
2nd Reading

March 15, 2016 15:23 WSPC/S0219-4775 167-FNL 1650007

Fluctuation and Noise Letters
Vol. 15, No. 1 (2016) 1650007 (23 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219477516500073

The Noisy Expectation-Maximization
Algorithm for Multiplicative Noise Injection

Osonde Osoba∗,†,‡ and Bart Kosko†,§
∗RAND Corporation

Santa Monica, CA 90401-3208, USA

†Signal and Image Processing Institute
Electrical Engineering Department

University of Southern California
Los Angeles, CA 90089-2564, USA

‡oosoba@rand.org
§kosko@usc.edu

Received 17 May 2015
Accepted 2 December 2015
Published 17 March 2016

Communicated by Igor Khovanov

We generalize the noisy expectation-maximization (NEM) algorithm to allow arbitrary
modes of noise injection besides just adding noise to the data. The noise must still satisfy
a NEM positivity condition. This generalization includes the important special case of
multiplicative noise injection. A generalized NEM theorem shows that all measurable
modes of injecting noise will speed the average convergence of the EM algorithm if
the noise satisfies a generalized NEM positivity condition. This noise-benefit condition
has a simple quadratic form for Gaussian and Cauchy mixture models in the case of
multiplicative noise injection. Simulations show a multiplicative-noise EM speed-up of
more than 27% in a simple Gaussian mixture model. Injecting blind noise only slowed
convergence. A related theorem gives a sufficient condition for an average EM noise
benefit for arbitrary modes of noise injection if the data model comes from the general
exponential family of probability density functions. A final theorem shows that injected
noise slows EM convergence on average if the NEM inequalities reverse and the noise
satisfies a negativity condition.

Keywords: Expectation maximization algorithm; noise benefit; stochastic resonance;
maximum likelihood estimation.

1. Noise Boosting the Expectation-Maximization Algorithm

We show how carefully chosen and injected multiplicative noise can speed con-
vergence of the popular expectation-maximization (EM) algorithm. Multiplicative
noise [1] occurs in many applications in signal processing and communications.
These include synthetic aperture radar [2–5], sonar imaging [6, 7], photonics [8],
and random amplitude modulation [9]. A more general theorem allows arbitrary
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modes of combining signal and noise. The result still speeds EM convergence on
average at each iteration so long as the injected noise satisfies a positivity condition.

The EM algorithm generalizes maximum-likelihood estimation to the case of
missing or corrupted data [10, 11]. Maximum likelihood maximizes the conditional
signal probability density function (pdf) f(y|θ) for a random signal variable Y given
a vector of parameters θ. It equally maximizes the log-likelihood ln f(y|θ) since the
logarithm is monotone increasing. So the maximum-likelihood estimate θ∗ is

θ∗ = argmax
θ

ln f(y|θ). (1)

The parameter vector θ can contain means or covariances or mixture weights or any
other terms that parametrize the pdf f(y|θ). The data itself consists of observations
or realizations y of the signal random variable Y . The data can be speech samples
or image vectors or any type of measured numerical quantity. The EM framework
allows for missing or hidden data or so-called latent variables. The random variable
Z denotes all such latent variables. These latent variables can describe unseen states
in a hidden Markov model or hidden neurons in a multilayer neural network. Then
Z appears in the log-likelihood ln f(y|θ) through the pdf identity f(y|θ) = f(y,z|θ)

f(z|y,θ) .
This gives the key EM log-likelihood equality ln f(y|θ) = ln f(y, z|θ)− ln f(z|y, θ).

The EM algorithm estimates the missing information in Z by iteratively maxi-
mizing the probability of Z given both the observed data y and the current param-
eter estimate θk [12]. This involves averaging the log-likelihood ln f(y, z|θk) over
the conditional pdf f(z|y, θk) to form the surrogate likelihood function Q(θ|θk):

Q(θ|θk) = EZ [ln f(y, Z|θ)∣∣Y = y, θk] (2)

=
∫
Z

ln[f(y, z|θ)]f(z|y, θk) dz. (3)

Then EM’s “ascent property” [10] uses Jensen’s inequality [13] and the above EM
log-likelihood equality to ensure that any θ that increases the surrogate likelihood
function Q(θ|θk) can only increase the log-likelihood difference ln f(y|θ)− ln f(y|θk)
or leave it unchanged: ln f(y|θ)

f(y|θk) ≥ Q(θ|θk) − Q(θk|θk). The result is that EM is a
hill–climbing algorithm that can never decrease the log-likelihood ln f(y|θ) at any
step. The algorithm can at most increase the log-likelihood.

The EM algorithm iteratively climbs the closest hill of probability or log-
likelihood until it reaches the peak of maximum likelihood. The peak or mode
corresponds to the locally maximal parameter θ∗. So the EM algorithm converges
to the local likelihood maximum θ∗: θk → θ∗. The EM algorithm halts in prac-
tice when its successive estimates θk differ by less than a given tolerance level:
‖θk−θk−1‖ < 10−tol or when |ln f(y|θk)−ln f(y|θk−1)| < ε for some small positive ε.

The EM algorithm generalizes many popular algorithms. These include the
k-means clustering algorithm [14] used in pattern recognition and big-data anal-
ysis, the backpropagation algorithm used to train deep feedforward and convolu-
tional neural networks [15–17], and the Baum–Welch algorithm used to train hidden
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Markov models [18, 19]. But the EM algorithm can converge slowly if the amount of
missing data is high or if the number of estimated parameters is large [11, 20]. It can
also get stuck at local probability maxima. Users can run the EM algorithm from
several starting points to mitigate the problem of convergence to local maxima.

The Noisy EM (NEM) algorithm [14, 21–23] is a noise-enhanced version of
the EM algorithm that carefully selects noise and then adds it to the data. NEM
converges faster on average than EM does because on average it takes larger steps
up the same hill of probability or of log-likelihood. NEM never takes shorter steps
on average. The largest noise gains tend to occur in the first few steps. So NEM
enhances the ascent property at each iteration. This is a type of nonlinear noise
benefit or stochastic resonance [24–35] that does not depend on a threshold [36, 37].

NEM adds noise N to the data Y if the noise satisfies the NEM average positivity
(nonnegativity) condition:

EY,Z,N |θ∗

[
ln

(
f(Y + N, Z|θk)

f(Y, Z|θk)

)]
≥ 0. (4)

The NEM positivity condition (4) holds when the noise-perturbed complete like-
lihood f(y + N, z|θk) is larger on average than the noiseless likelihood f(y, z|θk)
at the kth step of the algorithm [21, 23]. This noise-benefit condition has a simple
quadratic form when the data or signal model is a mixture of Gaussian pdfs.

