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Abstract

Structural stability is insensitivity to perturbations. Global stability, in contrast, is conver-
gence to fixed points for all inputs and all parameters. Globally stable neural networks need
not be structurally stable, need not be robust. Shaking can distort, destroy, or prevent equi-
libria. Then large-scale hardware implementation becomes dubious, and biological plausibility
decreases. A large class of unsupervised nonlinear feedback neural networks, adaptive bidirec-
tional associative memory (ABAM) models, is proven structurally stable. This is achieved by
extending the ABAM models to the random-process domain as systems of stochastic differential
equations, and appending scaled Brownian diffusions. This much larger family of models, ran-
dom ABAM (RABAM) models, is then proved globally stable. Intuitively, RABAM equilibria
are ABAM equilibria that randomly vibrate. Included in the ABAM family of structurally stable
models are Hopfield circuits, Hodgkin-Huxley networks, competitive-learning networks, and
ART-2 networks. All RABAM models permit Brownian annealing. The extent of RABAM system
“vibration” is characterized by the RABAM Noise Suppression Theorem: The mean-squared ac-
tivation and synaptic velocities, E[2}], E[§?], and E[m}], decrease exponentially quickly to their
lower bounds, the respective temperature-scaled noise “variances,” T(ar?,chf, and T;jafj. This
suggests that many feedback neural network models are more biologically “realistic” than they
are often criticized as being. For, the many neuronal and synaptic parameters missing from such
neural network models are now included, but as net random unmodeled effects. They simply do

not affect the structure of realtime global computations.



I. Struciural Stability with the Stochastic Calculus

24 Shaking a dynamical system

Structural stability is insensitivity to small perturbations®
in equilibrium can distort or destroy the equilibrium. Shaking a dynamical system tending
toward equilibrium can change the eventual equilibrium to a new equilibrium. Or it can prevent
any equilibrium from being reached. Structurally stable dynamical systems are invariant under
shaking, at least under mild shaking.

Are neural network dynamical systems structurally stable? This question may never arise
when experimenting with small-scale software simulations of feedback networks. But it rises
to the fore when considering large-scale hardware implemen-tations of neural networks or when
searching, or arguing, for biological correlates of modern neural network models. Thermal noise
and component malfunction are inherent in VLSI implementations, especially analog VLSI im-
plementations.

The biological need for the structural stability of unsupervised learning is everi greater. Real
synaptic junctions are embedded in numerous electro-chemical, molecular, hormonal, and glial
processes. Yet neural network models summarize the gross “synaptic efficacy” of a synaptic
junction with a single real number. It is no surprise that many neurobiologists find neural
network models “unrealistic.” If unsupervised learning is structurally stable, the plausibility, or
“realism,” of these “unrealistic” models increases. For instance, if feedback unsupervised learning
systems are structurally stable in the sense of insensitivity to synaptic (and neuronal) noise, then
the myrid missing synaptic processes that make current neural network models “unrealistic” are
modeled but as net random unmodeled effects—effects that do not affect realtime global network
computations.

We propose the stochastic calculus'®?? to establish the structural stability of unsupervised
feedback neural models. The more formal approach of differential topology®, using transversality
techniques, tends to be extremely abstract and computationally unwieldy. For the differential
topological approach considers all behavior of all related functions (open dense sets of functions).
The approach of stochastic differential equations, in contrast, only considers the statistically rele-
vant behavior of bunches of functions. Innumerable pathologies are eliminated in one stroke. This
allows quantities to be manipulated as in the deterministic calculus, at least under appropriate

conditions. The stochastic approach, though, does involve new conceptual and computational



complexity. Solutions to deterministic differential equations are functions. Solutions to stochastic
differential equations are random processes?.

Below the stochastic calculus is used to prove the structural stability of a large class of
nonlinear adaptive dynamical systems, including, but not limited to, many popular neural models.
This family of autoassociative and heteroassociative models is called the family of random adaptive
bidirectional associative memory (RABAM) models.

