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Stochastic Competitive Learning

Bart Kosko

Abstract—We examine competitive learning systems as sto-
chastic dynamical systems. This includes continuous and dis-
crete formulations of unsupervised, supervised, and differen-
tial competitive learning systems. These systems estimate an
unknown probability density function from random pattern
samples and behave as adaptive vector quantizers. Synaptic
vectors, in feedforward competitive neural networks, quantize
the pattern space and converge to pattern class centroids or
local probability maxima. A stochastic Lyapunov argument
shows that competitive synaptic vectors converge to centroids
exponentially quickly and reduces competitive learning to sto-
chastic gradient descent. Convergence does not depend on a
specific dynamical model of how neuronal activations change.
These results extend to competitive estimation of local covari-
ances and higher-order statistics.

1. FEEDFORWARD MULTILAYER COMPETITIVE LEARNING
SYSTEMS

OMPETITIVE learning systems are usually feedfor-

ward multilayer neural networks. Neurons compete
for the activation induced by randomly sampled pattern
vectors x € R". An unknown probability density function,
p(x), characterizes the continuous distribution of random
pattern vectors x. A random n-vector, m;, of synaptic val-
ues fans in to each competing neuron. The synaptic vector
m; defines the jth column (or row) of the synaptic con-
nection matrix M.

Competition selects which synaptic vector m; the train-
ing sample x modifies. In practice competition dynamics
reduce to metrical pattern matching. Competitive algo-
rithms seldom use neuronal activation dynamics. The jth
neuron ‘‘wins’’ at an iteration if the synaptic vector m; is
the closest, in Euclidean distance, of the m synaptic vec-
tors to the random pattern x sampled at that iteration.

Some scaled form of the difference vector x — m; ad-
ditively modifies the closest synaptic vector m;,. Different
scaling factors determine different competitive learning
systems. A positive scaling factor ‘‘rewards’’ the winning
Jth neuron. The scaled synaptic vector m; resembles the
random sample x at least as much as the unmodified syn-
aptic vector m; resembled x. A negative scaling factor
‘“‘punishes’’ the jth neuron. The negatively scaled syn-
aptic vector m; disresembles x more than the unmodified
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synaptic vector did. Negative scaling tends to move mis-
classifying synaptic vectors in R" out of regions of mis-
classification.

Autoassociative [12] competitive learning systems have
two layers or fields of neurons. The input data field Fy of
n neurons passes a randomly sampled pattern vector x for-
ward through an n-by-m matrix M of synaptic values to m
‘‘competing’’ neurons in the competitive field Fy. A sym-
metric m-by-m matrix W of within-field synaptic values
describes the competition in Fy. W has a positive main
diagonal (or diagonal band) with negative or zero values
elsewhere. In practice W has 1’s down its main diagonal
and —1’s elsewhere. Autoassociative competitive learn-
ing systems recognize patterns. More generally, they es-
timate probability density functions p(x).

Heteroassociative [8] competitive learning systems
have three fields of neurons. The first and third fields, the
input and output fields, sample the random-vector asso-
ciation (x, 7). The second, or ‘‘hidden,’’ field contains
the competing neurons. If we concatenate the first and
third fields into a single field of n + p neurons, compet-
itive learning proceeds as in the autoassociative case.

In practice heteroassociative competitive learning sys-
tems estimate only indirectly an unknown joint probabil-
ity density function p(x, z). They directly estimate a sam-
pled continuous function f: R" — R’ from a large number
of noisy random vector samples (x;, z;). Implicitly the
functional pairs (x;, f (x;)) belong to high-probability re-
gions of R" X R”.

II. COMPETITIVE LEARNING AS ADAPTIVE VECTOR
QUANTIZATION

Competitive learning systems adaptively quantize the
pattern space R". The random synaptic vector m; repre-
sents the local region about m;. Each synaptic vector m;
behaves as a quantization vector. The competitive learn-
ing system learns as synaptic vectors m; change in re-
sponse to randomly sampled training data. Geometrically,
the systems learns if and only if some synaptic vector m;
moves in the pattern space R".