The NEM positivity inequality (4) is not vacuous. This holds because the expec-
tation conditions on the converged parameter vector θ∗. Consider instead what
happens in the generic case of averaging a log-likelihood ratio [12]. Take the expec-
tation of the log-likelihood ratio ln f(y|θ)

g(y|θ) with respect to the pdf g(y|θ). This gives

the expectation Eg[ln
f(y|θ)
g(y|θ) ]. But the logarithm is concave. So Jensen’s inequal-

ity gives Eg[ln
f(y|θ)
g(y|θ) ] ≤ ln Eg[

f(y|θ)
g(y|θ) ]. Then the pdf g(y|θ) cancels out of the latter

expectation: ln Eg[
f(y|θ)
g(y|θ) ] = ln

∫
Y

f(y|θ)
g(y|θ)g(y|θ)dy = ln

∫
Y f(y|θ)dy = ln 1 = 0 since

the pdf f(y|θ) integrates to one over the whole sample space. So Eg[ln
f(y|θ)
g(y|θ) ] ≤ 0.

Then a strict positivity condition is impossible. The expectation in (4) does not
lead to such a pdf cancellation in general because the integrating density depends
on θ∗ rather than on θk. Cancellation occurs only when the NEM algorithm has
converged because then θk = θ∗.

A simple argument gives the intuition behind the NEM positivity condition (4)
for additive noise. This argument holds in much greater generality and underlies
much of the theory of noise-boosting both the EM algorithm and Markov chain
Monte Carlo algorithms [37]. Consider a noise sample or realization n that makes a
signal y more probable: f(y + n|θ) ≥ f(y|θ) for some parameter θ. The value y is a
realization of the signal random variable Y . The value n is a realization of the noise
random variable N . Then this pdf inequality holds if and only if ln f(y+n|θ)

f(y|θ) ≥ 0.
Averaging over the signal and noise random variables gives the basic expectation
form of the NEM positivity condition. Averaging implies that the pdf inequality
need hold only almost everywhere. It need not hold on sets of zero probability.
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This allows the user to ignore particular values when using continuous probability
models.

Particular choices of the signal conditional probability f(y|θ) can greatly sim-
plify the NEM sufficient condition. This signal probability is the so-called “data
model” in the EM context of maximum likelihood estimation. We show below that
Gaussian and Cauchy choices lead to simple quadratic NEM conditions when inject-
ing multiplicative noise. An exponential data model leads to an even simpler linear
NEM condition.

The same argument for multiplicative noise suggests that a similar positivity
condition should hold for a noise benefit. This will hold given the corresponding pdf
inequality f(yn|θ) ≥ f(y|θ). This inequality is equivalent to ln f(yn|θ)

f(y|θ) ≥ 0. Then
averaging again gives a NEM positivity condition. There is nothing unique about the
operations of addition or multiplication in this signal-noise context. So a noise ben-
efit should hold for any measurable function φ(y, n) that combines the signal y and
noise n if f(φ(y, n)|θ) ≥ f(y|θ). The four theorems below show that this is the case.

Theorem 1 generalizes the NEM Theorem from additive noise injection Y + N

to arbitrary measurable noise injection φ(Y, N). Theorem 2 states the NEM suf-
ficient condition for the special case where the noise-injection mode is multiplica-
tive: φ(Y, N) = Y N . We call this new condition the m-NEM condition or the
multiplicative-NEM condition. Corollary 1 shows that a mixture of such pdfs sat-
isfies the general NEM property if all the mixed pdfs do. Corollary 2 derives the
specific form for Gaussian and Cauchy signal pdfs. Theorem 3 states a sufficient
NEM condition for arbitrary noise injection when the signal model comes from
the important class of exponential family pdfs. Theorem 4 states the dual NEM
negativity condition for a noise harm or slow-down in EM convergence.

Figure 1 shows an EM speed-up of 27.6% for m-NEM noise injection in the
generic case of a bimodal mixture of two Gaussian pdfs. Sampling from the mix-
ture corresponds to sampling from two subpopulations that have the same variance
but different means. This structure can arise when sampling from a population
that consists of two unknown bipolar signals. The task is threefold: Estimate the
unknown means of the two mixed Gaussian densities. Estimate the unknown vari-
ances of the mixed densities. And estimate the unknown mixture weights. The
mixture weights are non-negative and sum to unity.

The noise-injected EM algorithm estimated all these parameters of the equally
weighted two-pdf Gaussian mixture model. Suppose random variable Yj is Gaus-
sian or normal with mean µj and variance σ2

j : Yj ∼ N(µj , σ
2
j ) with pdf fj(y|µj , σ

2
j ).

Then the two-mixture density in Fig. 1 had the form f(y) = αf1(y|µ1, σ
2
1) + (1 −

α)f2(y|µ2, σ
2
2) = 1

2f1(y| − 2, 4) + 1
2f2(y|2, 4). The data itself came from Mathemat-

ica’s routine for randomly sampling from a Gaussian mixture. The noise-boosted
EM algorithm took on average only seven iterations to estimate the Gaussian mix-
ture parameters α, µ1, µ2, σ

2
1 , and σ2

2 while the noiseless EM algorithm took on
average 10 steps. The optimal initial noise standard deviation was σ∗

N = 0.44.
The simulations “cooled” or “annealed” the noise by multiplying the starting noise
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Fig. 1. Multiplicative noise benefit when estimating the parameters of a sampled Gaussian mix-
ture model. The mixture density f equally weighted two Gaussian probability density functions
with the same variance of 4: f(y) = 1

2
N1(−2, 4) + 1

2
N2(2, 4). The EM algorithm estimated the

mixing weights, the means, and the variances of the two Gaussian densities. Low intensity starting
noise decreased the EM convergence time while higher intensity starting noise increased it. The

multiplicative noise had unit mean with different but decaying standard deviations. The optimal
initial noise standard deviation was σ∗ = 0.44. It gave a 27.6% speed-up over the noiseless EM
algorithm. Optimal m-NEM needed only seven iterations on average to converge to the correct
mixture parameters while noiseless EM needed 10 iterations on average. The m-NEM procedure
injected multiplicative noise that decayed at an inverse-square rate with the iterations.

standard deviation σN with the inverse-square term k−2 at each iteration k. This
gradually shut off the noise injection as we discuss below when we present the details
of the n-NEM algorithm. The far right of Fig. 1 shows a type of swamping effect
where too much injected noise begins to hurt performance compared with noiseless
EM. This appears to be an artifact of injecting such noise into EM’s fixed-point
structure.