The “random” in RABAM refers to the stochastic calculus setting, including determinisitic
cases degenerately. This includes annealing of noise. “Adaptive” refers to the unsupervised
learning laws that, when combined with the general neuronal state nonlinear dynamics, yield
structural stability. These learning laws include, but are not limited to, the signal Hebb law
and the competitive law, discussed below. Nonadaptive models, such as the Hopfield circuit, are
again obtained degenerately.

“Bidirectional” refers to the globally stable two-way flow of neuronal signal information be-
tween any two layers of a neural network!4!'® — provided, as in the ART-2 model!, that the
forward flow is through the adaptive matrix M and the backward flow is through the transpose
matrix MT. Bidirectional flow reduces to unidirectional flow within a single field of neurons when

M = MT, as in the Hopfield circuit.
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“Associative memory” refers to the nonlinear dynamics of the neurons —how they transduce
net inputs into bounded signals—and, broadly construed, the joint nonlinear dynamics of the
synapses as well. A general taxonomy of neural networks is given in Figure 1. If feedback loops
are pruned from RABAM models, the feedforward unsupervised neural algorithms, used ulti-

mately for some form of vector quantization, are RABAM models as well.

II. The RABAM Diffusion and Noise Models

RABAM models are ABAM models!® cast as random processes and perturbed by Brownian
diffusions. In general these time-varying diffusions or “noise” processes can be scaled with deter-
ministic “annealing” schedules®. In fullest generality, the diffusion version of the RABAM model

is described by the following stochastic dynamical system:

dzi = —ai(@)bi(zi) = 2 SilwImyldt + VT dB;, (1)
2

dy; = —a;(;)bi(y;) = 2 Silwi)misldt + VT ¢B;, @)

dmi; = [-my + Si(z)8;(w)ldt + \/T;; dBi; (3)

or the signal Hebb law (3) can be replaced with the competitive learning law (4),

dm;; = §;[S; — my;]|dt + /Ti; dB;;, (4)
if the signal function S; is reasonably steep, or with other learning laws, such as the differential
Hebb or differential competitive learning laws under appropriate conditions. The logistic signal
function discussed below is “reasonably steep.”

The basic structure of the nonlinear dynamics in (1) and (2) is the general form proposed by
Cohen and Grossberg?. This family of dynamical systems is what is meant by “Cohen-Grossberg
dynamics” in the literature. The functions (random processes) a; and a; are general nonnegative
“amplification” functions, often constant or linear in practice, which we shall sometimes take to be
strictly positive. The functions b, and b; are essentially arbitrary nonlinear functions. Technically
they must be constrained so as to keep the ABAM Lyapunov function below bounded. They

appear in integrals in the Lyapunov function.



The signal functions S; and Sj, of the ith and jth neurons in the respective n-dimensional neu-
ral field Fx and p-dimensional neural field Fy, are bounded monotone nondecreasing functions.
Again it is often convenient to only deal with strictly increasing signal functions, so that the
derivative of the signal S; with respect to the ith neuron’s real-valued “activation,” or membrane
potential, z; is strictly positive: j—f‘# = 5! > 0, where we have denoted the activation derivative
with a prime. This is true of the popular logistic sigmoid signal function S(z) = (1+e~%)~! for
positive constant ¢ > 0,since S'=¢ S (1 - §) > 0.

The processes B;, B;, and B;; are Brownian diffusions?3. The stochastic differentials d B;, dB;,
and dB;; are assumed obtained from the standard limit techniques used to construct stochastic
integrals, such as the popular Wiener, Ito, or Stratonovich stochastic integrals!®.

The “temperature” functions T}, Tj, and T;; are deterministic nonnegative “annealing sched-
ules.” They are control parameters that scale the system randomness. If they decrease with
time, which we need not assume, they represent “cooling.” The intuition is that infinite tempera-
tures yield pure random search, while, in gradient systems, zero temperatures yield pure gradient
descent3. Between these temperature extremes is a spectrum of scaled random hill climbing.
Temperature functions are included here for generality. For most neural models, the temperature
functions are constant functions.

