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Abstract—We present theorems and an algorithm to find op-
timal or near-optimal “stochastic resonance” (SR) noise benefits
for Neyman-Pearson hypothesis testing and for more general
inequality-constrained signal detection problems. The optimal
SR noise distribution is just the randomization of two noise
realizations when the optimal noise exists for a single inequality
constraint on the average cost. The theorems give necessary and
sufficient conditions for the existence of such optimal SR noise in
inequality-constrained signal detectors. There exists a sequence
of noise variables whose detection performance limit is optimal
when such noise does not exist. Another theorem gives sufficient
conditions for SR noise benefits in Neyman-Pearson and other
signal detection problems with inequality cost constraints. An
upper bound limits the number of iterations that the algorithm
requires to find near-optimal noise. The appendix presents the
proofs of all theorems and corollaries.

I. NOISE BENEFITS IN SIGNAL DETECTION

Stochastic resonance (SR) occurs when noise benefits a
nonlinear system [1]–[14]. SR noise benefits occur in a wide
range of applications in physics, biology, and medicine [15]–
[26]. The noise benefit can take the form of an increase
in an entropy-based bit count [27]–[29] , a signal-to-noise
ratio [30]–[32], a cross-correlation [3], [30], or a detection
probability for a preset level of false-alarm probability [33],
[34], or a decrease in the error probability [35] or in the
average sample number of sequential detection problems [36].
An SR noise benefit requires some form of nonlinear signal
detection [10]. Its signature often takes the form of an inverted-
U curve or a nonmonotonic plot of a bit count or SNR against
the variance or dispersion of the noise process.

We focus first on the special case of SR in signal detection
that uses Neyman-Pearson (N-P) hypothesis testing [37] to
decide between two simple alternatives. We define the noise as
N-P SR noise if adding such noise to the received signal before
making a decision increases the signal detection probability
PD while the false-alarm probability PFA stays at or below a
preset level α for a given detection strategy. Figure 1 shows
this type of noise benefit for a suboptimal receiver and does
not involve the typical inverted-U curve of SR (but would if
it used uniform noise and we plotted the detection probability
against the noise variance).

An SR noise benefit does not occur in an optimal receiver if
the noise is independent of the concurrent received signal and
the hypotheses. This follows from the so-called irrelevance
theorem of optimal detection [38], [39]. But Section V shows
that SR noise benefits can occur even if the receiver is optimal
when the noise depends on the received signal. Figure 3
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shows such an SR noise benefit in optimal anti-podal signal
detection when the average signal power constrains the signal
transmission.

Sections II and III present three SR results for Neyman-
Pearson signal detection. The first SR result gives necessary
and sufficient conditions for the existence of optimal N-P
SR noise. The existence of some N-P SR noise does not
itself imply the existence of optimal noise. But there exists
a sequence of noise variables whose detection performance
limit is optimal when the optimal N-P SR noise does not
exist. The second SR result is a sufficient condition for SR
noise benefits in N-P signal detection. The third SR result
is an algorithm that finds near-optimal N-P SR noise from a
finite set Ñ of noise realizations. This noise is nearly optimal
if the detection and false alarm probabilities in Ñ and in the
actual noise space N ⊃ Ñ are sufficiently close. An upper
bound limits the number of iterations that the algorithm needs
to find near-optimal noise. Section IV extends these results
to more general statistical decision problems that have one
inequality constraint on the average cost.

These SR results extend and correct prior work in
“detector randomization” or adding noise for improving the
performance of N-P signal detection. Tsitsiklis [40] explored
the mechanism of detection-strategy randomization for a finite
set of detection strategies (operating points) in decentralized
detection. He showed that there exists a randomized detection
strategy that uses a convex or random combination of at most
two existing detection strategies and that gives the optimal
N-P detection performance. Such optimal detection strategies
lie on the upper boundary of the convex hull of the receiver
operating characteristic (ROC) curve points. Scott [41] later
used the same optimization principle in classification systems
while Appadwedula [42] used it for energy-efficient detection
in sensor networks. Then Chen et al. [33] used a fixed
detector structure: They injected independent noise in the
received signal to obtain a proper random combination of
operating points on the ROC curve for a given suboptimal
detector. They showed that the optimal N-P SR noise for
suboptimal detectors randomizes no more than two noise
realizations.

But Chen et al. [33] assumed that the convex hull V of the
set of ROC curve operating points U ⊆ R2 always contains
its boundary ∂V and thus that the convex hull V is closed.
This is not true in general. The topological problem is that the
convex hull V need not be closed if U is not compact [43]:
the convex hull of U is open if U itself is open [44]. Chen et
al. argued correctly along the lines of the proof of Theorem 3
in [33] when they concluded that the “optimum pair can only
exist on the boundary.” But their later claim that “each z on
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Fig. 1. SR noise benefits in suboptimal Neyman-Pearson signal detection. (a) The thin solid line shows the probability density function (pdf)
f0 of signal X under the normal hypothesis H0: X ∼ N(0, 3) while the dashed line shows the pdf f1 of X under the alternative normal
hypothesis H1: X ∼ N(1, 1). The one-sample optimal detection scheme requires the two thresholds θ1 = 1.342 and θ2 = 1.658. It rejects H0

if X ∈ [θ1, θ2] for the test significance or preset false-alarm probability α = 0.05. The thick vertical solid line shows the best single threshold
θ = 2.85 if the detector cannot use two thresholds due to resource limits or some design constraint. The respective suboptimal detector rejects
H0 if X > θ. (b) The solid line shows the monotonic but nonconcave ROC curve U = {(pFA(n), pD(n)): n ∈ R} of the suboptimal detector
for different realizations n of the additive noise N in X . Here pFA(n) = 1-Φ( θ−n√

3
) and pD(n) = 1-Φ(θ − 1 − n) for the standard normal

cumulative distribution function Φ. The detector operates at point a = (pFA(0), pD(0)) = (0.05, 0.0322) on the ROC curve in the absence
of noise. Nonconcavity of the ROC curve U between the points b = (pFA(n2), pD(n2)) and c = (0,0) allows the N-P SR effect to occur.
A convex or random combination of two operating points b and e = (pFA(n1), pD(n1)) gives a better detection performance (point g) than
point a at the same false-alarm level pFA(0) = α = 0.05. Such a random combination of operating points results from adding an independent
discrete noise N with pdf fN (n) = λδ(n − n1) + (1 − λ)δ(n − n2) to the random sample X where λ = (pFA(n2)-α)/(pFA(n2)-pFA(n1)).
Point d is on the upper boundary ∂V of the ROC curve’s convex hull (dashed tangent line between b and c). So d is the supremum of
detection performances that the random or convex combination of operating points on the ROC can achieve such that α stays at 0.05. Point
d is the convex combination of b and c but it is not realizable by adding only noise to the sample X because point c = (0, 0) is not on the
ROC curve since there is no noise realization n ∈ R such that 1− Φ( θ−n√

3
) = 0 = 1− Φ(θ − 1− n). So the N-P SR noise exists but the

optimal N-P SR noise does not exist in the noise space N = R.

the boundary can be expressed as the convex combination of
only two elements of U” is not true in general because V may
not include all of its boundary points. The optimal N-P SR
noise need not exist at all in a fixed detector [45].

Figure 1 shows a case where the N-P SR noise exists but
where the optimal N-P SR noise does not exist in the noise
space N = R. Section V shows that the optimal SR noise
does exist if we restrict the noise space to a compact interval
such as [-3, 3]. The algorithm finds nearly optimal N-P SR
noise realizations from a discretized set of noise realizations
Ñ = [-3:0.0001:3] in 17 iterations. Section V also shows
that the detection performance of the maximum a posteriori
(MAP) receiver can sometimes benefit from signal-power
randomization in an average-power-constrained anti-podal
signal transmitter if the channel noise pdf is multimodal. We
assume that the transmitter transmits equiprobable anti-podal
signals {−S, S} with S ∈ S = [0.5, 3.75] and that the additive
channel noise has a symmetric bimodal Gaussian-mixture
probability density. Then the respective error probability of
the optimal MAP receiver is nonconvex. So the transmitter
can improve the detection performance by time-sharing or

randomizing between two power levels for some values of the
constraining maximum average power. The algorithm finds a
near-optimal signal power randomization from a discretized
subset of signal-strength realizations S̃ = [0.5:0.0001:3.75].
The algorithm finds this signal-power distribution in just
13 iterations. The next four sections present and illustrate
the formal SR results. All examples use single samples
in statistical decision making but the results still hold for
multiple samples.

II. OPTIMAL NOISE DENSITIES FOR NEYMAN-PEARSON

SIGNAL DETECTION

We now derive two theorems that fully characterize the
optimal noise probability densities for Neyman-Pearson signal
detection. Then we give a sufficient condition for SR noise
benefits in N-P signal detection.

Consider a binary hypothesis test where we decide between
H0 : fX(x;H0) = f0(x) and H1 : fX(x;H1) = f1(x) using
an m-dimensional noisy observation vector Y = X + N. Here
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X ∈ Rm is the received signal vector, N ∈ N ⊆ Rm is a
noise vector with pdf fN , and N is the noise space. The noise
vector N can be random or a deterministic constant such as
fN(n) = δ(n−no). Here f0 and f1 are the pdfs of the signal X
under the hypothesis H0 and H1. We need not know the prior
probabilities P (Hi) of the hypotheses Hi. Then we want to
determine when the optimal additive noise Nopt exists and gives
the best achievable detection performance at the significance
level α for the given detection strategy.

