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ABSTRACT
Many ubiquitous computing applications involve human ac-
tivity recognition based on wearable sensors. Although this
problem has been studied for a decade, there are a limited
number of publicly available datasets to use as standard bench-
marks to compare the performance of activity models and
recognition algorithms. In this paper, we describe the freely
available USC human activity dataset (USC-HAD), consist-
ing of well-defined low-level daily activities intended as a
benchmark for algorithm comparison particularly for health-
care scenarios. We briefly review some existing publicly
available datasets and compare them with USC-HAD. We
describe the wearable sensors used and details of dataset
construction. We use high-precision well-calibrated sensing
hardware such that the collected data is accurate, reliable,
and easy to interpret. The goal is to make the dataset and
research based on it repeatable and extendible by others.
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INTRODUCTION
Human activity recognition is regarded as one of the most
important problems in ubiquitous computing since it has a
wide range of applications including healthcare, security,
surveillance, human-machine interaction, sport science, etc.
Camera-based computer vision systems and inertial sensor-
based systems are among several techniques used to collect
basic sensor data for human activity recognition. In com-
puter vision, human activities are captured by cameras and
the task is to recognize automatically the activity based on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UbiComp ’12, Sep 5-Sep 8, 2012, Pittsburgh, USA.
Copyright 2012 ACM 978-1-4503-1224-0/12/09...$10.00.

a sequence of images [22]. However, in some scenarios
which require continuously monitoring a person’s activities,
the camera-based method may not work due to the lack of
complete camera coverage. In addition, cameras are intru-
sive and many people do not feel comfortable being watched
by cameras continuously.

With the advancement of semiconductor and MEMS tech-
nologies, inertial sensors such as accelerometers and gyro-
scopes are miniaturized such that they can be attached or
worn on the human body in an unobtrusive way. The data
from these wearable sensors can be used in systems that
understand and recognize human activities using machine
learning and pattern recognition techniques. Compared to
cameras, an advantage of wearable sensors is that they gen-
erally monitor activity on a nearly-continuous or continuous
basis, and are not confined to a limited observation space.
Furthermore, wearable sensors are unobtrusive if they are in-
tegrated into items people wear or hold in their normal lives.
Examples of such items are watches, shoes, mobile phones,
and clothing [17] [5] [10].

Since wearable sensors are suitable for continuous monitor-
ing, they open the door to a world of novel healthcare appli-
cations. Specific applications include physical fitness mon-
itoring, elder care support, sleep quality monitoring, long-
term preventive and chronic care, and intelligent assistance
to people with cognitive disorders [7] [24]. As an example, a
sleep quality monitoring application could use activity infor-
mation (body position and movement) to infer and calculate
the amount of restorative sleep (deep sleep) and disruptive
sleep (time and duration spent awake) that one gets through-
out the night. This information helps users recognize sleep-
ing disorders as early as possible for diagnosis and prompt
treatment of the condition [11].

The applications mentioned above promotes the research of
human activity recognition using wearable sensors. Over the
past decade, researchers in embedded systems, signal pro-
cessing, biomedical engineering, and human-computer in-
teraction have begun to work on prototyping wearable sensor
systems, building human activity datasets, and developing
machine learning techniques to model and recognize vari-
ous types of human activities. In this work, we focus on de-
veloping a dataset for human activity recognition research.
It has been widely accepted that datasets play a significant
role in facilitating research in any scientific domain. In ap-



plication areas including human speech recognition, natural
language processing, computer vision, and computational
biology, there are many publicly available datasets that act
as standardized benchmarks for algorithm comparison (e.g.
UC Irvine machine learning repository [3], Caltech 101/256
dataset [1], and Wall Street Journal CSR corpus [18]). Al-
though wearable sensor-based human activity recognition has
been studied for a decade, most researchers develop and ex-
amine the performance of their activity models and recogni-
tion algorithms based on their own datasets. In general, these
datasets are relatively small and limited by the constrained
settings within which they are constructed. Specifically, they
either only contain a small number of subjects (e.g. 2, 3, or
even 1) or focus on some specific category of activities (e.g.
cooking activities). Furthermore, most of these datasets are
not available for public usage. This prohibits researchers
in ubiquitous computing community to compare their algo-
rithms on a common basis.