The noise version of the RABAM model is given by the less rigorous, more intuitive, notation

of scaled additive noise processes:

= —az)bilz) - ) Si(w)mi] + VT ni, (3)
g = —a;(y)[bi(;) — 22 Silwimis] + \/ﬁm (6)
mi; = -mi; + 5iS; + \/’.i";_jnij, (7)

or with (7) replaced with a noisy competitive learning law,

My = S8 —mi] + \/T—-'j"ija (8)
if S; is reasonably steep, or, again, with other unsupervised learning laws under appropriate
conditions. |

The noise version of the RABAM model is convenient but fictitious. We shall use it hereafter

to describe the RABAM model, remembering all the while that it is shorthand for the diffusion



version. For, with probability one, Brownian motion is continuous but nondifferentiable?®. Brow-
nian motion has no standard time derivative, in particular a time derivative that is white noise.
Still the noise interpretation can be justified on formal, if approximate, grounds and it has served
well a half century of estimation and control theory modeling!®.

The noise RABAM implicitly assumes that the scaled noise terms are statistically independent
of the nonlinear “signal” terus to which they are added. This independence stems from the
independence of “increments” of the Brownian motion used to construct the temperature-scaled
stochastic differentials. To prove the RABAM Theorem, we need only assume that the noise
processes are uncorrelated with the corresponding “signal™ processes. We also make the customary
assumptions that the noise processes are zero mean and have finite, though possibly time- varying,

variances:

1l

E[n] E[n;] = E[nij] = 0 for all i and j, (9)

V(n;) = o} <o, crf < 00, a?j < 00 . (10)

The strategy!8 is to prove that RABAM models are globally stable. This will prove that the
underlying deterministic ABAM models are structurally stable. The tactic is to use the expec-
tation, or average, of the ABAM Lyapunov function as a Lyapunov function for the RABAM

stochastic dynamical system.

III. ABAM Models and the ABAM Theorem

Adaptive bidirectional associative memory (ABAM) models’*~!® are described by determin-

istic dynamical sytems of the form

i = —ai(zi)[bi(z:) - Z S;(y;)mij), (11)
y = —a;(y;)[bi(y;) - Z Si(zi)mijl, (12)
m,, = -my;+ S,‘S_j (13)



or with (13) replaced with the competitive learning law,

tiy; = 8;[8; = my), (14)

45,12,16-18 ynder appropriate

if §; is reasonably steep, or with other unsupervised learning laws
conditions!®—18, Higher-order versions ot the ABAM model are readily obtained!®.

The generality of the ABAM model can best be seen by example. As listed in Figure 1, the
general Cohen-Grossberg model?, the Hopfield circuit!!, and the continuous adaptive resonance
theory model ART-2! are special cases of ABAM models. For example, if there is no learning,
if the two neural fields Fy and Fy collapse into one, Fx = Fy, and if the resulting square
constant connection matrix M is symmetric, M = MT, then the ABAM model reduces to the

(unidirectional autoassociative) Cohen-Grossberg model:

3 = —ai(zi)[bi(zi) - 3 Si(z5)mis] - (15)

The Hopfield circuit corresponds to an additive Cohen-Grossberg model”. An additive ac-
tivation model has constant amplification functions and linear b; functions. In particular, if
a; = é—,b; = %: — I;, and if the symmetric weight m;; is relabeled T;; and Si(z;) = V;, where C
and R; are positive constants (“capacitance” and membrane “resistance”) and input I; is constant
or slowly varying relative to fluctuations in z;, then the Cohen-Grossberg model (15) formally

reduces to the Hopfield circuit:

. i
CI;:—E + %:VjT,‘j + I; . (16)

A shunting® or multiplicative model has linear amplification functions, whence comes the
name, and nonlinear b; functions. The shunting model is a generalization of the Hodgkin-Huxley
membrane equation!?:

av;

Cop = (VP =V +(V* - Vgl + (V™ - Vi)g; (17)

where V7, V*, and V'~ are respective passive, excitatory (sodium Na*t) and inhibitory (potassium

K*) saturation upper bounds with corresponding shunting conductances g7,gF, and g7, and



where the constant positive capacitance C scales time. Details of this subsumption can be found
elsewhere5-7.

