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Abstract We prove that three independent fuzzy systems can uniformly approxi-
mate Bayesian posterior probability density functions by approximating the prior and
likelihood probability densities as well as the hyperprior probability densities that
underly the priors. This triply fuzzy function approximation extends the recent theo-
rem for uniformly approximating the posterior density by approximating just the prior
and likelihood densities. This approximation allows users to state priors and hyper-pri-
ors in words or rules as well as to adapt them from sample data. A fuzzy system with
just two rules can exactly represent common closed-form probability densities so long
as they are bounded. The function approximators can also be neural networks or any
other type of uniform function approximator. Iterative fuzzy Bayesian inference can
lead to rule explosion. We prove that conjugacy in the if-part set functions for prior,
hyperprior, and likelihood fuzzy approximators reduces rule explosion. We also prove
that a type of semi-conjugacy of if-part set functions for those fuzzy approximators
results in fewer parameters in the fuzzy posterior approximator.
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242 O. Osoba et al.

1 Triply fuzzy function approximation for Bayesian posteriors

We extend a new theorem on uniform Bayesian approximation to the more general
case that allows the use and approximation of hyperprior probability density functions
(pdfs). We have recently shown (Osoba et al. 2011) that independent additive fuzzy
systems H and G can uniformly approximate the respective Bayesian prior pdf h(θ)

and the likelihood pdf g(x |θ) and thereby uniformly approximate the posterior pdf
f (θ |x). The posterior pdf f (θ |x) arises from the usual Bayes Theorem (Kosko 2004)
combination of the prior h(θ) and the likelihood g(x |θ):

f (θ |x) = h(θ)g(x |θ)
∫

h(u)g(x |u)du
. (1)

The last section shows that conjugate and what we call “semi-conjugate” fuzzy if-part
sets can further simplify triply fuzzy function approximation.

The fuzzy posterior approximator F is an additive fuzzy system (Kosko 1992, 1996)
that has the ratio form F(θ |x) = H(θ)G(x |θ)/Q(x). H(θ) is a 1-D standard additive
model (SAM) fuzzy system that uniformly approximates h(θ) in accord with the Fuzzy
Approximation Theorem (Kosko 1994, 1996). G(x |θ) is a 2-D SAM that uniformly
approximates g(x |θ). The integral term Q = ∫

D H(θ)G(x |θ)dθ is the approximate
Bayes factor that integrates over a compact set D of θ values. This Bayesian Approx-
imation Theorem allows users to work with arbitrary priors and likelihoods based
on if-then rules as well as based on familiar closed-form pdfs (Osoba et al. 2011).
The Watkins Representation Theorem in Sect. 2 below further shows that an additive
fuzzy system with just two rules can exactly represent any such closed-form pdf so
long as the pdf is bounded. So fuzzy approximators substantially extend the practical
and theoretical range of Bayesian statistical inference.

Figure 1 shows two simulation instances of this recent Bayesian Approximation
Theorem (Osoba et al. 2011) and the resulting doubly fuzzy approximation of the
posterior pdf. Each fuzzy SAM fuzzy system uses 15 rules. The prior approximator
H(θ) uses sinc-shaped if-part fuzzy sets while the posterior approximator G(x |θ) uses
Gaussian if-part fuzzy sets. The next section defines SAM fuzzy systems and shows
how to adapt these two types of if-part fuzzy sets given training samples from the prior
pdf h(θ) and the likelihood pdf g(x |θ). The samples can be noisy and the approxima-
tors can also use histograms to uniformly approximate the pdfs from noisy random
draws from the pdfs (Osoba et al. 2011). The histograms uniformly approximate the
pdfs in accord with the Glivenko–Cantelli Theorem (Billingsley 1995).

The simulations in Fig. 1 use a standard-normal prior h(θ) = N (0, 1) and the two
different normal likelihoods g(x |θ) = N (−0.25, 1/16) and g(x |θ) = N (2, 1/16).
The well-known conjugacy relation between normal priors and normal likelihoods
yields a normal posterior pdf f (θ |x) (Bickel and Doksum 2001; Carlin and Louis
2009; DeGroot 1970). Iterative Bayesian inference takes the current posterior as the
new prior in the next round of Bayesian inference from new likelihood data. Conjugacy
relations greatly simplify this process but also unduly restrict the choice of Bayesian
priors and likelihoods and thus of posteriors.
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Triply fuzzy function approximation 243

Fig. 1 Doubly fuzzy Bayesian inference: comparison of two normal posteriors and their doubly fuzzy
approximators. The fuzzy approximators use Gaussian and sinc set functions. The doubly fuzzy approxima-
tions use fuzzy prior-pdf approximator H(θ) and fuzzy likelihood-pdf approximator G(x |θ). The sinc-SAM
fuzzy approximator H(θ) uses 15 rules to approximate the normal prior h(θ) = N (0, 1). The Gaussian-
SAM fuzzy likelihood approximator G(x |θ) uses 15 rules to approximate the two likelihood functions
g(x |θ) = N (θ, 1

16 ) for x = −0.25 and x = 2. The two fuzzy approximators used 6,000 learning iterations
based on 500 uniform sample points

We next state the Bayesian Approximation Theorem (Osoba et al. 2011) for sake
of completeness and for comparison with Theorem 2 below.

Theorem 1 Bayesian Approximation Theorem. Suppose that h(θ) and g(x |θ) are
bounded and continuous and that H(θ)G(x |θ) �= 0 almost everywhere. Then the
doubly fuzzy SAM system F(θ |x) = H G/Q uniformly approximates f (θ |x) for all
ε > 0 : |F(θ |x) − f (θ |x)| < ε for all x and all θ .

Our goal is to extend the Bayesian Approximation Theorem to allow the prior pdf
h to depend on its own uncertain parameter τ through hyperprior pdf π(τ) ∼ h(θ |τ)

where random variable τ has pdf π(τ). This hierarchical Bayes case implies a more
complex posterior with an extra parameter dimension:

f (θ, τ |x) ∼ g(x |θ) h(θ |τ) π(τ). (2)

Integrating over τ removes the extra parameter dimension and gives back the original
posterior pdf:

f (θ |x) ∼
∫

g(x |θ) h(θ |τ) π(τ) dτ. (3)
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Fig. 2 Triply fuzzy Bayesian inference: comparison of a 2-D posterior f (μ, τ |x) ∝ g(x |μ)h(μ|τ)π(τ)

and its triply fuzzy approximator F(μ, τ |x). The first panel (a) shows the approximand f (μ, τ |x). The
second panel (b) shows a triply fuzzy approximator F(μ, τ |x) that used a 2-D fuzzy approximation H(μ|τ)

for the conditional prior h(μ|τ) and a 1-D fuzzy approximation �(τ) for the hyperprior pdf π(τ) and a
1-D fuzzy likelihood-pdf approximator G(x |μ). The third panel (c) shows a triply fuzzy approximator
F(μ, τ |x) that used a 2-D fuzzy approximation P(μ, τ) = (H × �)(μ, τ) for the joint prior p(μ, τ) =
(h × π)(μ, τ). The likelihood approximation is the same as in the second panel. The sinc-SAM fuzzy
approximators H(μ|τ) and P(μ, τ) use 6 rules to approximate the respective 2-D pdfs h(μ|τ) = N (1, τ )

and h(μ|τ)π(τ) = N (1, τ )I G(2, 1). The hyperprior Gaussian-SAM approximator �(τ) used 12 rules to
approximate an inverse-gamma pdf π(τ) = I G(2, 1). The Gaussian-SAM fuzzy likelihood approximator
G(x |μ) used 15 rules to approximate the likelihood function g(x |μ) = N (μ, 1

16 ) for x = −0.25. The 2-D
conditional prior fuzzy approximator H(μ|τ) used 15,000 learning iterations based on 6,000 uniform sam-
ple points. The hyperprior fuzzy approximator �(τ) used 6,000 iterations on 120 uniform sample points.
The likelihood fuzzy approximator used 6,000 iterations based on 500 uniform sample points

Theorem 2 below achieves this extension by adding a third SAM system �(τ) to
approximate the hyperprior π(τ). This involves triply fuzzy function approximation of
the posterior. So we call the theorem the Extended Bayesian Approximation Theorem.
The proof of this theorem in the Appendix is quite general and does not depend on
the structure of the uniform fuzzy approximators. So the approximators can be neural
networks or polynomials or any other uniform function approximators.