Figure 2 shows that ordinary or blind multiplicative noise (not subject to the
m-NEM condition) only slowed EM convergence for the same Gaussian-mixture
problem as in Fig. 1. Blind noise was just noise drawn at random or uniformly from
the set of all possible noise. It was not subject to the m-NEM condition or to any
other condition.

The optimal speed-up using additive noise on the same data model was 30.5% at
an optimal noise power of σ∗ = 1.9. This speed-up was slightly better than the m-
NEM speed-up for the same mixture model of two Gaussian pdfs.

A statistical test for the difference in the averaged optimal convergence times
found that this difference was not statistically significant at the standard 0.05 signif-
icance level. Nor was it significant at the 0.10 or 0.01 levels. The hypothesis test for
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Fig. 2. Blind multiplicative noise did not improve convergence time when using the EM algorithm
to estimate the parameters of the two-pdf Gaussian mixture model f(y) = 1

2
N1(−2, 4)+ 1

2
N2(2, 4).

Such blind noise only increased the average number of iterations that it took the EM algorithm to
converge. This increase in convergence time occurred even when (as in this case) the multiplicative
noise used a cooling schedule to gradually shut off the noise injection.

the difference of means gave the very large bootstrap p-value (achieved significance
level [12]) of 0.492 based on 10,000 bootstraps. That large p-value argues strongly
against rejecting the null hypothesis that there was no statistically significant dif-
ference in the optimal average convergence times of the additive and multiplicative
NEM speed-ups.

A 95%-bootstrap confidence interval for the average difference in optimal con-
vergence time was (−0.44, 0.06). The confidence interval contained zero. So we
cannot reject the null hypothesis that the difference in optimal average conver-
gence times for the two noise-injection modes was statistically insignificant at the
0.05 level. Nor can we reject the null hypothesis at the 0.10 and 0.01 significance
levels because their respective 90% and 99% bootstrap confidence intervals were
(−0.40, 0.02) and (−0.52, 0.13). So there was no statistically significant difference
in the noise speed-ups of the additive and multiplicative cases. An open and impor-
tant research question is whether there are general conditions under which one of
these noise injection modes outperforms the other.

2. General Noise Injection for a NEM Benefit

We next generalize the original proof for additive NEM [21, 23] to NEM that uses
an arbitrary mode of noise injection. The metrical idea behind the proof remains
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the same: a noise benefit occurs on average at an iteration if the noisy pdf is closer
to the optimal pdf than the noiseless pdf is.

The relative entropy D(h||g) measures the pseudo-distance between two pdfs h

and g in a topological space of pdfs. The literature sometimes refers to the relative
entropy as the Kullback–Leibler divergence [13]. An EM noise benefit occurs at iter-
ation k if the noise-injected pdf fN is closer to the optimal or maximum-likelihood
pdf than the noiseless pdf f is:

D(f(y, z|θ∗)‖fN(y, z|θk)) ≤ D(f(y, z|θ∗)‖f(y, z|θk)), (5)

where

fN (y, z|θk) = f(φ(y, N), z|θk), (6)

is the noise-injected pdf for arbitrary measurable function φ.
The relative entropy is asymmetric and has the form of an average logarithm

D(h(u, v)||g(u, v)) =
∫
U

∫
V

ln
[
h(u, v)
g(u, v)

]
h(u, v)dudv, (7)

for positive pdfs h and g over the same support [13]. Convergent sums can replace
the integrals in the discrete case. We follow convention in calling the relative entropy
a pseudo-metric. It is technically only a pre-metric because the relative entropy
between two pdfs is always non-negative. The relative entropy is zero if and only if
the two pdfs are equal almost everywhere. This yields the proof strategy of reducing
the relative entropy with respect to the optimal pdf at each iteration k.

The key point is that the noise-injection mode φ(y, N) need be neither addition
φ(y, N) = y + N nor multiplication φ(y, N) = yN . It can be any measurable
function φ of the data y and the noise N . This generality does not affect the main
proofs for a noise benefit. The proof of Theorem 1 below demonstrates this.

The above relative entropy inequality (5) is logically equivalent to the EM noise-
benefit condition at iteration k if we cast the noise benefit in terms of expecta-
tions [21]:

E[Q(θ∗|θ∗)−QN (θk|θ∗)] ≤ E[Q(θ∗|θ∗)−Q(θk|θ∗)], (8)

where QN is the noise-perturbed surrogate likelihood function

QN (θ|θk) = EZ|Y,θk
[ln fN (y, Z|θ)]. (9)

Any noise N that satisfies this EM noise-benefit condition (8) will on average give
better parameter estimates at each iteration than will noiseless estimates or those
that use blind noise. The relative-entropy version of the noise-benefit condition
allows the same derivation of the generalized NEM condition as in the original case
of additive noise. The result is Theorem 1. The proof assumes finite differential
entropies.

Theorem 1 (Arbitrary Noise Injection NEM Theorem). Let φ(Y, N) be an
arbitrary measurable mode of combining the signal Y with the noise N . Suppose the
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NEM average positivity condition holds at iteration k:

EY,Z,N |θ∗

[
ln

(
f(φ(Y, N), Z|θk)

f(Y, Z|θk)

)]
≥ 0. (10)

Then the EM noise benefit

Q(θk|θ∗) ≤ QN(θk|θ∗) (11)

holds on average at iteration k:

EN,Y |θk
[Q(θ∗|θ∗)−QN (θk|θ∗)] ≤ EY |θk

[Q(θ∗|θ∗)−Q(θk|θ∗)]. (12)

Proof. The proof shows that the noisy pdf (or likelihood) f(φ(y, N), z|θk) is closer
on average to the optimal pdf f(y, z|θ∗) than the noiseless pdf f(y, z|θk) is. We use
relative entropy for this pdf comparison.

Let ck denote the relative entropy between the optimal likelihood and the noise-
less likelihood at iteration k:

ck = D(f(y, z|θ∗)‖f(y, z|θk)). (13)

Let ck(N) denote the relative entropy between the optimal likelihood and the noisy
likelihood:

ck(N) = D(f(y, z|θ∗)‖f(φ(y, N), z|θk)). (14)

The notation ck(N) uses upper-case N rather than lower-case n to emphasize that
this relative entropy is a random variable because the included noise term N is a
random variable. Then the proof derives the average noise-benefit inequality ck ≥
EN [ck(N)] at iteration k.