The ART-2 model is a competitive ABAM'®. The competitive learning law (14) defines the
forward or “bottom-up” synaptic matrix M and, symmetrically, the backward or “top-down”
synaptic matrix MT. Within fields Fx and Fy, neurons “compete” with shunting dynamics.
In particular, the neurons in Fy make “choices.” This means they have steep signal functions;

indeed, they are threshold functions. This satisfies the ABAM Theorem'® discussed next.

ABAM Theorem. The ABAM model (11) - (13), or competitive ABAM model (11) - (12)
and (14), etc., is globally stable. If a; > 0, a; > 0, and the signal functions S; and S; are
strictly increasing, then the ABAM model is asymptotically stable, and the square activation and

synaptic velocities 2, j? , and m}; decrease exponentially quickly to zero, their equilibrium value.

Proof. The proof uses the bounded Lyapunov function L,

L = —Z ZS{Sjm,‘j + z-/:i 5:(0:)b:(8;)db;
i i=1

Py ’ 132
+Z/O Si(e;)bj(ej)de; + 522"’4?5 . (18)
i=1

i=1j=1
It takes some care to assure the boundedness of the integrals in (18). Pathologies can occur,
though we shall ignore them. The boundedness of the quadratic form is trivial since the signal
functions are bounded. The sum of squared synaptic efficacies is also bounded because, again,
the signal functions are bounded in the first-order learning laws in which they occur.

Time differentiation of (18) gives, upon grouping of like terms,

L = - Z Si&;[b; - Z Simi;i] + Z Sj-gj[bj - Z Simi]
' J 2 . 1
- E Z mi;[—mi; + 9:53] (19)
i
-2 Siailbi- Z Simi;] — Z Sia;lb; — 3 Simy)?
! J J i



- Z Z[—mi;’ + 5i5;0%, (20)
i

upon eliminating the terms in braces in (19) with, respectively, the ABAM dynamical equations
(11) - (13). Since the amplification functions are nonnegative and the signal velocities are mono-
tone nondecreasing (so their activation derivatives are nonnegative), the righthand side of (20) is
decreasing along trajectories. This proves global stability for ABAM systems that either do not
adapt (BAM systems) or adapt according to the signal Hebb law (13).

To prove global stability for the competitive learning law!® (14) —and to outline a general
proof strategy for arbitrary candidate first-order learning laws —we eliminate the third term in

braces in (19) with (14) to give

L = - Z Slai[b; — Z Sjﬂ'IiJ‘]z - Z S;Gj[bj - Z Simij)
=22 SilSi = mij][SiS; — mij] (21)

We now invoke the competitive assumption that S; is reasonably steep, indicating the win-loss
status of the jth neuron in the competitive, or laterally inhibitive, neural field Fy. In particulaf

822 and implementations —we

—and in accord with practically all competitive learning models
assume that S; behaves approximately as a zero-one threshold. This is often achieved with
an appropriately scaled logistic sigmoid, as discussed above. Then the third sum in (21) is

nonpositive since its summand is nonnegative:

mi[SiS; = mij] = Si[Si — my;][SiS; — mij]
(S,'—m,'j)2 if S;=1.

This proves the global stability of the competitive ABAM system (11), (12), and (14). Note that
the nonnegativity in (22) holds approximately as S; approximately equals a zero-one threshold
function. Moreover, a statistical argument can be made to further weaken the competitive zero-
one assumption. For the third term in (21) is a large sum. Different summands can be positive
or negative so long as the overall sum is nonpositive —so long, more generally, as the overall sum

is nonpositive on average.



The stronger asymptotic stability®2% of the ABAM models (Hebbian, competitive, and oth-
erwise) is proved with the positivity assumptions a; > 0,a; > 0,5/ > 0, and §; > 0. For
convenience we shall only detail the proof for signal Hebbian learning. The proof for competitive
learning uses (22) as above. The proof for signal-velocity learning laws, such as the differential
Hebb law*512:13,16-18 s detailed elsewhere!®~18. The time derivative of L again equals (19), but
now the positivity assumptions can be used to eliminate the terms in braces in a way that differs
from (20). In particular,

L:—Zﬂf?—zs—;g}—zzjm?j <0 (23)
3 . Gj ; .