The lack of large, general purpose, and publicly available hu-
man activity datasets motivates us to build our own dataset.
In this paper, we describe how we constructed a dataset use-
ful for ubiquitous computing community for conducting hu-
man activity recognition research and compare it to a se-
lection of similar existing datasets. We term our dataset
University of Southern California Human Activity Dataset
(USC-HAD). As a brief overview, USC-HAD is specifically
designed to include the most basic and common human ac-
tivities in daily life from a large and diverse group of human
subjects. Our own focus is on healthcare related applica-
tions such as physical fitness monitoring and elder care, but
the activities in the dataset are applicable to many scenarios.
The activity data is captured by a high-performance inertial
sensing device instead of low-cost, low-precision sensors.
Figure 1 shows an example of the activity data sampled by
the sensing device. As of the time of writing (June 2012),
we have included 12 activities and collected data from 14
subjects. The entire dataset and the basic code for visual-
izing the data is publicly available on the web at: http:
//sipi.usc.edu/HAD/ [4]. We intend to expand the
number of activities and number of subjects in future, and
we will provide updates on this website.

EXISTING DATASETS
The number of publicly available human activity datasets is
limited. In this section, we review some of them. Although
each dataset has its own strengths, none of them meets our
goals, thus motivating us to build our own dataset. A full
comparison of these datasets and USC-HAD is in Table 1.

MIT PlaceLab Dataset
One of the first publicly available datasets is the MIT Place-
Lab dataset [20]. A single subject wearing five accelerom-
eters (one on each limb and one on the hip) and a wireless
heart rate monitor was asked to perform a set of common
household activities during a four-hour period. The house-
hold activities include: preparing a recipe, doing a load of
dishes, cleaning the kitchen, doing laundry, making a bed,
and light cleaning around an apartment. In addition to the
activities above, the subject also searches for items, uses ap-

pliances, talks on the phone, answers email, and performs
other everyday tasks. The major issue with this dataset is
that it only contains data from a single subject. A poten-
tial problem with it is that the small number of subjects may
poorly represent the activity characteristics of a large popu-
lation. In addition, the definitions of the considered activities
are vague which makes the evaluation of recognition perfor-
mance difficult.

       
















 











 




  

 
 

 

   



 
 

Figure 1. An example of activity data from the x-axis of the 3-axis
accelerometer

UC Berkeley WARD Dataset
The WARD (wearable action recognition database) dataset
developed by the University of California, Berkeley (UC
Berkeley) consists of continuous sequences of human ac-
tivities measured by a network of wearable sensors [23].
These wireless sensors are placed at five body locations: two
wrists, the waist, and two ankles. Each custom-built multi-
modal sensor carries a 3-axis accelerometer and a 2-axis gy-
roscope. WARD includes 20 human subjects (13 male and
7 female) and a rich set of 13 activities that covers some
of the most common activities in people’s daily lives such
as standing, walking, and jumping. Although the WARD
dataset covers a large population and focuses on the most
common human activities, part of the sensed data is missed
due to battery failure and wireless network packet loss. In
addition, the data sampled from the sensors is raw digital
data and not calibrated. This makes the data hard to inter-
pret. Moreover, the dataset does not include sensor locations
where people typically carry their mobile devices (e.g. mo-
bile phone, iPod) such as pant pockets and front hips. We
feel that this makes this dataset less useful.

CMU Multi-Modal Activity Database (CMU-MMAC)
The Carnegie Mellon University Multi-Modal Activity Data-
base (CMU-MMAC) is different from the datasets mentioned
above in the sense that it contains many other modalities be-
sides accelerometers and gyroscopes to sense and measure
human activities [21]. These modalities include video, au-
dio, RFID tags, motion capture system based on on-body
markers, and physiological sensors such as galvanic skin
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response (GSR) and skin temperature. These sensors are
located all over the human body, including both forearms
and upper arms, left and right calves and thighs, abdomen,
and both wrists. 43 subjects were enrolled to perform food
preparation and cook five different recipes: brownies, pizza,
sandwich, salad and scrambled eggs in a kitchen environ-
ment. Although this dataset contains a much bigger popu-
lation and richer modalities and locations than any dataset
mentioned above, it only focuses on a specific category of
activities (cooking).

OPPORTUNITY Dataset
The OPPORTUNITY dataset is collected from an European
research project called OPPORTUNITY [19]. The OPPOR-
TUNITY dataset focuses on daily home activities in a break-
fast scenario. Specifically, 12 subjects are asked to perform
a sequence of daily morning activities including grooming
room, preparing and drinking coffee, preparing and eating
sandwich, and cleaning table in a room simulating a studio
flat with kitchen, deckchair, and outdoor access. Like CMU-
MMAC, the OPPORTUNITY dataset is recorded from many
different sensing modalities including accelerometers, gy-
roscopes, magnetometers, microphones, and video cameras
integrated in the environment, in objects, and on the hu-
man bodies. Similar to CMU-MMAC, although OPPORTU-
NITY dataset contains a wide range of sensing modalities, it
only covers daily morning activities in a home environment.