Define PD(n) and PFA(n) as the respective probabilities
of correct detection and false detection (alarm) when the
noise realization is n. Define PD(fN) =

∫
N PD(n)fN(n)dn and

PFA(fN) =
∫
N PFA(n)fN(n)dn as the respective probabilities of

detection and false alarm when the noise pdf is fN . Let fNopt

be the pdf of the optimal SR noise Nopt that we add to the
received signal X to maximize the probability of detection PD

while keeping PFA ≤ α. Let F denote the set of all probability
density functions. So we need to find

fNopt = arg max
fN∈F

∫
N
PD(n)fN(n)dn (1)

such that

fNopt(n) ≥ 0 for all n (2)∫
N
fNopt(n)dn = 1 and (3)

PFA(fNopt) =
∫
N
PFA(n)fNopt(n)dn ≤ α. (4)

Conditions (2) and (3) are general pdf properties while (1)
and (4) state the Neyman-Pearson criteria for the optimal
SR noise pdf fNopt . The conditional noise pdf f(n|x, Hi)
obeys f(n|x, Hi) = fN(n) if the noise random variable N is
independent of the concurrent received signal random variable
X and the hypotheses Hi. Then the irrelevance theorem [38],
[39] implies that the optimal likelihood-ratio test based on
the received signal realization x and noise realization n is the
same as the optimal likelihood-ratio test based on only x. So
the optimal detector can always ignore the noise realization n
without affecting its detection performance. This implies that
the N-P SR noise benefit will not occur for the noise N if the
receiver uses the optimal likelihood-ratio test based on x. But
computing optimal likelihood-ratio thresholds is not simple
for many non-Gaussian noise types [46], [47]. We may also
need multiple thresholds to partition the test-statistic sample
space into acceptance and rejection regions if the likelihood
ratio is not a monotone function of the test statistic. So some
detection systems use suboptimal tests if they have special
hardware resource limits or if they constrain the number
of detection thresholds [48], [49]. Then SR noise benefits
may occur and so we may need to compute the optimal or
near-optimal SR noise pdf.

The primal-dual method [50], [51] directly solves the
above optimization problem (1)-(4) in the noise domain Rm.
This approach gives both the conditions for the existence of
optimal SR noise and the exact form of the optimal noise
pdf. It also leads to an algorithm that can find near-optimal
SR noise if the PD on the noise space N is sufficiently close

to its restriction to the discrete noise realizations Ñ ⊂ N .

The Lagrangian of the inequality-constrained optimization
problem (1)-(4) is

L(fN, k) =
∫
N
PD(n)fN(n)dn− k

(∫
N
PFA(n)fN(n)dn− α

)
(5)

=
∫
N

(PD(n)− k(PFA(n)− α)) fN(n)dn. (6)

The Lagrange duality [50], [51] implies that

sup
fN∈F

∫
N
PD(n)fN(n)dn = min

k≥0
sup
fN∈F L(fN, k). (7)

So solving the optimization problem equates to finding k∗ ≥
0 and the pdf fNopt such that

min
k≥0

sup
fN∈F L(fN, k) = L(fNopt , k

∗). (8)

The next two theorems give necessary and sufficient con-
ditions for the existence of the optimal N-P SR noise and for
the form of its pdf if it exists. Define first the sets

D+ = {n ∈ N : (PFA(n)− α) ≥ 0} and (9)
D− = {n ∈ N : (PFA(n)− α) ≤ 0} . (10)

Assume D− 6= ∅ so that Nopt always exists. Let PD+
sup

,
PD−sup , and PDsup be the respective suprema of PD(n) over
the sets D+, D−, and N :

PD+
sup

= sup
n

{
PD(n) : n ∈ D+

}
(11)

PD−sup = sup
n

{
PD(n) : n ∈ D−

}
and (12)

PDsup = sup
n
{PD(n) : n ∈ N} . (13)

Define

g(n, k) = PD(n)− k (PFA(n)− α) (14)

and let d+(k), d−(k), and d(k) be the respective suprema over
the sets D+, D−, and N :

d+(k) = sup
n

{
g(n, k) : n ∈ D+

}
(15)

d−(k) = sup
n

{
g(n, k) : n ∈ D−

}
and (16)

d(k) = sup
n
{g(n, k) : n ∈ N} . (17)

Define

G+ = {n ∈ D+ : PD(n) = PD+
sup
} and (18)

G− = {n ∈ D− : PD(n) = PD−sup}. (19)

Rewrite the Lagrangian (6) as

L(fN, k) =
∫
N
g(n, k)fN(n)dn. (20)

Then (8) becomes

min
k≥0

sup
fN∈F L(fN, k) = min

k≥0
sup
fN∈F

∫
N
g(n, k)fN(n)dn (21)

= min
k≥0 d(k). (22)
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Equality (22) follows because

sup
fN∈F

∫
N
g(n, k)fN(n)dn ≤ sup

fN∈F

∫
N
d(k)fN(n)dn (23)

= d(k) (24)
= sup

n
{g(n, k) : n ∈ N} (25)

and because strict inequality in (23) implies that there exists
an n1 ∈ N such that

sup
fN∈F

∫
N
g(n, k)fN(n)dn < g(n1, k) because of (24)-(25)

=
∫
N
g(n, k)δ(n− n1)dn. (26)

But this is a contradiction because the supremum of a set of
numbers cannot be less than any one of those numbers. The
definition (24) implies that d(k) = max{d−(k), d+(k)}. So
(21)-(22) reduces to

min
k≥0

sup
fN∈F L(fN, k) = min

k≥0 max{d−(k), d+(k)}. (27)

Theorem 1(a) below gives necessary and sufficient
conditions for the existence of optimal SR noise. It also gives
the exact form of the optimal N-P SR noise pdf fNopt if it
exists when PD−sup ≥ PD+

sup
. Theorem 2 likewise gives

necessary and sufficient conditions for the existence of fNopt

when PD−sup < PD+
sup

. The proofs are in the appendix.

Theorem 1: (a) Suppose that PD−sup ≥ PD+
sup

and that
G− 6= ∅. Then

fNopt(n) = δ(n− no) (28)

is an optimal SR noise pdf for Neyman-Pearson detection
for some no ∈ G− and PFA(fNopt) ≤ α. The Neyman-Pearson
optimal SR noise does not exist for the given test level α
if G− = ∅. But there exists a noise pdf sequence {fNr}∞r=1

of the form (28) such that PFA(fNr ) ≤ α for all r and such that

lim
r→∞

PD(fNr ) = PDsup . (29)

(b) Suppose that PD−sup < PD+
sup

. Then PFA(fNopt) = α if
the Neyman-Pearson optimal SR noise pdf fNopt(n) exists.

The optimal noise pdf in Theorem 1(a) is not unique if G−

contains more than one noise realization.

Theorem 2: Suppose that PD−sup < PD+
sup

. Then (a)-(d)
hold:

(a) There exists k∗ ≥ 0 such that d+(k∗) = d−(k∗) = d(k∗)
and min{d+(k), d−(k)} ≤ d(k∗) ≤ max{d+(k), d−(k)} for
any k ≥ 0.

(b) Suppose the noise pdf fN satisfies PD(fN) = d(k∗) > PD(0)

and PFA(fN) = α. Then fN is a Neyman-Pearson optimal noise
pdf. So d(k∗) is the optimal N-P SR detection probability
PDopt .

(c) Suppose that there exist n1 ∈ D− and n2 ∈ D+ such that
g(n1, k

∗) = d−(k∗) = d(k∗) = g(n2, k
∗) = d+(k∗). Then

fNopt(n) = λδ(n− n1) + (1− λ)δ(n− n2) (30)

is the optimal Neyman-Pearson SR noise pdf if d(k∗) > PD(0)

and if

λ =
PFA(n2)− α

PFA(n2)− PFA(n1)
. (31)

(d) Neyman-Pearson optimal SR noise does not exist if (c)
does not hold. But there does exist a noise pdf sequence
{fNr}∞r=1 of the form (30)-(31) such that

lim
r→∞

PD(fNr ) = d(k∗). (32)

The optimal noise pdf is not unique if more than one pair of
noise realizations satisfy Theorem 2(c).

Theorem 2 implies the following necessary conditions for
the optimal N-P SR noise.

Corollary 1: Suppose that PD−sup < PD+
sup

and that PD

and PFA are differentiable in the interior of the noise space N .

(a) Suppose that fNopt is an optimal N-P SR noise pdf of the
form (30)-(31) in Theorem 2(c) and that n1 and n2 of (30)-(31)
are the interior points of N . Then n1 and n2 satisfy

PD(n1)− kPFA(n1) = PD(n2)− kPFA(n2) (33)

∇PD(n1) − k∇PFA(n1) = 0 (34)
∇PD(n2) − k∇PFA(n2) = 0 (35)

for some k ≥ 0.

(b) Suppose further that for each k ≥ 0 at most one solution
of ∇PD(n) - k∇PFA(n) = 0 in Rm is a global maximum of
PD(n) − k(PFA(n)−α). Then fNopt = δ(n− nα) is the optimal
N-P SR noise pdf if such a solution nα exists in D0. There
is otherwise no optimal N-P SR noise in the interior of N .