;W ]

along trajectories for any nonzero change in any neuronal activation or any synapse. This proves

asymptotic global stability. Trajectories end in equilibrium points, not merely near them. Indeed

(23) implies that

L=0 ifandonlyif #}=g¢}=m}=0 (24)

ifand only if Z;=gy; =m; =0 (25)

for all 7 and 7, giving the desired equilibrium condition on squared velocities. That the squared
velocities decrease ezponentially quickly follows from the strict negativity of (23) and, to rule out
pathologies (system Jacobian eigenvalues with zero real parts), from the second-order assumption
of a nondegenerate Hessian. For asymptotic stability ensures that the real parts of eigenvalues of
the ABAM system Jacobian matrix, about an equilibrium, are nonpositive??. Standard results®
from dynamical systems theory then ensure that, locally, the nonlinear system behaves linearly

and decreases to its equilibrium exponentially fast. Q. E. D.

IV. The RABAM Theorem and the RABAM Noise Suppression Theorem

The general RABAM Theorem'® guarantees the global stability of the RABAM diffusion /noise
model. Intuitively, RABAM equilibria are ABAM equilibria that “vibrate” randomly. On average
they are the same as ABAM equilibria.

10



But how much do RABAM equilibria vibrate? This question concerns the second-order sta-
tistical behavior of RABAM equilibria. In theory, one might expect compound instability, even
chaos, for a massively parallel, massively fedback, nonlinear dynamical system with different -
noise processes perturbing every state variable. The general RABAM Theorem ensures that such
systems will not explode into instability or chaos. The theorem does not ensure that there will
be only moderate random fluctuation. In principle system fluctuations could increase in magni-
tude in time up to some saturation value —a saturation value that may destroy realtime global
computations.

The RABAM Noise Suppression Theorem not only guarantees that (average) fluctuations
will not increase in time, it guarantees that they will decrease to their theoretical lower bound.
It further guarantees that these fluctuations will decrease to their lower bound exponentially
quickly. The Noise Suppression Theorem is the positivity-assumption corollary of the general
RABAM Theorem, which we prove first, extending the proof technique of the ABAM Theo-
rem. Once again the generality of the RABAM model must be stressed. We do not simply add

“noise” to the deterministic ABAM model. We add “noise” to the random-process ABAM model.

RABAM Theorem. Under appropriate - nothness conditions (to pass a time derivative “inside”
an integral), the RABAM models (1) - (3) and (5) - (7), or (1), (2), and (4), or (5), (6), and (8),
are globally stable. If the random processes a;, aj, S, and §; are strictly positive processes, then
the RABAM models are asymptotically stable.

Proof. The proposed bounded Lyapunov function is E(L), the average ABAM Lyapunov

function defined in (18). This expectation is taken with respect to all random parameters:

E(L):/.../L p(X,Y, M)dXdYdM . (26)

We note that L is of bounded variation since the variance V(L) is bounded above by the mean-
squared value E(L?). The boundedness of each term in L? follows from the boundedness of each
term in L in (19). So E(L?) is finite.

The smoothness assumption allows the time derivative of E(L) to be replaced with the more
tractable expectation of the time derivative of L, the structure of which is given by (19). This

commutation gives

11



E[L] = E[Q) _
= E{Silbi— 3 Simil + 3Sig0b; - 3Simi;]
—Z Zmij[—mi;‘ + 8;5;5]} (27)

= E{- ZSa bi -Zsm,, Zs’aJ ZS m;;]?
-—Z Z[—m,; + 5;5.; ]2 ZS' T; ni[b; — ZS-m.-j]
+ZS’\/’1T n;[b; — ):S m] - Z Z\/_ nl-mi + SiS;1} . (28)

upon eliminating the activation and synaptic velocities (velocity processes) in (27) with the
RABAM noise equations (5) - (7), and by observing that the deterministic “temperature” func-

tions can be factored out of all expectations,

= E[Lapam] + Z\/T_l E[n;] E{S;[b; - ZSjm.-,-]}
+3V/Ti Eln;B{S}lt; - 3 Simis]}
- Z Z \/ITJ E[ni;]E[-mi; + S:S;] (29)

