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Abstract

In this paper we provide an overview of rate-distortion (R-D) based optimization techniques
and their practical application to image and video coding. We begin with a short discussion of
classical rate-distortion theory and then we show how in many practical coding scenarios, such
as in standards-compliant coding environments, resource allocation can be put in an R-D frame-
work. We then introduce two popular techniques for resource allocation, namely, Lagrangian
optimization and dynamic programming. After a discussion of these two techniques as well as
some of their extensions, we conclude with a quick review of recent literature in these areas
citing a number of applications related to image and video compression and transmission. We
provide a number of illustrative boxes to capture the salient points in our paper.
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1 Introduction - From Shannon Theory to MPEG Coding

Recent years have seen signi�cant research activity in the area of rate-distortion (R-D) optimized

image and video coding (see [1, 2] and many of the references in this paper). In this section, we

start by discussing classical rate-distortion theory and brie
y outlining some of its fundamental

contributions related to its establishment of the fundamental performance bounds on compression

systems for speci�c sources. This will lead us to show the potential limitations of these theoretical

results when it comes to dealing with complex sources such as images or video, thus setting the

stage for the more restrictive R-D optimization frameworks to be discussed in later sections.

1.1 Classical R-D theory

The starting point of classical rate distortion (R-D) theory can be found in Shannon's seminal

work [3, 4], whose 50th anniversary is being celebrated this year. Rate-distortion theory comes

under the umbrella of source coding or compression, which is concerned with the task of maximally

stripping redundancy from a source, subject to a �delity criterion. In other words, rate-distortion

theory is concerned with the task of representing a source with the fewest number of bits possible

for a given reproduction quality.

Source representation is a rather vague proposition unless we �rst establish what a \source" is.

For example we can consider a source to be one particular set of data (a text �le, a segment of

digitized audio, an image or a video clip). Alternatively we can consider a class of sources which are

characterized by their statistical properties (text �les containing C code, speech segments, natural

images or videoconferencing sequences). When one considers a class of sources, it is clear that

e�cient source coding entails taking advantage of the \typical" behavior within that class. For

example, this means that techniques that work well for speech may not get us too far if applied

to video. However, even a narrowly de�ned \class" of inputs will likely show signi�cant variations

among inputs (e.g., di�erent scenes in a video sequence), and thus techniques that allow an \input-

by-input" parameter selection are likely to be superior to those that result in a \one size �ts all"

coding for all inputs in the class. In this paper, we will present techniques which allow the best of

both worlds to be achieved: the coding scheme is designed based on typical features of a class of

signals, but the coding parameters, within the selected coding framework, are chosen on an input

by input basis.

Compression can be achieved with \lossless" techniques where the decoded or decompressed data

is an exact copy of the original (as is the case in such staple software tools as zip, gzip or compress).

3



Lossless compression is important where one needs perfect reconstruction of the source. However,

this requirement also makes compression performance somewhat limited, especially for applications

where the amount of source information is voluminous, bandwidth or storage constraints are severe,

and a perfect rendition of the source is not needed. As an example, consider terrestrial broadcast

(at about 20 Mb/s) of HDTV (raw bit rate of over 1 Gb/sec) that would require a compression

ratio exceeding 50:1, at least an order of magnitude in excess of the capacity of the best lossless

image compression methods.

In such scenarios, \lossy" compression is called for. Higher compression ratios are possible at

the cost of imperfect source representation. The tradeo� between source �delity and coding rate is

exactly the rate-distortion tradeo�. Lossy approaches are preferred for coding of images and video

(and are used in popular compression algorithms such as JPEG [5]). Compression is lossy in that

the decoded images are not exact copies of the originals but, if the properties of the human visual

system are correctly exploited, original and decoded images will be almost indistinguishable. In the

lossy case one can thus trade-o� the number of bits in the representation (the rate) with the �delity

of the representation (the distortion). This, as noted by Shannon, is a fundamental trade-o� as it

states the question: how much �delity in the representation are we willing to give up in order to

reduce the storage (or the number of bits required to transmit the data)? The main purpose of this

paper is to survey and overview how these Rate-Distortion (R-D) trade-o�s are taken into account

in practical image and video coders, thus clarifying how these information theoretic techniques have

had an impact in everyday practice. Along the way we will discuss several coding problems that

are typically solved using R-D techniques and will introduce the optimization techniques (such as

Lagrangian optimization and dynamic programming) that are becoming an essential part of the

coder designer toolbox.

Although rate-distortion theory, as stated earlier, comes under the umbrella of source coding,

it is important to note that the theory is applicable also in the more general context of data trans-

mission over a noisy channel. This is due to Shannon's celebrated separation principle of digital

communication, where he proved the optimality of dividing the problem of optimal transmission

of information (optimal in the sense of most e�cient use of available resources such as power,

bandwidth, etc.) into that of (i) representing the information e�ciently and then (ii) protecting

the resulting representation so that it can be transmitted virtually loss-free to a receiver. We will

see more about this a little later (see Box E). The idea seems to be intuitively good, as signal

representation issues appear to be inherently di�erent from those involved in e�cient digital com-
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munication. There are many practical situations in which separation holds (and even in situations

where it does not, this \divide and conquer" approach provides a good way to tackle a problem!)

The impact of this result is hard to overestimate as it has set the stage for the design of all cur-

rent digital communications systems. Still, there are, as we will see in Box E and in Section 5.3,

important cases in which joint consideration of source and channel (i.e., ignoring separation) may

in fact be useful.

1.2 Distortion measures

The issue of what distortion measures are more suitable for speech, audio, images, or video has

been the object of continuing study for as long as digital representation of these signals has been

considered. Clearly, since these sources are encoded and transmitted to be ultimately played back

or displayed for a human listener/observer, a distortion measure should be consistent with what the

said subject can observe or hear. Thus distortion measures that correlate well with the perceptual

impact of the loss should be favored. Leaving aside obvious di�erences in perception between indi-

viduals, �nding a general enough, not to mention easily computable, measure of perceptual quality

has proven to be an elusive goal. Thus, in practice, simple and perceptually sound design rules are

applied, wherever perceptual quality measures are unavailable or too complex. For example, known

characteristics of human perception dictate that not all frequencies in an audio signal or an image

have the same importance. With these design rules in mind, appropriate frequency weighting can

be introduced at the encoder. After the perceptual weighting has been performed, an optimized

encoder can still be used to minimize an objective distortion measure, such as for example the

Mean Squared Error (MSE).

It is worth noting that while it is typical to dismiss MSE as being poorly correlated to human

perception, systems built on the above philosophy, i.e., based on a perceptually meaningful frame-

work, can be optimized for MSE performance with excellent results not only in MSE (as one would

hope should be the case) but also in terms of perceptual quality. An example of this observation

can be found in the current JPEG 2000 image compression standardization process, which seeks to

replace the current JPEG standard [6]. The comparisons made at the Sydney meeting in November

1997 showed that coders which incorporated techniques to minimize the MSE were ranked at the

top in both perceptual and objective tests [7]!

However it is also important to realize that signi�cant gains in objective (e.g., average MSE)

quality may not translate into comparably signi�cant gains in perceptual quality. Since the success

of a particular coding application ultimately does not depend on objective quality measures, it will
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be necessary to determine at the design stage if any applicable optimization approaches can be

justi�ed in terms of the trade-o� between implementation cost and perceptual quality. This further

emphasizes the need to incorporate perceptual criteria into the coder design so that any further

optimizations of the encoding have to choose among \perceptually-friendly" operating points.

In the remainder of the paper we will assume that MSE, or some suitably weighted version of

MSE, has been used. We refer to [8] and references therein for a review of perceptual coding issues

for audio, images and video.

1.3 Optimality and R-D bounds

Rate-Distortion theory [9] has been actively studied in the Information Theory community for the

last 50 years. The focus of this study has been to a large extent the derivation of performance

bounds, that is, determining the region of achievable points in the rate distortion (or bits-�delity)

trade-o�.

One can distinguish between two classes of bounds, those based on Shannon theory [3, 9, 10]

and those derived from high rate approximations [11{13]. The former provides asymptotic results

as the sources are coded using longer and longer blocks. The latter assumes �xed input block

sizes but estimates the performance as the encoding rate becomes arbitrarily large. A comparison

between these two approaches can be found in [14]. Bounds computed with either set of techniques

will allow us to determine boundaries between achievable and non-achievable regions. However the

bounds may not be tight for situations of practical relevance (e.g., relatively low rate and small

block sizes). Moreover, in general, these bounds are not constructive. Still if bounds could be

computed they would provide useful information to benchmark speci�c applications.

Unfortunately, to derive bounds one needs to �rst characterize the sources and this can be

problematic for complex sources such as video. Indeed, bounds are likely to be found only for the

simpler statistical source models. For example, bounds have been known for independent identically

distributed (i.i.d.) scalar sources with Gaussian, Laplacian or Generalized Gaussian distributions.

The latter distribution is fairly general and can be used to model numerous real-life phenomena;

it includes both the Gaussian and Laplacian distributions as special cases and provides a family of

probability density functions where, for a given variance, a shape parameter can be selected to match

a range of statistical behaviors, from heavy tailed to fast decay probability density functions. The R-

D function itself is known in closed form only for Gaussian sources while for other distributions one

would have to resort to numerical optimization methods, e.g. the Blahut-Arimoto algorithm [15].

An interesting and useful special case in R-D theory refers to the use of scalar quantizers, where
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the samples are quantized one at a time rather than as a collection or vector. The theory of optimal

scalar quantization (how to design scalar quantizers with performance su�ciently close to the

bounds) has been widely studied. For these simple sources, practical quantizers with various degrees

of approximation to the optimal values are available [16]. The simplest kind of scalar quantizer

is the uniform scalar quantizer, where the quantizer step sizes are uniform. More sophisticated

extensions include �xed-rate non-uniform quantizers (where each quantization level is represented

with the same number of bits), also known as Lloyd-Max quantizers, and the variable-length non-

uniform quantizer dubbed as the entropy-constrained scalar quantizer, as well as its extensions to

vector quantization [17].

While the above-mentioned techniques deal with optimal quantization strategies for a given

source distribution, when dealing with complex sources such as images and video signals, the

question of what the right source distribution should be involves accurate source modeling. It is

therefore important to consider both issues, and optimizing image or video coding performance in

fact consists of two steps:

1. Given a particular type of data, say an image, what is the appropriate probabilistic, or other,

model for that source?

2. Given the selected model, and any applicable bounds, how close can a practical algorithm

come to the optimal performance dictated by the bound?

For image and video coding both steps are equally important because models that can adequately

capture the statistical redundancies may not be available (or may be too complex to even allow

us to �nd a bound!). This point is illustrated by the example of Box A. Additional discussions

of approaches for practical modeling of complex data can be found in the paper by E�ros in this

special issue [18].
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Begin Sidebar Inset #A

Use of Statistical Image Models for Compression

As mentioned in Section 1.3, devising a good image coding algorithm involves two important

intellectual components: (i) selecting a sound operational model or framework, and (ii) striving to

optimize coding performance in the selected framework. Although this paper will concentrate (as

does most of the coding community) on the latter component, we would like to brie
y emphasize

the importance of the �rst one as well. To this end, let us embark on a statistical experimental

adventure that we hope will help highlight the salient features of typically deployed models. Our

goal is to enable one to \visualize" the e�ectiveness of these models by synthesizing \images"

derived from typical realizations of these assumed models. The advantages of such an exercise

are manyfold: it can not only expose the powers and shortcomings of di�erent attributes of the

test models, but it can additionally inspire the creation of new and improved frameworks that can

embellish some of the drawbacks.

While practical image coding algorithms have been founded on a variety of operational frame-

works, simple statistical models have been very popular. For example, early state-of-the-art sub-

band image coding frameworks were based on i.i.d. models for image subbands (based on Gaussian

or Laplacian p.d.f.'s) and optimal bit allocation techniques to ensure that bits were optimally dis-

tributed among the subbands in proportion to their importance, as gleaned through the variance

of their distributions [19]. A coding algorithm based on such a framework would no doubt be very

e�cient at incorporating the second component mentioned in the previous paragraph, but raises

the obvious question about how accurate an i.i.d. Laplacian or Gaussian subband model might be.