Equalities (33)-(35) are necessary but not sufficient because
the noise realizations n1 and n2 that satisfy (34)-(35) need
not be global maxima. They need not be in D+ and D− even
if they are global maxima. So (33)-(35) may not help find
the optimal SR noise. But Corollary 1(b) shows that these
necessary conditions can suggest when optimal SR noise does
not exist. Section V-A applies Corollary 1(b) to a hypothesis
test between two Gaussian densities.

Theorem 3 gives a sufficient condition to detect an N-P SR
noise benefit in detectors that use a single noisy observation
Y ∈ R to decide between H0 and H1.

Theorem 3: Let the detection and false-alarm probabilities
PD and PFA be real-valued functions that are differentiable in a
neighborhood of 0. Suppose that P ′′D (0) and P ′′FA(0) exist and
that PFA(0) = α. Suppose also that PFA does not have a local
minimum at 0 and that PD does not have a local maximum at
0. Then an N-P SR noise exists if

P ′′D (0) |P ′FA(0)| > P ′′FA(0) |P ′D(0)| (36)

or if sgn(P ′FA(0)) sgn(P ′D(0)) ≤ 0.

Theorem 3 implies the following corollary. It gives a
sufficient condition for a SR noise benefit in N-P signal
detectors if they partition the real line R into acceptance and
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rejection intervals and if they use a single noisy observation
Y ∈ R to decide between H0 and H1.

Corollary 2: Suppose that the thresholds Θ = {θ1, ..., θk}
partition the real line R into acceptance and rejection regions
and that PFA(0) = α. Suppose also that the hypothesized pdfs
fi are differentiable at all the thresholds in Θ. Define s(j)
= 1 if θj is a left endpoint of any rejection interval. Else
let s(j) = −1. Then additive noise can improve the N-P
detection of such a detector if PFA does not have a local
minimum at 0, if PD does not have local maximum at 0, and if(∑

j s(j)f
′
0(θj)

) ∣∣∣(∑j s(j)f1(θj)
)∣∣∣

>
(∑

j s(j)f
′
1(θj)

) ∣∣∣(∑j s(j)f0(θj)
)∣∣∣ (37)

or sgn(
∑
j s(j)f0(θj))sgn(

∑
j s(j)f1(θj)) ≤ 0.

The inequality (37) holds because the hypotheses
of Corollary 2 imply that P ′′D (0)|P ′FA(0)| =
−
(∑

j s(j)f
′
1(θj)

) ∣∣∣(∑j s(j)f0(θj)
)∣∣∣ and P ′′FA(0)|P ′D(0)| =

−
(∑

j s(j)f
′
0(θj)

) ∣∣∣(∑j s(j)f1(θj)
)∣∣∣ in (36).

III. N-P SR NOISE FINDING ALGORITHM

This section presents an algorithm for finding a near-
optimal SR noise density. Theorems 1 and 2 give the exact
form for the optimal SR noise pdf. But such a noise pdf may
not be easy to find in a given noise space N . So we present
an algorithm that uses Theorems 1 and 2 and successive
approximations to find a near-optimal SR noise from a finite
set of noise realizations Ñ ⊂ N .

The algorithm takes as input ε, α, Ñ in (9)-(19), and the
respective detection and false alarm probabilities PD and PFA

in Ñ . The algorithm first searches for a constant noise from
the set G− if the inequality PD−sup ≥ PD+

sup
holds. The

algorithm otherwise finds a number k(i) at each iteration
i such that |d−(k(i)) − d(k∗)| ≤ 2−i+1 and this k(i) gives
|d+(k(i)) − d−(k(i))| < ε in at most imax = dlog2 (2/ε)e+1
iterations. Then the algorithm defines the noise Ñ ′ as the
random combination of ñ1 ∈ D− and ñ2 ∈ D+ so that
g(ñ1, k(imax)) = d−(k(imax)), g(ñ2, k(imax)) = d+(k(imax)), and
PFA(fÑ′) = α.

Theorem 4(a) below shows that for all ε > 0 the algorithm
finds an SR noise Ñ ′ from Ñ in at most imax = dlog2 (2/ε)e+1
iterations such that 0 ≤ PD(fÑopt)−PD(fÑ′) ≤ ε. Here Ñopt is
the optimal N-P SR noise in Ñ and fÑopt is the pdf of Ñopt.
Theorem 4(b) shows that 0 ≤ PD(fNopt)−PD(fÑ′) ≤ (τ + ε) if
for each n ∈ N there exists an ñ ∈ Ñ so that

|PD(n)− PD(ñ)| ≤ τ and (38)
PFA(ñ) ≤ PFA(n) (39)

and if Nopt is the optimal N-P SR noise in N with pdf fNopt .
Thus the algorithm will find a near-optimal noise Ñ ′ for any
small positive ε if we choose Ñ such that τ is sufficiently

small.

SR Noise Finding Algorithm

Let D+ = {ñ ∈ Ñ : (PFA(ñ)− α) ≥ 0}

Let D− = {ñ ∈ Ñ : (PFA(ñ)− α) ≤ 0}

Let P
D+

sup
= max{PD(ñ) : ñ ∈ D+}

Let P
D−sup

= max{PD(ñ) : ñ ∈ D−}

Let G− = {ñ ∈ D− : PD(ñ) = P
D−sup

}

If P
D−sup

≥ P
D+

sup

f
Ñopt

(n) = δ(n− ñ0) for any ñ0 ∈ G−

Else

Let D0 = {ñ ∈ Ñ : (PFA(ñ)-α) = 0} and k(0) = 1

Let d−(k(0)) = max{PD(ñ)-(PFA(ñ)-α): ñ ∈D−}

Let d+(k(0)) = max{PD(ñ)-(PFA(ñ)-α): ñ ∈D+}

Let ds(1) = d−(k(0)) and df(1) = d+(k(0))

Let i = 1 and istop =
⌈

log2

(
2
ε

)⌉
While |d−(k(i))-d+(k(i))| > ε and i ≤ istop

Let dr(i) = (ds(i) + df(i))/2

Let k(i) = min{(PD(ñ)-dr(i))/(PFA(ñ)-α): ñ ∈D−\D0}

Let d+(k(i)) = max{PD(ñ)-k(i)(PFA(ñ)-α): ñ ∈D+}

Let d−(k(i)) = dr(i) and ds(i + 1) = dr(i)

If d+(k(i)) > d−(k(i))

Let df(i + 1) = min
{
d+(k(i),max{ds(i), df(i)}

}
Else

Let df(i + 1) = max
{
d+(k(i),min{ds(i), df(i)}

}
End If

Let i = i + 1

End While

If |d+(k(i− 1))-d−(k(i− 1))| > ε

Let t = sgn[d+(k(i− 1))− d−(k(i− 1))]

Let k(i) = max{

(
PD(ñ)-(d−(k(i-1))+tε)

)
(PFA(ñ)−α)

: ñ∈D+\D0}

Let d+(k(i)) = d−(k(i− 1)) + tε

Let d−(k(i)) = max{PD(ñ)-k(i)(PFA(ñ)-α): ñ ∈D−}

Else

Let k(i) = k(i− 1)

End If

f
Ñ′ (n) = λδ(n− ñ1) + (1− λ)δ(n− ñ2) (∗)

where ñ1 ∈D− : PD(ñ1)-k(i)(PFA(ñ1)-α) = d−(k(i)),

ñ2 ∈D+ : PD(ñ2)-k(i)(PD(ñ2)-α) = d+(k(i)),

and λ =
PFA(ñ2)−α

PFA(ñ2)−PFA(ñ1)

End If
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Theorem 4:
(a) Pick any ε > 0. Then the above algorithm finds an
N-P SR noise Ñ ′ from Ñ in at most imax = dlog2 (2/ε)e+1
iterations so that

PD(fÑopt) ≥ PD(fÑ′) ≥ PD(fÑopt)− ε and (40)
PFA(fÑ′) ≤ α. (41)

(b) The suboptimal detection performance with noise Ñ ′ is
at most τ+ε less than the optimal SR detection with noise Nopt

if Ñ satisfies (38)-(39):

PD(fNopt) ≥ PD(fÑ′) ≥ PD(fNopt)− (τ + ε). (42)

We next show that the noise-finding algorithm is much
faster than exhaustive search if PD−sup < PD+

sup
for large

number of noise realizations. Suppose that the number
of elements in the discretized sets D−, D+, and D0 are
respectively M , T , and V . Then Theorem 2(c) implies that
exhaustive search needs to consider all M×T noise realization
pairs (ñ−, ñ+) ∈ D− × D+ and find the pair that corresponds
to the maximal value of λPD(ñ−) + (1 − λ)PD(ñ+) where
λ = PFA(ñ

+)−α
PFA(ñ+)−PFA(ñ−) to find the optimal noise Ñopt in Ñ .