by the uncorrelatedness (independence) of the “signal” and corresponding additive noise processes
in the RABAM, and by the facts that 5] and S} are nonnegative random functions of z; and y;
respectively, and that the amplification functions a; and a; are essentially arbitrary nonnegative

random functions, which permits the choices a; = S and a; = 57,

= E[Lapam] (30)

by the zero-mean assumption (9),

IA
o

12



in general, or

yielding asymptotic global stability, in the positivity case with strictly positive amplification ran-
dom functions and monotone increasing signal functions, as in the proof of the ABAM Theorem
above, in particular equation (23). Q. E. D.

The RABAM Noise Suppression Theorem proves that the instantaneous mean-squared veloc-
ities E[2?], E[§7], and E[m},] decrease exponentially quickly to their lower bounds. The lower
bounds are the underlying “unknown” instantaneous noise “variances,” scaled by their corre-
sponding “temperatures.” These theoretical lower bounds on the RABAM second-order behavior

are summarized by the following Lemma.

Lemma. E(}] > T}, E[§}] > Tje? E[m}] > Tijol . (31)

The Lemma makes explicit the need for the finite-variance assumption (10). The Lemma is proved
by squaring both sides of (5), (6), and (7) (or (8)), taking expectations on both sides, factoring the
cross-product expectation in each expression by the uncorrelatedness (independence) of “signal”
and noise terms, then using the zero-mean assumption (9) to eliminate the cross-product terms
and to obtain, for example, E[n?] = V[n;]. This proof technique is independent of the learning
law used provided the noise is additive.

The Lemma captures the intuition that noise fluctuations drive system fluctuations. It also
eliminates the possibility of ideal noise suppression. The best that can be achieved is the scaled
variance of the underlying random disturbances. Hence at equilibrium —at stochastic equilibrium
—the dynamical system still vibrates, still “jiggles” about the deterministic equilibrium. The
RABAM Noise Suppression Theorem guarantees that equality is reached in (31), and reached
exponentially quickly. In this sense RABAM models optimally suppress noise in realtime. This
is surprising in its own right, but both the general RABAM Theorem and the RABAM Noise
Suppression Theorem say more. They say it is impossible to (finitely) shake an ABAM equilibrium

out of equilibrium, or, more accurately, out of its equilibrium shape.

13



Recall that the mean-squared velocities in (31) are also bounded below by the variances of

the activation and synaptic variances, since, for example,

V(] = E[}] - E*&] < E[3] . (32)

The inequality (32) tells us that observed system fluctuations, mean-squared velocities, never
underestimate the variance of state changes. It also tells us that at equilibrium, when equality
holds in (31), the variances of the activation and synaptic velocities are bounded above by the
temperature-scaled noise variances.

The Lemma does not imply, though it suggests, that the squared velocity processes are never
less than the squared noise processes at every instant. It only implies that the inequality holds
on average at every instant.

Pathologies can in principle occur where the instantaneous squared noise exceeds the instan-
taneous squared activation velocity. No problems can arise for synaptic velocities, as will be clear

in the proof of the RABAM Noise Suppression Theorem. It will also be clear that a natural

: - . : . Si S;
way to avoid such pathologies is to require that the random weight functions, =+ and — , are
a; aj

“well-behaved.” Well-behavedness here means that two integrals be kept nonnegative:

E[%(i?—ﬂn?)] >0 , (33)
LY
E(=2(g; - Tnj)] 2 0 . (34)

This condition is sufficient to prove the RABAM Noise Suppression Theorem. The pathologies it
is meant to rule out can be seen by considering when, say, the random difference function &? — n?
is negative for a particular realization. If the positive random weight function % is sufficiently
large, the overall integral, the expectation, could be negative. This would be true, to take an
extreme example, if the random weight function behaved as a Dirac delta function. We assume
the weight functions do not place too much weight on the (infrequent) negative realizations of

the difference functions.