Let us try to address this question by taking a subband decomposition of a typical image (like the

Lena image, see Fig. 1), measuring the empirical variances of the di�erent subbands, and modeling

these subbands as i.i.d. Gaussian distributions. Figure 2 shows the theoretically attainable rate-

distortion performance (using water-pouring concepts from information theory [15]). Note that this

is the optimal performance theoretically attainable using in�nite Shannon-style complexity involv-

ing asymptotic random coding arguments based on in�nitely long vectors of samples [15]. Yet, as

seen in Figure 2, this coder is handsomely outperformed by a low-complexity modern-day wavelet

image coder such as Shapiro's EZW coder [20] or its improved variant, the SPIHT coder [21] { for

example, at a coding rate of 0.5 bit per pixel, the SPIHT coder outperforms the in�nite-complexity

i.i.d.-Gaussian based Shannon source coder by over 3 dB in SNR! One concludes that the low-

complexity SPIHT coder, despite no claims to rate-distortion optimality, is based on a far more
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accurate image model than the hypothetical Shannon coder, and this makes all the di�erence in

the world.

Figure 1: Original Lena image.

To drive the point further home, let us try to synthesize \images" derived from the statistical

parameters for the assumed model. As before, we take a subband decomposition of the Lena image,

measure the subband variances, then create a random realization using an i.i.d. Laplacian model

for the image subbands, and then synthesize the image based on the subband description. If one

assumes a random sign for the magnitudes of the coe�cients (i.e. use a truly random two-sided

Laplacian model), one realizes the \bizarre" image of Figure 3. If the magnitude is assumed to

be Laplacian distributed but the sign of the random variable is known, then one synthesizes the

image of Figure 4, where some of the edge structure becomes faintly exposed. Let us now try a

more \local" model that models the image subbands as Laplacian distributed with spatially varying

variances, given by an i.i.d. model involving local (say 3x3 windowed) neighborhoods rather than

the global subband window. Such a model captures the space and frequency characterization of the

wavelet image decomposition. Figures 5 and 6 show the image synthesized based on the statistical

parameters derived from the Lena image, corresponding to no knowledge and knowledge of the

sign information, respectively. From Figure 6, one can clearly see that this leads to a much more

natural looking image, and shows the promise of this model. In fact, the EZW and SPIHT coder and

other coders of this genre (such as the SFQ coder [22], the subband classi�cation based coder [23],
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Figure 2: Rate-Distortion curves achieved with (i) the SPIHT coder [21]; and (ii) with the Shan-
non R-D bounds corresponding to an i.i.d. zero-mean Gaussian model for each wavelet subbands
(with empirically measured variances): this results in a Gaussian vector source, and water-pouring
arguments are used to �nd the theoretical R-D bounds [15].

the EQ coder [24], and other coders based on context-based backward adaptation [25,26]) can be

conceptualized as being far more spatially \localized" in their model. Thus by interpreting the

wavelet data as \space-frequency" sets of information, they derive signi�cant performance gains

over the early subband coders that treated the data only as \frequency" sets of information.
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Figure 3: Image synthesized from the statistics of the original image but without sign information
and with a single variance assigned to each of the subbands (i.e. no spatially local information is
available.

Figure 4: Here the image is synthesized again from the global variance measurements but the
correct sign information is used.
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Figure 5: Here we use local measurements of variance but no sign information.

Figure 6: Finally, here we synthesize an image with both correct local variance and sign information.
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2 R-D meets R&D: operational R-D in practical coder design

As just discussed, R-D performance is the fundamental trade-o� in the design of any lossy com-

pression system. We have highlighted how fundamental theoretical research has resulted in the

computation of performance bounds but also indicated two major concerns with these R-D theo-

retical benchmarks:

1. complexity (how much memory, delay or computation is required? Can we construct a prac-

tical algorithm to approach the bound?), and

2. model mismatch (how good are our modeling assumptions? are they too simple to characterize

the sources fully?).

These will be addressed in the following sections.

2.1 Choosing the Parameters of a Concrete System: Operational R-D

To guarantee that our design will be practical we can abandon our search for the best unconstrained

R-D performance of any system. Instead let us start by choosing a speci�c coding scheme, which

satis�es our requirements of coding complexity, delay and memory. Then we can search for the

best operating points for that speci�c system.

For example consider a scalar quantizer followed by an entropy coder. This quantizer is com-

pletely de�ned by its quantization bins, the reproduction level for each bin and the associated

codewords for each reproduction level. Well-known techniques are then available to �nd the best

choice (in an R-D sense) of these parameters for a speci�c source. Similar results are available for

other compression schemes (e.g., �xed-rate scalar quantizer, vector quantizer of dimension N , etc.).

For a given system and source if we consider all possible quantization choices, we can de�ne

an operational rate-distortion curve. This curve is obtained by plotting for each rate the distortion

achieved by designing the best encoder/decoder pair for the rate. Note that these points are

operational in that they are directly achievable with the chosen implementations and for the given

set of test data. This bound will allow us to distinguish between the best achievable operating

points and those which are sub-optimal or unachievable. While the bound given by Shannon's

theoretical R-D function gives no constructive procedure for attaining that optimal performance,

in the operational R-D case, we always deal with achievable points.

A particular case of interest, which will be described in more detail later, is that where the

encoder can select among a �xed and discrete set of coding parameters (e.g., a discrete set of
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quantizers), with each R-D point being obtained through the choice of a di�erent combination of

coding parameters. In that scenario, as illustrated by Fig. 7 we can plot the individual admissible

operating points. The boundary between achievable and non-achievable performance is then de�ned

by the convex hull of the set of operating points.

D

R

x
x x

x

x

x

x
x

x

Set of
operating pts.

Convex Hull of
R-D operating points

Performance bound
for stationary source of
known distributionx

Figure 7: The operational R-D characteristic is composed of all possible operating points obtained
by applying admissible coding parameters to each of the elements in a particular set of data.
This is di�erent from the best achievable performance for a source having the same statistical
characteristics of the data.

From now on, we will consider optimality in the operational sense, i.e., the best achievable

performance for a given source (as described by a training set or by a given probabilistic model)

given our choice of compression framework.

Before we address the issue of modeling let us �rst consider in more detail the problem of

optimal encoder/decoder design. The basic design mechanism can be summarized as follows. First

select a particular compression framework (for example a scalar quantizer with entropy coding

as above), then proceed by alternatively designing the encoder, i.e., the rule to assign inputs to
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quantizer codewords, and the decoder, i.e., the rule to reproduce a particular quantizer index at

the receiver.

First the encoder is optimized for the given decoder, i.e., given the reproduction levels at the

decoder, an encoder is designed which produces a mapping having the minimum distortion for a

given rate, for the given training source. Then, the decoder is optimized for the given encoder, i.e.,

once inputs have been assigned to indices we choose the best reproduction for a particular set of

indices. These design process iterates between the these two steps till convergence.

Variations of this approach, the Lloyd Algorithm, initially proposed for scalar quantizers [27,28]

have proved to be very popular, even though only local optimality can be guaranteed in general.

Examples of scenarios where variations of the Lloyd Algorithm have been applied include entropy-

constrained quantizers, vector quantizers [29], tree-structured vector quantizers [30] and entropy

constrained vector quantizers [17], among other frameworks. Details can be found in [31] and a

more detailed discussion of these types algorithms and their application is presented in another

article in this issue [18].

2.2 Choosing a good model: the transform coding paradigm

In our discussion so far in this section \best" has been de�ned not only for a particular framework,

but also for the given source, as speci�ed by a probabilistic model or by a training set of represen-

tative data. Since any applicable probabilistic models will have to be derived in the �rst place from

a training set of data samples from the source, here, without loss of generality, we assume sources

to be represented by appropriate training sets1.

It would seem that models are inherent properties of the sources to be compressed and therefore

the coder designer has little 
exibility in the model selection. Nothing could be further from the

truth. In fact a fundamental part of designing a coder is the selection of the underlying model and

indeed many choices are typically available. For example a source can be considered to be scalar,

or treated as a set of vectors, or we can model the source after it has been decomposed into its

frequency components, etc. (see Box A). Each of these approaches can model the same original

data but provide widely varying compression results.

To �rst order approximation, good compression systems based on complex models tend to be

more complex to implement (but may provide better performance) than systems based on simpler

models. A simple illustration of this rule can be seen when comparing scalar and vector quantizers.

1Also note that in many cases, e.g., when dealing with multidimensional sources, practical closed form models
may not be available.
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Thus the main di�culty in achieving good R-D performance for images and video is, as exempli�ed

in Box A, �nding a model that is

� simple enough that a compression systemmatched to this model can achieve good performance

with reasonable cost,

� but complex enough to capture the main characteristics of the source.

For example, as seen in Box A, using a simple i.i.d. model for each subband as the basis for our coder

design results in very poor coding performance as it does not exploit existing spatial redundancies

(see Figs. 2 and 3). However the (still simple) models which assume correct local variance and

sign information can be seen to capture a great deal of image information (see Fig. 6) and indeed

models of this kind underly many state of the art wavelet coders.

There are many approaches to achieve this dual goal of \matching without excessive complex-

ity", most of them based on a simple principle: to replace a single complex model by a multitude a

simple models. This approach is described in detail in the article by E�ros in this special issue [18].

Here we describe one particular instance of this method, namely, transform coding.

The transform coding paradigm calls for decomposing the source into its frequency components

using block transforms such as the Discrete Cosine Transform (DCT) or subband coding using now

popular wavelet �lters. It is only after decomposing the source into its frequency components or

bands that we apply quantization. Thus we consider the R-D trade-o�s in the transform domain.

From the standpoint of modeling this has the main advantage of allowing us to use simple models,

as shown in Box A.

That this approach is extremely useful can be veri�ed by how widely it is used in recent image

and video coding standards, from JPEG to MPEG 1/2/4 and on to JPEG 2000. We refer the

reader to Boxes B and C for two examples of transform coding, based on block transforms such as

the DCT and wavelet transforms, respectively. Our goal is twofold: to provide intuition as to why

these approaches work in the �rst place and to give examples of resource allocation issues that arise

in transform coding frameworks, and which will be amenable to be solved using the techniques

described in this paper.

When considering video sources, we will need additional tools to allow us to fully exploit the

redundancy between consecutive frames in a video sequence. Motion compensation is the most

popular approach to achieve this goal. The encoder computes the motion parameters, for example

block-based motion vectors as in MPEG [32] and the decoder uses those in the reconstruction

framework. A particular framework will specify how the motion information is transmitted and

11



how it is interpreted by the decoder. A more detailed description can be found in the article by

Sullivan and Wiegand in this issue [2].

Lack of space prevents us from going into more depth but we refer the interested reader to

recent textbooks for a general description of the more popular methods and algorithms and how the

transform coding paradigm is put to practice [5,31{37]. We will revisit the various building blocks

in transform coding frameworks in Section 5, where we will outline examples of R-D optimization

applied to these algorithms.

2.3 Standards-based Coding: Syntax-constrained R-D optimization

So far in this section we have considered the complete design of a compression system in which for a

given set of constraints we �nd encoding and decoding algorithms to suit our needs. Let us assume

now that the decoder has been selected, that is, we have a complete speci�cation of the language

that can be understood by the decoder, with an accompanying description of how an output (the

decoded image or video) is to be produced given a speci�c input stream.

This scenario is precisely that assumed by most recent international compression standards

(JPEG, MPEG, H.26x and so on). Motivated by the desire to maximize interoperability, these

standards provide an agreed upon bitstream syntax which any standard-compliant decoder will use

to provide an output signal. Agreeing on such standards allows encoding/decoding products from

di�erent vendors to talk to each other and has become the preferred way to achieve a�ordable,

widely available digital and video compression.

Still, it is not clear a priori how much 
exibility the encoder can enjoy in selecting its modes of

operations, if it is constrained by a particular decoder. It turns out that most of these standards are

designed to endow the encoder with a lot of 
exibility and creativity in its selection of the system

parameters, and there is a big gap in performance between the best choice and the worst. In all

standards-based applications the encoder can select parameters that will result in various levels of

R-D performance. This leads to a situation where the number of operating points is discrete, and

thus the operational R-D bound is determined by the convex hull of the set of all operating points

(see Fig. 7). For example, as anybody who has used JPEG compression can verify, one can select

di�erent rate-quality targets for a particular image and still guarantee that these images can be

decoded. Likewise, in video coding, each frame or scene requires a di�erent rate to achieve a given

perceptual quality and the encoder needs to control the coding parameter selection to enable proper

transmission (see Box D). In typical image and video coding optimization scenarios such as those

involving these standards, the encoding task of selecting the best operating point from a discrete set
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of options agreed upon a priori by a �xed decoding rule is often referred to as syntax-constrained

optimization. The selected operating choice is communicated by the encoder to the decoder as

side-information, typically as part of the header.

Having 
exibility at the encoder also increases the robustness of compression against modeling

mismatches. For example a system designed for an i.i.d. source with a given variance will perform

poorly if the source to be coded has di�erent statistics. A more robust system can be designed if

several compression modes are available and the encoder can select among them. It is important

to note that this robustness and 
exibility is not free: the amount of side information needed to

con�gure the decoder appropriately will increase if more modes are to be accommodated, and more

importantly, the computational complexity will increase as well.