Thus exhaustive search needs to find the maximum from the
set of M × T elements. But the algorithm first finds the
maximum from the smaller set of only M elements and from
the smaller set of only T elements to find the respective
values of d−(k(0)) and d+(k(0)). The algorithm next finds
the minimum from the set { (PD(ñ)−dr(i))

(PFA(ñ)−α) : ñ ∈ D−\D0}
of only M − V elements and finds the maximum from
the set {PD(ñ) − k(i)(PFA(ñ) − α) : ñ ∈ D+} of only T
elements to get the respective values of k(i) and d+(k(i))
at each iteration i = 1, ..., dlog2 (2/ε)e. Then it finds the
maximum from the set of T−V elements and from the set
of M elements during the last iteration if needed. Theorem
4(a) shows that the algorithm finds the near-optimal noise
Ñ ′ or randomization in just imax = dlog2 (2/ε)e + 1 iterations
such that PD(fÑopt)−PD(fÑ′) ≤ ε. So the algorithm is faster
than exhaustive search even for very small values of ε if
both M and T are large. The two applications in Section V
specifically show that the noise-finding algorithm requires
fewer iterations than the upper-bound number of iterations imax.

IV. NOISE BENEFITS IN INEQUALITY-CONSTRAINED

STATISTICAL DECISION PROBLEMS

We show that randomization and noise benefits extend
beyond Neyman-Pearson signal detection. Researchers
have found randomization benefits in inequality-constrained
statistical decisions such as average-power-constrained signal
transmission and jamming strategies [52] as well as in pricing
and scheduling for a network access point that maximizes the
time-average profit subject to an average-transmission-rate
constraint [53]. Azizoglu [52] showed that the optimal
channel switching strategy for an average-power-constrained
transmitter time-shares between at most two channels and
power levels to minimize the receiver-end error probability

in multiple additive noise channels. Longbo and Neely [53]
studied a pricing and transmission scheduling problem for a
network access point to maximize the time-average profit.
They showed that randomization of at most two business-price
tuples suffices for the access point to achieve its optimal time-
average profit under the average-transmission-rate constraint.
These examples are all special cases of noise benefits in
expected payoff maximization in statistical decision problems
that have one inequality constraint on the expected cost.

We now extend the previous results to a broad class
of expected payoff maximization problems subject to an
inequality-constrained expected cost such that the payoff
and cost are real-valued and bounded nonnegative Borel-
measurable functions on the noise space N ⊆ Rm. Let
h be the payoff function and c be the cost function.
We want to maximize the average payoff EfN (h(N)) =∫
N h(n)fN(n)dn subject to the average cost constraint
EfN (c(N)) =

∫
N c(n)fN(n)dn ≤ γ. Define the noise N as SR

noise if its addition improves the expected payoff EfN (h(N))
while the expected cost EfN (c(N)) stays at or below a preset
maximum expected cost γ. Suppose that the respective cost
and payoff in the absence of noise are c(0) ≤ γ and h(0).
Then EfN (h(N)) > h(0) and EfN (c(N)) ≤ γ hold if N is SR
noise. So we want to find the optimal SR noise Nopt such that
EfN (h(N)) ≤ EfNopt

(h(Nopt)) for any other SR noise N and
such that EfNopt

(c(Nopt)) ≤ γ.

Theorems 1-4 hold if we replace PD, PFA, and α in (9)-(42)
with the respective real-valued bounded nonnegative payoff
function h, cost function c, and the preset maximum expected
cost γ. Theorem 4 holds with imax = dlog2 (ξ/ε)e+1 if ξ/2
bounds both h and c. So the SR noise-finding algorithm can
find a near-optimal SR noise Ñ

′
that improves the expected

payoff in statistical decisions with one inequality constraint
on the expected cost if we choose a small enough ε and a
set of noise realizations Ñ such that τ is sufficiently small
in (38). We omit the proofs of the above statements because
they are substantially the same as the proofs of Theorems
1-4 in the Appendix but with minor notational changes. The
next section applies the algorithm to find a near-optimal
signal power randomization for a power-constrained anti-
podal signal transmitter that improves the MAP detection in
Gaussian-mixture noise.

V. APPLICATIONS OF THE SR NOISE-FINDING

ALGORITHM

This section presents two applications of the SR noise-
finding algorithm. The first application finds a near-optimal
SR noise for a suboptimal one-sample Neyman-Pearson hy-
pothesis test between two Gaussian distributions. The second
application gives a near-optimal signal power randomization
for a power-constrained anti-podal signal transmitter in addi-
tive Gaussian-mixture channel noise where the receiver uses
optimal MAP signal detection.
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A. Near-optimal SR noise for a suboptimal one-sample

Neyman-Pearson hypothesis test of variance

Consider a hypothesis test between two Gaussian densities
H0: f0(x) = 1√

6π
e
−x2

6 vs. H1: f1(x) = 1√
2π
e
−(x−1)2

2 where
we want to decide between H0 and H1 using only a
single observation of X at the significance level α = 0.05.
Figure 1(a) shows both f0 and f1. Note that the likelihood
ratio f1(x)/f0(x) =

√
3e−

2x2−6x+3
6 is not monotonic. So

the optimal Neyman-Pearson test function requires the two
thresholds θ1 = 1.342 and θ2 = 1.658 for the optimal decision.
It rejects H0 if X ∈ [θ1, θ2] and if the test significance or
preset false-alarm probability is α = 0.05. The optimal N-P
detection probability is 0.11.

Suppose that the detection system can use only one thresh-
old θ due to resource limits or some design constraint. Such
a suboptimal detector must reject H0 when X > θ. Then θ =
2.85 for α = PFA(0) = 0.05. The noiseless detection probability
is PD(0) = 0.0322. Here PD(n) = 1−Φ(θ− 1−n) and PFA(n)
= 1−Φ( θ−n√

3
) for the standard normal cumulative distribution

function Φ(z) = 1√
2π

∫ z
−∞ e

−w2/2dw. Then inequality (37) of
Corollary 2 becomes (θ-1) > θ/3. So θ = 2.85 satisfies this
sufficient condition. So there exists additive SR noise N that
improves the detection performance of the suboptimal detector.
But the existence of this SR noise N does not itself imply the
existence of optimal SR noise Nopt if the noise space is R.
Note that PD(n) and PFA(n) are monotonic increasing on R and
PD−sup = PD(0) < PD+

sup
= 1. Then Theorem 1(b) implies

that the corresponding false-alarm probability is α = 0.05 if
the optimal N-P SR noise exists. Suppose that the optimal N-
P SR noise exists. Then the necessary condition of Corollary
1(a) becomes P ′D(n)− kP ′FA(n) = f1(θ − n) - kf0(θ − n) = 0
where f0 and f1 are the pdfs defined above. Then there exists
u > 0 such that f1(n) > kf0(n) for all n ∈ (ni, ni + u)
and f1(n) < kf0(n) for all n ∈ (ni − u, ni) if ni maximizes
PD(n)− k(PFA(n)−α). Then at most one solution of P ′D(n) −
kP ′FA(n) = 0 is a global maximum of PD(n)−k(PFA(n)−α) for
each k ≥ 0. So Corollary 1(b) implies that optimal N-P SR
noise does not exist if the noise space is R. But the hypothesis
of Theorem 2(c) does hold if we restrict the noise space to
a compact interval (say [-3,3]) because PD(n) and PFA(n) are
continuous functions of n.

We next apply the algorithm to find near optimal noise in
N = [−3, 3] for ε = 2−20. Consider the discretized set Ñ of
noise realizations starting from -3 up to 3 with an increment
of 0.0001: Ñ = [-3:0.0001:3]. Ñ satisfies (38)-(39) for τ
= 0.00004 because 0.4 bounds f0 and f1. Figure 2 plots
g(ñ, k(i)) = PD(ñ) - k(i)(PFA(ñ)-α) before the first iteration (i
= 0) where k(0) = 1 and after the 17th iteration (i = 17). The
noise-finding algorithm finds the value k(17) = 1.8031 in just
17 (< imax = 22) iterations such that |d+(k(17)) - d−(k(17))| <
ε = 2−20. Note that g(ñ1,k(17)) = d−(k(17)) at ñ1 = -3 ∈ D−
and that g(ñ2,k(17)) = d+(k(17)) at ñ2 = 2.1433 ∈ D+. Then

f
Ñ′(n) = λδ(n+ 3) + (1− λ)δ(n− 2.1433) (43)

with λ =
(PFA(2.1433)− 0.05)

(PFA(2.1433)− PFA(−3))
= 0.8547 (44)

−3 −2 −1 0 1 2 3
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Noise realization

Signal detection

without noise P
D
(0) = 0.0322

d−(k(0))

d−(k(17))

d+(k(0))

d+(k(17))

ñ2 =2.1433

SR detection
improvement
0.09 − 0.0322
= 0.0578

ñ1 =−3

d−(k(17)) = d+((17)) = 0.0894

before iterations (i=0)
k(0) = 1

iteration i = 17
k(17) = 1.8031

Significance level
α = 0.05

Plots of P
D

( vs. noise realizations

ñ

PD(ñ)−k(i)[PF A(ñ)−α ]

PD(ñ)−k(i)[PF A(ñ)−α ]

ññ) − k(i)[P
FA

(ñ) − α]

Fig. 2. Finding near-optimal Neyman-Pearson SR noise. The two
curves plot g(ñ, k(i)) = PD(ñ) - k(i)(PFA(ñ) − α) before the first
iteration (i = 0) and after the 17th iteration (i = 9) where k(0) =
1. The detection probability is PD(0) = 0.0322 in the absence of
additive noise. The noise-finding algorithm finds a value of k(17)

= 1.8031 in 17 iterations such that |d+(k(17)) − d−(k(17))| < ε

= 2−20. Note that g(ñ1, k(17)) = d−(k(17)) at ñ1 = -3 ∈ D− and
g(ñ2, k(17)) = d+(k(17)) at ñ2 = 2.1433 ∈ D+. Then (43)-(44) give
the pdf of a near-optimal N-P SR noise Ñ ′ and PD(fÑ′) = 0.0894.
So the N-P SR noise Ñ ′ increases the detection probability PD 177%

from 0.0322 to 0.0894.

is the pdf of a near-optimal N-P additive SR noise Ñ ′ because
PD(f

Ñ′) = 0.0894 and because Theorem 4(b) implies that the
detection probability PD(fNopt) for the optimal N-P SR noise
Nopt in N = [−3, 3] will be at most 0.00004 + 2−20 more than
PD(f

Ñ′). So the algorithm finds a near-optimal N-P SR noise
that gives a 177% increase in the detection probability of the
single-threshold suboptimal test from 0.0322 to 0.0894. The
noise-enhanced detection probability 0.0894 is fairly close to
the optimal N-P detection probability 0.11.