RABAM Noise Suppression Theorem. As the above RABAM systems (such as (5) - (7) or (5),

(6), and (8)) converge exponentially quickly, the mean-squared velocities of neuronal activations

14



and synapses decrease to their lower bounds exponentially quickly:

E(z}] | Tio?, E[g7] | Tjo?, E[m}] | Tio%, (35)

for strictly positive amplification functions a; and aj, monotone increasing signal functions, well-
! !

behaved weight ratios Ziand L (so (33) and (34) hold), sufficient smoothness to permit time
a; a;
differentiation within the expectation integral, and nondegenerate Hessian conditions.

Proof. As in the proof of the general RABAM Theorem, the smoothness condition is used to

expand the time derivative of the bounded Lyapunov function E[L]:

E[L] = E[
= E{ZS'm,[b - ZS m,J + 25'3}, ZS mtj]
= Z Zm,-j[—m"j + 5iS;]} (36)

_ S il "
- o a-r - T
J

+Z——-x,ﬁn, + Z——y_,\/’IT n;
+ ZZ\/TJ nijmij} (37)

by using the positivity of the random amplification functions to eliminate the three terms in

braces in (36) with (5), (6), and (7) respectively,

= E[LABAM] + E[Z:—:T,‘n? -ﬁ-Zj_«"Tnz

+ 2 2 Ty (38)
= -ZE[—z -Tnz)l—ZE[ (y, Tjnd)]

—Z Z[E[mij] —Tijﬂ';j] . (39)

15



We already know from the proof of the general RABAM Theorem above that, in the positivity
case assumed here, this Lyapunov function strictly decreases along system trajectories. So the
system is asymptotically stable and equilibrates exponentially quickly. (Like remarks hold for
different learning laws with appropriate conditions.) This itself, though, does not guarantee that
each summand in the first two sums in (39) is nonnegative. The well- behavedness of the weight
functions —: and 5—‘: guarantees this, for then (33) and (34) hold. The Lemma guarantees that
the summa‘i‘lds in ttl?e third sum, the synaptic sum, are nonnegative. Asymptotic stability ensures
then that each summand in (39) decreases to zero exponentially quickly. This immediately gives
the desired exponential decrease of the synaptic mean-squared velocities to their lower bounds.

For the activation mean-squared velocities, we find at equilibrium:

Si .2 Sim. 2
E[a_‘_zil = E[aTlni] ) (40)
with a like equilibrium condition for each neuron in the Fy field. Then, since the integrands in

(40) are nonnegative, the expectations can be peeled off almost everywhere?! (except possibly on

sets of zero probability):

St . S!

= 3? = L Ti;?  almost everywhere (41)
ay a; !

or ! = Tmn? almost everyhwhere . (42)

Taking expectations on both sides now gives the desired equilibrium conditions:

E[z}] = Tio} and E[j}] = Tjo? . (43)

Since these equilibrium values are reached exponentially quickly, and since the Lemma guarantees
they are lower bounds on the mean- squared velocities, the RABAM Noise Suppression Theorem
is proved. Q. E. D.

The RABAM Noise Suppression Theorem generalizes the squared-velocity condition of the
ABAM Theorem. In the ABAM case, the instantaneous “variances” are zero. This is the de-
terministic case. The probability space has a degenerate sigma-algebra, which only contains two

“events,” the whole space and the empty set. So expectations disappear and the RABAM squared

16



velocities are zero everywhere at equilibrium, as in the ABAM case.

V. RABAM Unbiasedness: Average RABAM Behavior is ABAM Behavior

The RABAM Noise Suppression Theorem implies that average RABAM equilibria become
ABAM equilibria exponentially quickly. In estimation theory terms, RABAM systems are un-
biased estimators of ABAM systems awash in noise. Unbiasedness can be established directly,
and stochastically, by integrating the RABAM equations, taking expectations, and exploiting the
zero-mean nature of Brownian motion'®. This approach ignores the convergence-rate informa-
tion provided by the RABAM Noise Suppression Theorem, which we now use to characterize the
asymptotic unbiasedness of RABAM equilibria.

