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Abstract

A digital signal processing (DSP) approach is used to study numerical
methods for discretizing and solving linear elliptic partial differential equations
(PDEs). Whereas conventional PDE analysis techniques rely on matrix analysis
and on a space-domain point of view to study the performance of solution
methods, the DSP approach described here relies on frequency domain analysis
and on multidimensional DSP techniques. This tutorial paper discusses both
discretization schemes and solution methods. In the area of discretization, mode-
dependent finite-difference schemes for general second-order elliptic PDEs are
examined, and are illustrated by considering the Poisson, Helmholtz and
convection-diffusion equations as examples. In the area of solution methods, we
focus on methods applicable to self-adjoint positive definite elliptic PDEs. Both
direct and iterative methods are discussed, which include fast Poisson solvers, ele-
mentary and accelerated relaxation methods, multigrid methods, preconditioned
conjugate gradient methods and domain decomposition techniques. In addition to
describing these methods in a DSP setting, an up-to-date survey of recent develop-
ments is also provided.
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I. Introduction

Many physical and engineering systems are described by partial differential
equations (PDEs). It is generally impossible to obtain closed-form analytical solu-
tions for these equations due to the irregularity of problem domains, and because
coefficients are usually spatially varying. Consequently, the numerical solution of
PDEs plays an important role in understanding and simulating a wide variety of
physical phenomena. Since the late 1940s, the gradual emergence of high-speed
computers, culminating with the introduction of supercomputers, has made it pos-
sible for researchers to test and develop new PDE solution techniques. The
amount of research activity concerned with the numerical analysis of PDEs has
therefore growing very rapidly. Many discretization schemes, computational algo-
rithms, and novel computer architectures have been proposed to solve PDEs
efficiently. In spite of these developments, the numerical solution of PDEs is still
one of the most challenging areas of numerical analysis due to the versatile and
often complicated structure of PDEs, and because of the large amount of variables

that need to be computed for two or higher dimensional problems.

In this survey, we focus our attention on the discretization and solution of 2-

D second-order linear elliptic PDEs of the form

u u du du
= i
“a$2+bay2+°ax+day+e“ Jaks (L.1)

with ab > 0, where the coefficients are in general functions of z and y. Elliptic

PDEs are often used to characterize the steady-state behavior of physical systems
defined over a bounded domain. In this context, boundary conditions representing
experimental conditions are usually imposed on the domain boundary, thus yield-
ing a boundary-value problem. The familiar Laplace, Poisson, Helmholtz and
convection-diffusion equations are all special cases of (1.1). The solution of (1.1)

has therefore a wide range of applications [13],(82].

Elliptic PDEs can be divided into self-adjoint positive definite, indefinite and
nonself-adjoint equations, depending on the eigenvalues of the associated
differential operator. If an operator is self-adjoint, it has a real spectrum (eigen-
values). Furthermore, if it is positive definite, all its eigenvalues are positive. The
discretization of self-adjoint positive definite differential operators leads to sym-

metric positive definite (SPD) matrices. In contrast, the discretization of nonself-



adjoint elliptic operators gives rise to nonsymmetric matrices whose eigenvalues
are in general complex. It is customary to use the Poisson, Helmholtz and
convection-diffusion equations on the unit square (1= [0,1]2 with appropriate
boundary conditions as model problems for self-adjoint positive definite, indefinite
and nonself-adjoint elliptic PDEs, respectively. They can be expressed as follows.

Poisson equation:

0u &u
—t—=f, 1.2
Helmholtz equation:
Pu & u
+ + Wy =f, 1.3
Oz? dy? d (L3)

Convection-diffusion equation:

&Pu &u ou Ju
90 + 9y +C<9z +day

- (L.4)

Generally speaking, the numerical solution of PDEs involves two tasks: (a)
choosing a discretizalion scheme to transform the PDE of interest into a discrete
problem that approximates it, and (b) selecting a solution method for the discre-
tized problem. These two tasks are usually performed separately for single grid
solution techniques, but they are combined for multigrid methods. For expository
purposes, since the goals of the discretization and solution steps are different, they
will be examined independently. In this paper, we study the discretization of all
three model problems (1.2)-(1.4). As to solution methods, the design and analysis
of iterative algorithms for solving self-adjoint positive definite elliptic PDEs has
reached an advanced state of development, whereas a complete theory is not yet
available for indefinite and non-selfadjoint PDEs. Thus, we focus on the solution

of self-adjoint positive definite PDEs modeled by the Poisson equation (1.2).

Our exposition relies on a DSP (Digital Signal Processing) approach
[28],(31],(74],[79]. From the DSP viewpoint, 2-D differential and finite-difference
operators correspond to 2-D analog and digital filters, respectively. The discreti-
zation of PDEs specifies an approximation problem, i.e., how to match the spectra
of analog and digital filters. The solution of PDEs requires the implementation of

a deconvolution filter which recovers the input u from the output f given by



(1.1). Thus, the discretization and solution of PDEs can be formulated as mul-

tidimensional filter specification and filter design problems, respectively.

A key step in deriving discretization schemes is the selection of a set of test
functions for which the discretized operator must behave in the same way as the
original differential operator. It turns out that a good set of test functions can be
chosen by using concepts of linear systems theory. Roughly speaking, they are
obtained by examining the zeros of the system function corresponding to the
differential operator. This approach leads to the mode-dependent discretization
scheme described in Section II.

The discretization procedure leads to a system of finite-difference equations,
which are often solved iteratively. The convergence rate of iterative methods is
traditionally studied within the framework of matriz ilerative analysis
[12],[87],(93]. This form of analysis uses tools from numerical linear algebra,
where special concepts such as those of L-, M-, and consistently ordered matrices
and related inequalities are introduced to facilitate the characterization of the con-
vergence property. The advantage of matrix analysis is its general applicability. It
can be applied to PDEs with irregular geometries and spatially varying
coefficients, or which are discretized with nonuniform grids, as long as the

corresponding iteration matrices satisfy the desired properties.