B. Near-optimal signal power randomization for a power-

constrained signal transmitter

The detection performance of a MAP receiver can
sometimes benefit from signal power randomization or
time-sharing in an average-power-constrained anti-podal
signal transmitter if the channel noise pdf is multimodal. The
noise-finding algorithm finds a near-optimal signal power
distribution or randomization in an average-power-constrained
transmitter that improves the MAP receiver’s detection
performance.
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Fig. 3. SR noise (signal-strength randomization) benefits in optimal anti-podal signal detection. Signal power randomization in an average-
power-constrained anti-podal transmitter improves the detection performance of the optimal receiver. The transmitter transmits anti-podal
signals X ∈ {−S, S} such that E(S2)≤ γ = 4.75 and such that both signals values are equally likely: H0: X = −S vs. H1: X = S and
P (H0) = P (−S) = P (S) = P (H0). The receiver receives the noisy observation Y = X + N . N is symmetric Gaussian-mixture channel

noise. The signal probability density is f0(y) = 1

2
√

2π
e
−(y−2−S)2

2 + 1

2
√

2π
e
−(y+2−S)2

2 at the receiver under the hypothesis H0 and is f1(y)

= 1

2
√

2π
e
−(y−2+S)2

2 + 1

2
√

2π
e
−(y+2+S)2

2 under the hypothesis H1. The receiver uses the single noisy observation Y and the optimal MAP
decision rule to decide between H0 and H1. The solid line shows the nonmonotonic and nonconcave plot of the probability of correct
decision PCD versus the signal power S2. Nonconcavity of the plot between the points b and c allows the SR effect to occur. The respective
probability of correct decision PCD is 0.7855 (point a) if the transmitter uses a constant power S2 = 4.75 (a constant signal strength S =
2.1794). The dashed tangent line shows that we can achieve a better probability of correct decision (0.8421 at point d) at the same average
signal power E(S2) = 4.75 if the transmitter time-shares or randomizes appropriately between the signal power levels S2

1 = 1.4908 (point
b) and S2

2 = 9.3697 (point c).

Consider a signal detection hypothesis test where the trans-
mitter transmits anti-podal signals X ∈ {−S, S} where S ∈
S = [0.5, 3.75] and both signal values are equally likely:
H0: X = −S vs. H1: X = S and P (H0) = P (−S) =
P (S) = P (H1). Suppose that the transmitter can use at most
4.75 units of expected power E(S2) and that the receiver
decides between H0 and H1 using a single noisy observation
Y = X + N . Here N is an additive symmetric Gaussian-
mixture channel noise where the signal probability density is
f0(y) = 1

2
√

2π
e
−(y−2−S)2

2 + 1
2
√

2π
e
−(y+2−S)2

2 at the receiver

under the hypothesis H0 and f1(y) = 1
2
√

2π
e
−(y−2+S)2

2 +
1

2
√

2π
e
−(y+2+S)2

2 under the hypothesis H1. Such Gaussian-
mixture channel noise can occur due to co-channel interference
in communication systems [54]–[56]. The receiver is optimal
and hence it uses maximum a posteriori (MAP) signal detec-
tion to maximize the probability of correct decision. Then the
receiver rejects H0 if the likelihood ratio obeys f1(y)/f0(y)
> P (H0)/P (H1) = 1. We assume that the transmitter can

time-share or randomize between the signal power levels so
that the receiver knows the signal power value S2 but does
not know whether the signal is +S or −S.

Let fS be the probability density of the transmitter’s signal
strength S. Define PCD(fS) as the probability of correct deci-
sion and let EfS (S

2) be the average signal power when the
signal-strength pdf is fS. Then we want to find fSopt such that
PCD(fS) ≤ PCD(fSopt) for any fS such that EfSopt

(S2) ≤ 4.75. We
can view PCD(fS) as the average payoff EfS (h(S)) and view
EfS (S

2) as the average cost EfS (c(S)) with the maximum
average cost γ = 4.75. So we can apply the SR noise finding
algorithm to find a near-optimal signal-power pdf fS̃′ from
a discretized set S̃ of signal-power realizations. We use S̃ =
[0.5:0.0001:3.75] and ε = 2−20. Then S̃ satisfies conditions
(38)-(39) for τ = 0.0002 because 0.2 bounds f0 and f1. Both
h and c have upper bound ξ/2 = 10/2. So the iteration upper
bound is imax = dlog2 (ξ/ε)e+1 = 24. The generalization of
Theorem 3 to this example gives the sufficient condition

P ′′CD(s)2s > 2|P ′CD(s)| (45)
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for the SR noise benefits if the maximal average signal power
is s2.

Figure 3 plots the correct-decision probability PCD versus
the signal power S2. The randomized signal power is optimal
because the graph is nonconcave. Azizoglu [52] proved
that the plot of PCD versus S2 is concave if the channel
noise has finite variance and if it has a unimodal pdf that is
continuously differentiable at every point except the mode.
The nonconcavity of the graph in Figure 3 arises from the
bimodal Gaussian-mixture pdf even though the bimodality of
the channel noise pdf does not itself give a nonconcave plot
of PCD versus S2. The probability of correct decision PCD is
0.7855 (point a) if the transmitter uses a constant power S2

= 4.75 (a constant signal strength S = 2.1794). The dashed
tangent line shows that we can achieve a better detection
performance using the same average signal power E(S2) =
4.75. The probability of correct decision PCD is 0.8421 (point
d) if the transmitter time-shares or randomizes appropriately
between the signal power levels S2

1 = 1.4908 (point b) and
S2

2 = 9.3697 (point c). The sufficient condition (45) does not
hold for s2 = 4.75 because the plot of PCD versus S2 is locally
concave at the constant-power operating point a: P ′′CD(s) <
0 < P ′CD(s) at s =

√
4.75. So the noise benefit occurs even

when the sufficient condition (45) does not hold.

The algorithm finds the SR noise or signal-strength random-
ization S̃′ with pdf

f
S̃′(s) = λδ(s− 1.221) + (1− λ)δ(s− 3.061) (46)

where λ =
(3.0612 − 4.74)

(3.0612 − 1.2212)
= 0.5876 (47)

in just 13 (< imax = 24) iterations. So the transmitter
should time-share or randomize between the anti-podal
signals {−1.221, 1.221} and {−3.061, 3.061} with respective
probabilities λ = 0.5876 and 1-λ = 0.4124. This signal-
strength randomization pdf f

S̃′ is nearly optimal because
Theorem 3(b) implies that PCD(fSopt) will be at most 0.0002
+ 2−20 more than PCD(f

S̃′) = 0.8421 for the optimal signal-
strength randomization or for the optimal SR noise Sopt

in S = [0.5, 3.75]. Thus the SR noise algorithm can find
a near-optimal signal power randomization that improves
the average probability of correct decision (from 0.7855 to
0.8421) over the constant power signaling. Chapeau-Blondeau
and Rousseau showed related SR noise benefits in the optimal
Bayesian detection of a periodic square-wave signal in
bimodal Gaussian-mixture phase noise [57] and of a constant
signal in additive bimodal noise [58]. But they did not find
either the optimal or near-optimal noise pdf as in (46)-(47)
for inequality-constrained optimal signal detection.

VI. CONCLUSION

Adding noise can sometimes benefit Neyman-Pearson sta-
tistical signal detection. Theorems 1-3 give necessary and
sufficient conditions for optimal noise densities in such signal
detection. The noise-finding algorithm finds near-optimal SR
noise from a finite set of noise realizations. An upper bound

limits the number of iterations that the algorithm requires
to find this near-optimal noise. These results directly extend
to the general case of maximizing the expected payoff in
statistical decision making with an inequality constraint on
the average cost. Nor are the noise benefits limited to subop-
timal signal detection. Noise or randomization can sometimes
improve the performance of even optimal MAP detectors.
Adding such optimal or near-optimal noise should benefit
many other problems of signal processing and communication.
The general optimization structure should also lead to adaptive
noise-finding algorithms.