Design Goals
The goal of our USC-HAD dataset is to overcome the lim-
itations of the existing datasets such that it can serve as a
standard benchmark for researchers in ubiquitous computing
community to compare performance of their human activity
recognition algorithms. In order to achieve this, our dataset
has been carefully constructed with the following goals:

• The dataset should enroll a large number of human sub-
jects with divergence in gender, age, height, and weight.

• The activities included should correspond to the most ba-
sic and common human activities in people’s daily lives
such that the dataset is useful for a wide range of poten-
tial applications such as elder care, and personal fitness
monitoring.

• The wearable sensors should be calibrated and capable of
capturing human activity signals accurately and robustly.

• We envision that in near future the wearable sensors will
become a part of the mobile devices (e.g. mobile phone)
people carry in their daily lives. Therefore, the locations
of the wearable sensors should be selected to be consistent
with where people carry their mobile devices.

In the following sections we will describe in more detail the
wearable sensors we use for data collection, the activities we
have chosen, and finally the data format and organization of
our USC-HAD dataset. We conclude this paper with a brief
summary and future work.

SENSORS AND HARDWARE PLATFORM
The majority of wearable systems for ubiquitous comput-
ing and activity recognition concentrates on placing a single
type of sensor, typically accelerometers, in multiple loca-
tions on the human body (single-modality multi-location).
However, the use of single sensor type has been proved to
restrict the range of activities it can recognize [7]. An alter-
native is to use multiple sensor types, that is, a multi-modal
sensor to collect data from a single body location (multi-
modality single-location). The rationale behind this idea is
to select sensors that are complementary such that a wider
range of activities can be recognized. For example, using
an accelerometer and a gyroscope together can differentiate
whether the person is walking forward or walking left/right
while classification fails if accelerometers are used alone.
Furthermore, the reason to place the sensors on a single loca-
tion is to remove the obtrusiveness incurred by placing sen-
sors on multiple body locations. In terms of practicality, this
multi-modality single-location design is a promising line of
investigation since it is much more comfortable for users to
wear a single device at only one location. Moreover, this
multi-modal sensor could be incorporated into existing mo-
bile devices such as mobile phones. Integrating sensors into
devices people already carry is likely to be more appealing
to users and achieve greater user acceptance. In terms of
performance, the study carried out in [14] has shown that
the information gained from multi-modal sensors can off-
set the information lost when activity data is collected from
a single location. Therefore, we adopt the multi-modality
single-location design to build our sensing platform.

The Choice of Sensors
There are many types of wearable sensors used in the lit-
erature for human gesture and activity recognition. These
sensors include audio sensor (microphone), motion sensors
such as accelerometer and gyroscope; geographical sensors
such as magnetometer (digital compass) and GPS; physio-
logical sensors such as galvanic skin response (GSR) sensor,
pulse oximeter, and Electrocardiogram sensor (ECG); and
environmental sensors such as barometric pressure sensor,
ambient light sensor, humidity and temperature sensor. Intu-
itively, it would be optimal to include all these sensors since
each provides some useful information. However, in the per-
spective of activity recognition performance, it is not neces-
sary or even undesirable if we incorporate all the sensing
modalities. For example, heart rate information extracted
from ECG sensor has a high correlation with the accelerom-
eter signals. Only modest gain is achieved when these two
sensors are combined together [15]. Light sensor can be mis-
leading since its readings are more dependent on how users
carry devices than what activities they are performing. In the
perspective of system complexity and practicality, the total
number of sensors should be as small as possible such that
the size of the wearable device is small. Therefore, only
the most important sensors which provide complementary
information should be incorporated. In [16], the rotation an-
gle produced by gyroscope is identified to be the key perfor-
mance booster for fall detection. In [13], accelerometer and
microphone are identified as the two most important sen-
sors to recognize activities including sitting, walking, walk-



ing up/down stairs, riding elevator up/down, and brushing
teeth. However, for privacy considerations, we argue that
sensors such as microphone should not be selected.