An approach complementing the matrix formulation relies on model problem
analysis, whereby the convergence rate of a given iterative method is analyzed for
a simple model problem. This form of analysis has several advantages. First, it is
much simpler and therefore provides some insight into the behavior of the algo-
rithms that we study. Secondly, the estimates that are provided by this approach
for parameters such as the optimum relaxation parameter for the SOR (Successive
Over-Relaxation) method, or the smoothing rate of multigrid methods, are usually
much sharper than comparable estimates provided by matrix analysis. Finally,
the actual convergence behavior of an iterative method for a general class of prob-
lems can be well predicted by the model problem approach, as long as the model

problem is chosen appropriately.

The model problem approach relies heavily on Fourier analysis. In this sur-
vey, we show that it is in fact closely related to the digital filtering concept
appearing in multidimensional DSP. Several examples are given below. Accelerated

relaxation methods such as the SOR and Chebyshev iterative methods can be



viewed as parametrized lowpass filters for the error between the initial guess and
the true solution, where the parameters are chosen to optimize the filtering charac-
teristics. The incomplete LU preconditioning technique for the conjugate gradient
method can be interpreted as corresponding to the approximation of a 2-D non-
causal FIR filter by the product of two causal and anticausal 2-D FIR filters. The
difficulty in that respect lies in the fact that since 2-D polynomials are generally
not factorable, the 2-D causal and anticausal filters obtained by spectral factoriza-
tion have infinite support, and need therefore to be approximated. Finally, if we
consider multigrid solution methods, the interpolation and restriction operators
appearing in the description of these algorithms are special cases of sampling-rate
conversion operations occurring in multirate signal processing. The details of all
the above examples will be discussed below. The main purpose of these examples
is to illustrate the fact that many tools and concepts arising in the solution of
elliptic PDEs are amenable to interpretation and analysis from the point of view

of multidimensional DSP.

This survey contains two parts: the first part (Section II) considers discretiza-
tion schemes, whereas the second part (Sections III-IX) examines solution methods.
Readers seeking to locate quickly topics of interest may want to consult the fol-

lowing table of contents.

II. Mode-Dependent Discretization
A. The Mode-Dependent Finite-Difference Discretization Approach
B. Discretization of Homogeneous Boundary-Value ODEs
C. Discretization of Homogeneous Boundary-Value PDEs
D. Historical Notes
III. Solution of Self-Adjoint Positive Definite Elliptic PDEs: Problem Formula-
tion
A. The Model Poisson Problem
B. Orderings
C. Fourier Analysis
D. Summary
IV. Direct Methods
A. FFT Solvers
B. Other Direct Methods
V. Relaxation Methods and Their Acceleration



Elementary Relaxation Methods
SOR Acceleration
Polynomial Acceleration
D. Historical Notes
VI. Multigrid Methods
A. Two-grid Iteration
B. Solution of the 1-D Poisson Problem
C. Solution of the 2-D Poisson Problem
D. Historical Notes
VII. Preconditioned Conjugate Gradient Methods
A. The Preconditioned Conjugate Gradient (PCG) Algorithm
B. Preconditioners Based on Incomplete Factorization
C. Multilevel Preconditioners Based on Filtering
D. Historical Notes
VIII.Domain Decomposition Methods

A. Capacitance Matrix Formulation

QW

B. Fourier Analysis of the Capacitance System
C. Preconditioners for the Capacitance Matrix
D. Historical Notes

IX. Parallel Computation

Finally, we discuss future extensions and present some concluding remarks in Sec-
tion X.



II. Mode-Dependent Discretization

Three types of discretization techniques, the finite-difference, finite-element,
and spectral methods, are commonly used to discretize spatial partial differential
operators. In this section, we focus our attention on mode-dependent finite-
difference discretization schemes (which constitute an extension of standard finite-
difference methods), since they are particularly interesting from a digital filtering
point of view. The reader is referred to [68] and the references therein for a discus-
sion of the relation existing between spectral and mode-dependent discretization

methods, and for a brief overview of mode-dependent finite-element methods.

The analysis and design of mode-dependent finite-difference discretization
schemes can be formulated in a simple way in the frequency domain. The Laplace
and Z-transforms are used to represent the constant-coefficient differential opera-
tor and its discrete approximation by polynomial expressions of the transform
variables s and z. Then, the selection of a mode-dependent discretization scheme
becomes equivalent to requiring that the spectra of the continuous and discretized
operators, and their derivatives, should match each other at a number of frequen-
cies in the transform domain. In DSP terms, since we require that the spectra of
the continous and discretized operators should be as close as possible, the PDE
discretization problem can therefore be viewed as a filter specification and design

problem.

A. The Mode-Dependent Finite-Difference Discretization Approach
Consider a function of the form
2 ng

xz T & T
T e

(e )!

, 0 <p <y, is called a mode of order p at the frequency

K
u(z) = > [eko + Cp1Z + Cpo
Py’ 2!

where each term z? e%°

sp. We are interested in approximating a linear R th-order constant-coefficient

differential operator operating on u(z),

L(D)=Zﬁ:a,Dr, (2.1)

r=0

d p g ak
where D = = by a (ro—r,+1)-point finite-difference operator

Li(E)= 3 4,E" (2.2)

r=r,



where £ is the shift operator defined on an infinite uniform grid 2, with spacing
h, i.e. for nh, (n+r)h €, E"u(nh)=u((n+r)h). L, corresponds to a for-
ward, backward or central difference operator depending on whether r, =0,

ro =0 or —r, = ry, respectively. We denote by
n
Po(s) = {u(z) : u(z) = e 3 yz*) (2.3)
k=0

the space spanned by polynomials of degree at most n multiplied by the factor
e*. A mode-dependent finite-difference discretization scheme is obtained by select-
ing the coefficients b, of L, such that

[Ly(E) —L(D)u(z) =0 for u(z)EC and z €Y , (2.4)

where C', which is called the coincident space of L, is the direct sum of subspaces
of the form (2.3), i.e.