APPENDIX

Proofs of Theorems and Corollaries

Theorem 1: (a) Suppose that PD−sup ≥ PD+
sup

and that
G− 6= ∅. Then

fNopt(n) = δ(n− no) (48)

is an optimal SR noise pdf for Neyman-Pearson detection
for some no ∈ G− and PFA(fNopt) ≤ α. The Neyman-Pearson
optimal SR noise does not exist for the given test level α
if G− = ∅. But there exists a noise pdf sequence {fNr}∞r=1

of the form (48) such that PFA(fNr ) ≤ α for all r and such that

lim
r→∞

PD(fNr ) = PDsup . (49)

(b) Suppose that PD−sup < PD+
sup

. Then PFA(fNopt) = α if
the Neyman-Pearson optimal SR noise pdf fNopt(n) exists.

Proof:
Part (a): Suppose that PD−sup ≥ PD+

sup
and that G− 6= ∅.

Then for all k ≥ 0

d−(k) = sup
n

{
PD(n)− k (PFA(n)− α) : n ∈ D−

}
(50)

≥ sup
n

{
PD(n) : n ∈ D−

}
= PD−sup (51)

and similarly d+(k) ≤ PD+
sup

. Then d−(k) ≥ d+(k) for all k
≥ 0 if PD−sup ≥ PD+

sup
. The left-hand side of (27) becomes

min
k≥0

sup
fN∈F L(fN, k) = min

k≥0 d−(k) (52)

= d−(0) because d−(k) is a
nondecreasing function of k

= PD−sup = PDsup . (53)

Thus (6), (8), and (53) imply that k∗ = 0. So we need to find
the pdf fNopt such that

L(fNopt , 0) =
∫
N
PD(n)fNopt(n)dn = PD−sup . (54)

The definition of G− implies that PD(no) = PD−sup = PDsup

for any no ∈ G−. Choose fN(n) as the unit impulse at no:
fN(n) = δ(n− no). Then∫

N
PD(n)fN(n)dn = PD(no) = PD−sup (55)∫

N
PFA(n)fN(n)dn = PFA(no) ≤ α. (56)
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So fN is the optimal SR noise pdf and hence

fNopt = δ(n− no) for any no ∈ G−. (57)

Suppose now that G− = ∅. Then PD(n) < PDsup = PD−sup
for all n ∈ N . Suppose that fN′ is the optimal SR noise pdf.
Then

PD(fN′) =
∫
N
PD(n)fN′(n)d(n) (58)

<

∫
N
PDsupfN′(n)d(n) (59)

because PD(n) < PDsup and

because
∫
N

[
PDsup − PD(n)

]
fN′(n)d(n) = 0

iff
[
PDsup − PD(n)

]
fN′(n) = 0 a.e. on N

= PDsup . (60)

G− = ∅ and the supremum definition of PD−sup further imply
[59] that there exists a sequence of noise realizations {nr}∞r=1

in G− such that

lim
r→∞

PD(nr) = PDsup . (61)

So there exists ns ∈ {nr}∞r=1 ⊂ G− such that PD(ns)
> PD(fN′) and PFA(ns) ≤ α. Define a sequence of noise pdfs
fNr (n) = δ(n−nr). Then fNs contradicts the optimality of fN′

while PFA(fNr ) ≤ α for all r and

lim
r→∞

PD(fNr ) = lim
r→∞

PD(nr) = PDsup . (62)

Part (b): Suppose that PD−sup < PD+
sup

and that G+ 6= ∅.
Suppose also that fN′ is the optimal SR noise pdf such that
PFA(fN′) = v < α and that PD(fN′) ≥ PD(fN) for any other noise
pdf fN . The definition of G+ implies that PFA(n1) ≥ α > v if
n1 ∈ G+. Then PD(n1) = PDsup > PD(fN′) because PFA(fN′) =
v < α and PD−sup < PD+

sup
= PDsup . Define

fN(n) =
α− v

PFA(n1)− v δ(n− n1) +
PFA(n1)− α
PFA(n1)− v fN′(n). (63)

Then fN is a pdf because fN(n) ≥ 0 for all n and
∫
N fN(n)dn

= 1. So
PFA(fN) =

∫
N
PFA(n)fN(n)dn (64)

=
α− v

PFA(n1)− vPFA(n1)

+
PFA(n1)− α
PFA(n1)− v

∫
N
PFA(n)fN′(n)dn (65)

=
α− v

PFA(n1)− vPFA(n1) +
PFA(n1)− α
PFA(n1)− v v (66)

= α (67)
and
PD(fN) =

∫
N
PD(n)fN(n)dn (68)

=
α− v

PFA(n1)− vPD(n1)

+
PFA(n1)− α
PFA(n1)− v

∫
N
PD(n)fN′(n)dn (69)

=
α− v

PFA(n1)− vPDsup +
PFA(n1)− α
PFA(n1)− v PD(fN′)(70)

> PD(fN′) (71)

because PDsup > PD(fN′). But PD(fN) > PD(fN′) contradicts
the optimality of fN′ . So PFA(fN′) = α if fN′ is the optimal SR
noise pdf and if PD−sup < PD+

sup
.

Suppose now that PD−sup < PD+
sup

but G+ = ∅. The
definitions of PD+

sup
and G+ imply that there exists an n1

∈ D+ such that PD(n1) > PD(fN′) because PFA(fN′) = v < α.
Then fN again contradicts the optimality of fN′ if we define
fN as in (63). �

Theorem 2: Suppose that PD−sup < PD+
sup

. Then (a)-(d)
hold:

(a) There exists k∗ ≥ 0 such that d+(k∗) = d−(k∗) = d(k∗)
and min{d+(k), d−(k)} ≤ d(k∗) ≤ max{d+(k), d−(k)} for
any k ≥ 0.

(b) Suppose the noise pdf fN satisfies PD(fN) = d(k∗) > PD(0)

and PFA(fN) = α. Then fN is a Neyman-Pearson optimal noise
pdf. So d(k∗) is the optimal N-P SR detection probability
PDopt .

(c) Suppose that there exist n1 ∈ D− and n2 ∈ D+ such that
g(n1, k

∗) = d−(k∗) = d(k∗) = g(n2, k
∗) = d+(k∗). Then

fNopt(n) = λδ(n− n1) + (1− λ)δ(n− n2) (72)

is the optimal Neyman-Pearson SR noise pdf if d(k∗) > PD(0)

and if

λ =
PFA(n2)− α

PFA(n2)− PFA(n1)
. (73)

(d) Neyman-Pearson optimal SR noise does not exist if (c)
does not hold. But there does exist a noise pdf sequence
{fNr}∞r=1 of the form (72)-(73) such that

lim
r→∞

PD(fNr ) = d(k∗). (74)

Proof:
Part (a): Definitions (14)-(16) d+(k) and d−(k) are
continuous functions of k. d+(k) is further an unbounded
and decreasing function of k. But d−(k) is a nondecreasing
function of k because PD−sup < PD+

sup
. So there exists k∗

> 1 such that d+(k∗) = d−(k∗) if d+(1) > d−(1). There
likewise exists 0 ≤ k∗ < 1 such that d+(k∗) = d−(k∗) if
d+(1) < d−(1) because d+(0) = PD+

sup
> PD−sup = d−(0).

Thus there exists k∗ ≥ 0 such that d+(k∗) = d−(k∗) = d(k∗)
and min{d+(k), d−(k)} ≤ d(k∗) ≤ max{d+(k), d−(k)} for
any k ≥ 0.

Part (b): Part (a) above and (27) imply that

min
k≥0

sup
fN∈F L(fN, k) = min

k≥0 max{d−(k), d+(k)} = d(k∗). (75)

Let fN be a noise pdf such that PD(fN) = d(k∗) > PD(0) and
PFA(fN) = α. Then

L(fN, k
∗) =

∫
N

(PD(n)− k∗(PFA(n)-α)) fN(n)d(n) (76)

=
∫
N
PD(n)fN(n)d(n) (77)

= PD(fN) = d(k∗) (78)

= min
k≥0

sup
fN∈F L(fN, k) by (75). (79)
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So fN is the optimal SR noise pdf.

Part (c): Suppose that there exist n1 ∈ D+ and n2 ∈ D−
such that g(n1, k

∗) = d(k∗) = g(n2, k
∗). Define

fN(n) = λδ(n− n1) + (1− λ)δ(n− n2) (80)

where λ =
PFA(n2)− α

PFA(n2)− PFA(n1)
. (81)

Then

PD(fN) =
∫
N
PD(n)fN(n)d(n) (82)

=
∫
N
PD(n) [λδ(n-n1) + (1-λ)δ(n-n2)] d(n) (83)

= λPD(n1) + (1− λ)PD(n2) (84)
= λd(k∗) + (1− λ)d(k∗) = d(k∗) (85)

and

PFA(fN) =
∫
N
PFA(n)fN(n)d(n) (86)

=
∫
N
PFA(n) [λδ(n-n1) + (1-λ)δ(n-n2)] d(n) (87)

= λPFA(n1) + (1− λ)PFA(n2) (88)

=
PFA(n2)− α

PFA(n2)− PFA(n1)
PFA(n1)

+
(

1− PFA(n2)− α
PFA(n2)− PFA(n1)

)
PFA(n2) (89)

= α. (90)

Then (85), (90), and the result of Part (b) imply that fN(n)
is an optimal SR noise pdf. This optimal noise pdf is not
unique if there exist more than one pair of noise realizations
that satisfy the hypothesis of Theorem 2(c).