Figure 2 shows a simulation instance of triply fuzzy function approximation
in accord with the Extended Bayesian Approximation Theorem. It shows that the
2-D fuzzy approximator F(μ, τ |x) approximates the posterior pdf f (μ, τ |x) ∝
g(x |μ)h(μ|τ)π(τ) for hierarchical Bayesian inference. The sample data x is nor-
mal. A normal prior distribution h(μ|τ) = N (1, τ ) models the population mean μ of
the data. An inverse gamma I G(2, 1) hyperprior models the variance τ of the prior. An

inverse gamma hyperprior π(τ) = I G(α, β) has the form π(τ) = e− β
τ

(
β
τ

)α /
τ	(α)

for τ > 0 where 	 is the gamma function. The posterior fuzzy approximator
F(μ, τ |x) is proportional to the triple-product approximator G(x |μ)H(μ|τ)�(τ).
These three adaptive SAMs separately approximate the three corresponding Bayesian
pdfs: G(x |μ) approximates the 1-D likelihood pdf g(x |μ). H(μ|τ) approximates the
2-D conditional prior pdf h(μ|τ). And �(τ) approximates the 1-D hyperprior pdf
π(τ).

Figure 2 also shows a simulation instance where the posterior approximator
F(μ, τ |x) uses a single 2-D approximator P(μ, τ) for the joint prior pdf p(μ, τ) =
h(μ|τ)π(τ) instead of a separate 2-D approximator H(μ|τ) for h(μ|τ) and a
separate 1-D approximator �(τ) for π(τ). Both fuzzy posterior approximators
F(μ, τ |x) ∝ G(x |μ)H(μ|τ)�(τ) and F(μ, τ |x) ∝ G(x |μ)P(μ, τ) quickly and
uniformly approximate the posterior pdf f (μ, τ |θ).
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Triply fuzzy function approximation 245

2 Adaptive additive fuzzy systems

This section reviews the SAM fuzzy systems (Kosko 1994, 1995, 1996; Mitaim and
Kosko 2001). A key property of a SAM fuzzy system F is that it represents the output
F(θ) as a convex combination of the centroids of the then-part fuzzy sets in the
system’s if-then rules.

2.1 SAM fuzzy systems

A SAM fuzzy system computes the output F(θ) by taking the centroid of the sum of the
“fired” or scaled then-part sets: F(θ) = Centroid(w1a1(θ)B1 +· · ·+wmam(θ)Bm).
Then the SAM Theorem states that the output F(θ) is a simple convex-weighted sum
of the then-part set centroids c j (Kosko 1992, 1994, 1996; Mitaim and Kosko 2001):

F(θ) =
∑m

j=1 w j a j (θ)Vj c j
∑m

j=1 w j a j (θ)Vj
=

m∑

j=1

p j (θ)c j . (4)

Here Vj is the finite area of then-part set B j in the rule “If X = A j then Y = B j ”
and c j is the centroid of B j . The then-part sets B j can depend on the input θ and
thus their centroids c j can be functions of θ : c j (θ) = Centroid(B j (θ)). The convex

weights p1(θ), . . . , pm(θ) have the form p j (θ) = w j a j (θ)Vj∑m
i=1 wi ai (θ)Vi

. The convex coeffi-

cients p j (θ) change with each input θ . The positive rule weights w j give the relative
importance of the j th rule. They drop out in our case because they are all equal.

The scalar set function a j : R → [0, 1] measures the degree to which input θ ∈ R
belongs to the fuzzy or multivalued set A j : a j (θ) = Degree(θ ∈ A j ). The sinc set
functions below map into the augmented range [−0.217, 1]. They require some care
in simulations because the denominator in (4) can be zero. We can replace the input
θ with θ ′ in a small neighborhood of θ and so replace the undefined F(θ) with F(θ ′)
when the denominator in (4) equals zero. The fuzzy membership value a j (θ) “fires”
the rule “If 
 = A j then Y = B j ” in a SAM by scaling the then-part set B j to give
a j (θ)B j . The if-part sets can in theory have any shape but in practice they are parame-
trized pdf-like sets such as those we use in Mitaim and Kosko (2001): sinc, Gaussian,
triangle, Cauchy, Laplace, and generalized hyperbolic tangent. The simulations below
use sinc and Gaussian if-part sets. The if-part sets control the function approximation
and involve the most computation in adaptation. Users define a fuzzy system by giv-
ing the m corresponding pairs of if-part A j and then-part B j fuzzy sets. Many fuzzy
systems in practice work with simple then-part fuzzy sets such as congruent triangles
or rectangles. Sinc if-part sets often produce the approximators that converges fastest
in simulations (Mitaim and Kosko 2001).

SAMs define “model-free” statistical estimators in the following sense (Kosko
1996; Lee et al. 2005; Mitaim and Kosko 2001):

E[Y |
 = θ ] = F(θ) =
m∑

j=1

p j (θ)c j (5)
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V [Y |
 = θ ] =
m∑

j=1

p j (θ)σ 2
B j

+
m∑

j=1

p j (θ)[c j − F(θ)]2. (6)

The additive fuzzy structure yields the conditional expectation in (5). The SAM
additive structure (4) yields the more specific form of the conditional variance in (6).
Neither conditional moment involves any assumptions of joint probability structure
such as joint Gaussianity. Nor do they reflect a particular state model such as a linear
model. They are in this sense model-free estimators.

The first term on the right of (6) measures the inherent uncertainty in the m then-part
rules. The second term is an interpolation penalty. It uses the normalized rule-firing
weight p j (θ) to weight how much the fuzzy system’s output F(θ) resembles the cen-
troid c j of the j th then-part set B j . Relations (5) and (6) generalize the usual uncondi-
tional mean and variance of mixture densities (Hogg et al. 2005) both because of their
conditional structure and because (5) and (6) expressly depend on the current input θ .

The fuzzy applications in Lee et al. (2005) plot both the conditional expectation or
F(θ) surfaces and the corresponding conditional variance surfaces. This paper does
not plot the conditional variances because it focuses just on first-order function approx-
imation. We thus ignore the attendant second-order uncertainty of the rules used in
the function approximation.

A SAM fuzzy system F can always approximate a function f or F ≈ f if the fuzzy
system contains enough rules. But multidimensional fuzzy systems F : Rn → R suf-
fer exponential rule explosion in general because they require O(kn) rules (Jin 2000;
Kosko 1995; Mitra and Pal 1996). Optimal rules tend to reside at the extrema or
turning points of the approximand f and so optimal fuzzy rules “patch the bumps”
(Kosko 1995). Learning tends to quickly move rules to these extrema and to fill in with
extra rules between the extremum-covering rules. The supervised learning algorithms
can involve extensive computation in higher dimensions (Mitaim and Kosko 1998,
2001). The respective prior, hyperprior, and likelihood approximators H : R2 → R,
G : R2 → R, and � : R → R require at most O(k2) rules and thus do not suffer rule
explosion. But Theorem 3 below shows that iterative Bayesian inference can produce
its own rule explosion (Osoba et al. 2011).

2.2 The Watkins representation theorem

Fuzzy systems can exactly represent a bounded pdf with a known closed form. Watkins
has shown that in many cases a SAM system F can exactly represent a function f in
the sense that F = f (Watkins 1994, 1995). The Watkins Representation Theorem
states that F = f if f is bounded and if we know the closed form of f . The result is
stronger than this because the SAM system F exactly represents f with just two rules
with equal weights w1 = w2 and equal then-part set volumes V1 = V2:

F(θ) =
∑2

j=1 w j a j (θ)Vj c j
∑2

j=1 w j a j (θ)Vj
(7)
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= a(θ)c1 + ac(θ)c2

a(θ) + ac(θ)
(8)

= f (θ) (9)

if a1(θ) = a(θ) = sup f − f (θ)
sup f −inf f , a2(θ) = ac(θ) = 1−a(θ), c1 = inf f , and c2 = sup f .