Consider again the ABAM model (11) - (13). For maximum generality, we can assume the
ABAM model is a set of stochastic differential equations. At equilibrium the activations of the

neurons in the field Fx, for example, obey the condition

bi(ei) = D Si(wi)mis (44)

since the amplification functions a; are strictly positive. In the additive case the function b;(z;)
is a linear function of z;; in particular, b;(z;) = z; — I;. Then at equilibrium the neuronal
activation in (44) equals the sum of the ith neuron’s synapse-weighted feedback input signals and

external input,

Ty = ZSJ'TTL,‘J' + I; . (45)
J

In the shunting case'®, the neuronal activation value is restricted to a bounded interval. The
equilibrium activation value then has the ratio form of a Weber law”. At equilibrium the synapses

(synaptic efficacies) equal Hebbian products,

in the signal Hebb case, or equal pre-synaptic signals
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mij = Sj , (47)

in the competitive learning case for the ith "winning” neuron, where S; behaves approximately
as a zero-one threshold signal function. We now prove that RABAM equilibria obey equilibrium

conditions with the same average shape as (44) - (47).

Unbiasedness Corollary: Average RABAM equilibria are ABAM equilibria.

Under the assumptions of the RABAM Noise Suppression Theorem, b;(z;) converges to
Z S;m;; in the mean-square sense exponentially quickly. At equilibrium,

J

blmy) = ZSjm,-j with probability one, (48)
J

and similarly for the b; functions. The synaptic relationships in (46) and (47) are similarly re-

covered exponentially quickly.

Proof. We reexamine the Lemma (31). Squaring the RABAM stochastic differential equations
(5) - (7), taking expectations, and invoking the uncorrelatedness of the scaled noise terms and

(9), gives

E[#}] = Elalbi - > Simi)'] + Tia} (49)
7

E[iY] = E[db; - > Smi)Y] + Tyof (50)

E[m}] = E[(-mg + $iS;)% + Tijoh (51)

or, if the noisy competitive learning law (8) replaces the noisy signal Hebb law (7), (51) is replaced
with
Elm%] = E[S}S:i — mi;)?] + Tyol; (52)

ij
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The righthand side of each equation is nonnegative and the RABAM Noise Suppression Theorem
implies that exponentially quickly the mean-squared ”signal” terms decrease to zero. Since
the weighting functions a? and af- are strictly positive, this proves the asserted mean-square
convergence. The strict positivity of the weighting functions further implies®” the equilibrium

conditions

(b, - Z.S'jmgj)2] = 0 , (53)
J

/:'[(f)J - ZSim,-j)z] = 0 4 (5’-1)

1",.[(—7??.1'_-,.‘ + SiSj)z] = 0 (55)

The nonnegativity of the integrands in (53) - (55) then®" allows the expectations to be removed

almost everywhere (with probability one), yielding the equilibrium condition (48). Q.E.D.

An important extension of the corollary for stochastic estimation occurs in the additive case
with random noisy input waveform (11, ..., I} | J{, ..., Jp). This random waveform, which may
slowly vary with time, can be viewed as a set of random inputs in the additive random ABAM

case perturbed with additive zero-mean finite-variance noise processes:

[: = IL; + v , (56)

where E[v;] = E[w;] = 0. In the additive case, the new noise processes in (56) and (57) simply
combine additively with the other zero-mean noise processes in the RABAM model. These new
noise terms can likewise be scaled with different nonnegative deterministic annealing schedules.
The new scaled noise terms, though, then entail rescaling the variances in the Lemma and the
RABAM Noise Suppression Theorem, in addition to appropriatly adjusting the variance terms
themselves. Simulations [Fred \Watkins, personal communication] have verified the predicted
(asymptotic) unbiasedness for ~cveral types of zero-mean noise processes.

Formally, the additive R\ A\ then takes the shape of constant amplification functions and

bR =1z — I! and bf’ =y, - /.. while the additive ABAM takes the shape b = z; — I; and
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b}?‘ =y, — Jj, where again [; and J; may be random. Then, at equilibrium, (44), (45), (48), and

Blsf-af] = ERR+I-bf ~ L]
= EF - b1+ Blw]
=0 ,

and similarly for the y; activations.
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