We have now set the stage to de�ne the class of problems that will occupy the rest of this paper.

We consider that a general coding framework has been selected, which can accommodate di�erent

types of sources, and thus speci�c parameters can be selected for each image (and for each desired

rate) and sent to the decoder as overhead. Our goal is then:

Formulation 1 Discrete R-D Optimization: Parameter Selection for a given input

Given a speci�c encoding framework where the decoder is fully de�ned, optimize the encoding of a

particular image, or video sequence in order to meet some rate/distortion objectives.

Note, that here we are assuming deterministic knowledge of the input and our goal is to optimize

the parameter selection for that input. We no longer seek optimality over an ensemble of inputs,

but rather con�ne ourselves to doing our best for the given input, given the constraints imposed by

the coding framework. This is a very realistic scenario, as it can be applied, for example, to most

image and video compression standards de�ned to date, e.g., JPEG, [5], MPEG [32] or H.263 [38],

where the encoding mode selection can be optimized for each input. As is shown in the article by

Sullivan and Wiegand in this issue the potential gains when using these optimization techniques

are signi�cant [2].

However, the selection of the initial coding framework is key in the system performance. No

matter how sophisticated the optimization techniques one is willing to utilize (and we will describe

some fairly complex ones!), if the coding framework is inherently limited or 
awed, not much im-

provement will be achievable. Recall that we are placing ourselves in an operational R-D framework

and thus we are limited to only those R-D operating points that the initial framework can achieve.

Thus a good coding framework without any form of optimization is likely to be superior to a sub-

par coding approach, no matter whether parameter selection has been R-D optimized in the latter
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scheme. We refer once more to Box A for an example of how the model selection problem may

often be more important than having an optimized algorithm.

In the spirit of operational R-D, we de�ne here the \optimal" solution as that achieving the

best objective function among all possible operating points. Note then that we consider �nite

sets of coding choices at the encoder and therefore there exists one achievable optimal choice of

parameters: if all else fails, one could do an exhaustive search comparison of all possible operating

points and choose the best. Obviously, our goal will be to �nd those operating points without a

brute force search.
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Begin Sidebar Inset #B

An Example of Transform Coding: JPEG

The term transform coding describes generically coding techniques where the source data is

�rst decomposed using a linear transform and where each of the frequency components obtained

from the decomposition are then quantized.

A typical transform-based image coder comprises of the cascade of a front-end linear transform

followed by a scalar quantization stage and then an entropy coder. The transform serves the

dual roles of (i) energy compaction, so that the bulk of the signal energy is isolated in a small

fraction of the transform coe�cients and (ii) signal decorrelation, so that there is little loss in

performance due to simple scalar quantization: this is possible because the set of all transform

coe�cients representing a given frequency can be, to �rst order, modeled as a memoryless source,

e.g., i.i.d. Gaussian or Laplacian, for which e�cient simple quantizers can be found. The scalar

quantizer is the lossy part of the framework, and con�nes the representation to a discrete set of

indices corresponding to discrete quantization levels, while the last-stage entropy coder removes

the redundancy in the quantization index stream.

Commercial image and video compression standards are based on the Discrete Cosine Trans-

form (DCT). Figure 8 provides an example of the most popular mode of operation, the so-called

\baseline", within the JPEG compression standard [5]. A brief description of the JPEG coding

algorithm follows.

The image is decomposed into 8x8 blocks for the purpose of transform, quantization and entropy

coding. Blocks are processed in a raster scan order and are transformed independently using a block

DCT. After the DCT, each 8x8 block is quantized using uniform scalar quantization. Quantization

step sizes are de�ned for each of the 64 frequency coe�cients using an 8x8 quantization matrix.

Typically, a single quantization table is used for each color component; however up to 4 di�erent

tables may be used if needed. The values of the quantization tables are encoded in the header

of the compressed �le. Quantization is a lossy step, i.e., the information cannot be recovered

perfectly at the decoder. However, it is the quantization operation which allows one to achieve a

high compression rate at the price of some quality degradation.

The �rst quantized frequency coe�cient, called the DC coe�cient, represents the average sample

value in a block and is predicted from the previously encoded block to save bits. Only the di�erence

from the previous DC coe�cient is encoded, which typically is much smaller than the absolute value

of the coe�cient. The remaining 63 frequency coe�cients (called AC coe�cients) are encoded using
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only the data of the current block.

The entropy coder constitutes the second basic component in the R-D trade-o�, as it determines

the number of bits that will be used for a particular image and quantization setting. The entropy

coder is lossless and it maps each of the various quantization indices to given codes. A simple way of

compacting the quantization index stream would be to assume a memoryless model for the indices

and compress it to the �rst-order entropy of the stream. The memoryless assumption is however

typically a bad one, and signi�cant gains can be had by exploiting the memory in the quantized

bitstream (e.g. zero values tend to cluster). A simple way to exploit this is through zero runlength

coding. JPEG uses a two-dimensional entropy code based on the length of the zero-run and the

magnitude of the non-zero coe�cient breaking up the run.

The AC coe�cients are processed in a \zig-zag" manner (see Fig. 8) which approximately

orders coe�cients from lowest to highest frequency. Run-length codes represent the sequence of

quantized coe�cients as (run; value) pairs, where \run" represents the number of zero-valued AC

coe�cients between the current nonzero coe�cient and the previous nonzero coe�cient, \value" is

the value (nonzero) of current coe�cient. A special end-of-block (EOB) signals the end of nonzero

coe�cients in the current block. For the example in Fig. 8, with three nonzero AC coe�cients, the

sequence after run-length encoding is (0,5)(0,3)(4,7)(EOB). The sequence of \runs" and \values"

is compressed using Hu�man or arithmetic codes.

scan

"""
"""
"""  8x8

block DCT     scalar
quantization
    and DC 
 prediction

8 5
3 7

Image component

    entropy
     coding"zig−zag"

   scan

block−based coding

    DC 
prediction

run−length coding

Data out

Figure 8: Block diagram of a JPEG coder

Despite the apparent rigidity of the JPEG syntax, there is a surprising amount of room for

gains attainable with clever encoder optimization [39, 40]. The syntax allows for the quantization

matrix and the entropy coding table to be adapted on a per-image basis as well as for arbitrary

compression ratios desired. A more subtle option available is for the encoder to \dupe" the decoder

optimally in a rate-distortion sense while being fully syntax-compatible. As an example, small

nonzero values that break up potentially long zero-runs are typically very expensive in bit rate cost
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in comparison to their relative contribution to reducing quantization distortion. If the encoder can

\lie" to the decoder about the magnitude of these coe�cients, i.e. call these non-zero values zeroes,

then the decoder is none the worse o�, while the R-D performance is signi�cantly increased.

A systematic way of doing this optimally in the R-D sense, termed as coe�cient thresholding,

has been described in [41]. The good news is that sizeable R-D performance gains, of the order of

25% in compression e�ciency can be realized while being completely faithful to the JPEG syntax.

Another article in this issue [2] will provide further evidence of the practical value of R-D techniques

in improving the quality in standards based video coding, where there is even more 
exibility in

choice of operating parameters.

End Sidebar Inset #B

JPEG Example
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Begin Sidebar Inset #C

Adaptive Transforms based on wavelet expansions

Adaptivity in signal processing is one of the most powerful and desirable features, and the

compression application is no exception. Here we outline the role of having adaptive transforms

in wavelet image coding. While the Discrete Cosine Transform (DCT) is the transform of choice

in commercial compression standards like JPEG, MPEG, etc., the Discrete Wavelet Transform

(DWT) has recently emerged as a superior alternative, and looks set to replace the DCT as the next-

generation transform in the newly emerging JPEG-2000 image compression standard. The wavelet

or subband decomposition consists of an octave band frequency decomposition. It is implemented

by a tree-structured �lter bank consisting of a cascade of low-pass �lters (H1(z)) and high-pass

�lters (H0(z)) followed by decimators (See Figure 9(a)). By recursively splitting the outputs of the

low pass branches, we realize an octave-band frequency decomposition associated with a logarithmic

�lter-bank tree structure (see Figure 9 (c).) This logarithmic frequency decomposition property

of the wavelet transform gives good frequency selectivity at lower frequencies and good time (or

spatial) selectivity at higher frequencies. This trade-o� is well suited to many \natural" images

which exhibit long-duration low-frequency events (e.g. background events in typical scenes) and

short-duration high-frequency events (e.g. edges). Other choices of subtrees lead to other time-

frequency selectivity tradeo�s, as seen in Figure 9 (c). These trees, which represent generalizations

of the wavelet tree, are dubbed in the literature as wavelet packets. See Figure 9

The general resource allocation problem for the adaptive transform coding framework involves

selecting the operating point of the combination of transform, quantizer, and entropy-coder in order

to realize the best rate-distortion tradeo�. Depending on the 
exibility (and complexity concerns)

of the framework, one or all of the above functional components can be jointly optimized. The

traditional approach in compression is to use a �xed transform (like the DCT or the DWT) and

then choose a quantization strategy matched to the properties of the input process and the �xed

transform. The quantization strategy (bit allocation policy) is typically based on a model for

the probability density functions characterizing the transform coe�cients, or in the absence of an

analytical model, from training over a large class of \typical" possible signals.

As a �rst step toward attaining an adaptive transform, it is clear that an improvement can be

found if we search over the whole set of binary trees for a particular �lter set, instead of using the

�xed tree of the wavelet transform. See Figure 9. A fast algorithm, also known as the \single tree"

algorithm to �nd the best tree (dubbed the \best basis") jointly with the best quantization and
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entropy coding strategy has been described in [42]. The idea is to search for the best basis (for a

rate-distortion cost function as appropriate for compression) for the signal from a library of wavelet

packet bases. In order to achieve this, two entities are needed: a cost function for basis comparison

and a fast search algorithm. We will return to a more detailed treatment of these issues later in

the article (see Section 5 and Box I).
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Figure 9: (a) All possible binary wavelet packet decompositions of depth 2. (b) Some typical
depth-3 binary wavelet packet subtree decompositions.
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Begin Sidebar Inset #D

Delay Constrained Transmission and Bu�er Control

Most practical video compression algorithms exploit spatial and temporal redundancy, through

transform coding and motion estimation, respectively. However, the degree of redundancy, and

therefore the resulting rate for a given distortion, can 
uctuate widely from scene to scene. For

example, scenes with high motion content will require more bits than more stationary ones. This

is illustrated by the sample rate trace [43] of Fig. 10. This trace is obtained from the Star Wars

movie, and more speci�cally its opening 4 minutes (as true fans no doubt will have guessed), and

it shows rate changes of close to an order of magnitude, when the quantization step size is kept

constant (a JPEG coder was used to code each frame.)
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Figure 10: Bit rate per frame for initial 4 minutes in the \Star Wars" trace produced by Mark W.
Garrett at Bellcore [43]. This trace was computed using Motion JPEG (i.e., each frame is encoded
independently using JPEG, without motion estimation and with the same quantization parameters
for every frame) and it clearly shows very signi�cant variations in rate between di�erent scenes.
Similar variations can be observed when compressing using other algorithms such as MPEG

Let us now consider a typical real-time transmission as illustrated in Fig. 11. As just described,

video frames require a variable bit rate and thus it will be necessary to have bu�ers at encoder

and decoder to smooth the bit rate variations. Assuming the video input and video output devices

capture and display frames at a constant rate, and no frames are dropped during transmission, it

is easy to see that the end-to-end delay in the system will remain constant [44].

Let us call �T the end-to-end delay: a frame coded at time t has to be decoded at time t+�T .

That imposes a constraint on the rate which can be used for each frame (it has to be low enough

that transmission can be guaranteed within the delay).

Consider the case when transmission takes place over a constant bit rate (CBR) channel. Of

the delay components of Fig. 11 only �Teb and �Ted, that is the time spent in encoder and decoder
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Figure 11: Delay components in a communication system.

bu�er, respectively, will now be variable. Consider for example �Teb, this delay will be at most

Bmax=C, where Bmax is the physical bu�er size at the encoder and C is the channel rate in bits

per second. It is clear that Bmax has to be smaller than �T �C or otherwise we could store in the

bu�er frames which will then experience too much delay.

If we consider the transmission of a sequence such as that of Fig. 10 either (i) we will have to

use very large bu�ers (and correspondingly long end-to-end delays), or (ii) we will have to adjust

the source rate, and thus the delivered quality, to make it possible to use a smaller bu�er (shorter

delay) without losing any data. The delays required for the trace of Fig. 10 would be exceedingly

long and therefore in practical applications it is necessary to perform rate control to adjust the

coding parameters and meet the delay constraints.