The representation technique builds f directly into the structure of the two if-then
rules. A constant f needs a SAM with only one rule. Let h(θ) be any bounded prior
pdf such as the beta β(8, 5) pdf. Then F(θ) = h(θ) holds for all realizations θ if the
SAM’s two rules have the form “If 
 = A then Y = B1” and “If 
 = not-A then
Y = B2” for the if-part set function

a(θ) = sup h − h(θ)

sup h − inf h
= 1 − 1111

7744 θ7(1 − θ)4 (10)

if 
 ∼ β(8, 5). Then-part sets B1 and B2 can have any shape from rectangles to
Gaussians so long as 0 < V1 = V2 < ∞ with centroids c1 = inf h = 0 and
c2 = sup h = 	(13)

	(8)	(5)
( 7

11 )7( 4
11 )4. So the Watkins Representation Theorem lets a

SAM fuzzy system directly absorb a closed-form bounded prior h(θ) if it is available.
The same holds for a bounded likelihood or posterior pdf as in Corollary 3.2.

2.3 ASAM learning laws

An adaptive SAM (ASAM) F can quickly approximate a prior h(θ) (or likeli-
hood) if the following supervised learning laws have access to adequate samples
h(θ1), h(θ2), . . . from the prior. This may mean in practice that the ASAM trains
on the same numerical data that a user would use to conduct a chi-squared or
Kolmogorov-Smirnov hypothesis test or other tests for a candidate pdf. An ASAM
can learn the prior pdf even from noisy random samples drawn from the pdf (Osoba
et al. 2011). Unsupervised clustering techniques can also train an ASAM if there is
sufficient cluster data (Kosko 1992, 1996; Xu 2009). The ASAM prior simulations in
the next section show how H approximates h(θ) when the ASAM trains on samples
from the prior. These approximations bolster the case that ASAMs will in practice
learn the appropriate prior that corresponds to the available collateral data.

ASAM supervised learning uses gradient descent to tune the parameters of the set
functions a j as well as the then-part areas Vj (and weights w j ) and centroids c j . The
learning laws follow from the SAM’s convex-sum structure (8) and the chain-rule
decomposition ∂ E

∂m j
= ∂ E

∂ F
∂ F
∂a j

∂a j
∂m j

for any SAM parameter m j and error E in the
generic gradient-descent algorithm (Kosko 1996; Mitaim and Kosko 2001)

m j (t + 1) = m j (t) − μt
∂ E

∂m j
(11)

where μt is a learning rate at iteration t . We seek to minimize the squared error

E(θ) = 1

2
( f (θ) − F(θ))2 = 1

2
ε(θ)2 (12)
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of the function approximation. Let m j denote any parameter in the set function a j .
Then the chain rule gives the gradient of the error function with respect to the respective
if-part set parameter m j , the centroid c j , and the volume Vj :

∂ E

∂m j
= ∂ E

∂ F

∂ F

∂a j

∂a j

∂m j
(13)

∂ E

∂c j
= ∂ E

∂ F

∂ F

∂c j
(14)

∂ E

∂Vj
= ∂ E

∂ F

∂ F

∂Vj
(15)

with partial derivatives (Kosko 1996; Mitaim and Kosko 2001)

∂ E

∂ F
= −( f (θ) − F(θ)) = − ε(θ) (16)

∂ F

∂a j
= [c j − F(θ)] p j (θ)

a j (θ)
. (17)

The SAM ratio (4) with equal rule weights w1 = · · · = wm gives (Kosko 1996;
Mitaim and Kosko 2001)

∂ F

∂c j
= a j (θ)Vj∑m

i=1 ai (θ)Vi
= p j (θ) (18)

∂ F

∂Vj
= a j (θ)[c j − F(θ)]

∑m
i=1 ai (θ)Vi

= [c j − F(θ)] p j (θ)

Vj
. (19)

Then the learning laws for the then-part set centroids c j and volume Vj have the final
form

c j (t + 1) = c j (t) + μtε(θ)p j (θ) (20)

Vj (t + 1) = Vj (t) + μtε(θ)[c j − F(θ)] p j (θ)

Vj
. (21)

The learning laws for the if-part set parameters follow in like manner by expanding
∂a j
∂m j

in (13).
The simulations in Figs. 1, 2 tune the location m j and the width or dispersion d j

parameters of the if-part set functions a j for sinc and Gaussian if-part sets with the
following learning laws.

2.3.1 Sinc ASAM learning law

Define the sinc function as

sinc(x) = sin(x)

x
(22)
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The sinc set function a j has the form

a j (θ) = sinc

(
θ − m j

d j

)

(23)

with parameter learning laws (Kosko 1996; Mitaim and Kosko 2001)

m j (t + 1) = m j (t) + μtε(θ)[c j − F(θ)] p j (θ)

a j (θ)

(

a j (θ) − cos

(
θ − m j

d j

))
1

θ − m j

(24)

d j (t + 1) = d j (t) + μtε(θ)[c j − F(θ)] p j (θ)

a j (θ)

(

a j (θ) − cos

(
θ − m j

d j

))
1

d j
.

(25)

2.3.2 Sinc 2D ASAM learning law

The sinc set function a j has the form

a j (x, y) = sinc

(
x − mx, j

dx, j

)

sinc

(
y − my, j

dy, j

)

(26)

with parameter learning laws (Kosko 1996; Mitaim and Kosko 2001)

mx, j (t + 1) = mx, j (t) + μtε(x, y)[c j − F(x, y)]
×

(

a j (x, y) − cos

(
x − mx, j

dx, j

)

sinc

(
y − my, j

dy, j

))
p j (x, y)

a j (x, y)

(
1

x − mx, j

)

(27)

dx, j (t + 1) = dx, j (t) + μtε(x, y)[c j − F(x, y)]
×

(

a j (x, y) − cos

(
x − mx, j

dx, j

)

sinc(
y − my, j

dy, j
)

)
p j (x, y)

a j (x, y)

(
1

dx, j

)

. (28)

2.3.3 Gaussian ASAM learning law

The Gaussian set function a j has the form

a j (θ) = exp

{

−
(

θ − m j

d j

)2
}

(29)

with parameter learning laws

m j (t + 1) = m j (t) + μtε(θ)p j (θ)[c j − F(θ)]θ − m j

d2
j

(30)

d j (t + 1) = d j (t) + μtε(θ)p j (θ)[c j − F(θ)] (θ − m j )
2

d3
j

. (31)
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The Gaussian learning laws have the same functional form in the 2-D case. We
replace a j (θ) with a j (x, y):

a j (x, y) = exp

[

−
(

x − mx, j

dx, j

)2

−
(

y − my, j

dy, j

)2
]

(32)

with parameter learning laws

mx, j (t + 1) = mx, j (t) + μtε(x, y)p j (x, y)[c j − F(x, y)] x − mx, j

d2
x, j

(33)

dx, j (t + 1) = dx, j (t) + μtε(x, y)p j (x, y)[c j − F(x, y)] (x − mx, j )
2

d3
x, j

. (34)

3 Triply fuzzy approximation with hyperpriors

We use the term triply fuzzy to describe Bayesian inference where �(τ), H(θ |τ), and
G(x |θ) are the respective uniform approximators for the hyperprior pdf π(τ), the
prior pdf h(θ |τ), and the likelihood pdf g(x |θ). The 2-D pdf p(θ, τ ) = h(θ |τ)π(τ)

describes the dependence between θ and τ .
The statement and proof of both Bayesian approximation theorems require the fol-

lowing notation.The hyperprior pdf is π(τ). The prior is h(θ |τ) and the likelihood is
g(x |θ). P(θ, τ ) is a 2-D SAM fuzzy system that uniformly approximates p(θ, τ ) =
h(θ |τ)π(τ) in accord with the Fuzzy Approximation Theorem (Kosko 1994). G(x |θ)

is a 2-D SAM that uniformly approximates g(x |θ). Let D denote the set of all (θ, τ ) and
let X denote the set of all x . Assume that D and X are compact. Define the Bayes fac-
tors as q(x) = ∫

D p(θ, τ )g(x |θ)dτdθ and Q(x) = ∫
D P(θ, τ )G(x |θ)dτdθ . Assume

that q(x) > 0 so that the posterior f (θ, τ |x) is well-defined for any sample data x .
We can now state the Extended Bayesian Approximation Theorem. The proof is

in the “Appendix” and relies on the Extreme Value Theorem (Munkres 2000). It does
not require that the uniform approximator be a fuzzy system. The vector structure of
the proof also allows the hyperprior prior to depend on its own hyperprior and so on.
Figure 2a shows the approximand or the original posterior pdf. Figure 2b shows the
adapted triply fuzzy approximator of the posterior pdf. Figure 2c shows an adapted
non-separable fuzzy approximator of the posterior.