Competitive learning distributes the m synaptic vectors
m,, * -+, m, in R" to approximate the unknown prob-
ability density function p(x) of the random pattern vector
x. Where the patterns x are dense or sparse, the synaptic
vectors m; tend to be dense or sparse. Different competi-
tive learning, or adaptive vector quantization (AVQ),
schemes distribute the synaptic vectors in different ways.
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We would not need to learn if we knew p(x). Numerical
techniques [4], [27] could directly determine pattern clus-
ters or classes, centroids, and class boundaries.

All observed patterns are realizations of a single ran-
dom vector x [1], [24]. The random vector x can be in-
terpreted as n ordered scalar random variables: x = (xq,

-+, x,). The function p(x) describes the occurrence
probability of the patterns infinitesimally surrounding x.

Pattern clusters or classes are subsets of R". Some pat-
tern classes are more probable than others. We suppose k
subsets or decision classes D, - - -, D, partition the pat-
tern space:

R'=D,/ U ---UD,
and

D,ND =g ifi+#j (1)

The distinction between supervised and unsupervised
pattern learning depends on the available information. In
both cases we do not know the probability density func-
tion p(x). Thus we use adaptive techniques instead of,
say, numerical optimization or calculus-of-variation [4]
techniques. Learning provides only a means to a compu-
tational end.

Supervised learning requires more information than
does unsupervised learning. Unsupervised learning uses
minimal information. Pattern learning is supervised if the
learning algorithm depends on pattern-class information,
on the decision classes Dy, , D;. The system
“knows’’ that x € D; and that x ¢ D; for all j # i. Un-
supervised learning algorithms do not use class-member-
ship information. They use unlabeled pattern samples.
Supervision allows us to compute an error measure or
vector. The simplest error measure equals the desired out-
come minus the actual outcome. The error measure guides
the learning process, often in a feedback error-correction
procedure, as the system performs stochastic gradient de-
scent on the unknown mean-squared-error surface.

III. AVQ Crass ProBaBILITY ESTIMATION
The partition property (1) implies that p(D;) + - - - +
p(D,) = 1 since p(R") = 1. The class probability p(D,)
integrates p(x) over D;:

p0) = | pw) dr @

Ellp). ©)

The integral in (2) is an n-dimensional multiple integral.
E[x] denotes the mathematical expectation of random vari-
able x. The function Ig: R" — {0, 1} defines the indicator
function of set S. Ii(x) = lifxe S, Is(x) = 0ifx & S.
In the probabilistic setting the indicator function Iy is ran-
dom (Borel measurable [1]), and hence a random vari-
able. Pattern x belongs to exactly one decision class—

I

with probability 1. With probability 0, pattern x can lie
on the border of two or more decision classes. Techni-
cally p(x) = 0 for every x in R".

A uniform partition gives p(D;) = 1/k for each deci-
sion class D; in the partition. Uniform partitions are not
unique. Some vector quantization schemes attempt to
adaptively partition R” into a uniform partition. Then it
should be equally likely that a pattern sample x drawn at
random (according to p(x)) from R" was drawn from any
one of the k decision classes D;. Then each competing
neuron should ‘‘win’’ with the same frequency. Re-
searchers [2], [25] have proposed supervised modifica-
tions to competitive learning algorithms that force the
competing neurons to win with the same win rate. Econ-
omy motivates these modifications: fewer neurons can es-
timate a sampled continuous function.

Nonuniform partitions are more informative than uni-
form partitions. They also occur more frequently when
we estimate an unknown probability density function p(x).
When the number m of competing neurons is less than the
number k of distinct pattern classes, when m < k, some
neurons win more frequently than others win. If p(D;) >
p(D;), the competing neuron that codes for D, tends to win
more frequently than the neuron that codes for D;..Equiv-
alently, more sample patterns x tend to be closer in Eu-
clidean distance to the corresponding synaptic vector, say
m;, that quantizes D; than to the synaptic vector m; that
quantizes D;. Below we show that m; and m; tend to arrive
at the respective centroids of D; and D; and wander about
them in a Brownian motion. Centroids minimize the mean-
squared error of vector quantization [3], [20], [23].

In general there are more competing neurons than de-
cision classes, m > k. For we can always add neurons to
the competitive learning system. Then if p(D)) > p(D)),
D; tends to contain more synaptic vectors than D; con-
tains. In principle all the neurons with synaptic vectors in
D; can have the same win rates. But since metrical clas-
sification determines which neuron wins, neurons with
synaptic vectors nearer the centroid of D, tend to win more
frequently.