As shown in Fig. 12 it is possible to adjust the video rate (and the quality) by modifying the

quantization stepsizes used for each frame. It is therefore easy to see that rate control problems

can be cast as resource allocation problems where the goal is to determine how many bits to use

on di�erent parts of the video sequence and to do so in such a way as to maximize the quality

delivered to the end user. Of course, a natural way to approach these problems is to consider the

R-D trade-o�s in the allocation and techniques such as those described in this paper have been

widely used for rate control [45{48].

Note that even in cases where transmission is performed over a variable bit rate (VBR) channel,

or where the sequence is pre-encoded and stored (e.g., in a Digital Versatile Disk, DVD), it is also

necessary to perform rate allocation. For example, to store a full length movie in a DVD it may

be necessary to pre-analyze the movie, and then allocate appropriate target rates to the various

parts of the movie. In this way, allocating more bits to the more challenging scenes and fewer to

the easier ones will result in a globally uniform quality. R-D based approaches for rate control for

VBR channels have also been studied [49{52].

End Sidebar Inset #D
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Figure 12: Block diagram of a typical MPEG coder. The quantization parameter can be adjusted
to make the rate comply with the channel constraints.
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Begin Sidebar Inset #E

Rate-distortion techniques for Joint Source Channel Coding:

Overview

While rate-distortion based techniques have had a major impact on image and video compression

frameworks, their utility extends beyond compression to the bigger framework of image and video

transmission systems. The problem of transmitting image and video signals naturally involves both

source coding and channel coding. The image or video source has an associated rate-distortion

characteristic that quanti�es the optimal tradeo� between compression e�ciency and the resulting

distortion. The classical goal of source coding is to operate as closely as possible to this rate-

distortion bound. Then comes the task of reliably transmitting this source coded bitstream over

a noisy channel which is characterized by a channel capacity that quanti�es the maximum rate at

which information can be reliably transmitted over the channel. The classical goal of channel coding

is to deliver information at a rate that is as close to the channel capacity as possible. For point-

to-point communications with no delay constraints, one can theoretically separate the source and

channel coding tasks with no loss in performance. This important information-theoretic result, as

stated in the introduction, goes back to Shannon's celebrated separation principle, which allows

the separate design of a source compression/decompression scheme and a channel coding/decoding

scheme, as long as the source code produces a bit rate that can be carried by the channel code.

The separation principle is illustrated in Figure 13.

Channel
  coder

Channel

Channel
 decoder

Source Source
 coder

Source 
decoder

Sink

Separate design

Figure 13: Separation principle. Optimality is achieved by separate design of the source and channel
codecs.

It is nevertheless important to recall that information theory relies on two important assump-

tions, namely (i) the use of arbitrarily long block lengths for both source and channel codes and (ii)
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the availability of arbitrarily high computational resources (and associated delays). It is obvious

that such conditions are not met in practice, both because of delay constraints and practical limits

on computational resources. For certain multiuser communication scenarios such as broadcast [53]

and multicast, the separation theorem does not apply even theoretically, and there is a need for

closer interaction between the source and channel coding components. A key issue in the design of

e�cient image and video transmission systems for these cases therefore involves the investigation

of joint design of these source and channel coding components.

Section 5.3 will take a more detailed look at typical scenarios involving joint source channel

coding, and will give pointers to some of the more recent work in the �eld. In this overview box, we

will formulate the basic joint source channel coding problem at a high level. It is insightful to note

that there are many 
avors to this problem depending on the number of jointly designed elements

involved. If only the source coder and forward error correction devices are involved, the resource

to be allocated is the total bit rate between the source and channel coder. If the modulator-

demodulator (modem) is included in the optimization box, then the transmission power or energy

can become the constraint. The cost function is typically the end-to-end distortion of the delivered

copy of the source: due to the probabilistic nature of the channel, one has to typically abandon the

deterministic distortion metrics of the earlier formulations, and instead consider expected distortion

measures. The distortion is due to both source quantization, which is deterministic in nature for

a �xed discrete set of quantizer choices, and channel noise, which is obviously of a probabilistic

nature. This is in contrast to the use of R-D methods for pure source coding, where quantization

is the only source of distortion.

Formulation 2 Joint source-channel coding optimization

Given a speci�c operational transmission framework involving a source coder (characterized by

its collection of possible R-D operating points), a channel coder (characterized by its collection of

error-correcting strengths and code rates), and possibly a modem device (characterized by the modem

parameters like constellation, transmission power etc.), optimize the expected end-to-end delivered

image or video quality subject to a constraint on the total bit rate (for source and channel coding)

or the total transmission power or energy (if the modem is included in the optimization box) and

possibly subject to other constraints like bandwidth and delay as well. Alternatively, the expected

distortion can be �xed and the cost function could involve total bit rate or transmission energy.

The bit allocation problem in the case of joint source-channel coding can be thus formulated

as �nding the optimal distribution of bits, Rbudget between source bits, Rsource, in order to reduce
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quantization distortion, and channel coding parity bits, Rchannel, in order to minimize the expected

distortion E(D) due to both the source quantization and the noisy channel:

min
fsource parameters; channel parametersg

E(D) subject to Rsource + Rchannel � Rbudget:

End Sidebar Inset #E

Rate-distortion techniques for Joint Source Channel Coding:

Overview

III



3 Typical allocation problems

The previous section has introduced the framework of discrete R-D optimization and the Boxes B,

C, D and E have given us concrete examples of scenarios where this optimization is called for, i.e.,

where the encoder has to make choices among a �nite set of operating modes.

We now present a series of generic problem formulations which spell out some of the possible

constraints the encoder will have to meet when performing this parameter selection. These problem

descriptions are divided into two classes depending on whether compression is targeted for storage

or transmission applications. Before presenting these formulations we discuss several practical

issues and introduce the notation.

Selection of the basic coding unit Up to this stage we have considered generic R-D trade-o�s

where a coding unit, be it a sample, an image block, or an image, is encoded with given distortion

when a particular rate is selected. In a practical scenario it will be necessary to decide at what level,

or levels, of granularity to optimize the encoding process. For example, it is possible to consider

video frames as the basic coding units in a video coding environment and thus measure frame-wise

rate and distortion for each frame in the sequence, and then decide frame-wise operating points.

Alternatively one can operate at a �ner level and consider coding choices for a single frame with

the basic coding unit being, for example, the 8 by 8 pixel blocks used in JPEG.

The coding unit selection has undoubtedly complexity implications and thus may be dictated

by what the encoder system can a�ord. For example if each block within a frame can be assigned

one of several admissible quantization values, then the number of di�erent operating points for a

frame becomes very large (and searching for the best operating point too time-consuming). Thus,

one may compromise when performing a framewise allocation by allowing only a small subset of

all the possible operating points for each frame to be considered in the optimization.

Complexity Complexity is a determining factor in assessing the practicality of the various R-D

optimization techniques we will describe. Two major sources of complexity can be identi�ed. First,

as the R-D data itself may have to be measured from the images, several encode/decode operations

have to be performed to determine the R-D values2. In order to reduce the computations required

to measure rate and distortion for each coding unit one could resort to models (as for example

in [48]) which would be employed in the optimization algorithm instead of the actual values. The

2Note that this is consistent with our assumption of an operational R-D framework, where the goal is to select

the best among those operating points that are achievable.
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second source of complexity comes from the search itself. Even if the R-D data is known, or has

been adequately modeled, we will have to search for the best operating point and that in itself

could be a complicated task.

In addition, complexity depends not only on the number of operations required but also on

the delay in computing the optimal solution and, related to it, the storage required by the search

algorithm. Obviously, more complex algorithms can be applied in o�-line encoding applications

whereas live or real-time encoding will limit the admissible delay and complexity. Complex algo-

rithms can also be justi�ed, if the quality improvements are signi�cant, in scenarios where encoding

is performed just once but decoding is done many times. Since standards such as MPEG provide a

common decoding framework it is possible to develop encoders covering a range of scenarios; from

high quality, high complexity professional encoding to low cost, low complexity consumer products.

Cost function Both distortion and rate may be part of the objective functions to be optimized.

The objective functions can easily be computed for each coding unit, but when our problem involves

deciding on the allocation for a set of coding units, de�ning the overall cost function requires some

additional thought. For example, assume distortion is our objective function, then there are several

alternatives for de�ning the overall distortion measure given the individual distortion measures for

each of the coding units. For example one can assume that minimizing the average distortion is

a desirable objective. But consider now a long video sequence: is it really true that an average

distortion measure is appropriate? Would the viewer �nd more objectionable a result where both

average quality and peak distortion are higher, as compared to a scenario where the average quality

is lower but so is the worst case distortion? These are valid questions and they justify the need

to consider alternatives to average MSE, for example minimax approaches (where the worst-case

distortion is minimized) [54] or approaches based on lexicographic optimization, which can be seen

as a more general case of minimax [55,56].

Perceptually weighted versions of these cost functions can also be accommodated. As in our

earlier discussion of distortion measures, we should emphasize that large gains in a particular

objective function (for example MSE) may not always result in comparably large improvements in

perceptual quality, even if careful perceptual weighting has been introduced.

Notation Let us consider N coding units where each coding unit has M di�erent available

operating points. For each coding unit, or block, i we have information about its rate rij and

distortion dij when using quantizer j. We make no assumptions of any particular structure for the
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rij and dij ; we simply use the convention that quantization indices are listed in order of increasing

coarseness, i.e. j = 1 is the �ner quantizer (highest ri1 and lowest di1) and j = M is the coarsest.

There are no other assumptions made: for example, we do not take into account any possible

correlation between the rate and distortion characteristics of consecutive coding units or assume

any properties for rij and dij . We consider here that the R-D data is known; it is possible replace

measured rij and dij by values that are estimated based on models but this would not a�ect the

algorithms we propose. Examples of rate allocation applications which utilize models instead of

actual data can be found in [47,48,57{60].

It would be trivial to achieve minimal distortion if no constraints on the rate were imposed.

More interesting issues arise when one tries to achieve the best performance given some constraints

on the rate. We will formulate two classes of closely related problems where the rate constraints

are driven by (i) total bit budget (e.g. for storage applications) and (ii) transmission delay (e.g.

for video transmission).

3.1 Storage constraints: budget constrained allocation

In the �rst class of problems we consider the rate is constrained by some restriction on the maximum

total number of bits that can be used. This total number of bits available, or budget, RT , has to

be distributed among the di�erent coding units with the goal of minimizing some overall distortion

metric. For example we may want to use JPEG as in Box B to compress the images within an

image database so that they all �t in a computer disk (where now we may be concerned with the

aggregate quality over all the images). This problem can be re-stated as follows:

Formulation 3 Budget Constrained Allocation Find the optimal quantizer, or operating point,

x(i) for each coding unit i such that
NX

i=1

rix(i) � RT (1)

and some metric f(d1x(1); d2x(2); � � � ; dNx(N)) is minimized.

For example if we are interested in a minimum average distortion (MMSE) problem we have that

f(d1x(1); d2x(2); � � � ; dNx(N)) =
NX

i=1

dix(i):

Alternatively, a minimax (MMAX) approach [54,61] would be such that

f(d1x(1); d2x(2); � � � ; dNx(N)) =
N

max
i=1

dix(i):
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Finally lexicographically optimal (MLEX) approaches [55] have been recently proposed as exten-

sions of the minimax solution. The MLEX approach compares two solutions by sorting their

distortions or, as in [55], their quantization indices. For simplicity assume the quantization indices

are used in the comparison, with j = 1 being the �nest quantizer. Then to compare two solutions,

we sort the quantization indices of all the coding units from largest to smallest: we then compare

the resulting sorted lists and we say that the one represented by the smallest number is the best in

the MLEX sense. For example, consider four coding units which receive the following two alloca-

tions (1; 3; 4; 4) and (3; 2; 3; 2). After sorting, we obtain (4; 4; 3; 1) and (3; 3; 2; 2) and given that we

have 3322 < 4431 the second allocation is the better one in the MLEX sense. Allocations derived

under the MLEX constraint have the interesting property of tending to equalize the distortion or

the quantization scale across all coding units.

In the remainder of the paper we will concentrate on the MMSE as it is by far the most widely

used. Examples of schemes based on MMAX and MLEX can be found in [54, 61] and [55, 56],

respectively.

3.1.1 Allocation under multiple partial budget constraints

A more general version of the problem of Formulation 3 may arise in situations where there are

not only limitations on total rate but also on the rate available for subsets of coding units. Assume

for example that a set of images has to be placed in a storage device that is physically partitioned

(e.g., a disk array) and that it is impossible (or undesirable for performance reasons) to split images

across one or more devices. In this case we will have to deal with partial constraints on the set of

images assigned to each particular device, in addition to the overall budget constraint. An optimal

allocation that considers only the aggregate storage constraint may result in an invalid distribution

between the storage devices.