K
C = @Py,(s). (2.5)

A mode in the coincident space C is called a coincident mode, and its frequency is

called a coincident frequency.

The above mode-dependent finite-difference scheme specification can be con-
verted easily to the transform domain. Let L(s) be the spectrum obtained by
replacing D with s in (2.1) through the use of the Laplace transform, i.e.,

R
L(s)=Y, a.s".
r=0

Let also Ly(z) be the discrete spectrum obtained by using the Z-transform to
replace E by z in (2.2), so that

T2 To
Li(#)="3 b2t = 3 be™
r=r; r=r,

where the last equality is due to the fact that since E is related to D via
E = ehP [29], we have z = e*. Then, the difference A between L and L, can be

expressed in terms of the variable s as
A(s) = Ly(e®™) = L(s) , (2.6)

and the mode-dependent finite-difference scheme specification (2.4)-(2.5) takes the
form (see [68] for a proof)



ArYs)y=0, 0<p<n, 1<k <K, (2.72)
where
AlP)(s,) = 4" A(s) _ (2.7b)
ds?  ls=s;

It is usually easier to determine the coefficients b, of a mode-dependent finite-
difference discretization scheme by using (2.7) rather than (2.4)-(2.5).

The key element in the specification of a mode-dependent different scheme is
the choice of coincident space C. In the following two subsections, we discuss the

selection of C for several types of problems.

B. Discretization of Homogeneous Boundary-Value ODEs
Consider an R th-order (R =2m ) homogeneous differential equation
2m
Lu =0, with L =3¢ D" and a,, =1, (2.8)
r=0

on the interval [0,1], with given boundary conditions. We seek to discretize it with
a (2m+1)-point central difference scheme on a uniform grid with spacing h. The
characteristic equation of (2.8) is

L(s)=8" 4+ agp_18"™ 14+ +a;5 +aq

K
=II(s —s)* =0, (2.9)
k=1

K
with }}n, =2m, where s; is a natural frequency of L of order n,. Then, the
k=1

operator L has the 2m-dimensional nullspace
K
NL e k@lpn}—l(sk) §

To determine uniquely a (2m+1)-point finite difference scheme, we need to
specify a (2m +1)-dimensional coincident space C'. However, since a homogeneous
finite-difference equation can be scaled by an arbitrary constant, a 2m-
dimensional coincident space C is sufficient. An exact discretization for (2.8) is
obtained by selecting



For this choice, the relations (2.7) yield
K
Li(z)=Az""T[(z — 2)™, with z, = %", (2.11)
k=1

where A is a scaling factor and the multiplication factor z~™ is due to the fact
that we want L,(2) to be a central difference scheme. The choice of scaling factor
A does not affect the solution of the discretized equation

Ld(E)“d =0

However, in order to analyze the discretization error A(s), it is convenient to
choose A such that Ly(e®) and L(s) are consistent over fine grids. This con-

straint implies that A must be proportional to h=2™, as h goes to zero.
1D Laplace equation: For L(D) = D%, we know that N, = {1, z}. The coin-
cident modes have the same frequency s, = 0. According to (2.11), we have

Ly(E)=AE"YE -1 =A(E —2+4+E7Y). (2.12)

If we choose C = Ny, + {22}, the constant A is uniquely determined. We obtain
A = k™2 and in this case (2.12) reduces to the standard 3-point central difference

scheme for D2.

1D convection-diffusion equation: Let L(D) = D? — aD, with a # 0. Then,
N, ={1,e%}and s, =0, a, so that in (2.11) we have

Ly(E)=AE"YE —1)(E —e®)=A[E — (1+e®) + e E7Y . (2.13)

If we select C = Ny + {z}, we find that A = a[h(e**—1)]"}, and (2.13) becomes
identical to a scheme considered by Allen and Southwell [4].

C. Discretization of Homogeneous Boundary-Value PDEs

Consider a general 2D homogeneous boundary-value PDE on the square [0,1]?

L(D, ,Dy)u =0, with L(D, ,Dy) =), a,,.’sD,:’Dsjj , (2.14)
r,s
where
T S
poks BT pas O,
Oz dy*®

with appropriate boundary conditions. We discretize (2.14) with the finite-



= Ji=

difference scheme

Ly(E,,E,)uy =0, where L(E;,E)=3b EE], (2.15)
r,s

and where E; and E, denote respectively the shift operators in the z- and y-
directions on the uniform grid ﬂh,,h, obtained by discretizing the unit square with
horizontal and vertical meshes h, and h,. Relying upon a natural generalization
of the 1D case, we have the following correspondences between 2D space domain

operators and transform domain variables

D, s, 5 Dy s, , Bo—rzg , By >z . (2.16)

; : . vigis he D,

where s, =0,+iw, and s, =0,+iw,, and where the identities E, = e,
hyD he sy i 2 -

Ey=e¢", z, =c¢ % and z, = e are satisfied. For simplicity, we now res-

trict our attention to the case where h, = h, = h.