The number of synaptic vectors in decision class D;
gives a nonparametric estimate of the class probability
p(Dy): p(D) = n;/m, with n; denoting the number of syn-
aptic vectors in D;. The quantizing synaptic vectors esti-
mate nonparametrically the probability density function
p(x). The user need make no probability assumptions
about the observed training samples. For any subset or
volume ¥V C R", the distributed synaptic vectors estimate
the volume probability p(V) as the ratio

p) ==, )
m

Here ny, denotes the number of synaptic vectors m; in V,
and m equals the total number of synaptic vectors. In the
extreme case (4) gives p(R") = 1, and p(&) = 0.
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IV. DETERMINISTIC COMPETITIVE LEARNING LAws

Competitive learning means learn only if win. Losing
neurons, or rather their synaptic fan-in vectors, do not
learn. They also do not forget what they have already
learned. This produces a nondistributed representation [6].
The synapses in a synaptic vector m; become ‘‘grand-
mother’” synapses. Each synaptic element m;; behaves as
a discrete memory unit, as in a random access memory.

In contrast, classical Hebbian [7] or correlation learn-
ing distributes learned pattern-vector information across
the entire synaptic connection matrix M. But a Hebbian
system forgets learned pattern information as it learns new
pattern information.

The simplest deterministic competmve learning [6],
[17], [25] law takes the form

my; = S/()’_,‘) [Si(x) — m,j/]- ()
where 7i;; denotes the time derivative of the synaptic value
of the directed axonal connection from the ith neuron in
the input field Fy to the jth neuron in the output or com-
petitive field Fy. The n-by-m matrix M consists of the m;;
values. The jth column of M equals the fan-in synaptic
vector m; = (my;, * - , m,). We can add or multiply
scaling constants in (5) as desired.

In contrast, the signal Hebbian learning [6], [15] takes
the form

iy = —my + 5x)8; (). 6)

Equations (5) and (6) differ in how they forget. All learn-
ing requires some forgetting. The competitive signal §; in
(5) nonlinearly scales the decay or forget term —m;;. In
practice [8], [12], [13], [25], the competitive signal S;
approximates or equals a zero-one or binary threshold
function. Winners forget, losers remember.

Input field Fy contains n neurons. Field Fy contains m
competing neurons. Each neuron in Fy or Fy defines a
function that transduces its real-valued activation x;(t) or
y;(?) into a bounded signal S;(x;(¢)) or S; (y;(1)) at time 1.
In principle the activation functions, or membrane poten-
tial differences, x; and y; can be unbounded.

In feedback networks [17], the signal functions S; and
S; are usually bounded and monotone nondecreasing. Then
they have nonnegative activation derivatives §; and §;.
The popular logistic and hyperbolic-tangent signal func-
tions have positive derivatives. Such signal functions §;
and §; strictly increase:
ds; ds;

0 ;i =—2>0. 7
I N (N

S =
! ! dy/

1
For instance, the logistic signal function S(x) = (1 —
e %)~ with scale constant ¢ > 0 has the increasing ac-
tivation derivative §' = ¢S(1 — §) > 0. The logistic sig-
nal function rapidly approaches a binary threshold func-
tion as ¢ increases.

In competitive learning the Fy signal functions S; often
approximate or equal binary threshold functions. S (=
1 if the jth competing neuron in Fy wins the competition
for activation at time z. S;(r) = O if the jth neuron loses.

The Fy signal functions S; are usually linear in feedfor-
ward systems: S;(x;) = x;. Then the sample pattern x =
(x,, * -+, x,) directly activates the system as the Fy signal
state vector Sy(x), since Sx(x) = x. So in practice the
competitive learning law (5) approximates

i = [Dj(x) [xi - my (8)

where I, denotes the zero-one indicator function of de-
cision class D;. As discussed below we assume synaptic
vector m; codes for class D;, perhaps by hovering ran-
domly about the centroid of D;.