We first show that the expectation of the Q-function differences in (8) inherits
the pseudo-metrical structure of relative entropy. Write the Q-function expectation
as an integral over Z:

Q(θ|θk) =
∫

Z

ln[f(y, z|θ)]f(z|y, θk)dz. (15)

Then the relative-entropy term ck = D(f(y, z|θ∗)‖f(y, z|θk)) is the expectation over
Y given the current parameter value θk of the difference of Q-functions. This holds
because factoring the conditional pdf f(y, z|θ∗) gives f(y, z|θ∗) = f(z|y, θ∗)f(y|θ∗):

ck =
∫∫

ln
[
f(y, z|θ∗)
f(y, z|θk)

]
f(y, z|θ∗)dz dy (16)

=
∫∫

[ln(f(y, z|θ∗))− ln f(y, z|θk)]f(y, z|θ∗)dz dy (17)

=
∫∫

[ln(f(y, z|θ∗))− ln f(y, z|θk)]f(z|y, θ∗)f(y|θ∗)dz dy (18)
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=
∫

Y |θk

[∫
Z

ln[(f(y, z|θ∗)]f(z|y, θ∗)dz

−
∫

Z

ln[f(y, z|θk)]f(z|y, θ∗)dz

]
f(y|θ∗)dy (19)

=
∫

Y |θk

[Q(θ∗|θ∗)−Q(θk|θ∗)]f(y|θ∗)dy (20)

= EY |θk
[Q(θ∗|θ∗)−Q(θk|θ∗)]. (21)

The noise-injected term ck(N) similarly equals the expectation over Y given θk:

ck(N) =
∫∫

[ln(f(y, z|θ∗))− ln f(φ(y, N), z|θk)]f(y, z|θ∗)dz dy (22)

=
∫∫

[ln(f(y, z|θ∗))− ln f(φ(y, N), z|θk)]f(z|y, θ∗)f(y|θ∗)dz dy (23)

= EY |θk
[Q(θ∗|θ∗)−QN(θk|θ∗)]. (24)

So the expected Q-difference is equivalent to relative entropy. And so it has the same
pseudo-metrical structure. We note also that ck is a constant at each iteration k.
But ck(N) is a random variable since the expectation in (24) does not average out
the noise N .

Take noise expectations over both terms ck and ck(N):

EN [ck] = ck, (25)

EN [ck(N)] = EN [ck(N)]. (26)

Then the pseudo-metrical inequality

ck ≥ EN [ck(N)] (27)

ensures an average noise benefit at iteration k:

EN,Y |θk
[Q(θ∗|θ∗)−QN (θk|θ∗)] ≤ EN,Y |θk

[Q(θ∗|θ∗)−Q(θk|θ∗)]. (28)

We use the inequality condition (27) above to derive a more useful sufficient
condition for a noise benefit. Expand the difference of the relative-entropy terms
ck − ck(N):

ck − ck(N)

=
∫∫

Y,Z

(
ln

[
f(y, z|θ∗)
f(y, z|θk)

]
− ln

[
f(y, z|θ∗)

f(φ(y, N), z|θk)

])
f(y, z|θ∗)dy dz (29)

=
∫∫

Y,Z

(
ln

[
f(y, z|θ∗)
f(y, z|θk)

]
+ ln

[
f(φ(y, N), z|θk)

f(y, z|θ∗)
])

f(y, z|θ∗)dy dz (30)

=
∫∫

Y,Z

ln
[
f(y, z|θ∗)f(φ(y, N), z|θk)

f(y, z|θk)f(y, z|θ∗)
]

f(y, z|θ∗)dy dz (31)

=
∫∫

Y,Z

ln
[
f(φ(y, N), z|θk)

f(y, z|θk)

]
f(y, z|θ∗)dy dz. (32)
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Then take the expectation with respect to the noise random variable N :

EN [ck − ck(N)]

= ck − EN [ck(N)] (33)

=
∫

N

∫∫
Y,Z

ln
[
f(φ(y, n), z|θk)

f(y, z|θk)

]
f(y, z|θ∗)f(n|y)dy dz dn (34)

=
∫∫

Y,Z

∫
N

ln
[
f(φ(y, n), z|θk)

f(y, z|θk)

]
f(n|y)f(y, z|θ∗)dn dy dz (35)

=
∫∫

Y,Z

∫
N

ln
[
f(φ(y, n), z|θk)

f(y, z|θk)

]
f(n|y, z, θ∗)f(y, z|θ∗)dn dy dz (36)

=
∫∫

Y,Z

∫
N

ln
[
f(φ(y, n), z|θk)

f(y, z|θk)

]
f(n, y, z|θ∗)dn dy dz (37)

= EY,Z,N |θ∗

[
ln

f(φ(Y, N), Z|θk)
f(Y, Z|θk)

]
. (38)

The assumption of finite differential entropy for Y and Z ensures that
ln f(y, z|θ)f(y, z|θ∗) is integrable. So the integrand is integrable. Then Fubini’s theo-
rem [38] permits the change in the order of integration in the above multiple integral.
The pdf equality f(n|y, z, θ∗) = f(n|y) holds because the noise random variable N

does not depend on the latent variable Z or on the optimal parameter value θ∗. N

does depend on the signal random variable Y in general. Then factorization gives
the pdf equality f(n|y, z, θ∗)f(y, z|θ∗) = f(n,y,z|θ∗)

f(y,z|θ∗)
f(y, z|θ∗) = f(n, y, z|θ∗).

The result is the logical equivalence

ck ≥ EN [ck(N)] if and only if

EY,Z,N |θ∗

[
ln

(
f(φ(Y, N), Z|θk)

f(Y, Z|θk)

)]
≥ 0. (39)

Then an EM noise benefit occurs on average at iteration k if

EY,Z,N |θ∗

[
ln

(
f(φ(Y, N), Z|θk)

f(Y, Z|θk)

)]
≥ 0. (40)

3. The Special Case of Multiplicative NEM

Theorem 1 allows a direct proof that properly chosen multiplicative noise can speed
average EM convergence. The proof requires only that the noise-injection mode φ

be m-NEM:

φ(Y, N) = Y N. (41)
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Then Theorem 1 gives the following special case for multiplicative noise. We
state this result as Theorem 2 because of the importance of mulitplicative noise
injection.