Substituting u = e**"*¥ inside (2.14), we obtain the characteristic equation

Y0, .88, =0. (2.17)
r,s

Since the complex equation (2.17) imposes only two real constraints on the real
and imaginary parts of the complex variables s, and sy, there are infinitely many
solutions to this equation and therefore infinitely many modes in N;. It is not
possible to approximate all modes in N; exactly. Thus, we have to select a finite-
dimensional subspace D; C NNy, called the dominant-mode space, as the coin-
cident space C for L,;. The determination of D; depends on a rough estimate of
the local behavior of the solution. This information is usually provided by the
structure of the PDE operator and of the boundary conditions. In this section, we
restrict our attention to the case where the dominant modes are either oscillating
or exponentially growing (decaying). In other words, coincident frequencies are

selected among the sets
{(szssy) : (szssy) = (Uz!ay )} or {(Szvsy) : (Sza'sy) = (iwzaiwy )} . (2.18)

Laplace equation: Let L(DI,Dy)=Df+Dy2. Since only one frequency
(s2:8,) = (0,0) satisfies the characteristic equation and belongs to the sets (2.18),
(0,0) is selected as the unique coincident frequency. In this case, the mode-

dependent and conventional discretization schemes are identical.
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The following 5-point, rotated 5-point and 9-point stencil discretization
schemes have been derived by several approaches [29],[60],[75],

Ly (B, .EB,) = _hl?(E, +E\ 4+ E, +E —4), (2.19)
Ly sl By By ) = ;?(EIE_,, +E-IE, + BB + BB — 4), (2.20)
Ly oE; E,) = 52 ~(4(E, + B +E, + E)

+(E,By+E;'E, + BE.ESV+ E;'E;SY) —20] (2.21)

It is well known that the accuracy of the above schemes for discretizing the
Laplace equation is O(h?), O(h?) and O(h®), respectively.

We present now another derivation of these schemes by matching L(s,,s,)
and L;(#;,%,) at the coincident frequency (0,0) in the transform domain. As
before, we consider the expansion of A = L, — L around (0,0),

A(s,,s,) = A090,0) + AL9(0,0)s, + ALY(0,0)s, + _;_.[A(%O)(o,o)sf

¥

+ A1D0,0)25,5, + ACD(O0)s? + ¥ APY(0,0)—
o
p.9=

1q sfsf), (2.22)

where
OPTIA(s;,5,)
?s,01s, (s;,5,)=(0,0)

Alr.1)(0,0) =

b

is a function of the grid size h. Hence, (2.22) is in fact a power series of h. Our
derivation attempts to make the order of the residual terms in (2.22) as high as

possible.

The discretization schemes (2.19) and (2.20) can be derived by requiring
respectively that

A0)(0,0) = ALO)0,0) = AC1)(0,0) = A2%)(0,0) = A®)(0,0) =0,
and
A9)(0,0) = AlLO)(0,0) = ALY(0,0) = AlL1)(0,0) = AZ)0,0) = Al®H(0,0) =0 .

Note the similarity between these requirements and (2.7). The above choice of

=



constraints A(p’”(0,0) = 0 has taken into account the specific structure of opera-
tors Ly 4, Ly « and L. For example, in the case of L, y, the symmetry properties
of Ly« imply that A(Q'O)(O,O) =/_\(0'2)(0,O), so that among the six constraints
which are used to specify L, (E,,E, ), only five are independent.

By setting the coefficients of low order terms in (2.22) equal to zero, it is pos-
sible to obtain various high-order finite-difference discretization schemes. For
example, to obtain the 9-point scheme (2.21), we need only to impose the require-
ment that this scheme should have an accuracy of O(h®) for modes satisfying the
characteristic equation s,2 + sy2 = 0. Then, substituting this equation inside (2.22)
and setting coefficients up to order h® equal to zero, we obtain nine independent
constraints which specify (2.21) uniquely.

Helmholtz equation: Let
L(D,D,) =D} + D} + .
If s, and s, are purely imaginary, the characteristic equation becomes
wy +wl =N, (2.23)

which is a circle in the w,-w, plane, centered at the origin and with radius M.
There are infinitely many natural frequencies and, hence, there are many different
ways to select coincident frequencies. Our choice is based on the following two
considerations. First, if there is no further information about the dominant
modes, a reasonable strategy consists in distributing the coincident frequencies
uniformly along the contour (2.23). Second, we want to preserve the symmetry
properties of L, so that the resulting discretization scheme will have a simple form

and will be easy to implement.

Let us select
(@, , @) =( ]A Icos(%ﬁ—{-%ﬂ‘), I\ |sin(%7r+:11—7r)), 0<n <3,

as coincident frequencies as shown in Fig. 2.1(a). With this choice, the discretiza-
tion can be performed independently in the z- and y-directions. The resulting
scheme is

Ly(E,,E,)=A[E " — QCOS(%I:) + E, + (B, ' — 2cos( B\EI h)+E,) .

Two parameters A and x remain undetermined. The parameter x is selected such




= s

that the discretization error A(s,,s,) corresponding to natural frequencies is pro-
portional to O(h?), and A is used to normalize the above scheme so that L, is
consistent with L. This yields K =1 and A = h~2. We obtain the symmetric 5-
point stencil discretization operator

i 2 N
Ly (B, E,) = ﬁ[E" '+ E, + E/' 4+ E, — 4cos( i h) . (2.24)

Rotating the above four coincident frequencies in the transform domain and the
associated 5-point stencil in the space domain by an angle 7/4, we obtain another
mode-dependent 5-point stencil discretization. In this scheme, the coincident fre-

quencies become
(wy , w,)=( X |cos(%7r) . A |sin(§7r)) s DSn 53,
as shown in Fig. 2.1(b), and the resulting discretization operator is

Ly (B, B,) = 217[3;115’;1 +E'E, + E,E;" + E,E, — 4cos( |\ |)] . (2.25)

Note that this rotated 5-point stencil can be viewed as corresponding to a discreti-
zation on a grid with spacing V2h. By appropriately combining (2.24), (2.25)

and adding a constant term, we obtain the 9-point stencil discretization operator,