Theorem 2 Extended Bayesian Approximation Theorem. Suppose that h(θ |τ), π(τ),
and g(x |θ) are bounded and continuous. Suppose that �(τ)H(θ |τ)G(x |θ) =
P(θ, τ )G(x |θ) �= 0 almost everywhere. Then the triply fuzzy SAM system F(θ, τ |x) =
PG/Q uniformly approximates f (θ, τ |x) for all ε > 0 : |F(θ, τ |x)− f (θ, τ |x)| < ε

for all x and all (θ, τ ).

The proof of Theorem 2 also implies that an n-D fuzzy posterior approximator F
uniformly approximates the posterior f .

Figure 3 shows another simulation instance of triply fuzzy function approxima-
tion. But this instance works with a non-conjugate arbitrary Bayesian model. It uses
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Fig. 3 Triply fuzzy Bayesian inference: comparison of a 2-D non-conjugate posterior f (σ, τ |x) ∝
g(x |σ)h(σ |τ)π(τ) and its triply fuzzy approximator F(σ, τ |x). The first panel shows the approximand
f (σ, τ |x). The second panel shows a triply fuzzy approximator F(σ, τ |x) that used a 2-D fuzzy approxi-
mation H(σ |τ) for the conditional prior h(σ |τ) and a 1-D fuzzy approximation �(τ) for the hyperprior pdf
π(τ) and a 1-D fuzzy likelihood-pdf approximator G(x |σ). The Gaussian-SAM fuzzy approximator H(σ |τ)

used 6 rules to approximate the 2-D pdf h(σ |τ) = β(6+2τ, 4). The hyperprior Gaussian-SAM approxima-
tor �(τ) used 12 rules to approximate a beta pdf π(τ) = 1

3 β(12, 4)+ 2
3 β(4, 7). The Gaussian-SAM fuzzy

likelihood approximator G(x |σ) used 12 rules to approximate the likelihood function g(x |σ) = N (0, σ )

for x = 0.25. The 2-D conditional prior fuzzy approximator H(σ |τ) used 6,000 learning iterations based
on 3,970 uniform sample points. The hyperprior fuzzy approximator �(τ) used 15,000 iterations on 1,000
uniform sample points. The likelihood fuzzy approximator G(x |σ) used 15,000 iterations based on 300
uniform sample points

normal data with unknown standard deviation σ . A conditional prior h(σ |τ) =
β(6 + 2τ, 4) models the distribution of the unknown standard deviation. A hyper-
prior π(τ) = 1

3β(12, 4) + 2
3β(4, 7) models the τ parameter of the conditional

prior h(σ |τ). The hyperprior π(τ) = 1
3β(12, 4) + 2

3β(4, 7) is a bimodal mix-
ture of two β pdfs. The 2-D fuzzy approximator F(σ, τ |x) approximates the pos-
terior pdf f (σ, τ |x) ∝ g(x |σ)h(σ |τ)π(τ) for this arbitrary model. The posterior
fuzzy approximator F(σ, τ |x) is again proportional to the triple-product approximator
G(x |σ)H(σ |τ)�(τ). G(x |σ) approximates the 1-D likelihood pdf g(x |σ). H(σ |τ)

approximates the 2-D conditional prior pdf h(σ |τ). And �(τ) approximates the 1-D
hyperprior pdf π(τ).

4 Semi-conjugacy of the if-part sets in the fuzzy posterior approximator

4.1 SAM posterior and if-part conjugacy

This section explores conjugacy and semi-conjugacy effects on the if-part setfunctions
involved in doubly and triply fuzzy Bayesian inferences. We restate Theorem 3 for
the doubly fuzzy case in Osoba et al. (2011) that shows that updates preserve the
SAM structure but with exponentially increasing rules and extend it to triply fuzzy
and any n-many fuzzy cases. Theorem 4 and Corollaries 4.1–4.4 show that updates
also preserve the shapes of the if-part sets (semi-conjugacy of if-part set functions)
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Fig. 4 Conjugacy and semi-conjugacy of the doubly fuzzy posterior if-part set functions aF (θ) =
ah(θ)ag(x |θ). a Gaussian if-part set functions have the form of (77) where ah(θ) = G(1, 1, 1; θ) and

ag(θ) = G(3, 2, 1; θ) give Gaussian aF (θ) = G( 7
5 , 4

5 , e−4/5; θ). b beta if-part set functions have the

form of (93) where ah(θ) = B(0, 4, 2, 3, 29; θ) and ag(θ) = B(1, 6, 6, 12, 9 × 104; θ) give semi-
beta aF (θ). c gamma if-part set functions have the form of (102) where ah = G(0, 1, 2, 3, 2.7; θ) and
ag = G(1, 1, 2, 0.5, 7.4; θ) give semi-gamma aF (θ). d Laplace if-part set functions have the form of (108)
where ah(θ) = L(1, 2; θ) and ag(θ) = L(3, 3; θ) give semi-Laplace aF (θ)

if both SAM fuzzy systems in the doubly fuzzy cases use if-part set functions that
belong to conjugate families in Bayesian statistics. The result also holds for triply
fuzzy systems. Figure 4 shows examples of such if-part sets in Corollaries 4.1–4.4.
The conjugacy of Gaussian if-part sets is straightforward. The conjugacy of the beta,
gamma, and Laplace if-part sets is only partial (semi-conjugacy) because we cannot
combine the functions’ exponents and because two beta set functions or two gamma
set functions need not share the same supports.

Theorem 3 Preservation of SAM structure in fuzzy Bayesian inference:

(i) Doubly fuzzy posterior approximators are SAMs with product rules.
Suppose an m1-rule SAM fuzzy system G(x |θ) approximates (or represents) a

likelihood pdf g(x |θ) and another m2-rule SAM fuzzy system H(θ) approximates (or
represents) a prior h(θ) pdf with m2 rules:

G(x |θ) =
∑m1

j=1 wg, j ag, j (θ)Vg, j cg, j
∑m1

i=1 wg, j ag, j (θ)Vg, j
=

m1∑

j=1

pg, j (θ)cg, j (35)

H(θ) =
∑m2

j=1 wh, j ah, j (θ)Vh, j ch, j
∑m2

j=1 wh, j ah, j (θ)Vh, j
=

m2∑

j=1

ph, j (θ)ch, j (36)

where pg, j (θ) = wg, j ag, j (θ)Vg, j∑m1
i=1 wg, j ag, j (θ)Vg, j

and ph, j (θ) = wh, j ah, j (θ)Vh, j∑m2
i=1 wh, j ah, j (θ)Vh, j

are convex

coefficients:
∑m1

j=1 pg, j (θ) = 1 and
∑m2

j=1 ph, j (θ) = 1. Then (a) and (b) hold:
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(a) The fuzzy posterior approximator F(θ |x) is a SAM system with m = m1m2 rules:

F(θ |x) =
∑m

i=1 wF,i aF,i (θ) VF,i cF,i∑m
i=1 wF,i aF,i (θ) VF,i

. (37)

(b) The m if-part set functions aF,i (θ) of the fuzzy posterior approximator F(θ |x)

are the products of the likelihood approximator’s if-part sets ag, j (θ) and the prior
approximator’s if-part sets ah, j (θ):

aF,i (θ) = ag, j (θ)ah,k(θ). (38)

for i = m2( j −1)+k, j = 1, . . . , m1, and k = 1, . . . , m2. The weights wFi , then-part
set volumes VFi , and centroids cFi also have the same likelihood-prior product form:

wFi = wg, jwh,k (39)

VFi = Vg, j Vh,k (40)

cFi = cg, j ch,k

Q(x)
. (41)

(ii) Triply fuzzy posterior approximators and n-many fuzzy posterior approximators
are SAMs with product rules.