Consider the case where two storage devices, each one of size RT=2, are used. We will have

then the following constraint, in addition to the budget constraint of (1):

N1X

i=1

rix(i) � RT=2;

where N1 is the number of coding units that are stored in the �rst storage device. N1 itself may

not be given and may have to be determined.
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3.2 Delay constrained allocation and bu�ering

A simple storage constrained allocation such as that in Formulation 3 cannot encompass situations

where the coding units, for example a series of video frames, are streamed across a link or a

network to a receiver. In this situation, as outlined in Box D, each coding unit is subject to a delay

constraint, i.e., it has to be available at the decoder by a certain time in order to be played back.

For example, let a coding unit be coded at time t and assume that it will have to be available

at the decoder at time t + �T , where �T is the end-to-end delay of the system. If each coding

unit lasts tu seconds, then the end-to-end delay can be expressed as �N = �T=tu in coding units.

For example if a video encoder compresses 30 frames per second and the system operates with

an end-to-end delay of �T = 2 secs., then the decoder will wait 2 seconds to decompress and

display the �rst frame (assuming no channel transmission delay) and at any given time there will

be �N = 2=(1=30) = 60 video frames in the system (stored in the encoder or decoder bu�ers or

being transmitted). The video encoder will have to ensure that the rate selection for each frame is

such that no frames arrive too late at the decoder.

Given the delay constraints for each coding unit our problem becomes to

Formulation 4 Delay constrained allocation Find the optimal set of quantizers x(i) such that

(i) each coding unit i encoded at time ti is received by the decoder by its \deadline" ti + �i and, (ii)

a given distortion metric, for example one of those used in Formulation 3, is minimized.

This would be an easy problem if there were no constraints on the transmission bandwidth (e.g.

when reading video data from a DVD, where peak read-out bandwidth from the disk exceeds the

maximum coding rate for any frame). Note however that even if users have access to broadband

channels, by the universal maxim that expenditures shall always rise to meet the incomes, we may

assume that limited bandwidth will be the dominant scenario for the foreseeable future3.

How complex this allocation turns out to be depends on the channel characteristics. Speci�cally

we will need to know if the channel provides a constant bit rate (CBR) or a variable bit rate (VBR),

if the channel delay is constant, if the channel is reliable, etc. For simplicity, in what follows let us

assume that we have �i = �T for all i.

In both CBR and VBR cases, as shown in Box D, data will be stored in bu�ers at encoder and

decoder. Assume a variable channel rate of C(i) during the i-th coding unit interval. Then, we will

3We hope readers will forgive two video compression researchers for not claiming otherwise. One of our most

respected and senior colleagues in the source coding community reassures us that he has heard for over forty years

how bandwidths are exploding and there is no more need for compression!
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have that the encoder bu�er state at time i is

B(i) = max(B(i� 1) + rix(i) � C(i); 0);

with B(0) = 0 being the initial state of the bu�er.

Let us consider now what constraints need to be applied on the encoder bu�er state (it can be

shown that controlling the encoder bu�er su�ces to guarantee the delay constraints are met [44,49]).

First, the bu�er state B(i) cannot grow inde�nitely because the physical bu�er memory will be

limited. If Bmax is the physical memory available then we will need to guarantee that B(i) � Bmax

at all times. In addition, in order for the delay constraint of of Formulation 4 not to be violated

we need to guarantee that the data corresponding to coding unit i is transmitted before ti + �T ,

that is, transmission has to be completed during the next �N coding unit intervals. Intuitively, in

order for this constraint to be met, all we need to ensure is that the future channel rates, over the

next �N units, are su�cient to transmit all the data in the bu�er.

Let us de�ne the e�ective bu�er size, Beff (i) as

Beff (i) =
i+�NX

k=i+1

C(k);

i.e., the sum of future channel rates over the next �N intervals. Then it is easy to see [44,49] that

correct transmission is guaranteed if

B(i) � Beff (i); 8i:

As an example, consider the case where C(i) = �C = RT=N is constant. Then if the system operates

with an end-to-end delay �N the bu�er can store no more than �N � �C bits at time i. For a detailed

analysis of the relationship between bu�ering and delay constraints, we refer to [44,49].

We call this the e�ective size because it de�nes a constraint imposed regardless of the physical

bu�er size. In general the applicable constraint will be imposed by the smallest of Beff (i) and

Bmax. Assuming that su�cient physical bu�er storage is available, i.e., Bmax is always larger than

Beff (i), our problem becomes,

Formulation 5 Bu�er Constrained Allocation Find the optimal set of quantizers x(i) for each

i such that the bu�er occupancy

B(i) = max(B(i� 1) + rix(i) � C(i); 0);

is such that

B(i) � Beff (i)
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and some metric f(d1x(1); d2x(2); � � � ; dNx(N)) is minimized.

It is worth noting that the problems of Formulations 3 and 5 are very much related. For example,

consider the case where C(i) is constant and equal to �C. In this situation the overall allocation

is in both cases constrained by the same total budget. Therefore, if the solution to Formulation 3

meets the constraints of Formulation 5 it is also the optimal solution to the latter problem. This

fact can be used to �nd approximate solutions to the problem of Formulation 5 as shown in [46].

It is also interesting to note that the constraints depend on the channel rates. When the channel

rates can be chosen by the user (e.g. transmission over a network) this leads to interesting questions

on the best combination of source and channel rates given constraints on the channel rates that

can be utilized [49{51]. In scenarios where the channels are unreliable we cannot deterministically

know what the future rates will be but it is possible, if channel models are available, to replace

channel rates by their expected values in the above formulation [52,62,63].

4 The R-D Optimization Toolbox

In this section we describe in more detail the basic techniques that can be applied to the problems

we just described. Our goal here is to explain these tools in general terms. Later sections will

provide pointers to speci�c work where variations on these methods have successfully been applied

to various compression scenarios.

4.1 Independent problems

We consider �rst the case where the rate rij and distortion dij can be measured independently for

each coding unit, i.e., the R-D data for coding unit i can be computed without requiring that other

coding units be encoded as well. One example of this scenario is the allocation of bits to di�erent

blocks in a DCT image coder such as that of Box B where blocks are individually quantized and

entropy coded (i.e., no Di�erential Pulse Code Modulation, DPCM, is used). Another example

would be the allocation of bits to video frames encoded by MPEG in Intra-only mode, or using

motion JPEG.

It is also useful to note that scenarios which involve any prediction or context-based coding

are by nature \dependent" but can sometimes be approximated using \independent" allocation

strategies with little loss in performance [49] (see Section 4.2 for a more detailed description of

dependent allocation problems.) Even if making the independence approximation results in perfor-

mance loss, the dependency e�ects are often ignored to speed up the computation. For example,
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it is common to consider the allocation of bits to frames in a video sequence as if these could be

treated independently; however, due to the motion estimation loop, the bit allocation for one frame

has the potential to a�ect subsequent frames.

4.1.1 Lagrangian optimization

The classical solution for the problem of Formulation 3 is based on the discrete version of La-

grangian optimization �rst introduced by Everett [64]. This approach was �rst used in a source

coding application, following the framework we describe here, by Shoham and Gersho [65] and by

Chou, Lookabaugh and Gray [17,30] in tree-pruning allocation and entropy constrained allocation

problems. Since then this approach has been used by numerous authors [42,45,46,50,66{68].

D

R
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x

x

x

BLOCK i

dij

r ij

min j dij λr ij+ 
 

Plane waves of slopeλ

λr ij

Figure 14: For each coding unit, minimizing dix(i)+�rix(i) for a given � is equivalent to �nding the
point in the R-D characteristic that is \hit" �rst by a \plane wave" of slope �.

The basic idea of this technique is as follows. Introduce a Lagrange multiplier � � 0, a non-

negative real number, and let us consider the Lagrangian cost Jij(�) = dij+��rij . Refer to Figure 14
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for a graphical interpretation of the Lagrangian cost. As the quantization index j increases, i.e., the

rate decreases and the distortion increases, we have a trade-o� between rate and distortion. The

Lagrange multiplier allows us to select speci�c trade-o� points. Minimizing the Lagrangian cost

dij +� � rij when � = 0, is equivalent to minimizing the distortion, i.e., it selects the point closer to

the y-axis in Fig. 14. Conversely, minimizing the Lagrangian cost when � becomes arbitrarily large

is equivalent to minimizing the rate, and thus �nding the point closest to the x-axis in Fig. 14.

Intermediate values of � determine intermediate operating points.

Then the main result states that

Theorem 1 [64,65] If the mapping x�(i) for i = 1; 2; : : : ; N , minimizes:

NX

i=1

dix(i) + � � rix(i); (2)

then it is also the optimal solution to the problem of Formulation 3, for the particular case where

the total budget is:

RT = R(�) =
NX

i=1

rix�(i); (3)

so that:

D(�) =
NX

i=1

dix�(i) �
NX

i=1

dix(i); (4)

for any x satisfying Equation (1) with R given by Equation (3).

Since we have removed the budget constraint of Equation (1), for a given operating \quality"

�, Equation (2) can be rewritten as:

min(
NX

i=1

dix(i) + �rix(i)) =
NX

i=1

min(dix(i) + �rix(i)); (5)

so that the minimum can be computed independently for each coding unit. Note also that for

each coding unit i, the point on the R-D characteristic that minimizes dix(i) + �rix(i) is that point

at which the line of absolute slope � is tangent to the convex hull of the R-D characteristic (see

Figure 14). For this reason we normally refer to � as the slope, and since � is the same for every

coding unit on the sequence, we can refer to this algorithm as a \constant slope optimization".

The intuitive explanation of the algorithm is simple. By considering operating points at constant

slope we are making all the coding units operate at the same marginal return for an extra bit in

the rate-distortion trade-o�. Thus the MSE reduction in using one extra bit for a given coding unit
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would equal to the MSE increase incurred in using one less bit for another unit (since we need to

maintain the same overall budget). For this reason, there is no allocation that is more e�cient for

that particular budget. Box F illustrates why this approach is intuitively sound. This technique was

well known in optimization problems where the cost and objective functions were continuous and

di�erentiable. Everett's contribution [64] was to demonstrate that the Lagrangian technique could

also be used for discrete optimization problems, with no loss of optimality if a solution exists with

the required budget, i.e., as long as there exists a point in the convex hull that meets the required

budget.

The properties of the Lagrange multiplier method are very appealing in terms of computation.

Finding the best quantizer for a given � is easy and can be done independently for each coding

unit4. Still, one has to �nd the \right" � in order to achieve the optimal solution at the required

rate, i.e., �nd � such that R(�) as de�ned above is close or equal to the pre-speci�ed budget.

Finding the correct � can be done using the bisection search [42, 65] or alternative approaches

such as those proposed in [69]. Note that the number of iterations required in searching for �

can be kept low as long as we do not seek to have an exact match of the budget rate. Moreover,

in scenarios such as video coding, where we may be performing allocations on successive frames

having similar characteristics, it is possible to initialize the Lagrange multiplier for a frame with the

values at which convergence was achieved for previous frames, which will again reduce the number

of required iterations, i.e. providing a good initial guess leads to reduced complexity.

4.1.2 Generalized Lagrangian Optimization

Allocation problems with multiple constraints, such as those mentioned in Section 3.1.1, can also

be solved using Lagrangian techniques. These approaches are based on Generalized Lagrangian

Relaxation methods [70]. The basic idea is to introduce a Lagrange multiplier for each of the

constraints which can thus be relaxed. The problem now is that the solution can be found only for

the right vector Lagrange multiplier � = f�1; : : : ; �cg, and the search in a multidimensional space

is not as straightforward as it is when a single Lagrange multiplier is used.

Typically the problems we consider involve signi�cant structure in the constraints, and that

can guide the search for the vector Lagrange multiplier [50,67,71{73]. For example, in some cases,

these constraints are embedded, i.e., if there are N coding units, we have a series of c constraints

where constraint k is a budget constraint a�ecting coding units 1 through nk, i.e., constraint k

4Note that here we are considering that the R-D data has already been computed and we are discussing the search

complexity. Finding the R-D data may in itself require substantial complexity.
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limits the total rate allocation for units 1 through nk. The other constraints likewise a�ect blocks

1 through n1, n2, : : :, nc = N , respectively. In those and similar cases, a search strategy can be

derived to �nd the optimal vector � in an iterative fashion [72].

4.1.3 Dynamic programming

As mentioned above, and discussed in more detail in Box H, Lagrangian techniques have the

shortcoming of not being able to reach points that do not reside on the convex hull of the R-D

characteristic. An alternative formulation is then to formulate the allocation as a deterministic

dynamic programming problem.