Theorem 2 (m-NEM Theorem). Suppose the average posiitivity condition holds
for multiplicative noise injection at iteration k:

EY,Z,N |θ∗

[
ln

(
f(Y N, Z|θk)
f(Y, Z|θk)

)]
≥ 0. (42)

Then the EM noise benefit

Q(θk|θ∗) ≤ QN (θk|θ∗) (43)

holds on average at iteration k:

EN,Y |θk
[Q(θ∗|θ∗)−QN (θk|θ∗)] ≤ EY |θk

[Q(θ∗|θ∗)−Q(θk|θ∗)]. (44)

The next section develops the important case of a mixture data model. A key
result is that we can derive mixture NEM benefits by deriving such benefits for the
individual mixed pdfs.

4. Noise-Boosting Mixture Models

Mixture models are by far the most common data models in EM applications.
Mixtures allow a user to create a tunable multimodal pdf by mixing unimodal pdfs.
So this section develops their NEM noise-boosting at some length.

Many of the additive-NEM mixture results apply to the generalized NEM con-
dition without change. Corollary 2 from [21] leads to an m-NEM condition for a
Gaussian mixture model (GMM) because the noise condition applies to each mixed
normal pdf in the mixture. An identical multiplicative noise-benefit condition holds
for a Cauchy mixture model. We state and prove the m-NEM GMM result as a
separate corollary. The resulting quadratic m-NEM condition depends only on the
Gaussian means and not on their variances.

We first review mixture models. This will generalize the simple two-Gaussian
GMM in Figs. 1 and 2 where f(y) = αf1(y|µ1, σ

2
1) + (1 − α)f2(y|µ2, σ

2
2). The EM

algorithm offers a practical way to estimate the parameters of a mixture model.
The parameters consist of the convex or probability mixing weights αj as well as
the individual parameters of the mixed pdfs.

A finite mixture model [12, 39–41] is a convex combination of a finite number
of similar pdfs. So a mixture is a convex or probabilistic combination of similar
sub-populations. The sub-population pdfs are similar in the sense that they all
come from the same parametric family. Mixture models apply to a wide range of
statistical problems in pattern recognition and machine learning [42, 43]. A Gaus-
sian mixture consists of convex-weighted normal pdfs. The EM algorithm estimates
the mixture weights as well as the means and variances of each mixed normal pdf.
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A Cauchy mixture consists likewise of convex-weighted Cauchy pdfs. The GMM is
by far the most common mixture model in practice [44].

Let Y be the observed mixed random variable. Let K be the number of sub-
populations. Let Z ∈ {1, . . . , K} be the hidden sub-population index random vari-
able. The convex population mixing proportions α1, . . . , αK define a discrete pdf for
Z: P (Z = j) = αj . The pdf f(y|Z = j, θj) is the pdf of the jth sub-population where
θ1, . . . , θK are the pdf parameters for each sub-population. We can also denote this
jth mixed density as fj(y|θj) as in Figs. 1 and 2. The sub-population parameter θj

can represent the mean or variance of a normal pdf or both. It can represent any
number of quantities that parametrize the pdf.

Let Θ denote the vector of all model parameters: Θ = {α1, . . . , αK , θ1, . . . , θK}.
The mixing weights α1, . . . , αK are convex coefficients. This means that they are
non-negative and add to unity. So again they define a discrete probability density
for latent or hidden variable Z. Then the joint or “complete” pdf f(y, z|Θ) is

f(y, z|Θ) =
K∑

j=1

αj f(y|j, θj) δ[z − j], (45)

where δ[z − j] = 1 if z = j and δ[z − j] = 0 otherwise. The K likelihoods f(y|j, θj)
are the mixed pdfs in the finite mixture. Their structure determines the sufficient
condition for an m-NEM noise benefit.

The marginal pdf for Y and the conditional posterior pdf for Z given y are

f(y|Θ) =
∑

j

αjf(y|j, θj), (46)

and pZ(j|y, Θ) =
αjf(y|Z = j, θj)

f(y|Θ)
. (47)

The marginal f(y|Θ) has the sum structure (46) after summing over all z terms
on both sides of (45) because of the delta term δ[z − j]. The ratio form (47) of the
posterior pZ(j|y, Θ) follows from Bayes theorem. This holds because (46) is just
the theorem on total probability since the convex mixing weights αj are the prior
probabilities P (Z = j) and since the pdfs f(y|Z = j, θj) are likelihoods. These
posterior pdfs or “responsibilities” [43] are crucial in the EM update equations
below for a Gaussian mixture model.

Rewrite the joint pdf as an exponential (since δ(z − j) = 0 unless z = j):

f(y, z|Θ) = exp


∑

j

[ln(αj) + ln f(y|j, θj)]δ[z − j]


. (48)

This gives a simple linear form for the log-likelihood:

ln f(y, z|Θ) =
∑

j

δ[z − j] ln[αjf(y|j, θj)]. (49)

1650007-12
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EM algorithms for finite mixture models estimate Θ using the sub-population
index Z as the latent variable. An EM algorithm uses (47) to derive the Q-function

Q(Θ|Θk) = EZ|y,Θk
[ln f(y, Z|Θ)] (50)

=
∑

z


∑

j

δ[z − j] ln[αjf(y|j, θj)]


 pZ(z|y, Θk) (51)

=
∑

j

ln[αjf(y|j, θj)]pZ(j|y, Θk). (52)

The EM algorithm has an especially simple form for estimating the param-
eters Θk of a Gaussian mixture model [42, 43]. EM estimates the K mixing
probabilities αj , the K sub-population means µj , and the K sub-population
variances σ2

j . Θk gives the current estimate of the GMM parameters: Θk =
{α1(k), . . . , αK(k), µ1(k), . . . , µK(k), σ2

1(k), . . . , σ2
K(k)}. Then the iterations of the

GMM–EM algorithm reduce to the following update equations based on the K

posterior pdfs pZ(j|y, Θ) in (47):

αj(k + 1) =
1
N

N∑
i=1

pZ(j|yi, Θk), (53)

µj(k + 1) =
∑N

i=1 pZ(j|yi, Θk)yi∑N
i=1 pZ(j|yi, Θk)

, (54)

σ2
j (k + 1) =

∑N
i=1 pZ(j|yi, Θk)(yi − µj(k))2∑N

i=1 pZ(j|yi, Θk)
. (55)

These equations update the parameters αj , µj , and σ2
j with coordinate values that

maximize the Q function in (52). These equations also updated the parameters in
the GMMs in Figs. 1 and 2.