Suppose an m1-rule SAM fuzzy system G(x |θ) approximates (or represents) a like-
lihood pdf g(x |θ), an m2-rule SAM fuzzy system H(θ, τ ) approximates (or represents)
a prior pdf h(θ |τ) with m2 rules, an m3-rule SAM fuzzy system �(θ) approximates
(or represents) a hyper-prior pdf pi(τ ) with m3 rules:

G(x |θ) =
∑m1

j=1 wg, j ag, j (θ)Vg, j cg, j
∑m1

i=1 wg, j ag, j (θ)Vg, j
=

m1∑

j=1

pg, j (θ)cg, j (42)

H(θ, τ ) =
∑m2

j=1 wh, j ah, j (θ, τ )Vh, j ch, j
∑m2

j=1 wh, j ah, j (θ, τ )Vh, j
=

m2∑

j=1

ph, j (θ, τ )ch, j (43)

�(τ) =
∑m3

j=1 wπ, j aπ, j (τ )Vh, j ch, j
∑m3

j=1 wπ, j aπ, j (τ )Vπ, j
=

m3∑

j=1

ph, j (τ )ch, j (44)

where pg, j (θ) = wg, j ag, j (θ)Vg, j∑m1
i=1 wg,i ag,i (θ)Vg,i

, ph, j (θ, τ ) = wh, j ah, j (θ,τ )Vh, j∑m2
i=1 wh,i ah,i (θ,τ )Vh,i

, and pπ, j (τ ) =
wπ, j aπ, j (τ )Vπ, j∑m3
i=1 wπ,i api,i (τ )Vh,i

are convex coefficients:
∑m1

j=1 pg, j (θ) = 1,
∑m2

j=1 ph, j (θ, τ ) = 1,

and
∑m2

j=1 pπ, j (θ) = 1. Then (a) and (b) hold:
(a) The fuzzy posterior approximator F(θ, τ |x) is a SAM system with m = m1m2m3
rules:

F(θ, τ |x) =
∑m

i=1 wF,i aF,i (θ) VF,i cF,i∑m
i=1 wF,i aF,i (θ) VF,i

. (45)
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(b) The m if-part set functions aF,i (θ, τ ) of the fuzzy posterior approximator F(θ, τ |x)

are the products of the likelihood approximator’s if-part sets ag, j (θ), the prior approxi-
mator’s if-part sets ah, j (θ, τ ), and the hyper-prior approximators’s if-part sets aπ, j (τ ):

aF,i (θ, τ ) = ag, j (θ)ah,k(θ, τ )aπ,l(τ ) (46)

for i = l + m3(k − 1) + m2m3( j − 1), j = 1, . . . , m1, k = 1, . . . , m2, and l =
1, . . . , m3. The weights wFi , then-part set volumes VFi , and centroids cFi also have
the same likelihood-prior-hyper-prior product form:

wFi = wg, jwh,kwπ,l (47)

VFi = Vg, j Vh,k Vπ,l (48)

cFi = cg, j ch,kcπ,l

Q(x)
(49)

where Q(x) = ∫
D G(x |θ)H(θ, τ )�(τ) dτdθ .

This implies that the n-many fuzzy posterior approximators are also SAMs with
product rules.

Proof Doubly fuzzy case.
The fuzzy system F(θ |x) has the form

F(θ |x) = H(θ)G(x |θ)
∫
D H(t)G(x |t) dt

(50)

= 1

Q(x)

⎛

⎝
m1∑

j=1

pg, j (θ) cg, j

⎞

⎠

⎛

⎝
m2∑

j=1

ph, j (θ) ch, j

⎞

⎠ (51)

=
m1∑

j=1

m2∑

k=1

pg, j (θ)ph,k(θ)
cg, j ch,k

Q(x)
(52)

=
m1∑

j=1

m2∑

k=1

wg, j ag, j (θ)Vg, j
∑m1

i=1 wg,i ag,i (θ)Vg,i

wh,kah,k(θ)Vh,k∑m2
i=1 wh,i ah,i (θ)Vh,i

cg, j ch,k

Q(x)
(53)

=
∑m1

j=1

∑m2
k=1 wg, j wh,k ag, j (θ)ah,k(θ) Vg, j Vh,k

cg, j ch,k
Q(x)∑m1

j=1

∑m2
k=1 wg, j wh,k ag, j (θ)ah,k(θ) Vg, j Vh,k

(54)
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=
∑m

i=1 wF,i aF,i (θ) VF,i cF,i∑m
i=1 wF,i aF,i (θ) VF,i

(55)

=
m∑

i=1

pF,i (θ) cF,i . (56)


�
Proof Triply fuzzy case.

The fuzzy system F(θ, τ |x) has the form

F(θ, τ |x) = G(x |θ)H(θ, τ )�(τ)
∫
Dθ×Dτ

G(x |t)H(t, s)�(s) dt ds
(57)

= 1

Q(x)

⎛

⎝
m1∑

j=1

pg, j (θ) cg, j

⎞

⎠

⎛

⎝
m2∑

j=1

ph, j (θ, τ ) ch, j

⎞

⎠

⎛

⎝
m3∑

j=1

pπ, j (θ) cπ, j

⎞

⎠ (58)

=
m1∑

j=1

m2∑

k=1

pg, j (θ)ph,k(θ, τ )pπ,l (τ )
cg, j ch,kcπ,l

Q(x)
(59)

=
m1∑

j=1

m2∑

k=1

m3∑

l=1

wg, j ag, j (θ)Vg, j
∑m1

i=1 wg,i ag,i (θ)Vg,i

wh,kah,k(θ, τ )Vh,k
∑m2

i=1 wh,i ah,i (θ, τ )Vh,i
(60)

× wπ,l aπ,l (τ )Vπ,k
∑m3

i=1 wπ,i aπ,i (τ )Vπ,i

cg, j ch,k cπ,l

Q(x)

=
∑m1

j=1
∑m2

k=1
∑m3

l=1 wg, j wh,kwπ,k ag, j (θ)ah,k(θ, τ )aπ,l (τ )Vg, j Vh,k Vπ,l
cg, j ch,k cπ,l

Q(x)
∑m1

j=1
∑m2

k=1
∑m3

l=1 wg, j wh,kwπ,k ag, j (θ)ah,k(θ, τ )aπ,l (τ )Vg, j Vh,k Vπ,l

(61)

=
∑m

i=1 wF,i aF,i (θ) VF,i cF,i∑m
i=1 wF,i aF,i (θ) VF,i

(62)


�

Corollary 3.1 Two-rule representation of g(x |θ).

Suppose a 2-rule fuzzy system G(x |θ) represents a likelihood pdf g(x |θ) and an
m-rule system H(θ) approximates the prior pdf h(θ). Then the fuzzy-based posterior
(or “updated” system) F(θ |x) is a SAM fuzzy system with 2m rules.

Proof Suppose a 2-rule fuzzy system G(x |θ) represents a likelihood pdf g(x |θ):

G(x |θ) =
2∑

j=1

pg, j (θ)cg, j =
2∑

k=1

ag, j (θ)cg, j (63)
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where the if-part set functions have the form (from the Watkins Representation
Theorem)

ag,1(x |θ) = g(x |θ) − inf g(x |θ)

sup g(x |θ) − inf g(x |θ)
(64)

ag,2(x |θ) = ac
g,1(θ) = 1 − ag,1(x |θ) (65)

= sup g(x |θ) − g(x |θ)

sup g(x |θ) − inf g(x |θ)
(66)

and the centroids are cg,1 = sup g and cg,2 = inf g. And suppose that an m-rule
fuzzy system H(θ) with equal weights wi = · · · = wm and volumes Vi = · · · = Vm

approximates (or represents) the prior h(θ). Then (37) becomes

F(θ |x) =
∑m

j=1
∑2

k=1 ag,k(x |θ) ah, j (θ)
cg,k ch, j

Q(x)
∑m

j=1
∑2

k=1 ag,k(x |θ) ah, j (θ)
(67)

=
∑m

j=1 ag,1(x |θ)ah, j (θ)
cg,1ch, j

Q(x)
+ ag,2(x |θ)ah, j (θ)

cg,2ch, j
Q(x)∑m

j=1 ag,1(x |θ) ah, j (θ) + ag,2(x |θ) ah, j (θ)
(68)

=
∑m

j=1 ag,1(x |θ)ah, j (θ)
cg,1ch, j

Q(x)
+ (1 − ag,1(x |θ))ah, j (θ)

cg,2ch, j
Q(x)∑m

j=1 ag,1(x |θ) ah, j (θ) + (1 − ag,1(x |θ)) ah, j (θ)
(69)


�
The above results imply that the number m of rules of a fuzzy system F(θ |x) after

n stages will be m1mn
2 = 2nm rules. So the iterative fuzzy posterior approximator will

in general suffer from exponential rule explosion.
At least one practical special case avoids this exponential rule explosion and pro-

duces only a linear or quadratic growth in fuzzy-posterior rules in iterative Bayesian
inference. Suppose that we can keep track of past data involved in the Bayesian infer-
ence and that g(x1, . . . , xn|θ) = g(x̄n|θ). Then we can compute the likelihood pdf
g(x̄n−1|θ) from g(x̄n|θ) for any new data xn . Then we can update the original prior
H(θ) and keep the number of rules at 2m (or m2) if the fuzzy system uses two rules
(or m rules).