Kohonen’s recent [12] supervised competitive learning
(SCL) law provides a reinforced version of (5):

= Sy — my &)

where §; equals a binary threshold function determined
metrically. §; = 1 if x is closer in Euclidean distance to
the synaptic vector m; than to all other synaptic vectors
m;. The new term r; in (8) denotes the reinforcement func-
tion of the jth compe[mg neuron in Fy. The function r;
rewards when r;(x) = 1, and punishes when r;(x) = —

The class membership of the pattern sample x deter-
mines the reinforcement signal r;(x). So (9) is a super-
vised competitive learning law. The signal r;(x) = 1 if x
€ D; and if the jth neuron wins or correctly ‘‘classifies’’
x—if Ip,(x) = §;(x) = 1; ;(x) = —1 if the winning jth
neuron misclassifies the sample pattern x. Misclassifica-
tion means the jth neuron wins but x € D;, or x ¢ D;, for
some i # j. Then I (x) = 0, but Ip,(x) = §; = 1. Since,
with probability 1, x belongs to exactly one decision class,
the reinforcement function reduces to a difference of de-
cision-class indicator functions:

rp=1Ip — 2 Ip, 10y
[#)
So r; depends explicitly on the decision-class boundaries.
The unsupervised differential competitive learning [17]
(DCL) law modulates the vector difference x — m; with
the instantaneous competitive win rate S;:

my = S,'(Yj) [Six) — mij]- (11)

The signal velocity SJ decomposes as §;y; by the chain
rule. The idea is learn only if change. The signal velocity
in (11) behaves in sign much as the reinforcement func-
tion behaves in (9). The signal velocity Sj(t) is positive or
negative according to whether the jth competing neuron’s
win status increases or decreases at time 7. The signal ve-
locity does not depend on the decision-class indicator
functions. So the DCL law (11) is unsupervised.

In practice the Fy signal function S; is linear. Then sim-
ulations [13] show that the DCL law and Kohonen’s SCL
law (9) behave similarly. The DCL synaptic vectors tend
to converge to decision class centroids at least as fast as
SCL synaptic vectors converge and tend to wander ran-
domly in a Brownian motion about the centroids with less
variance than the SCL synaptic vectors wander. The com-
petitive learning laws (5) and (9) ignore the instantaneous
win-rate information that the signal velocity provides in
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(I1). The signal derivative also produces delta-modula-
tion effects [18].

The pulse-coded [5], [17] signal function S; gives an
exponentially weighted average of binary pulses:

14
5 = S yi(®)e* " ds (12)
where y;(¢) = 1 if a pulse is present at time 7, and y@) =
0 if no pulse is present. Then the signal velocity reduces
to the locally available difference
S0 = y; (0 = §().

The velocity-difference representation (13) directly
computes the signal velocity. This allows biological, or
silicon, synapses to modify their values in real time with
signal velocity information. Biological neurons transmit
and receive pulse trains, not real-valued sigmoidal out-
puts. They can more easily detect, amplify, and emit
pulses than multivalued signals. Equation (13) shows that
much of the time the arriving pulse ¥;(¢) indicates the in-
stantaneous sign of the signal velocity.

The pulse-coded differential competitive law approxi-
mates [17] the classical competitive law (35), as we can
see by substituting (13) into (11) and expanding terms. A
related approximation of the signal Hebb law (6) occurs
when (13) eliminates a product of signal velocities in a
comparable differential Hebbian learning [10], [11], [14],
[16], [17] law.

V. StocHAsTIC COMPETITIVE LEARNING LAWS AND
ALGORITHMS

Stochastic competitive learning laws are stochastic dif-
ferential equations. They describe how synaptic random
processes change as a function of other random processes.
Their solution defines a synaptic random process [26].

The deterministic competitive learning laws (5), (9),
and (11) are simple stochastic differential equations if the
signal terms S; (x;(¢)) are random variables at each time 7.
This occurs when the sample vectors x are random sam-
ples, realizations of the pattern random-vector process x:

R" = R". The randomness in the vector components x;

induces randomness in the signal function S; and thus in
the synaptic vectors m;. In general, at each time 7, each
term in a stochastic differential equation represents a ran-
dom variable.

A stochastic differential equation also arises when we
*‘add’’ random noise to a differential equation. The ran-
domness in the noise process induces randomness in the
dependent variables.