The updates effectively combine both the E-steps and M-steps of the EM proce-
dure. We can alternatively view the E-step as computing the K Bayesian posteriors
pZ(j|y, Θk) that appear in the Q-function in (52). Then the M-step corresponds to
computing the above three updates for αj(k + 1), µj(k + 1), and σ2

j (k + 1).
We turn now to noise-boosting a mixture model. Corollary 1 from [21] gives

a simple pdf-inequality condition when additive noise satisfies the additive NEM
condition (4) for almost all samples y:

f(y + n, z|θ) ≥ f(y, z|θ). (56)

We can derive similar NEM conditions for mixture models. The complete data
likelihood of a mixture model

f(y, z|Θ) =
∑

j

αjf(y|j, θj)δ[z − j] (57)
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allows us to rewrite (56) as

f(y + n, z|Θ)− f(y, z|Θ) =
∑

j

αjδ[z − j](f(y + n|j, θj)− f(y|j, θj)) (58)

=
∑

j

αjδ[z − j]∆fj(y, n), (59)

where ∆fj(y, n) = f(y + n|j, θj)− f(y|j, θj).
Suppose that ∆fj(y, n) ≥ 0 holds for all j. Then (56) holds. So the condition

gives a mixture noise benefit. Corollary 2 from [21] gives the quadratic condition
when ∆fj(y, n) ≥ 0 holds for all j for the case of GMM-NEM with additive noise.

We next extend the above argument to a mixture-model noise benefit condition
that applies to arbitrary noise-signal combinations and arbitrary finite mixture data
models.

Corollary 1 (Generalized NEM Condition for Arbitrary Mixture
Models). Suppose that Y |Z=1, . . . , Y |Z=K are K arbitrary sub-population ran-
dom variables with K corresponding sub-population pdfs f(y|1, θ1), . . . , f(y|K, θK)
and convex mixture weights α1, . . . , αK . Define the mixture-model complete pdf
f(y, z|Θ) as

f(y, z|Θ) =
∑

j

αjf(y|j, θj)δ[z − j], (60)

so that summing over the hidden-variable values z gives the marginal mixture
density

f(y|Θ) =
∑

j

αjf(y|j, θj). (61)

Let φ(Y, N) be an arbitrary measurable mode of combining the signal Y with the
noise N . Then the mixture-pdf NEM noise benefit for general noise injection

f(φ(y, n), z|Θ) ≥ f(y, z|Θ), (62)

holds if

∆fj(y, n) ≥ 0 for all j, (63)

where ∆fj(y, n) = f(φ(y, n)|j, θj)− f(y|j, θj).

Proof. We first show that the mixture inequality (62) invokes the NEM noise
benefit of Theorem 1. The complete mixture-pdf noise-benefit inequality

f(φ(y, n), z|Θ) ≥ f(y, z|Θ), (64)

holds if and only if

ln
f(φ(y, n), z|Θ)

f(y, z|Θ)
≥ 0. (65)
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Take expectations on both sides of this inequality to get

EY,Z,N |θ∗

[
ln

(
f(φ(Y, N), Z|θk)

f(Y, Z|θk)

)]
≥ 0. (66)

This is just the sufficient NEM condition of Theorem 1 at iteration k.
We show next that the mixture inequality (62) holds if ∆fj(y, n) ≥ 0 holds for

all j. Then the expansion (60) implies that the mixture inequality (62) holds if and
only if (iff) ∑

j

αjf(φ(y, n)|j, θj)δ[z − j] ≥
∑

j

αjf(y|j, θj)δ[z − j], (67)

iff
∑

j

αjδ[z − j][f(φ(y, n)|j, θj)− f(y|j, θj)] ≥ 0, (68)

iff
∑

j

αjδ[z − j][∆fj(y, n)] ≥ 0. (69)

Then the mixture inequality (62) holds if

∆fj(y, n) ≥ 0, for j = 1, . . . , K, (70)

since the mixing weights αj and delta functions δ[z − j] are non-negative. So
the finite mixture model enjoys a NEM noise benefit if each mixed density obeys
f(φ(y, n)|j, θj) ≥ f(y|j, θj).

Corollary 1 allows us to ignore the mixture structure of arbitrary mixture
models. We can derive NEM sufficient conditions by just focusing on the K sub-
population pdfs.

We next state and prove a sufficient NEM condition for the special case of multi-
plicative NEM in a Gaussian mixture model: ∆fj(y, n) = f(yn|j, θj)−f(y|j, θj) ≥ 0
in this case. We use the pdf condition (70) instead of the sum condition. The result-
ing pdf NEM condition has a simple quadratic form that depends only on the noise
terms and the Gaussian population means µj .

Corollary 2 (m-NEM Condition for Gaussian Mixture Models). Sup-
pose that Y |Z=j ∼ N (µj , σ

2
j ) in the finite mixture of K Gaussian pdfs

f(y|1, θ1), . . . , f(y|K, θK). Then the mixture-pdf NEM noise benefit for multiplica-
tive noise

f(yn|θj) ≥ f(y|θj), (71)

holds for each mixed pdf if

y(n− 1) [y(n + 1)− 2µj ] ≤ 0, (72)

for j = 1, . . . , K.
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Proof. Corollary 1 allows us to prove this mixture result by just proving the pdf
noise-benefit inequality for all K mixed pdfs f(y|θj). So compare the noise-injected
normal pdf f(yn|θj) with the noiseless normal pdf f(y|θj). The normal pdf is

f(y|θj) =
1

σj

√
2π

exp

[
− (y − µj)2

2σ2
j

]
. (73)

So f(yn|θj) ≥ f(y|θj) holds

iff exp

[
− (yn− µj)2

2σ2
j

]
≥ exp

[
− (y − µj)2

2σ2
j

]
(74)

iff −
(

yn− µj

σj

)2

≥ −
(

y − µj

σj

)2

(75)

iff (yn− µj)2 ≤ (y − µj)2 (76)

iff y2n2 + µ2
j − 2µjyn ≤ y2 + µ2

j − 2yµj (77)

iff y2n2 − 2µjyn ≤ y2 − 2yµj (78)

iff y2(n2 − 1)− 2yµj(n− 1) ≤ 0 (79)

iff y(n− 1) [y(n + 1)− 2µj ] ≤ 0. (80)

So (72) and Corollary 1 imply the n-NEM mixture condition (71).