In this case, we create a tree which will represent all possible solutions. Each stage of the tree

corresponds to one of the coding units j and each node of the tree at a given stage represents a

possible cumulative rate usage. For example, as seen in Fig. 15, to the accumulated rate at block

i�1 we add the rate corresponding to each possible quantization choice, thus generating new nodes

with the appropriate accumulated rate. Each branch has as a cost the distortion corresponding

to the particular quantizer and therefore as we traverse the tree from root to the branches we can

compute the accumulated distortion for each of the solutions. It should be clear that this is indeed

a way of representing all possible solutions, since by traversing the tree we get successive allocations

for each of the coding units.

Let us now consider what happens if two paths converge into a single node, i.e., two alternative

solutions provide the same cumulative rate. It seems intuitive that the solution having higher

distortion up to that point should be removed (i.e., pruned from the tree), since from that stage

on both solutions have the same remaining bits to use. Those paths which are losers so far will

be losers overall. This is the gist of the Optimality Principle introduced by Bellman [74{76], as

it applies to this particular problem. See also Box G for a simple example of its applicability.

This particular brand of dynamic programming (DP) which handles deterministic cost functions

and helps us �nd the shortest (in the sense of the branch cost) path in a graph is also known

as the Viterbi Algorithm [76] or Dykstra's shortest path algorithm. In compression applications

dynamic programming is used in the encoder in the Trellis Coded Quantizer (TCQ) [77, 78], as

well as in the Scalar Vector Quantizer (SVQ) [79]. It is also used, as will be explained in Box I to

optimally prune trees in applications such as wavelet packet optimization [42], or tree structured

vector quantization [30].

It will be easy to incorporate additional constraints to the tree growth so that the problems of

Formulations 3 and 5 can be solved. For example, to introduce an overall budget constraint, it
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su�ces to prune the branches that exceed the desired total rate allocation (the tree cannot grow

above the \ceiling" speci�ed by the budget constraint). Similarly, if a bu�ering constraint such

as that of Formulation 5 is introduced then we will need to prune out branches that exceed the

maximum bu�er size at a given stage [46].

The algorithm can be informally summarized as follows. At stage i, for all the surviving nodes,

add the branches corresponding to all quantization choices available at that stage (the rate rij

determines the end node and the distortion dij is added to the path distortion.) Prune branches

that exceed the rate constraints, then, for each remaining node at stage i+ 1, keep only the lowest

cost branch.

Given the above discussion one might conclude that Lagrangian optimization is to be preferred in

general given its complexity advantages. However the Lagrangian approach does have one drawback

in that only points in the convex hull of the global operational R-D characteristic can be reached.

This is not a problem if the convex hull is \su�ciently dense," however in some applications it may

result in signi�cant suboptimality. See also Box H for an example of this scenario.

4.2 Dependency problems

So far we have assumed that selection of the coding mode can be made independently for each coding

unit without a�ecting the other units. There exist, however, scenarios where this assumption is no

longer a valid one.

This is typically the case in coding schemes based on prediction [57,80]. For example, assume

that each coding unit i is predicted from the previous coding unit i�1. The predictor is constructed

using the past quantized data, and thus we code Xi � P (X̂i�1), i.e., the prediction error. As we

use quantized data, the prediction error and thus the admissible R-D operating points for i depend

on our choice of quantizer for i� 1. Each choice x(i� 1) results in a di�erent characteristic.

One example of this scenario is illustrated by Fig. 16, where we depict all the available R-D

choices for two video frames where each frame can be coded using three di�erent quantization

settings, and where frame 2 is predicted from frame 1 (note that there are 9 possible choices for

frame 2, since the choices for frame 1 a�ect the resulting R-D values for frame 2). It should be

noted that an algorithm which considers the two frames independently would select (for the given

slope �) quantizer 2 for both frames, i.e., it would incur a cost J1(2) for frame 1 and then, given

that quantizer 2 was selected for frame 1 would choose the minimum among all J2(2; x), which

turns out to be J2(2; 2). However, in this particular example, the greedy approach, allocating �rst

for frame 1 and then for frame 2, can be outperformed. The better overall performance can be
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Figure 15: Trellis diagram to be used for the Viterbi algorithm solution. Each branch corresponds
to a quantizer choice for a given coding unit and has an associated cost, while its length along the
vertical axis is proportional to the rate. For instance, quantizer 1 at stage i produces a distortion
di;1 and requires rate ri;1. A path will correspond to a quantizer assignment to all the coding units
in the sequence.
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achieved when quantizer 1 is used for the �rst frame and quantizer 2 is used for the second. Even

though J1(2) < J1(1) we have that J1(2) + J2(2; 2) > J1(1) + J2(1; 2):

R1

D1

R2

D2

J2(1,2)

3

2

1

J2(2,2)

J2(3,2)

(a) (b)

|Slope|=λ
|Slope|=λ

J1(2)

Figure 16: Operational R-D characteristics of 2 frames in a dependent coding framework, where
frame 2 depends on frame 1. (a) Independent frame's R-D curve. (b) Dependent frame's R-D
curves. Note how each quantizer choice for frame 1 leads to a di�erent R2 � D2 curve. The
Lagrangian costs shown are J = D + �R for each frame.

Several types of dependency scenarios can be identi�ed. Rather than attempt to provide a

complete taxonomy of all these schemes, let us consider two concrete examples within the MPEG

coding framework which di�erent forms of dependency.

Trellis-based Dependency The selection macroblock-level quantization in an MPEG video

stream is a dependent problem because the rate rij for macroblock i and quantizer j depends

on the quantizer chosen for macroblock i � 1. This is because predictive entropy coding of the

quantization indices is used to increase the coding e�ciency. In this situation it is possible to

represent all the possible selections as a trellis where each state represents one quantizer selection

for a given macroblock, with each stage of the trellis corresponding to one macroblock. Dynamic

programming can then be used to �nd the minimal cost path in this trellis, where the branch

cost is typically de�ned as the Lagrangian cost introduced above [81{83]. As in the example of
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Fig. 16, taking the dependency into account avoids \greedy" selection of coding parameters, where

the quantizer assignment is optimized for the current coding unit alone.

In general, trellis-based dependencies arise in cases where the underlying structure is such that

the memory in the system is �nite (i.e., coding choices for i depend only on a �nite set of previous

coding units) and the number of possible cases is also �nite. In other words, in this case, the

available coding parameters for a given coding unit depend on the \state" of the system, the �nite

set of parameters that completely determine achievable values. As in [81{83], for these types of

dependencies one can use a dynamic programming approach, where the state corresponds to the

state of the system, and branches (each corresponding to a choice of quantization) have associated

a Lagrangian cost that combines the rate and distortion for the given parameter choices.

Tree-based dependency A second example of dependency can be seen when we analyze the

e�ect of motion compensation in an MPEG framework. After motion compensation, the encoder

transmits the di�erence between the previously decoded frame and the current frame. This di�er-

ence frame is in turn compressed and used to reconstruct the decoded version of the current frame.

It is easy to see that we have a recursive prediction loop, and thus the residue frame will depend on

the selection of quantization parameters for all previous frames since the last Intra-frame [80]. In

this case we can observe that all possible combinations generated by successive quantizer choices

can be represented as a tree with the number of branches growing exponentially with the number

of levels of dependency (i.e., number of frames since the last Intra-frame).

The problem of dependent coding with an application to an MPEG framework is studied in [80].

The main conclusion is that exponential growth of the number of combinations makes the exact

solution too complex. However it is possible to make approximations that simplify the search for

the optimal solution. Good heuristics include the use of so called monotonicity (a more �nely

quantized predictor typically results in lowered prediction error) [80], or greedy approaches where,

for example, only one or two quantization choices are kept at any given stage. The problem can

also be alleviated by resorting to models of the dependent R-D characteristics so that not all the

operating points in the tree need to be explicitly computed [48,57], or by considering models of the

rate [47,60] and assuming that the quantization scale provides a good estimate of quality.
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Begin Sidebar Inset #F

Example of resource allocation using Lagrangian optimization

We show the generality and intuition of Lagrangian optimization by showing an example that is

well outside the scope of image coding or even engineering. This will hopefully highlight the general

applicability of this class of techniques even to general problems involving resource allocation that

we are faced with in our day-to-day lives.

Let us take the example of Bob Smart, a physics freshman at a U.S. 4-year college. It is three

weeks before Finals Week, and Bob, like all motivated freshmen, is taking 5 demanding courses,

one of which is Physics 101. Bob wakes up to the realization that his grade for the course will be

based on (i) a term project that he has not started on yet, and (ii) a Final exam. Each of these

two components is worth 50% of the grade for the course. As Bob has spent a few more hours on

his extra-curricular activities than he probably should have, and he has to devote a considerable

amount of his time to the other courses as well, he realizes that he has to budget his study time for

Physics very carefully. Suppose he is able to project his expected performance on both the project

and the �nal exam based on how much time he devotes to them, and further he can quantify them

using the curves shown in Fig. 17, which measure his expected deviation from perfection (50 points

for each component) versus the amount of time spent on the component. After carefully surveying

his situation, Bob realizes that he can spare a maximum of 30 hours total between both the project

and the �nal exam. The question is: how does he allocate his time optimally in order to maximize

his score in the course?

One option would be for him to devote 10 hours to the project (Bob was never big on projects!)

and 20 hours to studying for the �nal exam. This would amount to operating on Points A1 and B1

in Fig. 17. Based on the tradeo� that models Bob's propensity with respect to both the project and

the exam, this would result in an expected score of 20 (or a deviation of 30 from 50) on the project

(point A1) and a score of 30 on the �nal exam (point B1) for a net of 50 points. This does not bode

well for Bob but can he make better use of his time? The answer lies in the slopes of the tradeo�

curves that characterize both the project and the �nal exam. Operating point A1 has an absolute

slope of 6 points/hour, while operating point B1 has a slope of only 2 points/hour. Clearly, Bob

could help his cause by diverting one hour from the �nal exam to the project: this would increase

his performance by 4 points! It is clear that he should keep stealing time from the �nal exam study

time and spending it on the term project until he derives the same marginal return for the next

hour, minute or second that he spends on either activity. This is exactly the operating points A2
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and B2 on the curves which live on the same slope of the tradeo� characteristics.

This is exactly the constant slope paradigm alluded to in the body of the text. In a compression

application, the tradeo�s involve rate and distortion rather than scores on exams and studying time,

but the principles are the same. An important point to be emphasized in this example is that the

constant-slope condition holds only under the constraint that the rate-distortion (or equivalent

tradeo�) curves are independent. In our example above, this means that we assume that the �nal

exam curve is independent of the project curve, something that may or may not be true in reality.

If the amount of time spent on the project in
uences Bob Smart's preparedness for the �nal exam,

then we have a case of \dependent coding" for the compression analogue (see Section 4.2).

Pts. taken off

|Slope|=6 pts/hr

Time spent on project

INTUITION OF LAGRANGE MULTIPLIERS

Solution : A1,B1 not  optimal: by diverting 1 hr. from

for project
Pts. taken off
for final exam

A1

Time spent on final exam

50

30

10 hrs.

final exam to project, you can gain 4 pts!
Must operate at SAME SLOPE at optimality!

Problem:  Max. total score given a 30 hr. budget.

20 hrs.

20

50
|Slope|=2 pts/hr

CONSTANT
SLOPES AT
OPTIMALITY

A2

B1

B2

Figure 17: Illustration of Lagrangian optimization.
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End Sidebar Inset #F

Example of resource allocation using Lagrangian optimization

III



Begin Sidebar Inset #G

Example of Bellman's optimality principle of dynamic

programming

The idea of dynamic programming, or Bellman's optimality principle of dynamic programming,

can be captured very easily with a very simple example which illustrates the basic idea.

Suppose we are interested in �nding the shortest auto route between Los Angeles and New

York City. See Figure 18. Further suppose that you know that the shortest route between LA and

New York goes through Chicago. Then Bellman's optimality principle states the obvious fact that

in this case, the Chicago to New York leg of the shortest journey from LA to New York will be

identical to the shortest auto route between Chicago and New York, i.e. to the shortest route on a

trip that starts at Chicago and ends in New York. Why is this obvious observation useful? Because

it can result in a lot of computational savings in �nding the best path from LA to New York: if

we �nd the best path from LA to Chicago, then we only need to add on the shortest auto distance

between Chicago and New York, if we we already know the answer to that.

LosAngeles

New York
Chicago

TRIVIAL EXAMPLE OF BELLMAN’S OPTIMALITY PRINCIPLE

Figure 18: Illustration of dynamic programming.