Ix Ny Ve .
L, o(E; ,E,) = L, . (E.,E,)+ Ly (B Ey) — o (220
d,g( z y) YT d,+( z y) T+ d,X( z y) Yo F Y ( )
Then, if
P LY PR b Y i
Tx = Lg x(e Vr , € vz ) = ﬁ[cos(\/ﬂ)\ |h) +1 —2cos( |\ |h)], (2.27a)
T = Ld,+(e.- Mk 1) = h1_2[2cos( IN|R) +2 — 4cos(—\|%h ) (2.27b)

we are able to match L,(z,,2,) and L(s,,s,) at 8 frequencies

(w; , wy <n<

w,) = ( [>\|cos(%r), |>\|sin(%r)), 0<n<7.

as shown in Fig. 2.1(c). Thus, (2.26) is a mode-dependent 9-point stencil discreti-
zation operator for the Helmoltz equation. It can be shown that both L, , and

Ly, x have an accuracy of O(h?) and that Ly ¢ has an accuracy of O (h°).



. |

Convection-diffusion equation: In this case,

L(D,,D,)=D2+ D} —2aD, —26D, .

Then, if we consider only real frequencies (s,,s,) = (0,,0,), the characteristic

equation reduces to
af + o} — 200, — 200, =0, (2.28)
which is a circle in the 0,-0, plane centered at (a , §) with radius d = (a*+4%)".

The conventional approach for discretizing the above equation uses central
differences to approximate the first and second order derivatives separately. This
gives

Ly (B, EB,) = ﬁ[(lﬂrh VE;[ ! + (1—ah)E, — 4

+ (14+6h)E,™ + (1-Ph)E, ] , (2.29)
which corresponds to selecting a single coincident frequency at the origin. Allen

and Southwell [4] combined two 1D mode-dependent schemes, i.e. (2.13), along the
z- and y-directions. This yields

1 2« -
Ly as(Ey By) = g[m(ezah E7 — (14e™h) + E,)
+ —i(ezﬁhE_l — (1+e**) + E,)| (2.30)
ezﬂh - ¥ y/ =

which corresponds to selecting (0,0), (2,0), (0,20), (2,2/3) as coincident frequen-
cies. Motivated by the discussion of the previous section, we can also select the

coincident frequencies
n 1 5.on 1 1
(0, ,0,)= (a+dcos(?1r+17r) y ﬁ+d51n(?ﬁ+z7r)) ; 0X<n <8,
uniformly along the contour (2.28), which gives the discretization operator

Ly J(E,,E,) = %{e“hEz_l + e E, + PHE 4 e PhE,

— 4cosh(-\—j_2—h)] . (2.31)

The multiplication of E, and E, by the factors e " and e #* in the space
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domain corresponds to a shift of the s, and s, variables in the transform domain,
where s, and s, become s, — « and Sy — B, respectively. The above scheme shifts
therefore the center (o,(5) of the circle (2.28) to the origin and interprets the
resulting circle as corresponding to a Helmoltz equation with radius d. The coin-
cident frequencies for the three schemes (2.29)-(2.31) are shown in Fig. 2.2. Fol-
lowing a procedure similar to the one used for the Helmoltz equation, we can also
design mode-dependent rotated 5-point and 9-point stencil discretization schemes
for the convection-diffusion equation. These schemes have an accuracy of O(h?)
and O(h5), respectively.

D. Historical Notes

Historically, the idea of selecting exponential functions as coincident modes
was first suggested by Allen and Southwell [4] for discretizing the convection-
diffusion equation. An important feature of this problem is that there are large
first-order terms in the governing second-order PDE. Due to these large first-order
terms, there exists a boundary layer which cannot be well approximated by poly-
nomials. The use of trigonometric functions as coincident modes was first dis-
cussed by Gautschi [41] for the numerical integration of ODEs which have
periodic or oscillatory solutions whose periods can be estimated in advance. The
advantage of selecting nonpolynomial functions as coincident modes has been
recognized for years and applied to PDE problems repeatedly in the literature (see
for example the references appearing in [68]). However, until recently, all mode-
dependent discretization results were derived by considering one specific equation
at a time, and it is only in [68] that a general framework was provided for the
study of mode-dependent discretization methods.
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ITII. Solution of Self-Adjoint Positive Definite Elliptic PDEs: Problem

Formulation

Once (1.1) has been discretized with a finite-difference or finite-element
scheme, the remaining task is to solve a system of linear difference equations of
the form

Ay =4, (3.1)

where A is a sparse matrix, and u,; and [, are discrete approximations of » and
[, respectively. Suppose that u; and [, are vectors of length N. The solution of
(3.1) by Gaussian-elimination requires O(N?®) operations, which is prohibitive for
most practical applications. However, if the matrix A is symmetric positive
definite (SPD), several direct and iterative methods [12],[51],[87], which require
between O(NN) and O(IN?) operations, can be used to solve (3.1) efficiently.

In the following, we shall restrict our attention to the case where the
coefficient matrix A in (3.1) is SPD. In terms of the differential operator (1.1), this
amounts to second-order self-adjoint positive definite elliptic PDEs which can be
expressed in the form

) ou

s,
P [BE

N

o

By +Du=F, (3.2)

where B and C are positive functions and D < 0. This subclass of equations

includes the Poisson equation, which will be used below as the prototype for equa-
tions of the form (3.2).