MotionNode
Based on the above considerations, we use an off-the-shelf
sensing platform called MotionNode to capture human ac-
tivity signals and build our dataset. MotionNode is a 6-DOF
inertial measurement unit (IMU) specifically designed for
human motion sensing applications (see Figure 2) [2]. Each
MotionNode itself is a multi-modal sensor that integrates a
3-axis accelerometer, 3-axis gyroscope, and a 3-axis mag-
netometer. The measurement range is ±6g and ±500dps
for each axis of accelerometer and gyroscope respectively.
Although body limbs and extremities can exhibit up to ±12g

Figure 2. MotionNode sensing platform

in acceleration, points near the torso and hip experience no
more than ±6g range in acceleration [6]. Therefore, Mo-
tionNode is capable of capturing all the details of normal
human activities. In addition, MotionNode is a wired device
and transmits sampled sensor data to a laptop computer via
a USB interface. In such case, no sensor data is missed and
the fidelity of the sensor data is well preserved. A possible
concern is that the wire is cumbersome and may distort the
sampled data. However, we have proved by experiments that
as long as the wire is soft and long, it has little impact on the
quality of the collected data1.

Compared to other commercially available inertial sensing
platforms, MotionNode has several advantages:

• MotionNode is extremely small in size (35mm×35mm×
15mm) and lightweight enough (14g) to wear comfort-
ably for long period of time. This feature makes MotionN-
ode unobtrusive and thus perfect as a wearable device.

• Compared to the accelerometer and gyroscope embedded
in the smartphones (e.g. iPhone 4G), the integrated sen-
sors have higher resolution (0.001g±10% for accelerom-
eter, 0.5◦/second for gyroscope) and wider sensing ranges.
In addition, MotionNode is gyro-stablized and well cali-
brated such that the readings are accurate and reliable.

1The experiments were performed by placing the MotionNode on
a rotation table with a soft and relatively long wire connected to a
PC. The rotation table was preset to rotate at a constant rate (30dps,
60dps, 120dps). The readings from MotionNode were almost the
same as the preset values.

• The highest sampling rate can reach 100Hz. This sam-
pling frequency is much higher than the one used in some
of the existing datasets [23] [21].

USC HUMAN ACTIVITY DATASET (USC-HAD)
In this section, we describe the details of our human activity
dataset USC-HAD. We first explain our criteria for selecting
the subjects and activities, then we describe the data collec-
tion procedure and how we annotate the data. Finally we
present the organization of our dataset.

Human Subjects
Variation across users is an important practical issue for any
pattern recognition problem. In order to build a powerful
recognition system, the system needs to be trained on a large
diverse group of individuals. In the context of human activ-
ities, we assume that the diversity of the subjects enrolled
includes the following four factors: (1) Gender; (2) Age; (3)
Height; and (4) Weight. Based on these guidelines, we have
selected 14 subjects (7 male, 7 female) to participate in the
data collection. The statistics of age, height, and weight are
listed in Table 2. We hope the diversity in each of these four
factors ca cover a wider range of population.

Age Height (cm) Weight (kg)
range 21 - 49 160 - 185 43 - 80
mean 30.1 170 64.6
std 7.2 6.8 12.1

Table 2. Statistics of the participating human subjects

Activities
There are many categorization methods to classify human
activities. One method categorizes activities into activities
that an individual does by themselves (e.g., cooking), and
activities that involve more than one person (e.g. shaking
hands) [8]. Another popular categorization is based on time-
scale. It breaks activities into: (1) short-term activities (low-
level activities), where activities are characterized by a se-
quence of body motions, posture or object use (e.g., walking,
going upstairs). These activities typically last between sec-
onds and several minutes; and (2) long-term activities (high-
level activities), which are complex and usually composed of
a collection of low-level activities. These activities typically
last more than several minutes and can last as long as a few
hours (e.g., cleaning the house, going shopping) [12]. In this
work, we focus on building a dataset of low-level activities.
We list two reasons here: (1) Low-level activities such as
walking and running have a clear definition and description.
This makes modeling at this granularity level much easier.
As a comparison, high-level activities are typically complex.
Up to now, there is still no consensus on how to define these
activities in the ubiquitous computing community. (2) Nor-
mally, high-level activities consist of a sequence of low-level
activities. For example, going shopping can be regarded as
walking to the garage, driving a car to the shopping mall,
and then shopping in the mall. Therefore, it is reasonable
to assume low-level activity recognition is the basis of the
high-level activity recognition. Once we reliably recognize
low-level activities, we can then construct a temporal and



location model on top of these low-level activities to charac-
terize the corresponding high-level activities.