Sophisticated applications of this basic principle can lead to fast optimal algorithms for a variety

of problems of interest. A popular incarnation of the above principle in signal processing and

communications involves the omniscient Viterbi Algorithm, which uses the dynamic programming

principle illustrated above in �nding the \best path" through a trellis induced by a �nite-state
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machine. The cities in the example above are analogous to the \states" in the Viterbi Algorithm at

various time stages of the trellis. Recall that a state decouples the future from the past; that is, given

the state, future decisions are not in
uenced by past ones that led to that state. Thus, if two paths

merge at a system state, then the costlier of the two paths can be pruned. The analogy to the above

example can be captured as follows: suppose there are two separate paths from LA to Chicago, one

through St. Louis and the other through Denver. If the LA-Denver-Chicago route is longer than

the LA-St. Louis-Chicago route, then the former can be thrown out because the best route from

LA to New York passing through Chicago can never go through Denver. This principle is true for

every state in the system, and is the guiding principle behind the popular Viterbi Algorithm. As

described in the main body, the principle of dynamic programming �nds application in a variety of

scenarios in image and video coding based on rate-distortion considerations like bu�er-constrained

video compression (see also Box D and Section 3.2) and adaptive wavelet-packet based transform

coding (see Box I).

End Sidebar Inset #G

Example of Bellman's optimality principle of dynamic

programming

II



Begin Sidebar Inset #H

Comparison of Lagrangian and Dynamic Programming

Approaches

The basic di�erence between the Lagrangian and dynamic programming (DP) approaches is

that the Lagrangian approach is limited to select only operating points on the convex hull of the

overall R-D characteristic. No such constraint a�ects the DP approach.

This can be easily seen with the example of Fig. 19 which represents the combined R-D char-

acteristic for a set of coding units. The �gure shows an instance of the problem of Formulation 3

where rate has to be allocated to coding units in order to meet a budget constraint. In Fig. 19 the

operating point C exceeds the budget and thus is not an admissible solution. The nearest convex

hull point (A) has higher distortion than B. Therefore B would be the optimal solution for the

problem at hand. In fact, any points in the shaded are would be better than A. However, none of

them is reachable using Lagrangian techniques, as these points are located \over" the convex hull.

However these points would be reachable through dynamic programming.

Note that this situation comes about because we are dealing with a discrete allocation and

therefore the set of achievable points on the convex hull is also discrete (the example of Box F

assumes a continuous range of choices and thus the Lagrangian approach is indeed optimal in that

case.) In many instances, in particular when the convex hull is densely populated, this situation

is less likely to arise or in any case the gap between the best Lagrangian solution and the optimal

solution may be small. Exceptions include scenarios where the number of coding units is small and

the convex hull is sparse, as for example in the coding for Scalar Vector Quantization (SVQ) [79].

When that is the case, the performance gap may be larger and using DP all the more important.

However it may also be possible to use a Lagrangian solution to initialize the DP search (see for

example [84]).

In terms of complexity, the Lagrangian approach is preferable, since it can be run independently

in each coding unit, whereas DP requires a tree to be grown. The complexity of the DP approaches

can grow exponentially with the number of coding units considered while the Lagrangian approach's

complexity will only grow linearly. Thus in many situations the Lagrangian approach is a su�ciently

good approximation once computation complexity has been taken into account.

We also refer the reader to examples given in a webpage5 which demonstrates both the La-

grangian and DP techniques at work. One of the examples shows how for di�erent values of �

5http://sipi.usc.edu/~ortega/RD Examples/
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Figure 19: Comparison between Lagrangian optimization and dynamic programming.

di�erent points are achieved for each of the coding units and in the overall allocation. We demon-

strate how the operating points can be searched with the bisection algorithm until the desired

operating point is reached [42,65]. A second example demonstrates the operation of the DP algo-

rithm where a tree is grown until the minimum cost path which meets the constraint is found.

End Sidebar Inset #H

Comparison of Lagrangian and Dynamic Programming

Approaches
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5 Application to Basic Components in Image/Video Coding Al-

gorithms

In what follows we brie
y outline scenarios where variations of the generic formulations described

in the previous section have been found to be useful. While the formulations and algorithms are

similar, there are key di�erences which would make the discussion too long; we therefore limit

ourselves to providing an overview of the applications with pointers to relevant work in the various

areas. We structure our discussion along the lines of the two classes of problems we introduced,

namely, budget and delay constrained allocations, and refer the reader to Boxes B, C, D.

5.1 Budget constraint problems

Let us now visit a few applications involving budget constrained optimization in the context of

image and video coding. Due to lack of space, we will omit comprehensive coverage of the image

and video coding frameworks and algorithms, referring the reader instead to a number of old and

recent textbooks on the subject [1, 5, 31{37]. We will dwell only and brie
y on transform coding

that was introduced earlier in the context of DCT and wavelet based coding in Boxes B and C

respectively, and refer the reader to textbooks that treat this topic [85{88].

The budget constrained optimization problem in source coding is to minimize the quantization

distortion subject to a bit rate constraint. The most general formulation in the context of transform

coding involves selecting the operating point involving the combination of transform, quantizer,

and entropy-coder in order to realize the best rate-distortion tradeo�. Depending on the 
exibility

(and complexity concerns) of the framework, one or all of the above functional components can be

jointly optimized. Typically the transform is held �xed (e.g. based on DCT or a discrete wavelet

transform) and the quantization and entropy coder are jointly optimized. The quantization modes

can vary from simple scalar quantizers to rather sophisticated vector quantizers, but by abstracting

these quantization modes as constituting a discrete set of quantizers, a host of di�erent frameworks

can be considered under a common conceptual umbrella.

5.1.1 Fixed-transform based R-D optimization

A good example of a �xed-transform based application involves syntax-constrained optimization of

image and video coding standards like JPEG, where the quantizer choice (8x8 quantizer matrix for

the image) and the entropy coding choice (Hu�man table) can be optimized on a per-image and

per-compression-ratio basis (see Box B). The spectrum of general applications for optimizing the

quantizer and entropy coding choice can range from the selection of completely di�erent quantizers
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(or codebooks in a vector quantization scheme) to simply scaling a quantizer by a scaling factor,

as is usually done by users of JPEG.

Another recently popular haven for R-D based techniques is wavelet-based image coding, where

several state-of-the-art coding algorithms realize their high performance gains by using a variety of

sophisticated rate-distortion based optimization techniques. A partial list of coding algorithms that

derive their gains from rate-distortion optimization includes forward-adaptive frameworks involving

subband classi�cation criteria [23,89], space-frequency quantization (SFQ) that R-D optimizes the

popular wavelet zerotree framework [22], as well as backward-adaptive frameworks such as the

estimation-quantization (EQ) framework [24] and backward adaptive quantization [25].

Similarly, optimization techniques can be applied with impressive performance gains for video

coding frameworks like MPEG and H.263. There is a considerable amount of spatio-temporal

redundancy in typical video data, and it is particularly important to pay attention to the temporal

dimension, which has the bulk of the inherent redundancy for typical video sequences.

R-D based techniques for variable size motion compensation can be found in [68], while variable

bit rate motion vector encoding based on DPCM can be found in [69, 90{92]. Other examples of

applications of R-D techniques to video coding can be found in [51,93{95]. A detailed account of

the impact of these techniques on state of the art video coders, concentrating speci�cally on the

motion related issues can be found in another article in this issue [2].

Further, rate-distortion optimization techniques can be applied to shape coding, where tradeo�s

between the �delity of the shape representation versus the bit rate needed to represent the shape

can be optimized [1, 96, 97]. These techniques are likely to be used in newer standards, such as

MPEG-4, which introduce support for video objects, rather use the video frame as their basic video

unit.

5.1.2 Adaptive-transform based R-D optimization

While coding algorithms that use a �xed transformation can be useful if the class of signals is well

suited in some sense (e.g. in time-frequency characterization) to the �xed transform, this may

not be adequate for dealing with arbitrary classes of signals with either unknown or time-varying

characteristics. For example, for images or image segments having high-frequency stationary com-

ponents, the wavelet transform is a bad �t. This motivates us to consider a more powerful adaptive

framework that can be robust when dealing with a large class of signals of either unknown or more

typically, time (or space-)varying characteristics. In this approach, the goal is to make the trans-

formation signal-adaptive. See Boxes C and I for applications involving wavelet packets, which
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represent generalizations of the wavelet transform.

The idea behind adaptive transform frameworks is to replace the �xed transform with a large

library of transforms that can additionally be searched e�ciently. The library of transforms can be

fairly general and can include for example, the family of quadtree spatial segmentations [68,83,98] or

variable block-size DCT's (e.g. 4x4, 8x8, 16x16 blocks). Similarly one can take the standard wavelet

decomposition and customize its various parameters (�lters, tree-structure, including the number

of levels of decomposition) to a particular image [42] or to parts of an image [99]. These techniques

have been shown to provide substantial gains over non-adaptive decomposition techniques [22,100,

101]. Examples like the family of wavelet packet transforms of Box I are illustrations of the joint

optimization of the transform, quantizer, and entropy coding choice in an image-adaptive rate-

distortion sense. Many of the sophisticated wavelet-based frameworks described in Section 5.1.1

can be extended to their adaptive transform counterparts such as those based on wavelet packets

or adaptive wavelet packets [102].

The idea of searching for good representations from a large library has something in common

with the method of matching pursuit [103]. The idea of adapting the representation to the signal

is related to the �eld of universal coding [104]. Tree structured representations have also been

examined in a vector quantization context [30].

5.2 Delay constrained allocation problems

Box G introduces the problem of delay constrained allocation. This class of problems, as also

outlined in Formulation 4, is typically encountered in video transmission under delay constraints.

The more traditional view of the problem is as a bu�er control problem but as described above and

in [44,49] the delay constraint is more general. Rate-distortion techniques have been applied to the

rate control under constant bit rate (CBR) transmission conditions. For example [46] provides an

overall optimal solution using dynamic programming, as well as Lagrangian based approximations.

An alternative formulation is to consider the bu�ering constraints as a set of budget constraints as

in [67]. The traditional direct feedback mechanism used in bu�er control algorithms [105] where

quantization scale is controlled by bu�er fullness is replaced in [106] by a feedback mechanism which

controls instead the value of the Lagrange multiplier to be used in the selection of optimal points.

Both these approaches concentrated on the independent allocation case, the dependent case was

considered by [80] with applications provided to MPEG coding scenarios. More recent work has

also considered R-D optimized MPEG coding using models of the R-D characteristics to reduce

the complexity [48]. The rate control problem can be formulated not only in terms of selection of
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quantization parameters as in the above referenced but also in terms of selection of the best types

of frames (I, P or B) as in [107].

A second area in the rate control research is that of control for variable bit rate (VBR) channels.

Here we can consider two classes of problems. First in some cases it is possible for the encoder to

select both the source and the channel rate; where the selection of channel rate may be subject

to constraints, such as for example the policing constraints in an ATM network. Examples of this

type of optimization include [49] which employs dynamic programming techniques and [50] which

utilizes multiple budget constraints and a Lagrangian approach. Other approaches include [51,108].

The second class of problems is that where the channel rate is subject to random variations

or can vary from link to link in a networked transmission. In [108] R-D methods are provided

to reduce the bit rate of encoded data without requiring that it be decoded and recompressed.

In [52, 63, 109, 110] approaches based on dynamic programming and Lagrangian optimization are

presented to address the problems of transmission in burst error channels such as those encountered

in a wireless transmission environment [111].

5.3 The role of R-D techniques in joint source-channel coding

We have thus far focussed (with the exception of the previous paragraph) on rate-distortion meth-

ods for source coding when dealing with image and video sources. We now brie
y address the

problem of the applicability of such methods for the bigger problem of image and video transmis-

sion, speci�cally in the context of joint source-channel coding. Box E highlights the essence of the

problem. Here, we take a look at some of the applications driving these techniques, and provide

some pointers to recent activities in the �eld.

5.3.1 Background and problem formulation

With the explosion in applications involving image and video communication, such as those a�orded

by the boom in multimedia- and Internet-driven applications, as well as those a�orded by emerging

applications like cable modems and wireless services, the image communication problem has recently

assumed heightened interest and importance, as visual data represents by far the largest percentage

of multimedia tra�c.

A natural question to ask is: why do we need to re-invent data communications just because of

the current multimedia explosion? There are several reasons to revisit the existing paradigms and

systems. The primary one is that current communication link designs are primarily mismatched

for image and video sources as they fail to account for important source considerations such as
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(i) highly time-varying source and channel characteristics, (ii) high source tolerance to channel

loss, and (iii) unequal importance of transmitted bits. This comes from a long history of data

communications, where loss of bits is disastrous (e.g. data �les), and where every bit is equally

sacred. Some relevant important attributes of the image/video source are summarized below:

� The performance metric is the delivered visual quality (e.g. mean-squared-error or more cor-

rectly, the perceptual distortion) of the source due to both source quantization and channel

distortion under constraints of �xed system resources like bandwidth and transmission en-

ergy. This contrasts with commonly used performance criteria like bit error rates, that are

appropriate for traditional data communications.