Corollary 3.2 Two-rule representation of both h(θ) and g(x |θ).

Suppose a 2-rule fuzzy system G(x |θ) represents a likelihood function g(x |θ) and
a 2-rule system H(θ) represents the prior h(θ). Then the fuzzy-based posterior F(θ |x)

is a SAM fuzzy system with 4 (2 × 2) rules.

Proof Suppose a 2-rule fuzzy system G(x |θ) represents a likelihood pdf g(x |θ) as in
(63–66). The 2-rule fuzzy system H(θ) likewise represents the prior pdf h(θ):

H(θ) =
2∑

k=1

ph,k(θ)ch,k =
2∑

k=1

ah,k(θ)ch,k . (70)
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The Watkins Representation Theorem implies that the if-part set functions have the
form

ah,1(θ) = h(θ) − inf h(θ)

sup h(θ) − inf h(θ)
(71)

ah,2(θ) = ac
h,1(θ) = 1 − ah,1(θ) (72)

= sup h(θ) − h(θ)

sup h(θ) − inf h(θ)
(73)

with centroids ch,1 = sup h and ch,2 = inf h. Then the SAM posterior F(θ |x) in (37)
represents f (θ |x) with 4 rules:

F(θ |x) =
∑2

j=1
∑2

k=1 ag, j (x |θ) ah,k(θ)
cg, j ch,k

Q(x)
∑2

j=1
∑2

k=1 ag, j (x |θ) ah,k(θ)
(74)

=
2∑

j=1

2∑

k=1

ag, j (x |θ) ah,k(θ)
cg, j ch,k

q(x)
(75)

=
4∑

i=1

aF,i (θ) cF,i (76)

because
∑

ag, j (x |θ) = ∑
ah,k(θ) = 1 and Q(x) = q(x) in (74). 
�

Figure 5 shows the if-part sets ah,k(θ) of the 2-rule SAM H(θ) that represents
the beta prior h(θ) ∼ β(9, 9) and the if-part sets ag, j (θ) of the 2-rule SAM G(x |θ)

that represents the binomial likelihood g(20|θ) ∼ bin(20, 80). The resulting SAM
posterior F(θ |20) that represents f (θ |20) ∼ β(29, 69) has four rules with if-part sets
aF,i (θ) = ag, j (θ)ah,k(θ). The next theorem gives the main result on the conjugacy
structure of doubly and triply fuzzy systems.

Theorem 4 Conjugate fuzzy set functions.

(i) The if-part sets of a doubly fuzzy posterior approximator are conjugate to the if-part
sets of the fuzzy prior approximator. The product fuzzy if-part set functions aF,i (θ)

in Theorem 3.i(b) have the same functional form as the if-part prior set functions ah,k

if ah,k is conjugate to the if-part likelihood set function ag, j .
(ii) The if-part sets of a triply fuzzy posterior approximator are conjugate to the if-part
sets of the fuzzy prior approximator. The product fuzzy if-part set functions aF,i (θ)

in Theorem 3.ii(b) have the same functional form as the if-part prior set functions ah,k

if ah,k is conjugate to the if-part likelihood set function ag, j and if-part likelihood set
function aπ,l .

Proof The product aF,i (θ) = ag, j (θ)ah,k(θ) of two conjugate functions ag, j and ah,k

will still have the same functional form as ag, j (θ) and ah,k(θ). Then the n parameters
α1, . . . , αn define the if-part likelihood set function: ag, j (θ) = f (α1, . . . , αn; θ). The
n parameters β1, . . . , βn likewise define the if-part prior set function ah,k(θ) with the
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Fig. 5 Doubly fuzzy posterior representation. Top: two if-part sets ag, j (θ) of the two-rule SAM likelihood
representation G(x |θ) = g(20|θ) ∼ bin(20, 80) and two if-part sets ah,k (θ) of the 2-rule SAM prior
representation H(x |θ) = h(θ) ∼ β(9, 9). Bottom: four if-part sets aF,i (θ) = ag, j (θ)ah,k (θ) of the 4-rule
SAM posterior representation F(θ |x) = f (θ |x)

same functional form: ah,k(θ) = f (β1, . . . , βn; θ). Then aF,i (θ) also has the same
functional form f given the n parameters γ1, . . . , γn : aF,i (θ) = f (γ1, . . . , γn; θ)

where γl = gl(α1, . . . , αn, β1, . . . , βn) for l = 1 . . . , n for some functions g1, . . . , gn

that do not depend on θ . 
�

Gaussian if-part sets are self-conjugate because of their exponential structure.

Corollary 4.1 Conjugacy of Gaussian if-part sets.

(i) Doubly fuzzy case.
Suppose that the SAM-based prior H(θ) uses Gaussian if-part sets ah,k(θ) =

G(mh,k, dh,k, νh,k; θ) and the SAM-based likelihood G(x |θ) also uses Gaussian if-
part sets ag, j (θ) = G(mg, j , dg, j , νg, j ; θ) where

G(m, d, ν; θ) = νe−(θ−m)2/d2
(77)

for some positive constant ν > 0. Then F(θ |x) in (37) will have set functions aF,i (θ)

that are also Gaussian:

aF,i (θ) = ag, j (θ) ah,k(θ) (78)

= νF,i e
−(θ−m F,i )

2/d2
F,i (79)

= G(m F,i , dF,i , νF,i ; θ) (80)
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where

m F,i = d2
g, j mh,k + d2

h,kmg, j

d2
g, j + d2

h,k

(81)

d2
F,i = d2

g, j d
2
h,k

d2
g, j + d2

h,k

(82)

νF,i = νh,kνg, j exp{− (mh,k − mg, j )
2

d2
g, j + d2

h,k

}. (83)

for j = 1, . . . , m1, k = 1, . . . , m2, and i = m2( j − 1) + k.
(ii) Triply fuzzy case.

Suppose that the SAM-based prior H(θ, τ ) uses factorable (product) Gaussian
if-part sets ahθk(θ, τ ) = G(mhθk, dhθk, νhθk; θ)G(mhτk, dhτk, νhτk; τ), the SAM-
based likelihood G(x |θ) uses Gaussian if-part sets agθ j (θ) = G(mgθ j , dgθ j , νgθ j ; θ),
and the SAM-based hyper-prior �(τ) also uses Gaussian if-part sets ahτ l(τ ) =
G(mhτ l , dhτ l , νhτ l; τ). Then F(θ, τ |x) in (45) will have set functions aF,i (θ, τ ) that
are products of two Gaussian sets:

aF,i (θ, τ ) = ag, j (θ)ah,k(θ, τ )aπ,l(τ ) (84)

= νFθ i e
−(θ−m Fθ i )

2/d2
Fθ i νFτ i e

−(τ−m Fτ i )
2/d2

Fτ i (85)

= G(m Fθ i , dFθ i , νFθ i ; θ)G(m Fτ i , dFτ i , νFτ i ; τ) (86)

where

m Fθ i = d2
gθ j mhθk + d2

hθkmgθ j

d2
gθ j + d2

hθk

(87)

d2
Fθ i = d2

gθ j d
2
hθk

d2
gθ j + d2

hθk

(88)

νFθ i = νhθkνgθ j exp{− (mhθk − mgθ j )
2

d2
gθ j + d2

hθk

} (89)

m Fτ i = d2
πτ lmhτk + d2

hτkmπτ l

d2
πτ l + d2

hτk

(90)

d2
Fτ i = d2

πτ ld
2
hτk

d2
πτ l + d2

hτk

(91)

νFτ i = νhτkνπτ l exp{− (mhτk − mπτ l)
2

d2
πτ l + d2

hτk

}. (92)

for j = 1, . . . , m1, k = 1, . . . , m2, l = 1, . . . , m3, and i = l + m3(k − 1) +
m2m3( j − 1).
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Corollary 4.1 also shows that if the fuzzy approximator H(θ, τ ) uses product if
part set functions ah(θ, τ ) = ahθ (θ)ahτ (τ ) then the fuzzy posterior F(θ, τ |x) also
has product if-part sets aF (θ, τ ) = aFθ (θ)aFτ (τ ). This holds for higher dimension
fuzzy approximators for Bayesian inference. Thus the corollaries below only state the
results for doubly fuzzy cases.