The identical quadratic m-NEM noise-benefit condition (72) holds for a Cauchy
mixture model. Suppose that Y |Z=j ∼ C(mj , dj). So f(y|j, θj) is a Cauchy pdf with
median mj and dispersion dj . The median controls the location of the Cauchy bell
curve. The dispersion controls its width. A Cauchy random variable has no mean. It
does have finite lower-order fractional moments. But its variance and all its higher-
order moments are either infinite or not defined. The Cauchy pdf f(y|j, θj) has the
form

f(y|θj) =
1

πdj

[
1 +

(
y−mj

dj

)2
] . (81)

Then the mixed-pdf inequality f(yn|θj) ≥ f(y|θj) is equivalent to the same
quadratic inequality as in the above derivation of the Gaussian m-NEM condition.
This gives (72) as the Cauchy m-NEM noise-benefit condition with the median mj

replacing the mean µj : y(n− 1)[y(n + 1)− 2mj ] ≤ 0 for all j mixed pdfs.

5. The m-NEM Algorithm

The m-NEM Theorem and its corollaries give a general method for noise-boosting
the EM algorithm. Theorem 1 implies that on average these NEM variants outper-
form the noiseless EM algorithm.

1650007-16

Fl
uc

t. 
N

oi
se

 L
et

t. 
D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 D

r.
 O

so
nd

e 
O

so
ba

 o
n 

04
/1

3/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

March 15, 2016 15:23 WSPC/S0219-4775 167-FNL 1650007

The NEM Algorithm for Multiplicative Noise Injection

Algorithm 1 gives the multiplicative-NEM algorithm schema. The operation
mNEMNoiseSample(y, k−τσN ) generates noise samples that satisfy the m-NEM
condition for the current data model. The noise sampling pdf depends on the vector
of random samples y in the Gaussian and Cauchy mixture models. The noise can
have any value in the m-NEM algorithm for censored gamma models that are log-
convex [21]. Censorship means setting a finite upper bound for gamma random
samples because the gamma pdf is an infinite right-sided density.

Algorithm 1 θ̂mNEM = m-NEM-Estimate(y)
Require: y = (y1, . . . , yM ) : vector of observed incomplete data
Ensure: θ̂mNEM : m-NEM estimate of parameter θ

1: while (‖θk − θk−1‖ ≥ 10−tol) do
2: NS-Step: n← mNEMNoiseSample(y, k−τσN )
3: NM-Step: y† ← yn
4: E-Step: Q (θ|θk)← EZ|y,θk

[ln f(y†,Z|θ)]
5: M-Step: θk+1 ← argmax

θ
{Q (θ|θk)}

6: k ← k + 1
7: end while
8: θ̂mNEM ← θk

The E-Step takes a conditional expectation of a function of the noisy data
samples y† given the noiseless data samples y. The M-Step maximizes the resulting
surrogate likelihood function over all parameters θ.

A deterministic decay factor k−τ scaled the noise on the kth iteration. It did
this by replacing the fixed standard deviation σN of the noise with the weighted
standard deviation k−τσN . So the m-NEM noise had slightly smaller standard
deviation with each successive iteration. τ was the noise decay rate [21]. The decay
factor drove the noise Nk to zero as the iteration step k increased. This eventually
shut off the noise injection. We found that the value τ = 2 worked best in the
simulations and thus we used an inverse-square scaling k−2.

The inverse-square decay factor reduced the NEM estimator’s jitter around its
final value. This was important because the EM algorithm converges to fixed-points.
Excessive estimator jitter prolongs convergence time even when the jitter occurs
near the final solution. Our simulations used the inverse-square (hence polynomial)
decay factor instead of the logarithmic cooling schedules found in most applications
of simulated annealing [37, 45–49].

The NEM noise generating procedure mNEMNoiseSample(y, k−τσN )

returned an m-NEM-compliant noise sample n at a given noise level σN for each
data sample y. This procedure changed with the EM data model. The following
noise generating procedure applied to GMMs in accord with the above corollary
for m-NEM GMMS. We used the following 1D noise generating procedure for the
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GMM simulations:

Algorithm 2* mNEMNoiseSample for GMM-m-NEM
Require: y and σN : current data sample and noise level
Ensure: n : noise sample satisfying NEM condition

N(y)← {n ∈ R : y(n− 1) [y(n + 1)− 2µj ] ≤ 0}
n is a sample from the distribution TN(1, σN |N(y))

The term TN(1, σN |N(y)) denotes a truncated Gaussian pdf over some finite-
length support. The term N(y) denotes the corresponding NEM noise support that
depends on the data sample y.

Figure 1 displays a noise benefit for a m-NEM algorithm on the GMM that
evenly mixes two Gaussian pdfs: f(y) = 1

2N1(−2, 4)+ 1
2N2(2, 4). The injected noise

is subject to the Gaussian m-NEM condition in (72).
The next section develops the NEM theory for the important case of exponen-

tial family pdfs. The corresponding theorem states the generalized NEM condition
for arbitrary modes of noise injection. The theorem also applies to mixtures of
exponential family pdfs because of Corollary 1.

6. NEM Noise Benefits for Exponential Family Probabilities

This section derives the NEM condition for the general exponential family of pdfs.
Exponential family pdfs include such popular densities as the normal, exponential,
gamma, and Poisson [12]. A member of this exponential family has a pdf f(y|θ) of
the exponential form

f(y|θ) = exp[a(θ)K(y) + b(y) + c(θ)], (82)

if the density’s domain does not include the parameter θ. This latter condition bars
the uniform pdf from the exponential family. The exponential family also excludes
Cauchy and Student-t pdfs.

Direct substitutions show that the Gaussian or normal pdf belongs to the expo-
nential family. The normal pdf f(y|θ) = 1

σ
√

2π
exp[− (y−µ)2

2σ2 ] has the exponential-

family form given the substitutions a(θ) = µ
σ2 , K(y) = y, b(y) = − y2

2σ2 − ln
√

2πσ2,
and c(θ) = − µ2

2σ2 .
The next theorem states the NEM condition for an exponential-family pdf and

arbitrary combination of signal and noise. The result shows that the noise benefit
does not depend on the term c(θ).