Based on the considerations mentioned above, we have se-
lected 12 activities (see Table 3). These activities are among
the most basic and common human activities in people’s
daily lives. Note that the description for each activity in Ta-
ble 3 is generic such that each subject could perform these
activities based on one’s own style. We hope this diversity in
performance style could cover a wider range of population.

Activity Description
1 walking forward The subject walks forward in a

straight line
2 walking left The subject walks counter-clockwise

in a full circle
3 walking right The subject walks clockwise

in a full circle
4 walking upstairs The subject goes up multiple flights
5 walking downstairs The subject goes down multiple flights
6 running forward The subject runs forward in a

straight line
7 jumping The subject stays at the same position

and continuously jumps up and down
8 sitting The subject sits on a chair either

working or resting. Fidgeting is also
considered to belong to this class.

9 standing The subject stands and talks to someone
10 sleeping The subject sleeps or lies down on a bed
11 elevator up The subject rides in an ascending elevator
12 elevator down The subject rides in a descending elevator

Table 3. Activities and their brief descriptions

Data Collection Procedure
To collect data, we pack a single MotionNode firmly into
a standard-sized mobile phone pouch (see Figure 3). Since
MotionNode is a wired device, the MotionNode is connected
to a miniature laptop via a long and soft cable to record
sampled data. During data collection, the subject wears the
pouch at one’s front right hip (with the MotionNode oriented
so the x axis points to the ground and is perpendicular to the
plane formed by y and z axes), holds the miniature laptop in
one hand, and is asked to perform a trial of specific activity
naturally based on one’s own style (see Figure 4). We choose
front right hip as the location to wear the sensor because it
is one of the top 5 locations where people carry their mobile
phones when they are out and about in public spaces based
on the survey carried out by [9]. In order to capture the day-
to-day activity variations, each subject was asked to perform
5 trials for each activity on different days at various indoor
and outdoor locations. Although the duration of each trial
varies across different activities, it is long enough to capture
all the information of each performed activity. On average,
it took 6 hours for each subject to complete the whole data
collection procedure.

Ground Truth Annotation
Ground truth was annotated while the experiments were be-
ing carried out. When the subject was asked to perform a
trial of one specific activity, an observer standing nearby
marked the starting and ending points of the period of the

Figure 3. MotionNode, the mobile phone pouch, and the miniature
laptop

activity performed. In addition, the observer was also re-
sponsible for recording the details of how subjects perform
activities. Examples include how many strides the subject
made during one trial of “walking forward”; how the sub-
ject climbed the stairs (one stair at a time, or two stairs at a
time) during one trial of “walking up stairs”, etc. This on-
line ground truth annotation strategy eliminates the need for
the subjects to annotate their data by themselves and helps
to reduce annotation errors.

Figure 4. During data collection, a single MotionNode is packed firmly
into a mobile phone pouch and attached to the subject’s front right hip

Dataset Organization
After the sessions were recorded, the activity data of each
trial was manually segmented based on the starting and end-
ing points annotated by the observer. These segmented data
was then stored and organized using the MATLAB comput-
ing environment. Each segmented activity trial of one sub-
ject is stored in a separate .mat file. The naming conven-
tion of each .mat file is defined as a”m”t”n”.mat, where a
stands for activity, m stands for activity number (see Table 3
for the activity numbers), t stands for trial, and n stands for
trial number. For example, the first trial of activity “walking
forward” is stored in the .mat file with the name a1t1.mat
(“walking forward” has an activity number 1). The stored
information of each .mat file is listed and described briefly
in Table 4.

Dataset Visualization
In addition to the collected activity data, we also provide
sample MATLAB scripts for visualizing the data. An exam-
ple of the plot is shown in Figure 5. In this example, we
show the raw sensor data, the histogram, and the spectral
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(a) An example of data plot for Walking Forward
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(b) An example of data plot for Running Forward

Figure 5. The plot of the raw sensor data, the histogram, and the spectral analysis of each axis of the 3-axis accelerometer for activity Walking
Forward and activity Running Forward.

Field Description
title USC Human Activity Database
version The version of the dataset
date A string indicating the date of the recording

session with the format: yyyy-mm-dd
subject number An integer representing the unique ID number

of the subject
age An integer representing the age of the subject
height An integer representing the height of the

subject in unit of centimeter
weight An integer representing the weight of the

subject in unit of kilogram
activity name A string indicating the name of the activity
activity number An integer representing the ID number

of the activity
trial number An integer representing the number of the trial
sensor location The location of the sensor worn on the

human body
sensor orientation The orientations of the embedded 3-axis

accelerometer and 3-axis gyroscope
sensor readings The sampled data from the 3-axis accelerometer

and 3-axis gyroscope
comments Details of how subjects perform activities.