Corollary 4.2 Semi-conjugacy of beta if-part sets.

Suppose that the SAM-based prior H(θ) uses beta (or binomial) if-part sets
ah,k(θ) = B(mh,k, dh,k, αh,k, βh,k, νh,k; θ) and the SAM-based likelihood G(x |θ)

also uses beta (or binomial) if-part sets ag, j (θ) = B(mg, j , dg, j , αg, j , βg, j , νg, j ; θ)

where

B(m , d, α, β, ν; θ) = ν
(θ − m

d

)α(
1 − (

θ − m

d
)
)β

(93)

if 0 < θ−m
d < 1 and for some constant ν > 0. Then the posterior F(θ |x) in (37) will

have if-part set functions aF,i (θ) of semi-beta form

aF,i (θ) = ag, j (θ) ah,k(θ) (94)

= νF,i

(θ − mh,k

dh,k

)αh,k
(

1 − (
θ − mh,k

dh,k
)
)βh,k

(θ − mg, j

dg, j

)αg, j
(

1 − (
θ − mg, j

dg, j
)
)βg, j

(95)

= νF,i

(θ − mh,k

dh,k

)αh,k+αg, j λ jk (θ) (
1 − (

θ − mh,k

dh,k
)
)βh,k+βg, j γ jk (θ)

(96)

if 0 <
θ−mh,k

dh,k
< 1 and 0 <

θ−mg, j
dg, j

< 1 or if θ ∈ (mh,k, mh,k + dh,k) ∩ (mg, j , mg, j +
dg, j ) where

λ jk(θ) = log
(

θ−mh,k
dh,k

)

(
θ − mg, j

dg, j

)

(97)

γ jk(θ) = log
(1− θ−mh,k

dh,k
)

(

1 − θ − mg, j

dg, j

)

. (98)

A special case occurs if mh,k = mg, j and dh,k = dg, j . Then aF,i has the beta
conjugate form:

aF,i (θ) = νF,i

(θ − mh,k

dh,k

)αF,i
(

1 −
(θ − mh,k

dh,k

))βF,i
(99)

= B(mh,k, dh,k, αF,i , βF,i , νF,i ; θ) (100)

if 0 <
θ−mh,k

dh,k
< 1. Here αF,i = αh,k +αg, j , βF,i = βh,k +βg, j , and νF,i = νh,kνg, j .

The if-part fuzzy sets of the posterior approximation in (96) have beta-like form
but with exponents that also depend on θ . Suppose we repeat the updating of the
prior-posterior. Then the final posterior will still have the beta-like if-part sets of the
form
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aF,s(θ) = νF,s

(θ − mh,k

dh,k

)αh,k+∑
i αg,i λik(θ)(

1 −
(θ − mh,k

dh,k

))βh,k+∑
i βg,i γik (θ)

(101)

for θ ∈ D = ∩i (mg,i , mg,i + dg,i ) ∩ (mh,k, mh,k + dh,k).

Corollary 4.3 Semi-conjugacy of gamma if-part sets.

Suppose that the SAM-based prior H(θ) uses gamma (or Poisson) if-part sets
ah,k(θ) = G(mh,k, dh,k, αh,k, βh,k, νh,k; θ) and the SAM-based likelihood G(x |θ)

also uses gamma (or Poisson) if-part sets ag, j (θ) = G(mg, j , dg, j , αg, j , βg, j , νg, j ; θ)

where

G(m , d, α, β, ν; θ) = ν
(θ − m

d

)α

e−( θ−m
d )/β (102)

if θ−m
d > 0 (or if θ > m ) for some constant ν > 0. Then the posterior F(θ |x) in (37)

will have set functions aF,i (θ) of semi-gamma form

aF,i (θ) = ag, j (θ) ah,k(θ) (103)

= νF,i

(θ − mh,k

dh,k

)αh,k
e
−(

θ−mh,k
dh,k

)/βh,k
(θ − mg, j

dg, j

)αg, j
e
−(

θ−mg, j
dg, j

)/βg, j

(104)

= νF,i

(θ − mh,k

dh,k

)αh,k+αg, j log
(
θ−mh,k

dh,k
)
(

θ−mg, j
dg, j

)

e
−(

θ−mh,k
dh,k

)/βh,k−(
θ−mg, j

dg, j
)/βg, j

(105)

= νF,i

(θ − mh,k

dh,k

)αh,k+αg, j log
(
θ−mh,k

dh,k
)
(

θ−mg, j
dg, j

)

× e
−(θ− βg, j dg, j mh,k+βh,k dh,k mg, j

βg, j dg, j +βh,k dh,k
)/

βg, j βh,k dg, j dh,k
βg, j dg, j +βh,k dh,k (106)

if θ > mh,k and θ > mg, j (or θ > max{mh,k, mg, j }).
A special case occurs if mh,k = mg, j and dh,k = dg, j . Then aF,i has gamma form

aF,i (θ) = νF,i

(θ − mh,k

dh,k

)αF,i
e
−(

θ−mh,k
dh,k

)/βF,i

= G(mh,k, dh,k, αF,i , βF,i , νF,i ; θ) (107)

if θ > mh,k . Here αF,i = αh,k + αg, j , βF,i = βg, j βh,k
βg, j +βh,k

, and νF,i = νh,kνg, j .

Corollary 4.4 Semi-conjugacy of Laplace if-part sets.

Suppose that the SAM-based prior H(θ) uses Laplace if-part sets ah,k(θ) =
L(mh,k, dh,k; θ) and the SAM-based likelihood G(x |θ) also uses Laplace if-part sets
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Fig. 6 Laplace semi-conjugacy: plots show examples of semi-conjugate Laplace set functions for the
doubly fuzzy posterior approximator F(θ |x) ∝ H(θ)G(x |θ). The approximator uses five Laplace set
functions aH for the prior approximator H(θ) and five Laplace set functions aG for the likelihood approx-
imator G(x |θ). Thus F(θ |x) is a weighted sum of 25 Laplacian semi-conjugate set functions of the form

aF,i (θ) = exp
(
−| θ−mh,k

dh,k
| − | θ−mg, j

dg, j
|
)

. The plots show that the Laplace semi-conjugate function can

have a variety of shapes depending on the location and dispersion parameters of the prior and likelihood
set functions

ag, j (θ) = L(mg, j , dg, j ; θ) where

L(m , d; θ) = e−| θ−m
d |

. (108)

Then F(θ |x) in (37) will have set functions aF,i (θ) of the (semi-Laplace) form

aF,i (θ) = ag, j (θ) ah,k(θ) = e
−| θ−mh,k

dh,k
|−| θ−mg, j

dg, j
|
. (109)

Figure 6 shows examples of these semi-Laplace forms and their shapes. Convex com-
binations of semi-Laplace set functions give the doubly fuzzy Laplace-SAM posterior
approximators in Fig. 7.

A special case occurs if mh,k = mg, j and dh,k = dg, j . Then aF,i is of Laplace form

aF,i (θ) = e
−| θ−mh,k

dh,k /2 |
. (110)

Such semi-conjugacy differs from outright conjugacy in a crucial respect: The
parameters of semi-conjugate if-part sets increase with each iteration or Bayesian
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4.0 3.0 2.0 1.0 1.0 2.0 3.0 4.0
θ

0.5

1.0

1.5

fLapl θ X & FLapl θ X

Posterior f θ x

Fuzzy based Posterior F θ x

x 0.25
x 2

Fig. 7 Doubly Fuzzy Laplace-SAM approximator for two normal posterior pdfs: fuzzy prior and likelihood
approximators use Laplacian set functions to generate the posterior approximator F(θ |x) for the same nor-
mal posteriors in Fig. 1. The prior and likelihood fuzzy approximators H(θ) and G(x |θ) use Laplace-SAM
instead of sinc-SAMs and Gaussian-SAMs. All fuzzy approximators used 15 rules for 6,000 iterations on
500 uniform sample points

update. The conjugate Gaussian sets in Corollary 4.1 avoid this parameter growth
while the semi-conjugate beta, gamma, and Laplace sets in Corollaries 4.2–4.4 incur
it. The latter if-part sets do not depend on a fixed number of parameters such as centers
and widths as in the Gaussian case. Only the set functions with the same centers m j

and widths d j (in the special cases) will result in set functions for posterior approxima-
tion with the same fixed number of parameters. Coping with this form of “parameter
explosion” remains an open area of research in the use of fuzzy systems in iterative
Bayesian inference.