The stochastic competitive learning law, in vector no-
tation, takes the form

dm; = S;(y)[S(x) — m)) dt + dB,. (14)

§; now denotes a steep competitive signal process that
takes values in [0, 1], and S(x) = (S;(x)), * -+, S,(x,))
for random pattern x. B; denotes a Brownian motion dif-
fusion process.

(13),

525

The pseudo derivative [26] of B; equals, in the mean-
squared sense [1], the zero-mean Gaussian white noise
process n;. The noise process n; is zero-mean, E [n;] =
0, has finite variance, and is independent of the “‘signal’’
term §;(y;) [S(x) — m;]. Then we can write competitive
learning laws in less rigorous, more intuitive ““noise’’ no-
tation [17]. For example, (14) becomes

iy = S;(y)[SCx) — m] + m;. (15)

In practice S; approximates a binary threshold function
and behaves as the class indicator function I,. Formally
we assume that competitive signal functions S; estimate
the indicator function I, of the local jth pattern class:
S;(y;) = Ip,(x). This property allows us to ignore the com-
plicated nonlinear dynamics of the within-field F, com-
petition. The equilibrium and convergence results below
depend on this approximation. The property is approxi-
mate because the sampled decision classes may vary
slightly—or wildly in rare cases—as the synapses con-
verge to their equilibrium values. The Fy signal processes
S; are linear. So (15) reduces to

(16)

The stochastic supervised competitive learning (SCL)
law takes the form

a7

The stochastic version of the differential competitive
learning (DCL) law takes the form

m; = r;(x)S;(y)[x — my] + ;.

iy = 8(y)[x - ml + n; (18)
or, in pulse-coded form,
m; = [y, — §Ollx — m] + n,. (19)

The pulse process y; defines a random point process, per-
haps Poisson in nature. Thus (19) defines a doubly sto-
chastic synaptic model.

For practical implementation we can write the above
three stochastic competitive learning models as the fol-
lowing stochastic difference equations. (Historically,
Tsypkin [27] derived the ‘‘winning’’ parts of the UCL
algorithm and, with his adaptive Bayes approach, the SCL
algorithm in a nonneural context. MacQueen [19] called
the UCL difference equation adaptive k-means clustering
in the mid-1960’s.) The stochastic difference equations do
not include an independent noise term. The noise pro-
cesses in the above stochastic differential equations model
unmodeled effects, round-off errors, or sample-size de-
fects.

VI. CoMPETITIVE AVQ ALGORITHMS

1) Initialize synaptic vectors: m;(0) = x(i), i = 1,
-+ +, m. This distribution-dependent initialization scheme
avoids the problems that occur when all synaptic vectors
initially equal, say, the null vector and that require quasi-
supervised support algorithms [2].
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2) For random sample x(¢), find the closest (“‘win-
ning’’) synaptic vector m;():

lm, 6y — x| = min lm;®) — x| (0)

where [lx||> = x3 + - - - + x} gives the squared Euclidean
norm of x.

3) Update the winning synaptic vector(s) m; () by the
UCL, SCL, or DCL learning algorithm.

Unsupervised Competitive Learning (UCL):

m(t + 1) = my(f) + ¢ [x(0) — m;(1)]

m+ 1) =m@ ifi#j 21
where, as in stochastic approximation {27], {c,} defines a
slowly decreasing sequence of learning coefficients. For
instance, ¢, = 0.1 (1 — /10 000) for 10 000 samples
x(1).

Supervised Competitive Learning (SCL):

m(t + 1) = m; (1) + c,r;(x(0) [x(2) — m;(0)] 22)
_ (m@) + ofx@ — mi®] ifxeD;
- [mj(z) — olx(t) — m®]  ifx gD,

(23)

Equation (23) rewrites the reinforcement function ; into
the update algorithm.
Differential Competitive Learning (DCL):

m(t + 1) = m@) + ¢, AS;(y;O)1x(@®) — m;(0)]

m@+ 1) =m@ ifi+]j (24)
AS;(y;(2)) denotes the time change of the jth neuron’s
competitive signal S;(y;) in the competition field Fy:

AS(y; () = §(yt + 1)) — S$; (y; (). (25)

In practice [13] we often use only the sign of the signal
difference (25) or sgn {Ay,], the sign of the activation dif-
ference. We can update the Fy neuronal activations y; with
an additive model:

B+ D = 30 + 2 S@m0 + 2 Sy

(26)

The fixed competition matrix W defines a symmetric lat-
eral inhibition topology within Fy. In the simplest case,

w; =1, and w; = —1 for distinct i and j.