Part (d): Define

H+ = {n ∈ D+ : g(n, k∗) = d(k∗)} and (91)
H− = {n ∈ D− : g(n, k∗) = d(k∗)}. (92)

Suppose that H+ 6= ∅ but H− = ∅. So there exists n1 ∈ D+

such that g(n1, k
∗) = d(k∗) but there does not exist n ∈ D−

such that g(n, k∗) = d(k∗). Then g(n, k∗) < d−(k∗) = d(k∗)
for all n ∈ D− by the definition of d−(k∗). Suppose fN′ is
the optimal SR noise pdf with PFA(fN′) = α. Then

PD(fN′) =
∫
N
g(n, k∗)fN′(n)d(n) (93)

≤
∫
D+

g(n, k∗)fN′(n)d(n)

+
∫
D−\D0

g(n, k∗)fN′(n)d(n) (94)

≤
∫
D+

d(k∗)fN′(n)d(n)

+
∫
D−\D0

g(n, k∗)fN′(n)d(n) (95)

<

∫
D+

d(k∗)fN′(n)d(n)

+
∫
D−\D0

d(k∗)fN′(n)d(n) (96)

because g(n, k∗) < d(k∗) for all n ∈ D−
and because∫
D−\D0

[d(k∗)− g(n, k∗)] fN′(n)d(n) = 0 iff

[d(k∗)− g(n, k∗)] fN′(n) = 0 a.e. on D−\D0

= d(k∗). (97)

The supremum definition of d−(k∗) and d(k∗) = d−(k∗)
imply [59] that there exists a sequence of noise realizations
{nr}∞r=1 in D− such that

lim
r→∞

g(nr, k∗) = d(k∗). (98)

Now define a sequence of pdfs

fNr (n) = λrδ(n− n1) + (1− λr)δ(n− nr) (99)

where λr =
PFA(nr)− α

PFA(nr)− PFA(n1)
. (100)

Then PFA(fNr ) = α for all r and

lim
r→∞

PD(fNr ) = lim
r→∞

∫
N
g(n, k∗)fNr (n)d(n) (101)

= lim
r→∞

[λrg(n1, k
∗) + (1-λr)g(nr, k∗)](102)

= lim
r→∞

[λrd(k∗) + (1-λr)g(nr, k∗)] (103)

= d(k∗) lim
r→∞

λr

+ lim
r→∞

g(nr, k∗) lim
r→∞

(1-λr) (104)

= d(k∗) lim
r→∞

λr + d(k∗) lim
r→∞

(1-λr) (105)

= d(k∗). (106)

Hence PFA(fNr ) = α and there exists a positive integer l
such that PD(fNr ) > PD(fN′) for all r ≥ l. This contradicts
the optimality of fN′ . So optimal SR noise does not exist
if H− = ∅ and H+ 6= ∅. Similar arguments also prove the
nonexistence of optimal SR noise in the more general case
when either H+ = ∅ or H− = ∅. �

Corollary 1: Suppose that PD−sup < PD+
sup

and that PD

and PFA are differentiable in the interior of the noise space N .

(a) Suppose that fNopt is an optimal N-P SR noise pdf of
the form (72)-(73) in Theorem 2(c) and that n1 and n2 of
(72)-(73) are the interior points of N . Then n1 and n2 satisfy

PD(n1) − kPFA(n1) = PD(n2) − kPFA(n2) (107)
∇PD(n1) − k∇PFA(n1) = 0 (108)
∇PD(n2) − k∇PFA(n2) = 0 (109)

for some k ≥ 0.
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(b) Suppose further that for each k ≥ 0 at most one solution
of ∇PD(n) - k∇PFA(n) = 0 in Rm is a global maximum of
PD(n) − k(PFA(n)−α). Then fNopt = δ(n− nα) is the optimal
N-P SR noise pdf if such a solution nα exists in D0. There
is otherwise no optimal N-P SR noise in the interior of N .

Proof:
Part (a): Say that fNopt is an optimal SR noise pdf of the
form (72)-(73) in Theorem 2(c). Then g(n1, k

∗) = d(k∗)
= g(n2, k

∗) for some k ≥ 0 and so (107) follows. The
definition of d(k∗) implies that n1 and n2 are maximal points
of g(n, k) for k = k∗. So n1 and n2 satisfy (108)-(109)
for k = k∗ if PD and PFA are differentiable in the interior
of N and if n1 and n2 of (72)-(73) are the interior points of N .

Part (b): Theorem 2(a) implies that there exists k∗ ≥ 0
such that d−(k∗) = d(k∗) = d+(k∗). Now either there exist
n1 ∈ D+ and n2 ∈ D− such that g(n1, k

∗) = d+(k∗) =
d(k∗) = g(n2, k

∗) = d−(k∗) or else the optimal SR noise
does not exist by Theorem 2(d). The former case implies
that n1 and n2 are solutions of ∇PD(n) − k∗∇PFA(n) =
0. But the hypothesis implies that at most one solution
of ∇PD(n) − k∇PFA(n) = 0 in Rm is a global maximum
of PD(n) − k(PFA(n) − α) for each k ≥ 0. So n1 = n2 =
(say) nα ∈ D0 = D− ∩ D+. Then PFA(nα) − α = 0 and
fNopt = δ(n−nα) is the optimal noise pdf by Theorem 2(c). �

Theorem 3: Let the detection and false-alarm probabilities
PD and PFA be real-valued functions that are differentiable in a
neighborhood of 0. Suppose that P ′′D (0) and P ′′FA(0) exist and
that PFA(0) = α. Suppose also that PFA does not have a local
minimum at 0 and that PD does not have a local maximum at
0. Then an N-P SR noise exists if

P ′′D (0) |P ′FA(0)| > P ′′FA(0) |P ′D(0)| (110)

or if sgn(P ′FA(0)) sgn(P ′D(0)) ≤ 0.

Proof: The local version of Taylor’s theorem [60] gives

PD(r)− PD(0) = P ′D(0)r + P ′′D (0)
r2

2
+ η1(r) (111)

where η1(r)
r2 → 0 as r → 0. Likewise

PD(0)− PD(−r) = P ′D(0)r − P ′′D (0)
r2

2
− η2(r) (112)

PFA(r)− PFA(0) = P ′FA(0)r + P ′′FA(0)
r2

2
+ η3(r) (113)

PFA(0)− PFA(−r) = P ′FA(0)r − P ′′FA(0)
r2

2
− η4(r) (114)

where ηi(r)
r2 → 0 as r → 0 for i = 2, 3, and 4.

Now define

ηmax(r) = max{η1(r), η2(r), η3(r), η4(r)}. (115)

Suppose first that both PFA and PD increase at 0. Hence 0
< P ′′D (0)P ′FA(0)−P ′′FA(0)P ′D(0) because of (110). Then (111)-
(115) imply that there exists ζ > 0 such that for all 0 < r < ζ

2ηmax(r)[P ′D(0)+P ′FA(0)]
r2

< P ′′D (0)P ′FA(0)− P ′′FA(0)P ′D(0)(116)

and hence

ηmax(r)[P ′D(0)r + P ′FA(0)r]

< P ′′D (0)
r2

2
P ′FA(0)r − P ′′FA(0)

r2

2
P ′D(0)r. (117)

Rewrite the above inequality as

2P ′D(0)rP ′′FA(0)
r2

2
+ 2P ′D(0)rηmax(r)

< 2P ′FA(0)rP ′′D (0)
r2

2
− 2P ′FA(0)rηmax(r).(118)

This is equivalent to

[P ′FA(0)r+P ′′FA(0) r
2

2 +ηmax(r)][P ′D(0)r − P ′′D (0) r
2

2 +ηmax(r)]

< [P ′FA(0)r − P ′′FA(0)
r2

2
− ηmax(r)]

× [P ′D(0)r+P ′′D (0) r
2

2 − ηmax(r)]. (119)

Then

[PFA(r)− PFA(0)][PD(0)− PD(−r)]
< [PFA(0)− PFA(−r)][PD(r)− PD(0)] (120)

for all 0 < r < ζ because of (111)-(115). Rewrite (120) as

PD(0) <
[PFA(r)− PFA(0)]

[PFA(r)− PFA(−r)]
PD(−r)

+
[PFA(0)− PFA(−r)]
[PFA(r)− PFA(−r)]

PD(r). (121)

This inequality implies that

fN(n) = λδ(n+ r) + (1− λ)δ(n− r) (122)

with λ =
[PFA(r)− PFA(0)]

[PFA(r)− PFA(−r)]
(123)

is an SR noise pdf.

Suppose now that both PFA and PD decrease at 0. Hence
0 < P ′′FA(0)P ′D(0)−P ′′D (0)P ′FA(0) and there exists ζ > 0 such
that for all 0 < r < ζ

-2ηmax(r)[P ′D(0)+P ′FA(0)]
r2

< P ′′FA(0)P ′D(0)−P ′′D (0)P ′FA(0).(124)

Then similar arguments show that (122)-(123) again give an
SR noise pdf.