Table 4. Dataset fields and their brief descriptions

analysis of each axis of the 3-axis accelerometer for activ-
ity Walking Forward (Figure 5(a)) and activity Running For-
ward (Figure 5(b)). As illustrated in the figures, although
the raw sensor data of the three axes in time domain look
similar, the histograms and the spectral plots show differ-
ent patterns between the two types of activities. Based on
these observations, researchers can extract features and de-
velop various pattern recognition algorithms to characterize
the activity data.

DISCUSSION
The intention of the development of the USC-HAD dataset
is not to replace the other existing datasets. Instead, USC-

HAD is carefully designed to satisfy the key design goals
presented in the beginning of this paper. Compared to other
existing datasets, USC-HAD includes a representative num-
ber of human subjects, both male and female. The activ-
ities considered are well-defined basic daily activities. Fi-
nally, the activity data is collected from a high-precision
well-calibrated sensing hardware such that the data is ac-
curate, reliable, and easy to interpret. All these features
make the research work using this dataset repeatable and ex-
tendible by other researchers. We have developed several
activity models and activity recognition techniques based
on part of this dataset, with the goal of better understand-
ing human activity signals and developing state-of-the-art
human activity recognition systems. For more information
about these models and recognition techniques, please refer
to [25] [27] [26].

CONCLUSION AND FUTURE WORK
This paper introduces the USC Human Activity Dataset (USC-
HAD) as a resource for human activity research by the ubiq-
uitous computing community. We have described the wear-
able sensors and the details of how we collect the data and
construct the dataset. As a brief summary, the USC-HAD
dataset currently includes 14 subjects and 12 daily activi-
ties with the sensing hardware attached to the subjects’ front
right hip. The full dataset is located at [4]. We encourage
ubiquitous computing researchers to use it and provide feed-
back about it. In the future, we will consider other sensor
locations such as trousers pockets, shirt pockets, shoulder
bags, backpacks, and we will continue to add more subjects
and more activities to our dataset.
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Dataset Number of Activities Sensor Sensors Comments
Subjects Locations

MIT 1 Prepare a recipe Left arm 3-axis accelerometer The number of subjects is small.
PlaceLab Do a load of dishes Right arm (±2g) The definitions of the activities

Clean the kitchen Left leg Heart rate monitor considered are vague.
Do laundry Right leg
Make a bed Hip

Light cleaning
Search for items
Use appliances

Talk on the phone
Answer emails

UC Berkeley 20 Rest at standing Left wrist 3-axis accelerometer Part of the sensed data is missing.
WARD (13 male, Rest at sitting Right wrist (±2g) Sensor data is not calibrated.

7 female) Rest at lying Front center of the waist 2-axis gyroscope
Walk forward Left ankle (±500dps)

Walk left Right ankle
Walk right
Turn left

Turn right
Go upstairs

Go downstairs
Jog

Jump
Push wheelchair

CMU 43 Food preparation Left forearm Camera The dataset focuses on
MMAC Cook five recipes: Right forearm Microphone cooking activity.

Brownies Left upper arm RFID
Pizza Right upper arm 3-axis accelerometer

Sandwich Left thigh (±6g)
Salad Right thigh 3-axis gyroscope

Scrambled eggs Left calf (±500dps)
Right calf 3-axis magnetometer
Abdomen Ambient light
Left wrist Heat flux sensor

Right wrist Galvanic skin response
Forehead Temperature

Motion capture

OPPORTUNITY 12 Groom room Wrist 3-axis accelerometer The dataset focuses on
Prepare coffee Chest 3-axis gyroscope daily morning activities.
Drink coffee Limb 3-axis magnetometer

Prepare sandwich Shoulder Microphone
Eat sandwich Foot Camera

Cleanup Table Pressure sensor
Chair Power sensor

USC 14 Walk forward Front right hip 3-axis accelerometer Data taken from one sensor location.
HAD (7 male, Walk left (±6g)

7 female) Walk right 3-axis gyroscope
Walk up stairs (±500dps)

Walk down stairs
Run forward

Jump
Sit on a chair

Stand
Sleep

Elevator up
Elevator down

Table 1. A full comparison between some of the existing datasets and USC-HAD dataset
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