VII. StocHAsTIC EQUILIBRIUM AND CONVERGENCE

~ Competitive synaptic vectors m; converge to decision
class centroids. The centroids may correspond to local
maxima of the sampled but unknown probability density
function p(x).

In general, when there are more synaptic vectors than
probability maxima, the synaptic vectors cluster about lo-
cal probability maxima. Comparatively few synaptic vec-

tors may actually arrive at pattern-class centroids. We
consider only convergence to centroids. We'can view any
local connected patch of the sample space R " as a candi-
date decision class. Each synaptic vector samples such a
local patch and converges to its centroid. Approximation
§; = Ip, codifies this interpretation.

We first prove the AVQ centroid theorem: If a com-
petitive AVQ system converges, it converges to the cen-
troid of the sampled decision class. We prove this equi-
librium theorem only for unsupervised competitive
learning, but argue that it holds for supervised and differ-
ential competitive learning in many cases of practical in-
terest.

Next we use a Lyapunov argument to reprove and ex-
tend the AVQ centroid theorem to the AVQ convergence
theorem: Stochastic competitive learning systems are
asymptotically stable, and synaptic vectors converge to
centroids. So competitive AVQ systems always converge,
and converge exponentially fast. Both results hold with
probability 1. Historically, MacQueen [19] showed that
estimators trained with the discrete ‘‘competitive’” or
k-means clustering algorithm (21) converged to centroids.
MacQueen did not show exponential convergence or ac-
count for noise disturbances.

AVQ Centroid Theorem:
Prob (m; = X)) = 1 at equilibrium. 27

The centroid X; of decision class D; equals its probabilistic
center of mass:

S xp(x) dx
Dj
X =—"—"" (28)
S plx) dx
b;
= Elx|x € D}. 29)

The random vector E[x|-], the conditional expectation,
is a function of Borel measurable [1] subsets D; of R".

Proof: Suppose the jth neuron in Fy wins the acti-
vation competition during the training interval. Suppose
the jth synaptic vector m; codes for decision class D;: §;
=~ I, Suppose the synaptic vector has reached equilib-
rium:

m; =0 (30)
which holds with probability 1 (or in the mean-square
sense, depending on how we define the stochastic differ-
entials). Take expectations of both sides of (30), use the
zero-mean property of the noise process, eliminate the
synaptic velocity vector with the competitive law (16),
and expand to give

0 = Efrm) 31)

SR” Ip,(x)(x — m)p(x) dx + E[nj] (32)
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SD_ (x — m)p(x) dx (33)

(34)

S xp(x) dx — m; S p(x) dx
D; T I

¢

since (30) implies that m; is constant with probability 1.
Solving for the equilibrium synaptic vector m; gives the
centroid X; in (28). Q.E.D.

In general the AVQ centroid theorem concludes that at
equilibrium the average synaptic vector E[m;] equals the
Jjth centroid X; at equilibrium:

Elm)] = X, 35)

The equilibrium synaptic vector m; vibrates in a Brownian
motion about the constant centroid X;. The vector m,
equals X; on average at each postequilibration instant.
Simulated [13] competitive synaptic vectors have exhib-
ited such Brownian wandering about centroids.

Synaptic vectors learn noise as well as signal. So they
vibrate at equilibrium. The independent additive noise
process n; in (16) drives the random vibration. The steady-
state condition (30) models the rare event that noise can-
cels signal. In general it models stochastic equilibrium in
the absence of additive noise.

The equality

(36)

m; = n;
models stochastic equilibrium in the presence of additive
independent noise.

Taking expectations of both sides of (36) still gives
(31), since the noise process n; is zero-mean, and the ar-
gument proceeds as before. Taking a second expectation
in (33) and using (31) gives (35).