To study the convergence rate of iterative solution techniques for (3.2), the
traditional approach consists in using matrix iterative analysis [12],[51],[87], which
relies on a detailed characterization of the structure of iteration matrices. Another
approach, which has become popular recently, uses Fourier analysis to study the
convergence behavior for a simple model problem. If the model problem is
representative of the general class of problems that we want to solve, the conver-
gence behavior for general problems can be inferred from the results obtained for
the model problem. Since this second approach analyzes the effect of iterations on
each Fourier mode through the use of digital signal processing methods, it is
called here the DSP approach.
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The advantage of the matrix approach is its general applicability. It can be
applied to PDEs with irregular domain geometries, spatially varying coefficients,
and when the discretization is performed on nonuniform grids. The only require-
ment is that the iteration matrices should possess certain properties, such as pro-
perty A or consistent ordering [51],(92],(93]. In contrast, the DSP approach can
only be rigorously applied to a small class of problems. It presents, however,
several advantages. First, the matrix approach is in general much more compli-
cated than the DSP approach. Second, for simple problems, the DSP approach
yields more accurate estimates of important quantities such as the optimal relaxa-
tion parameter for the SOR method, the smoothing rate of multigrid methods, or
the eigenvalue distribution of the preconditioned operator obtained by applying a
preconditioner to the discretized form of (3.2). Finally, the convergence behavior
of iterative algorithms predicted by the DSP analysis of simple model problems is
usually consistent with results obtained by perfoyming numerical experiments on
complicated problems. Thus, in spite of its simplicity, the DSP approach provides
results which are applicable to very general problems.

A. The Model Poisson Problem

The standard model problem for (3.2) is the Poisson equation on the unit
square {1 = [0,1]

Fu(z,y) | Pu(r,y)
L4 L= f(z,y) . (3.3)
oz* dy? (=:9)
with appropriate boundary conditions. It can be discretized on a uniform grid
0y = {(n,h, nyh): 0 < n,, ny <M}, (3.4)

with grid spacing h = M~!. Approximating the Laplacian with the 5-point
finite-difference scheme (2.19), and denoting by wu, , the discrete approximation

of the solution u(n, h,nyh), we obtain the discretized system

1
?(un,+l,n, + Hir:,---l,n,r ¥+ un,,n,+l F un,,n,—l i 4un,,nr) 5= fn,,n, ’ (3'5)
at points (n,h,n,h) which are located in the interior of f{}, ie, for
1 <n,, n, <M~—1. This system can be rewritten in terms of shift operators as

hz

A (E, !Ey )“n,,n, = e fn,,n, ’ (3.6)
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with

A(E,,E,)=1- -}1- (B, + BV + E, + EY) . (3.7)

Boundary Conditions: For self-adjoint positive definite elliptic PDEs, it has
been observed empirically [22] that the convergence behavior of a given iterative
algorithm is not significantly affected by the choice of boundary conditions. This
implies that we can, without loss of rigor, restrict our attention to Dirichlet or
periodic boundary conditions, since these boundary conditions have the advantage
that they lend themselves easily to Fourier analysis. For Dirichlet boundary condi-
tions, the solution u(z,y) is specified along the boundary of the domain {1 In
terms of the discretized system (3.5), this means that u, o, u, a7, Uo,p, AN Uy o
are given. Thus, the system (3.5) consists of (M—1)? equations in (M—1)? unk-
nowns. Since nonzero boundary values can be moved to the right hand side and
treated as part of the driving function, the system (3.5) with Dirichlet boundary
conditions can be replaced by an equivalent system with a modified driving func-
tion and zero boundary conditions. Without loss of generality, the system (3.5)
with zero boundary conditions

Un, 0= Un M = Ugn, = Uy =0, (3.8)

where 1 <n,, n, < M—1, is therefore called the model Dirichlet problem. Simi-
larly, the system (3.5) with periodic boundary conditions

uﬂ, 0 = unhM a.r.l.d UO‘H’ = uM,ﬂ, y (3.9)

where 0 < n,, n, < M—1, is called the model periodic problem. It is easy to check

that the model periodic problem involves M? equations in M? variables.

B. Orderings

To specify an algorithm for processing a multidimensional sequence, it is
important to indicate the order in which the sequence should be computed. For
example, a certain ordering of grid points is needed to implement 2D IIR filters.
Similarly, for PDE algorithms, it is necessary to indicate clearly the ordering
scheme which is employed, since the numerical performance of a given algorithm
depends in general on the ordering [2],[66],[81]. We will focus our attention here

on the natural and red-black (or checkered) orderings, since they are the most
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commonly employed, and are both amenable to Fourier analysis. The natural ord-
ering corresponds to a standard rowwise (or columnwise) lexicographic ordering of
the grid points. In the red-black ordering, the grid points are partitioned into two
groups, where a grid point (nz,ny) is red if n, + n, is even, and black if n, + n,
is odd. Then, as a group, the red points precede the black points, but within each
group, points are ordered according to the natural ordering.

Many PDE algorithms have the feature that numerical operations at a given
point require only local information. In this case, it is usually possible to divide
the grid points into subsets such that operations performed at points within a
subset are independent of each other. In this case, the ordering of points within a
subset is not important, since operations at such points can be implemented in
parallel on a multiprocessor machine. When solving equation (3.5), this leads us to

consider the following parallel versions of the natural and red-black orderings.

Parallel natural ordering:

(g, 0,) < (myy myy i, +1, < m, +m, . (3.10)

Parallel red-black ordering:
(ngy ny) < (mgy, my) if (n,, n,) red and (m,, m,) black . (3.11)

In (3.10) and (3.11), the order between grid points is denoted by an inequality
sign. Note that the above parallel natural ordering does not specify an order for
points (n,, ny) such that n, + n, is constant. Similarly, for the parallel red-black
ordering, no order is imposed for points of the same color. This is due to the fact
that when the Gauss-Seidel or SOR methods described in Section V below are
used to solve (3.5), for the natural ordering, points along constant n, + n, lines
can be updated in parallel. On the other hand, for the red-black version of the
same relaxation methods, all points of identical color can be updated in parallel.
From the point of view of parallelism, the red-black ordering is therefore prefer-
able, since only two steps are required to scan all the grid points, instead of
O(Nl’*) steps for the natural ordering. However, the convergence rate of a given
iterative algorithm can also be affected by the choice of ordering. For example, it
has been shown recently [66] that the rate of convergence of the symmetric succes-
sive overrelaxation (SSOR) and of several preconditioned conjugate conjugate gra-

dient methods can be slowed significantly if we use a red-black ordering instead of
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the natural ordering. Thus, when selecting a given ordering, one has to be careful
to examine both the numerical complexity of the resulting algorithm as well as its

parallelism.