� The unequal error sensitivities of a typical video bitstream (e.g. bits representing motion vec-

tors or synchronization/header information versus bits representing high-frequency motion-

compensated error residue or detail in textured image areas) emphasizes the desirability of a

layered approach to both source and channel coding, and calls for a rehauling of conventional

\single-resolution" digital transmission frameworks with systems that have a multiresolution

character to them.

� Due to the stringent delay requirements of synchronous video applications, there is a need to

include �nite bu�er constraints (e�cient rate control strategies). These requirements will also

in
uence the choice of error control coding strategies like Forward Error Correction (FEC) vs.

Automatic Repeat ReQuest (ARQ) techniques, as well as more powerful hybrid FEC/ARQ

choices [112].

In Box E wemotivated the need for joint source-channel coding due to the practical shortcomings

of the separation principle (see Figure 13) as well as its theoretical inapplicability to a number of

multiuser communication scenarios of interest like broadcast [53] and multicast. There is thus the

potential for performance gains if there is closer interaction between the source and channel coding

functions. The understanding of the superiority of a joint approach to source and channel coding

in such cases has recently initiated numerous research activities in this area, a partial list of which

can be found among [113{115]. Examples of successful deployment of joint source channel coding

principles for multiuser communications frameworks like broadcast and multicast can be found

in [116,117] and [118] respectively.
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5.3.2 Overview of applications and methodologies

Image and video transmission problems of the kind formulated above come in various application-

driven 
avors. Of particular interest are image and video delivery over heterogeneous packet

networks like the Internet and ATM, as well as wireless video for point-to-point as well as broad-

cast/multicast scenarios. A key challenge involving video sources involves the stringent synchronous

delay requirements. For networking applications there are constraints imposed by the network re-

lated to both the average and peak burst rates. The available channel capacity can 
uctuate quite

a bit also, such as due to network congestion in networking applications, or fading in wireless

communication applications.

Joint source-channel coding schemes studied in the literature have been historically driven by

two high-level ideologies. Very crudely, these ideologies may be classi�ed as being inspired by

\digital" versus \analog" transmission methods.

The digital class of techniques is based on optimally allocating bits between digital source and

channel codes. Source coding bits correspond to a digitally compressed and entropy-coded stream.

Channel coding bits correspond to the parity information of a digital error-correction code. A

popular rate-distortion based approach to this digitally-inspired source-channel coding paradigm

consists of minimizing the expected end-to-end source distortion (due to both source quantization

and channel transmission impairments) subject to a total rate on both source coding and channel

coding. This boils down to an allocation problem not only among source coding elements (see

Section 4.1.1) but also between source coding and channel coding elements. Extensions of the

Lagrangian method described earlier can be invoked here, with the twist that the tradeo�s involve

expected distortion versus total rate, due to the presence of the channel coder. Due to the typically

unequally important nature of source bit layers when dealing with image and video sources, as

pointed out earlier, these layers are matched with unequal levels of channel protection. This comes

under the category of unequal error protection (UEP) channel codes. One of the most popular

classes of deployed UEP channel codes is the family of rate-compatible punctured convolutional

(RCPC) codes [119] that is promising for a number of recent applications involving layered video

coding and streaming for Internet and other applications. The joint source channel coding problem

becomes one of optimally matching the resolution \trees" for both the source and the channel coders

in a rate-distortion sense. A number of researchers have contributed signi�cantly to this class of

algorithms: a summary of this is provided in the reference [120]. An example of a modulation-

domain based UEP scheme is described in [117], which has been recently considered for European
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digital audio and video broadcast [121]. Each layer of di�erent error protection corresponds to

a speci�c type of the receiving monitor (typically, there are three layers or resolutions) and have

di�erent bit error rate requirements. Thus the quality of the received video varies gracefully with

the receiver type as well as its distance from the transmitter.

It should be noted that this \digital" ideology, while allowing higher source compression because

of entropy coding, can also lead to increased risk of error propagation. The popular solution is to

insert periodic resynchronization capabilities using packetization. The resulting synchronization

and packetization overheads that are needed to increase error-resilience obviously eat into the

compression e�ciency. The problem becomes one of optimizing this balance.

The other ideology has been inspired essentially by the \graceful degradation" philosophy rem-

iniscent of analog transmission. Thus, while the single-resolution digital philosophy adopts an \all

or nothing" approach (within the packetization or layering operation) resulting in the well-known

\cli� e�ect", the analog-inspired approach carries a \bend but do not break" motto. The idea is

to do intelligent mappings of source codewords into channel constellation points, so as to have a

similarity mapping between \distances" in the source coding domain and \distances" in the channel

modulation domain [114, 122{125]. Thus, large source distortions are e�ectively mapped to high

noise immunity, i.e. to low probability error events, and vice versa, with intelligently chosen index

assignments. The advantages of such an approach are increased robustness and graceful degrada-

tion. The disadvantage is the lack of a guaranteed quality of service (there is no notion of \perfect"

noise-immunity).

It is interesting to note also that hybrid versions of these two philosophies that are aimed at

exploiting the \best of both worlds" have been advocated recently [126] with signi�cant performance

gains.

If the modem is included in the optimization box, then the standard rate-distortion problem

becomes transformed into a power-distortion tradeo� problem (where the constraint now becomes

the transmission power or energy rather than the bit rate). This leads to interesting extensions

of well-known rate-distortion based optimization algorithms to their power-distortion counterparts

[114,124]. The reader is referred to [120] for a more detailed historical perspective of joint source

channel coding of images and video sources.

An example of an area where joint source-channel coding ideas have had an impact is in com-

municating over heterogeneous networks. In particular, the case of multicast in a heterogeneous

environment is well suited for multiresolution source and channel coding. The idea is very simple:
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give each user the best possible quality, by deploying a 
exible networking infrastructure that will

reach each user at its target bit rate. More precisely, a multicast transmission can be conceptualized

as living on a multiresolution tree, that is a set of trees carrying various resolutions. Each user

then reaches as many levels of the multiresolution tree as is possible given its access capabilities.

Such a scheme was proposed in [118] for a heterogeneous packet environment, as for example the

Internet. Figure 20 succintly captures the basic idea.

Figure 20: Illustration of joint source channel coding for multicast scenario.

While currently mostly wired links are involved, it is clear that mobile components are becoming

more and more important as well. Such a scheme would be suitable for such an environment as

well, possibly with bridges between wired and wireless components.
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Begin Sidebar Inset #I

Adaptive Transforms based on wavelet expansions

We continue the thread from Box C in our quest for designing adaptive transforms based on

wavelet expansions that are R-D optimized.

Let us �rst address the cost function, namely the R-D function. Returning to the problem of

jointly �nding the best combination of wavelet packet (WP) transform (or basis) and the quan-

tization and entropy coding choices, we assume that arbitrary (�nite) quantization choices are

assumed available to quantize the WP coe�cients in each tree node (see Figs. 9 and 21), with both

Rate (R) and Distortion (D) being assumed to be additive cost metrics over the WP tree: i.e.

R(tree) =
P
R(leafnodes); and D(tree) =

P
D(leafnodes). As an example, the commonly used

�rst-order entropy and MSE measures for R and D satisfy this additivity condition.

Turning now to the fast search problem, one possible approach to �nding the best tree is the

\greedy tree growing" algorithm, which starts at the root and divides each signal in two if it is

pro�table to do so (if the cost of the subsignals generated is less than the cost of the signal they

come from). It terminates when no more pro�table splits remain. It is easy to determine that this,

however, does not �nd the globally optimal tree, which is found by starting at the deepest level of

the tree, and pruning pairs of branches having higher total cost than that of their parent.

We now describe the details using a 1-D case for simplicity. See Figure 21. The idea is to �rst

grow the full (STFT-like) tree (see Figure 21 (a)) to full depth (or some maximum �xed depth

in practice) for the whole signal. Note that due to the tree-structure of the bases, we now have

available the WP coe�cients corresponding to all the bases on our search list. That is, if we grow

the coe�cients of a depth-5 tree, we know the coe�cients associated with all subtrees grown to

depth-5 or less.

The next step is to populate each WP tree node with the minimum Lagrangian cost over all

quantization choices for that tree node. This minimum cost at each node is associated with the

quantizer which minimizes the rate-distortion tradeo� (for a �xed \quality factor" �):

J(node) = min
quantizer

[D(node) + �R(node)]:

Note the implication of this step - we do not yet know if an arbitrary tree node will be part of

our desired optimal subtree choice, but we do know what quantization choice to use for that node

if it is part of the best basis subtree. This is particularly satisfying because it has enabled us to

decouple the best quantizer/basis choice without sacri�cing optimality.
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We now have remaining only the un�nished business of �nding the best basis. The special tree

structure of the basis can be exploited in formulating a fast tree-based search strategy. The idea

is to use a bottom-up recursive \split-merge" decision at each node, corresponding to whether it is

costlier, in the Lagrangian sense, to keep the parent node or its children nodes. This fast dynamic

programming (DP) based pruning method is also optimal because the signal subspace spanned by

the parent node is the direct sum of the signal subspaces spanned by its children nodes thanks

to the orthogonality of the �lter bank. We now describe the details. Assume known the optimal

subtree from a tree node n \onwards" to the full tree-depth logN . Then, by Bellman's optimality

principle of DP [74] (see also Box G), all surviving paths passing through node n must invoke this

same optimal \�nishing" path. There are only two contenders for the \surviving path" at every

node of the tree, the parent and its children, with the winner having the lower Lagrangian cost.

That is, starting from the full tree,the leaf nodes are recursively subjected to an optimal split-merge

decision, following a policy of:

Prune if : J(parentnode) � [J(child1)+ J(child2)];

where J(childnode) corresponds to the cost of the cheapest path that \goes through" the child

node. Using this, we begin at the complete tree-depth n = logN and work our way towards the

root of the tree, using the above split/merge criterion at each node, making sure that we record

the optimal decisions along the way, until we arrive at the tree root. At this point, the best basis

is known by simply backtracking our way down the tree using our recorded decisions at each tree

node. In fact, both the best basis and the best quantization choice are now known!

Of course, this corresponds to a particular choice of �, which was �xed during this tree-pruning

operation. Unfortunately, this � may not be the correct one: we want the one that corresponds to

the target bit budget R. However due to the convexity of the rate-distortion curve, the optimal slope

�� matched to the desired R can be easily obtained using standard convex search techniques, e.g.

the bisection method or Newton's method or other standard root-solving methods. An important

point of note is that the Lagrangian method can only obtain solutions that reside on the convex-hull

of the rate-distortion curve, and thus, a target rate whose optimal operating point is not on the

convex hull will be approximated by the nearest convex-hull rate. In practice, for most practical

coding applications, the convex hull of the R-D curve is dense enough that this approximation is

almost exact.

We will now summarize the single tree algorithm:

� Grow a full balanced (STFT-like) tree to some desired �xed depth (i.e. �nd all
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the WP coe�cients associated with all bases in the library);

� For a �xed �, populate each node of the full tree with the best Lagrangian cost

D + �R over all quantizer choices (i.e. �nd the best quantizer choice for each

node);

� Prune the full tree recursively, starting from the leaf nodes (i.e. �nd the best

basis subtree);

� Iterate over � using a convex-search method to meet the target bitrate (i.e. match

the best subtree/quantizer choice to the desired bit budget).
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Figure 21: The single tree algorithm �nds the best tree-structured wavelet packets basis for a given
signal. (a) The algorithm starts from the full STFT-like tree, and prunes back from the leaf nodes
to the root node until the best pruned subtree is obtained. (b) At each node, the split-merge
decision is made according to the criterion: prune if J(parentnode) � [J(child1)+ J(child2)].
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6 Conclusions

In this paper we have provided an overview of rate distortion optimization techniques as they are

used in practical image and video. We started by establishing the link between these techniques and

the rate distortion theory developed in the �eld of information theory. We motivate that standard

based image/video coding can bene�t from optimization techniques as it allows the encoder to

optimize the selection of its coding parameters, while preserving decoder compatibility. We then

de�ned a generic resource allocation problem and give two concrete examples, namely, budget

constrained allocation and delay constrained allocation. We explained in detail the two techniques,

Lagrangian optimization and Dynamic programming which have become essential tools to solve

these allocation problems. This allowed us to give an overview of applications where rate-distortion

optimization has proven to be useful. We ended by describing how these techniques can also be

found to be useful within joint source channel coding frameworks.
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