The AVQ centroid theorem applies to the stochastic
SCL law (17) because the algorithm picks winners met-
rically with the nearest-neighbor criterion (20). The re-
inforcement function r; in (10) reduces to r;(x) = —Ip,(x)
= —1 when the jth neuron continually wins for random
samples x from class D;. This tends to occur once the syn-
aptic vectors have spread out in R", and D; is close, usu-
ally contiguous, to D;. Then m; converges to X;, the cen-
troid of D;, since the steady state condition (30) or (36)
removes the scaling constant — 1 that then appears in (33).

This argument holds only approximately when, in the
exceptional case, m; repeatedly misclassifies patterns x
from several classes D,. Then the difference of indicator
functions in (10) replaces the single indicator function
Ip, in (32). The resuitant equilibrium m; equals a more
general ratio than the centroid. For then we must integrate
the density p(x) over R", not just over D,.

The AVQ centroid theorem applies similarly to the sto-
chastic DCL law (18). A positive or negative factor scales
the difference x — m;. If, as in practice and in (24), a
constant approximates the scaling factor, the steady-state
condition (30) or (36) removes the constant from (33) and
m;, or E[m;], estimates the centroid ¥;.

The integrals in (31)-(34) are spatial integrals over R"
or subsets of R”. Yet in the discrete UCL, SCL, and DCL
algorithms, the recursive equations for m;(z + 1) define
temporal integrals over the training interval.

The spatial and temporal integrals are approximately
equal. The discrete random samples x(0), x(1), x(2), * - *
partially enumerate the continuous distribution of equilib-
rium realizations of the random vector x. The time index
in the discrete algorithms approximates the ‘‘spatial in-
dex’’ underlying p(x). So the recursion m; (¢ + 1) = m;(?)
+ - - - -approximates the averaging integral. We sample
patterns one at a time. We integrate them all at a time.

The AVQ centroid theorem assumes that stochastic
convergence occurs. Synapses converge trivially for con-
tinuous deterministic competitive learning, at least in
feedforward networks. Convergence is not trivial for sto-
chastic competitive learning in noise.

The AVQ convergence theorem below ensures expo-
nential convergence. The theorem does not depend on how
the Fy neurons change in time provided §; = I, holds.
The proof uses a stochastic Lyapunov function L. The
strictly decreasing deterministic Lyapunov function E[L]
replaces [17] the random Lyapunov function L.

A strictly decreasing Lyapunov function yields asymp-
totic stability [22]. Then the real parts of the eigenvalues
of the system Jacobian matrix are strictly negative, and
locally the nonlinear system behaves linearly. Synaptic
vectors converge [9] exponentially quickly to equilibrium
points—to pattern-class centroids—in R". Technically,
nondegenerate Hessian matrix conditions must also hold.
Otherwise some eigenvalues may have zero real parts.

AVQ Convergence Theorem: Competitive synaptic
vectors converge exponentially quickly to pattern-class
centroids.

Proof: Consider the random quadratic form L:
n m
L=322% 06— m (37)
i
Note that if x = X; in (37), then, with probability 1, L >
0if any m; # X;, and L = 0 iff m; = X; for every m;.

The pattern vectors x do not change in time. (The fol-
lowing argument still holds if the pattern vectors x change
slowly relative to synaptic changes.) This simplifies the
stochastic derivative of L:

. oL L
L:Z—x,-+Z}]a—m,, (38)
i ox; i j omy
oL
=212 — iy (39)
i 3m,j
= - Z ; G = myri (40)

=2 2 I () — mp) — 22 (x — mpny.
i i .
41)

L equals a random variable at every time ¢. E[L] equals a
deterministic number at every ¢. So we use the average
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E[L] as a Lyapunov function for the stochastic competi-
tive dynamical system. For this we must assume sufficient
smoothness to interchange the time derivative and the
probabilistic integral—to bring the time derivative ‘‘in-
side’’ the integral. Then the zero-mean noise assumption,
and the independence of the noise process n; with the

‘‘signal’’ process x — m;, give
E[L] = E[L]

2|, B

42)

my)’p(x) dv.  (43)

So, on average by the learning law (16), E[L) < 0 iff
any synaptic vector m; moves along its trajectory. So the
competitive AVQ system is asymptotically stable [9], [22]
and in general converges exponentially quickly to equilib-
ria. '