C. Fourier Analysis
Several different Fourier basis functions will be introduced to expand 2D
sequences. A sequence Un, n, defined on (1, with zero boundary values can be

expanded in a sinusoidal Fourier series of the form

M—-1M-1
Un, n, = kz_:”zlﬁkhklsin(kz mn, h)sin(k, T, k) . (8.12)
s =1hy=

It is easy to see that when A (E,,E, ) is given by (3.7), we have

A(E;,Ey)sin(k,mn, b )sin(k, mny h) = A (kg ,ky )sin(k, 0y b )sin(k, n, b)) (3.13)

with
A (kpoky) =1— %[cos(kz'frh) + cos(k, mh )] . (3.14)

Therefore, sin(k,7n, h)sin(k,mn,h) is an eigenfunction of operator A(E,,E,)
corresponding to the eigenvalue A (kz,ky ). It is worth noting at this point that by

imposing the condition that the solution Un, n, is synthesized by a finite number
of Fourier sine functions as in (3.12), we are able to ignore the zero boundary con-
ditions (3.8) for the model Dirichlet problem and treat A(E,,E,) as a shift-
invariant operator defined on an infinite grid.

Next, consider a sequence Uy, n, defined on (1, which satisfies the periodic
boundary conditions (3.9). The sequence Uy, o, an be expanded in complex

exponential Fourier series as

M—-1M-1
~ 2k, n,+k h
n.,n, ukhkyg‘ (k. n y Ty ) (3.15)
k; =0k, =0
Since
A(ng,ny) e 2rthnthmh _ (g k) ¢ trbnthmh (3.16)
where

A

Ak, b)) =1 — %[cos(kz?.frh) + cos(k, 27h )], (3.17)



i2n(k.n.+k,n, )b

we see that e is an eigenfunction of A (E,,E,) with eigenvalue (3.17).

Consequently, by expressing an arbitrary solution as a finite sum of such eigen-
functions, where k, and k, are integers between 0 and M —1, we can ignore the
periodic boundary conditions (3.9) for the model periodic problem and view
A(E, ,Ey) as a shift-invariant operator defined on an infinite grid.

To analyze algorithms with a red-black ordering, we can employ a variant of
the above Fourier decompositions, which is known as the two-color Fourier

analysis [65],(66]. Consider the model Dirichlet problem, and let u, , be a

ny
sequence defined on (1, with zero boundary values. The restriction of this sequence

to the red and black points defines two subsequences: the red sequence LR

and the black sequence Uy n,.n,- Lhey can be expanded respectively in Fourier

series as
Up oo, = O g, g Sin(k, T, h)sin(k, mkh) ,  n +n, even, (3.18a)
(k,,k,)EK,
Y 5, 0, = 3, ﬁb,khk,sin(lczarnzh)sin(kyvrkh), n,+n, odd , (3.18b)
(k,,k,)EK;

where for M even,

M
1<k S =Lk =M=k}, (3.19a)
and
K, =K, U{(M/2,M[2)}. (3.19b)

It is straightforward to check that the Fourier coefficients dy, x , @ar—, a—,
in the sinusoidal expansion (3.12) and i, x k, @k k Iin the red-black expansion

(3.18) are related via

Uy k, k | iy, &
; 4 = [ ] ” ; ) (k:r 7ky) = Kb ! (3'203’)

Uy g, k, = U, b, (ks oky) = (M/2,M [2) . (3.20D)

The expression (3.20) can be interpreted as follows. When the sequence u,, , is

sampled only at the red points, instead of all points of {1, the high frequency



component (M —k,,M —k,) is aliased into the low frequency component (k,,k, ), so
that two Fourier components coexist in the low frequency region. A similar alias-

ing phenomenon occurs when u is sampled at the black points only (see Fig.

ny,n,
3.1). Note also that K, and K, differ by the single element (M /2,M /2), so that
at the frequency (M /2,M/2) a single Fourier coefficient 4, pr/o /2 is used to

represent the 2D sequence u This frequency can therefore be viewed as being

Ne,nyt

degenerate.

With respect to the two-color decomposition (3.18), the discretized system

(3.5) can be rewritten as

urfn‘ln’ h2 fr,n,,n,
A(Ex,Ey) ub,n,,n, Il T fb,n,,n, ’ (3.21)
with
1 - a(EzaEy)
A(EME_U) [ G(Esty) 1 ’ (322)
and
a(E,,E,) = %(EI + B+ E, +E7Y). (3.23)

To obtain a frequency domain representation of the above system, we can
substitute the Fourier decomposition (3.18) inside (3.21) and match Fourier com-

ponents. For a nondegenerate frequency (Icz,lcy), this gives

A Ur k, 52 T

Aty by g |~ 4 |Fomn | (3:24)
with

. 1 — a(k; k)

Ak, k) = — ik k) 3 , (3.25)
and where

a(k, ,k,) = %[cos(kx mh )-+cos(k, h ) (3.26)
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is the Fourier transform of the space domain operator a(E, ,Ey ). For the degen-
erate frequency (k,,k,) = (M /2,M /2), we obtain

; h? -

ur,M/Q,M/2 T Tfr,M/2,M/2 :

Note that the above results rely in part on the fact that for the Dirichlet
case, the eigenfunctions of the 2X2 matrix operator A(EI,ES,) are of the form
v(k, k, )sin(k, mn, b )sin(k, 7n, h) where the 2-vector v(k,,k,) is an eigenvector of
the matrix A (k, ky ).