All other cases obey either PD(0) < PD(−r) and PFA(0)
≥ PFA(−r) or PD(0) < PD(r) and PFA(0) ≥ PFA(r) because
PFA does not have a local minimum at 0 and because PD

does not have a local maximum at 0 by hypothesis. So either
fN(n) = δ(n+r) or fN(n) = δ(n−r) gives an SR noise pdf. �

Theorem 4:
(a) Pick any ε > 0. Then the above algorithm finds an
N-P SR noise Ñ ′ from Ñ in at most imax = dlog2 (2/ε)e+1
iterations so that

PD(fÑopt) ≥ PD(fÑ′) ≥ PD(fÑopt)− ε and (125)
PFA(fÑ′) ≤ α. (126)
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(b) The suboptimal detection performance with noise Ñ ′ is
at most τ+ε less than the optimal SR detection with noise Nopt

if Ñ satisfies (38)-(39):

PD(fNopt) ≥ PD(fÑ′) ≥ PD(fNopt)− (τ + ε) (127)

Proof:
Part (a): The set G− is nonempty and finite because the
noise realization vector Ñ is finite. Suppose that PD−sup ≥
PD+

sup
. Then Theorem 1(a) implies that the optimal noise

Ñopt in Ñ has the form fÑopt(n) = δ(n − ñ0) for any
ñ0 ∈ G−. The algorithm finds such noise if PD−sup ≥ PD+

sup
.

Suppose now that PD−sup < PD+
sup

. Then there exists k∗

≥ 0 such that d+(k∗) = d−(k∗) = d(k∗) by Theorem 2(a).
Also there exist ñ∗1 ∈ D− and ñ∗2 ∈ D+ such that g(ñ∗1, k

∗)
= d−(k∗) = d(k∗) = d+(k∗) = g(ñ∗2, k

∗) because Ñ is finite.
Then Theorem 2(c) implies that the optimal SR noise Ñopt

in Ñ has the pdf fÑopt of the form (72). PD(fÑopt) = α by
Theorem 1(b) while Theorem 2(b) implies that PD(fÑopt) =
d(k∗). The algorithm finds an SR noise Ñ ′ from Ñ and its
pdf fÑ′ is of the form (∗) in the algorithm. This pdf fÑ′
satisfies (126) with equality. So we need to show only that
fÑ′ satisfies (125).

We first show that the SR noise pdf fÑ′ satisfies (125)
if |d−(k(i)) − d(k∗)| ≤ ε and |d+(k(i)) − d(k∗)| ≤ ε for
some i. Theorem 2(a) implies that d+(k(i)) ≥ d(k∗) if
d−(k(i)) ≤ d(k∗) and d+(k(i)) ≤ d(k∗) if d−(k(i)) ≥ d(k∗).
So suppose first that d(k∗)−d−(k(i)) ≤ ε and d+(k(i))
≥ d(k∗). Let ñ1 ∈ D− and ñ2 ∈ D+ such that g(ñ1, k(i)
= d−(k(i)) and g(ñ2, k

∗) = d+(k(i)). Note that PFA(fÑ′) =∫
Ñ PFA(n)fÑ′(n)d(n) = α. Then

PD(fÑ′) =
∫
Ñ

(PD(n)− k(PFA(n)-α)) fÑ′(n)d(n) (128)

= λg(ñ1, k(i)) + (1− λ)g(ñ2, k(i)) (129)
= λd−(k(i)) + (1− λ)d+(k(i)) (130)
≥ λ(d(k∗)− ε) + (1− λ)d(k∗) (131)

because d(k∗)− d−(k(i)) ≤ ε
and d+(k(i)) ≥ d(k∗)

= d(k∗)− λε ≥ d(k∗)− ε
because 0 ≤ λ ≤ 1 (132)

= PD(fÑopt)− ε. (133)

Similar arguments show that PD(fÑ′) ≥ d(k∗) − ε
if d(k∗) − d+(k(i)) ≤ ε and d−(k(i)) ≥ d(k∗). So
we need show only that |d−(k(i)) − d(k∗)| ≤ ε and
|d+(k(i))− d(k∗)| ≤ ε for some i.

We now show that |d−(k(i)) − d(k∗)| ≤ 2
2i for all i. This

implies that |d−(k(i)) − d(k∗)| ≤ ε for i = istop where istop =⌈
log2

(
2
ε

)⌉
. We then prove that |d+(k(i)) − d(k∗)| ≤ ε for i

= istop+1.

We use mathematical induction in i to prove that
|d−(k(i))− d(k∗)| ≤ 2

2i for all i.

Basis Step (i = 1): The definition of dr(i) gives dr(1) =
ds(1) + df(1)

2 where ds(1) = d−(k(0)), df(1) = d+(k(0)),
and k(0) = 1. Both ds(1) and df(1) are between 0 and 2 by
hypothesis. So |ds(1)− df(1)| ≤ 2. Then |dr(1) − ds(1)| =
|dr(1) − df(1)| = |ds(1)− df(1)|

2 ≤ 2
2 . Theorem 2(a) implies

that d(k∗) is between d−(k(0)) (= ds(1)) and d+(k(0)) (=
df(1)). Then |dr(1) − d(k∗)| ≤ |dr(1) − ds(1)| ≤ 2

2 . And
d−(k(1)) = dr(1) holds in the algorithm because k(1) =
min{(PD(ñ) − dr(1))/(PFA(ñ) − α) : ñ ∈ D−\D0}. Hence
|d−(k(1))− d(k∗)| ≤ 2

2 .

Induction Hypothesis (i = m): Suppose that |ds(m)−df(m)|
≤ 2

2m−1 . Then the definition of dr(i) implies that

|dr(m)− ds(m)| = |dr(m)− df(m)| = |ds(m)− df(m)|
2 ≤ 2

2m .
Suppose also that d(k∗) lies between ds(m) and df(m). Then
|dr(m) − d(k∗)| ≤ 2

2m . Note that d−(k(m)) = dr(m) where
k(m) = min{(PD(ñ) − dr(m))/(PFA(ñ) − α) : ñ ∈ D−\D0}
in the algorithm. So |d−(k(m))− d(k∗)| ≤ 2

2m .

Induction Step (i = m+ 1): d(k∗) lies between d−(k(m))

and d+(k(m)) by Theorem 2(a). Suppose that d+(k(m))

> d−(k(m)). d(k∗) also lies between d−(k(m)) and
max{ds(m), df(m)} because d−(k(m)) = dr(m) =
ds(m) + df(m)

2 by definition. So d(k∗) lies between
min{d+(k(m)),max{ds(m), df(m)}} and d−(k(m)) and
where d−(k(m)) ≤ min{d+(k(m)),max{ds(m), df(m)}}.
The algorithm defines ds(m+1) = d−(k(m)) = dr(m) and
df(m+1) = min{d+(k(m)), max{ds(m), df(m)}}. Then
dr(m) < df(m + 1) and d(k∗) lies between ds(m + 1) and
df(m+ 1).

Write |ds(m + 1) − df(m + 1)| = |dr(m) − df(m+1)| ≤
|dr(m) − max{ds(m), df(m)}| ≤ 2

2m . The last inequality
follows from the induction hypothesis while the first
inequality follows from the definition of df(m+1) and the
fact that dr(m) < df(m+ 1). Then |d−(k(m+1))− df(m+1)|
= |dr(m+1) − df(m+1)| = |dr(m+1) − ds(m+1)| =
|ds(m+1)− df(m+1)|

2 ≤ 2
2m+1 because d−(k(m+1)) =

dr(m+1) = ds(m+1) + df(m+1)
2 and |ds(m+1) − df(m+1)|

≤ 2
2m . This proves the induction claim |d−(k(m+1))− d(k∗)|

≤ 2
2m+1 because d(k∗) lies between ds(m+1) and df(m+1).

Similar arguments prove the induction claim when d+(k(m+1))

< d−(k(m+1)).

We have so far proved that |d−(k(i)) − d(k∗)| ≤ ε for i =
istop. But this need not imply that |d+(k(istop)) − d−(k(istop))|
≤ ε. The algorithm finds k(istop+1) such that d+(k(istop+1)) =
d−(k(istop)) + tε where t = sgn[d+(k(istop)) − d−(k(istop))]

if |d+(k(istop)) − d−(k(istop))| > ε. This implies that
|d−(k(istop+1)) − d+(k(istop+1))| ≤ ε because d(k∗) lies
between d−(k(istop+1)) and d+(k(istop+1)) by Theorem 2 (a)
and because |d−(k(istop+1))− d(k∗)| ≤ ε.

Part (b): The optimal SR noise pdf fNopt is of the form
(72)-(73) and so PFA(fNopt) = λPFA(n1) + (1 − λ)PFA(n2) =
α. There exist ñ1 and ñ2 in Ñ that satisfy (38)-(39) by
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hypothesis. Define Ñ ′′ as a noise restricted to Ñ with pdf

fÑ′′(n) = λδ(n− ñ1) + (1− λ)δ(n− ñ2). (134)

Then
α = PFA(fNopt) ≥ λPFA(ñ1) + (1− λ)PFA(ñ2) (135)

because of (39)
= PFA(fÑ′′) because of (134) (136)

and
PD(fNopt) = λPD(n1) + (1-λ)PD(n2) (137)

≤ λ(PD(ñ1) + τ) + (1-λ)(PD(ñ2) + τ) (138)
because of (38) (139)

= PD(fÑ′′) + τ because of (134). (140)

Inequalities (136) and (140) and the fact that Ñ ′′ is restricted
to Ñ imply that

PD(fÑopt) ≥ PD(fÑ′′) ≥ PD(fNopt)− τ (141)

if Ñopt is the optimal SR noise restricted to Ñ such that
PFA(fÑopt) ≤ α. Then inequality (127) follows from (141) and
the result of Part (a). �
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