Suppose E[L] = 0. Then every synaptic vector has
reached equilibrium and is constant (with probability 1)
if (30) holds. Then [24], since p(x) is a nonnegative
weight function, the weighted integral of the learning dif-
ferences x; — m;; must also equal O:

S (x — m)p(x)dx =0 44)
D; ‘
in vector notation. Equation (44) is identical to (33). So,
with probability 1, equilibrium synaptic vectors equal
centroids. More generally, as discussed above, (35) holds.
Average equilibrium synaptic vectors are centroids: E[m;]

=X Q.E. D
The sum of integrals (43) defines the total mean-squared
error of vector quantization for the partition Dy, - - -, D;.

The vector integral in (44) equals the gradient of E[L]
with respect to m;. So the AVQ convergence theorem im-
plies that class centroids—and, asymptotically, competi-
tive synaptic vectors—minimize the mean-squared error
of vector quantization.

Then by (16), the synaptic vectors perform stochastic
gradient descent on the mean-squared-error surface in the
pattern-plus-error space R" ', The difference x(f) — m; (1)
behaves as an error vector. The competitive system esti-
mates the unknown centroid X; as x(#) at each time r.
Learning is unsupervised but proceeds as if it were su-
pervised. Competitive learning reduces to stochastic gra-
dient descent.

VIII. CoMPETITIVE COVARIANCE ESTIMATION

Centroid X; provides only a first-order estimate of how
p(x) behaves in region D;. Local covariances provide a
second-order description. We can extend the competitive
learning laws to asymptotically estimate the local condi-
tional covariance matrix K;:

K, = E[(x — %)(x — X)|D}]. 45)

At each iteration we estimate the unknown centroid ¥;
as the current synaptic vector m;. Then K; equals an error

conditional covariance matrix. We estimate K; with the
stochastic difference-equation algorithm:

mi(k + 1) = m;j(k) + clx, — m;(k)] 46)
Kk + 1) = Kk + dl(x, — mk)’
* (X — myk) — K;(b)] @7)

for winning synaptic row vector m;.

We can initialize K;(0) as the null matrix 0. Initializing

(O) as the identity matrix implies that the random vector
x has uncorrelated components x; (and so reduces the
adaptive vectot quantization process to scalar quantiza-
tion [23] and might skew the learning procedure for small
sets of training samples). We can also scale the difference
terms in (46) and (47) to produce supervised-competitive
and differential-competitive learning versions. If the ith
neuron loses the Fy metrical competition, then

mk + 1) = m;k) (48)
K.k + 1) = K;(k). (49)

The quantity {d,} denotes an appropriately decreasing se-
quence of learning coeflicients in (47).

The computational algorithm (47) corresponds to the
stochastic differential equation

K = Ip,®[x - m)x —m) — K] + N,
{N;} denotes an independent Gaussian white noise matrix

process. Again we assume §; = I, holds. Consider first
the noiseless equilibrium condition:

0 =K

(50)

(6]

= ®[x-%'x-% -KI+N (52

where we have replaced m; with its equilibrium centroid
value. Taking expectations on both sides gives

0= SD_ x — fj)T(x - X)p(x) dx — K; §D_ p(x) dx.

(53)

Now solve for the equilibrium covariance value K;():

SD (x - x%)'(x — X)pw) dx

K = (54)
S p(x) dx
D}
= SD_ (x — E[x|D))'(x — E[x|D])p(x|D)) dx (55)
= El(x — Elx|D])(x — E[x|D))|D]] (56)
as desired.

The general stochastic-equilibrium condition takes the
form

K =N

;= N. (57)
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Then taking expectations of both sides of (57) gives (51).
Since the asymptotic K; wanders in a Brownian motion
about the K; in (45), we cannot directly factor K; out of
the second integral as we did in (53). So again we must
take expectations a second time and rearrange. This gives

E[Kj(>)] = El(x — X)"(x - %)|D]. (38)

More generally we can use higher-order correlation ten-
sors, and their Fourier transforms or polyspectra [21], to
estimate nonlinear non-Gaussian system behavior from
noisy sample data. In these cases we add the appropriate
third-order, fourth-order, and perhaps higher-order differ-
ence equations to the stochastic dynamical system (46)
and (47). )
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