5 Conclusion

We have shown that additive fuzzy systems can uniformly approximate a Bayesian
posterior even in the hierarchical case when the prior pdf depends on its own uncer-
tain parameter with its own hyperprior. This gives a triply fuzzy uniform function
approximation. That hyperprior can in turn have its own hyperprior. The result will
be a quadruply fuzzy uniform function approximation and so on. This new theorem
substantially extends the choice of priors and hyperpriors from well-known closed-
form pdfs that obey conjugacy relations to arbitrary rule-based priors that depend on
user knowledge or sample data. An open research problem is whether semi-conjugate
rules or other techniques can reduce the exponential rule explosion that both doubly
and triply fuzzy Bayesian systems face in general Bayesian iterative inference.
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Appendix: Proof of Theorem 2

This appendix restates the Extended Bayesian Approximation Theorem and gives its
proof.

Theorem 2 Extended Bayesian Approximation Theorem. Suppose that h(θ |τ), π(τ),
and g(x |θ) are bounded and continuous. Suppose that �(τ)H(θ |τ)G(x |θ) =
P(θ, τ )G(x |θ) �= 0 almost everywhere. Then the triply fuzzy SAM system F(θ, τ |x) =
PG/Q uniformly approximates f (θ, τ |x) for all ε > 0 : |F(θ, τ |x)− f (θ, τ |x)| < ε

for all x and all (θ, τ ).

Proof Write the posterior pdf f (θ, τ |x) as f (θ, τ |x) = p(θ,τ )g(x |θ)
q(x)

and its approxi-

mator F(θ, τ |x) as F(θ, τ |x) = P(θ,τ )G(x |θ)
Q(x)

. The SAM approximations for the prior
and likelihood functions are uniform (Kosko 1996). So they have approximation error
bounds εp and εg that do not depend on x or θ :

|�P| < εp and |�G| < εg (111)

where �P = P(θ, τ )− p(θ, τ ) and �G = G(x |θ)− g(x |θ). The posterior error �F
is

�F = F − f = PG

Q(x)
− pg

q(x)
. (112)

Expand PG in terms of the approximation errors to get

PG = (�P + p)(�G + g) (113)

= �P�G + �Pg + p�G + pg. (114)

We have assumed that PG �= 0 almost everywhere and so Q �= 0. We now derive an
upper bound for the Bayes-factor error �Q = Q − q:

�Q =
∫

D
(�P�G + �Pg + p�G + pg − pg) dτ dθ. (115)

So

|�Q| ≤
∫

D
|�P�G + �Pg + p�G| dτ dθ (116)

≤
∫

D
(|�P||�G| + |�P|g + p|�G|) dτ dθ (117)

<

∫

D
(εpεg + εpg + pεg) dτ dθ by (111). (118)

Parameter set D has finite Lebesgue measure m(D) = ∫
D dτ dθ < ∞ because D

is a compact subset of a metric space and thus (Munkres 2000) it is (totally) bounded.
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Then the bound on �Q becomes

|�Q| < m(D)εpεg + εg + εp

∫

D
g(x |θ) dθ (119)

because
∫
D p(θ, τ )dτ dθ = 1 and g has no dependence on τ .

We now invoke the extreme value theorem (Folland 1999). The extreme value the-
orem states that a continuous function on a compact set attains both its maximum and
minimum. The extreme value theorem allows us to use maxima and minima instead of
suprema and infima. Now

∫
D g(x |θ) dθ is a continuous function of x because g(x |θ)

is a continuous nonnegative function. The range of
∫
D g(x |θ) dθ is a subset of the

right half line (0,∞) and its domain is the compact set D. So
∫
D g(x |θ) dθ attains a

finite maximum value. Thus

|�Q| < εq (120)

where we define the error bound εq as

εq = m(D)εpεg + εg + εp max
x

{∫

D
g(x |θ)dθ

}

. (121)

Rewrite the posterior approximation error �F as

�F = q PG − Qpg

q Q
(122)

= q(�P�G + �Pg + p�G + pg) − Qpg

q(q + �Q)
(123)

Inequality (120) implies that −εq < �Q < εq and that (q − εq) < (q + �Q) <

(q + εq). Then (111) gives similar inequalities for �P and �G. So

q[−εpεg − min(g)εp − min(h)εg] − εq pg

q(q − εq)
< �F

<
q[εpεg + max(g)εp + max(h)εg] + εq pg

q(q − εq)
. (124)

The extreme value theorem ensures that the maxima in (124) are finite. The bound
on the approximation error �F does not depend on θ . But q still depends on the
value of the data sample x . So (124) guarantees at best a pointwise approximation of
f (θ, τ |x) when x is arbitrary. We can improve the result by finding bounds for q that
do not depend on x . Note that q(x) is a continuous function of x ∈ X because pg is
continuous. So the extreme value theorem ensures that the Bayes factor q has a finite
upper bound and a positive lower bound.

The term q(x) attains its maximum and minimum by the extreme value theorem.
The minimum of q(x) is positive because we assumed q(x)>0 for all x . Hölder’s
inequality gives |q|≤ (∫

D |p| dτ dθ
) (‖g(x, θ)‖∞

) = ‖g(x, θ)‖∞ since p is a pdf. So
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the maximum of q(x) is finite because g is bounded: 0< min{q(x)}≤ max{q(x)}<∞.
Then

ε− < �F < ε+ (125)

if we define the error bounds ε− and ε+ as

ε− =
(−εpεg − min{g}εp − min{p}εg

)
min{q} − pgεq

min{q} (
min{q} − εq

) (126)

ε+ =
(
εpεg + max{g}εp + max{p}εg

)
max{g} + pgεq

min{q} (
min{q} − εq

) . (127)

Now εq → 0 as εg → 0 and εp → 0. So ε− → 0 and ε+ → 0. The denominator
of the error bounds must be non-zero for this limiting argument. We can guarantee
this when εq < min{q}. This condition is not restrictive because the functions p and
g fix or determine q independent of the approximators P and G involved and because
εq → 0 when εp → 0 and εg → 0. So we can achieve arbitrarily small εq that
satisfies εq < min{q} by choosing appropriate εp and εg . Then �F → 0 as εg → 0
and εp → 0. So |�F | → 0.

Theorem 2 now follows from the following lemma: If Y is compact and fn −→ f
uniformly then

∫

Y
fn(x, y, z) dy −→

∫

Y
f (x, y, z) dy uniformly. (128)

The result guarantees that uniformity in approximation still holds after marginaliz-
ing a multidimensional uniform approximator. This result implies Theorem 2 because
we have uniform approximators for f (θ, τ |x). We can marginalize over τ to get a pos-
terior approximation in terms of just θ . Thus F −→ f uniformly implies

∫
F dτ −→∫

f dτ uniformly.
We now prove this lemma (128). The uniform convergence of the sequence fn to

f implies that for all ε > 0 there is an n ∈ N such that

| fn(x, y, z) − f (x, y, z)| < ε

for all (x, y, z) ∈ X ×Y ×∏
Zi . Thus

− ε < fn(x, y, z) − f (x, y, z) < ε. (129)

Thus

−
∫

Y
ε dy <

∫

Y
fn(x, y, z) dy −

∫

Y
f (x, y, z) dy
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and

∫

Y
fn(x, y, z) dy −

∫

Y
f (x, y, z) dy <

∫

Y
ε dy .

Y has finite Lebesgue measure m(Y ) = ∫
Y dy because Y is compact. Define sn(x, z) =∫

Y fn(x, y, z) dy and s(x, z) = ∫
Y f (x, y, z) dy. Then

− εm(Y ) < sn(x, z) − s(x, z) < εm(Y ) . (130)

Thus |sn(x, z) − s(x, z)| < εm(Y ) . (131)

Define ε′ as ε′ = εm(Y ). Then for all ε′ > 0 there exists an n ∈ N such that

|sn(x, z) − s(x, z)| < ε′

for all (x, z) ∈ X × ∏
Zi .

Therefore

∫

Y
fn(x, y, z) dy −→

∫

Y
f (x, y, z) dy (132)

uniformly in x and z. 
�
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