Theorem 3 (Arbitrary Noise Injection NEM Condition for Exponential
Family Probability Density Functions). Suppose the signal Y has an expo-
nential family pdf :

f(y|θ) = exp[a(θ)K(y) + b(y) + c(θ)]. (83)
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Let φ(Y, N) be an arbitrary measurable mode of combining Y with the noise N .
Then an EM noise benefit occurs if

a(θ)[K(φ(y, n)) −K(y)] + b(φ(y, n)) − b(y) ≥ 0. (84)

Proof. Compare the noisy pdf f(φ(x, n)|θ) with the noiseless pdf f(x|θ). The noise
benefit occurs if

ln f(φ(y, n)|θ) ≥ ln f(y|θ), (85)

since the logarithm is a monotone increasing function. This inequality holds

iff a(θ)K(φ(y, n)) + b(φ(y, n)) + c(θ) ≥ a(θ)K(y) + b(y) + c(θ) (86)

iff a(θ)K(φ(y, n)) + b(φ(y, n)) ≥ a(θ)K(y) + b(y) (87)

iff a(θ)[K(φ(y, n))−K(y)] + b(φ(y, n))− b(y) ≥ 0. (88)

The last inequality is just (84).

The exponential-family noise-benefit condition reduces to

a(θ)[K(y + n))−K(y)] + b(y + n))− b(y) ≥ 0 (89)

in the additive noise case when φ(y, n) = y + n. It reduces to

a(θ)[K(yn))−K(y)] + b(yn))− b(y) ≥ 0 (90)

in the multiplicative noise case when φ(y, n) = yn. The c(θ) term does not appear
in the NEM conditions.

Consider the exponential signal pdf f(y|θ) = 1
θ e−

y
θ . It is an exponential-family

pdf because a(θ) = − 1
θ , K(y) = y, b(y) = 0, and c(θ) = − ln θ. So the condition for

an additive NEM noise benefit becomes

− 1
θ
[y + n− y] ≥ 0. (91)

This gives a simple negative noise condition for an additive NEM benefit:

n ≤ 0. (92)

So the NEM condition does not depend on the parameter θ. The condition for a
multiplicative NEM benefit likewise becomes

− 1
θ
[yn− y] ≥ 0. (93)

It gives a similar linear NEM condition:

n ≤ 1. (94)

We conclude with a dual theorem that guarantees that some noise will harm
the EM algorithm by slowing its average convergence. Both the theorem statement
and its proof simply reverse all pertinent inequalities in Theorem 1.
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Theorem 4 (The Generalized EM Noise-Harm Theorem). Let φ(Y, N) be
an arbitrary measurable mode of combining the signal Y and the noise N . Suppose
the average negativity condition holds at iteration k:

EY,Z,N |θ∗

[
ln

(
f(φ(Y, N), Z|θk)

f(Y, Z|θk)

)]
≤ 0. (95)

Then the EM noise harm

Q(θk|θ∗) ≥ QN(θk|θ∗), (96)

holds on average at iteration k:

EN,Y |θk
[Q(θ∗|θ∗)−QN (θk|θ∗)] ≥ EY |θk

[Q(θ∗|θ∗)−Q(θk|θ∗)]. (97)

Proof. The proof follows from the same argument that proves Theorem 1 if we
reverse all inequalities. This applies specifically to the logical equivalence in (39).
Then

ck ≤ EN [ck(N)] if and only if EY,Z,N |θ∗

[
ln

(
f(φ(Y, N), Z|θk)

f(Y, Z|θk)

)]
≤ 0. (98)

So an EM noise harm occurs on average at iteration k if

EY,Z,N |θ∗

[
ln

(
f(φ(Y, N), Z|θk)

f(Y, Z|θk)

)]
≤ 0. (99)

This general noise-harm result leads to corollary noise-harm conditions for the
additive and multiplicative GMM-NEM models by reversing all pertinent inequali-
ties. A similar inequality reversal gives a noise-harm condition for all pdfs from the
exponential family.

Such harmful GMM noise increased EM convergence by 35% in the
multiplicative-noise case and by 40% in the additive-noise case for the problem
of estimating the parameters of the two mixed Gaussian pdfs in Figs. 1 and 2. No
noise benefit or harm occurs on average if equality replaces all pertinent inequali-
ties. We state this NEM GMM noise-harm result as a corollary for both additive
and multiplicative noise injection.

Corollary 3 (Noise-Harm Conditions for GMM NEM). The noise-harm
condition in Theorem 4 holds for the GMM-NEM algorithm if

n2 ≥ 2n(µj − y), (100)

for additive noise. It also holds if

y(n− 1)[y(n + 1)− 2µj] ≥ 0, (101)

for multiplicative noise.
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7. Conclusion

The original NEM additive noise model extends to arbitrary combinations of noise
and signal. The multiplicative NEM theorem specifically gives a sufficient positivity
condition such that multiplicative noise reduces the average number of iterations
that the EM algorithm takes to converge. The multiplicative-noise NEM condi-
tion for the GMM and exponential family models are only slightly more complex
than their respective additive-noise NEM conditions. An open research question is
whether there are general conditions when either multiplicative or additive noise
outperforms the other. We would also expect that data sparsity affects more general
noise-injection modes as it does the additive case [21].

References

[1] L. Rudin, P.-L. Lions and S. Osher, Multiplicative denoising and deblurring: Theory
and algorithms, in Geometric Level Set Methods in Imaging, Vision, and Graphics
(Springer, 2003), pp. 103–119.

[2] J. Ash, E. Ertin, L. Potter and E. Zelnio, Wide-angle synthetic aperture radar imag-
ing: Models and algorithms for anisotropic scattering, IEEE Signal Process. Mag. 31
(2014) 16–26.

[3] S. Chen, Y. Li, X. Wang, S. Xiao and M. Sato, Modeling and interpretation of scatter-
ing mechanisms in polarimetric synthetic aperture radar: Advances and perspectives,
IEEE Signal Process. Mag. 31 (2014) 79–89.

[4] G. Aubert and J.-F. Aujol, A variational approach to removing multiplicative noise,
SIAM J. Appl. Math. 68 (2008) 925–946.

[5] M. Tur, K. C. Chin and J. W. Goodman, When is speckle noise multiplicative?, Appl.
Opt. 21 (1982) 1157–1159.

[6] J. M. Bioucas-Dias and M. A. Figueiredo, Multiplicative noise removal using variable
splitting and constrained optimization, IEEE Trans. Image Process. 19 (2010) 1720–
1730.

[7] J. Ringelstein, A. B. Gershman and J. F. Böhme, Direction finding in random inho-
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