
from the array SR results in [1], [17] that hold only for quan-
tizer-array correlation detectors based on Neyman–Pearson or
maximum-likelihood detection in infinite-variance symmetric
alpha-stable channel noise or in generalized-Gaussian channel
noise. We note that the array-SR result in [18] can hold even for

quantizer when the performance measure is error prob-
ability. We also note that the result in [25] gives the optimal
standard deviation of the quantizer noise for the suboptimal es-
timator (7) if the input and quantizer noise are both Gaussian or
both uniform. But we do not know the optimal quantizer noise
for either the LMSE or the LMMSE even if the input signal is
Gaussian or uniform.

MSE Noise Benefit Theorem: Suppose that the threshold
sensors or quantizers in (1) receive the same input signal with
bounded signal density that is positive and continuous at the
threshold . Suppose that the additive quantizer noise in (1)
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is i.i.d. zero-symmetric scale-family noise with finite variance.
Then

a) is necessary and sufficient for the initial LMMSE
and LMSE SR effects.

b) quantizers give a faster initial decrease in MSE than
quantizers give if .

c) Zero-mean uniform noise is optimal: it gives the fastest
initial decrease in MSE among all zero-symmetric scale-
family quantizer noise with finite variance.

Fig. 1 shows simulation instances of the theorem for the
LMMSE estimator (4). quantizers in Fig. 1(a) gave the
minimal LMMSE of 0.085. It thus gave a 76% decrease over the
noiseless LMMSE of 0.36. Fig. 1(b) shows that zero-symmetric
uniform noise gave the maximal rate of the initial SR effect as
part (c) the theorem predicts. Fig. 1(b) also shows that arcsine
noise had a larger MSE than did uniform quantizer noise even
though arcsine noise is asymptotically (large ) optimal if the
performance measure is mutual information [26].

Proof: We need prove only claims (a)–(c) for the initial
rate of the LMSE SR effect
because the initial rate of the LMSE and LMMSE SR
effects are proportional by Lemma 2. So we first find
the limit . Equation (44) in
the Appendix implies that

because of (7) and (37).
Total expectation gives

(9)

(10)

(11)

(12)

because of (2) and (3). Then the distributional derivative [27] of
(12) with respect to is

(13)

(14)

This allows [27] us to interchange the order of differentiation
and integration in (14):

(15)

(16)

if we substitute in (15). Then we can fix
when we take the -limit:

(17)

(18)

(19)

Equality (18) holds by the dominated convergence theorem [28]
because for bound
on and because since has finite variance.
Equality (19) holds because is continuous at and thus

.
a) The limit (19) implies that the initial rate of the SR ef-

fect if . The
integral of (19) is negative because is
non-positive since is a symmetric random variable.
So and thus the MSE de-
creases initially if . This proves part (a).

b) The limit (19) also implies that the initial rate of the LMSE
SR effect improves (increases
the initial decrease in the MSE) as the number of quan-
tizers increases. This proves part (b).

c) Fix the input signal and the number of quan-
tizers and choose the symmetric scale-family quantizer
noise . The integral in (19) is non-positive because

is non-positive and because is a pdf.
So we want to find the symmetric standard (zero-mean
and unit-variance) pdf of the zero-mean unit-vari-
ance scale-family quantizer noise that minimizes the
expectation . But this is
equivalent to maximizing

(20)
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Suppose first that the quantizer noise is a symmetric dis-
crete random variable on the sample space

where . Suppose also that
and that for all . Let

denote the pdf of this symmetric stan-
dard discrete quantizer noise where

for all and . Then the finite vari-
ance of lets us replace (20) with the appropriate convergent
series . Write

(21)

because , , and and
because is a CDF and so is nonnegative.
The derivation in the Appendix of [1] shows that

(22)

So (22) gives the upper bound on (21) for any discrete
symmetric standard quantizer noise .

Suppose next that the quantizer noise pdf is continuous.
The Cauchy-Schwarz inequality [29] and the finite variance of

give

(23)

(24)

(25)

(26)

(27)

because the transformed random variable is uni-
form in since is continuous when is continuous
[23]. Inequality (23) becomes an equality if and only if
obeys for some constant on the sup-
port of [29]. Then for all

for because is the CDF of
standard quantizer noise. The same CDF implies that is uni-
formly distributed in . So symmetric uniform quan-
tizer noise achieves the upper bound of (22) and (27).
Then zero-mean uniform noise gives the maximal rate of the
initial SR effect among all zero-symmetric scale-family quan-
tizer noise with finite variance.

APPENDIX

PROOF OF LEMMAS

Proof of Lemma 1: Equation (5) implies that

(28)

where is the distributional derivative [27] with respect
to the quantizer-noise standard deviation .

The first term in the numerator of (28) is zero because

(29)

(30)

Equation (30) follows because both terms on the right side of
(29) are zero:

(31)

(32)

(33)

because the distributional derivative with respect to allows
[27] us to interchange the order of integration and differentiation
in (33). Then putting in (33) gives

(34)

(35)

(36)

(37)

Equality (35) holds by the dominated convergence theorem [28]
because for bound

on when and because since has
finite variance. Equality (37) holds because the quantizer noise

has zero mean. A similar argument gives

(38)
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So and thus the first term in
the numerator of (28) is zero.

The other two limiting terms in (28) expand as

(39)

(40)

(41)

and

(42)

(41) and (42) follow because is a binary random variable in
the absence of quantizer noise and thus if
and else. Putting (30), (41), and (42) in (28) gives (6).

Proof of Lemma 2: The linear mean-squared error
or LMSE of is

(43)

(44)

(45)

Then (45) implies that the initial rate of the LMSE SR effect is

(46)

because of (37) and (38) (47)

(48)

because of (6). This proves (8).
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