In the previous two-color Fourier analysis of the red-black ordering, we have
assumed that the boundary conditions are of Dirichlet type. For the case of
periodic boundary conditions, a similar two-color Fourier analysis can be
developed. One needs only to replace the sinusoidal expansions (3.18) by complex
exponential Fourier series. Since the analysis is identical to the Dirichlet case, the
details are omitted. We find that identities (3.21)(3.25) remain valid, provided
that the function d(k;,k,) is replaced by

6 (ky k,) = %[cos(kx oh )-+eos(k, 2mh )] . (3.27)

D. Summary

In this section, we have examined the model Poisson problem with Dirichlet
or periodic boundary conditions, and with a natural or red-black ordering. In each
case, a Fourier basis has been introduced to expand 2D sequences satisfying the
boundary conditions. For such sequences, it has been shown that the system (3.5)
can be viewed as a linear shift-invariant (LSI) system in the space domain, and
can therefore be analyzed in the frequency domain. The results of our analysis are

summarized in Table 3.1.
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ordering B.C. A(E,,E,) | Fourier basis functions A (k, k)
natural | Dirichlet (3.7) (3.12) (3.14)
natural periodic (3.7) (3.15) (3.17)

red-black | Dirichlet | (3.22) (3.18) (3.25),(3.26)

red-black | periodic (3.22) r-b complex sinusoids | (3.25),(3.27)

Table 3.1: Fourier decomposition for several orderings and boundary conditions.

The Fourier analysis that we have developed in this section has focused on
the operator A (E,,E,) defined in (3.7) or (3.22). Since this operator is a FIR

filter, the ordering of grid points does not play a role in its implementation, so

that as far as A is concerned, the distinction between the natural and red/black

orderings is really unnecessary. However, when solving (3.5), our actual goal is to
implement the inverse filter A~Y(E, ,E,), which is a 2D IIR filter, and for which

the choice of ordering does matter. To synthesize this filter, we will rely on the

iterated application of deconvolution filters, which will be in general of 2D IIR

type, thus explaining our interest in the choice of ordering.
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IV. Direct Methods

Several efficient direct methods have been developed for solving elliptic PDEs.
These methods usually exploit special features of certain classes of PDEs, and are
often restricted to regular domain geometries. They are therefore not as widely
applicable as the iterative methods to be discussed in the following sections.
Furthermore, except for fast Fourier solvers, direct methods rely mainly on matrix
or graph-theoretic techniques. Thus, they do not fit well the DSP viewpoint
adopted in this paper. Consequently, in this section we focus primarily our atten-
tion on FFT solvers. However, for completeness, several other direct methods,
such as cyclic block-reduction and sparse Gaussian elimination methods, are
briefly discussed.

A. FFT Solvers

Fast Fourier solvers are applicable to 2-D separable elliptic PDEs of the form

(P(z)+ QW)u(zy) =/(z.y) , (4.1)

defined on the unit square [0,1]?, with

P(z) = o |pi(e) o= |+ pole) (4.12)
(
Q(y)=g—y ql(y)g—y + 42(y) , (4.1b)

and where p(z)g,(y) > 0. For simplicity, we assume that the boundary condi-
tions are of Dirichlet type, i.e., u(z,y) =0 on the domain boundary. A wider
class of boundary conditions is considered in [86].

By discretizing the differential operators P(z) and Q(y) on a uniform grid
(, with spacing h = M~ with 3-point central differences in the z- and y- direc-
tions, respectively, we obtain a 5-point stencil discretization of (4.1). The discre-

tized system can be denoted as
(Pd(nz) ' Qd (ny))un,,n, = fn,,n, . (4'2)

FFT solvers require that either P(z) or @Q(y) should have constant
coefficients. If the coefficients p,(z) = p, and py(z) = p, of P(z) are constant, the

discretized operator



Py(n,) =Py =py(E, =2+ E")/h* + p, (4.3)

has also constant coefficients. Then, the Fourier transform can be used to
transform the discretized equation (4.2), which depends on the two variables n,
and n,, into a set of decoupled equations depending on the single variable n,.
Specifically, due to the separability of equation (4.1), we can express the solution

Up, n, and driving function f"“ny in the form
M—l % . M_l . .
Un, ny = 25 g, o sin(k;mnzh),  [o o = 3 [g asin(kmm h) . (4.4)
k=1 k=1

Substituting (4.4) into (4.2), we obtain M —1 independent equations
(Py + Qa(ny) )i, a, = fk,,n, y 18k <SM-1, (4.52)
with

Py = —2h=2p [1—cos(k, Th)] + p, . (4.5b)
The boundary conditions of the transformed system are also of Dirichlet type, i.e.,

g, 0 = U, py =0 (4.6)

Then, for each value of k,, the system (4.5)-(4.6) can be written in matrix form as

a tridiagonal system

a; ¢ (O o

by ay ¢ Uy [a
= i (4.7)

bar—o @pr—g Crpp—a | | dpr_s fa—2

bM—l aM—l_ ﬁM—l fM—l

where the k, dependence of the solution, driving term, and matrix entries has

been suppressed. Each such system can be solved directly with the following algo-
rithm of complexity O(M).
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[LU factorization]

Cfl :=a1

forn =23, -, M-1
ﬁn = bn/an—l
Qp =0, — PpCy

[Forward substitution]
vy = [
forn =23, .., M-1
Un = fﬂ, | ﬂnvn—l
[Backward substitution)]

dpr—y = Upr_1/ Oy
forn =M-2, M=3, -, 1

i, = (vn — Cp ﬁn+1)/an
Table 4.1: Tridiagonal system solver.

Given the solutions iy , of systems (4.5)-(4.6) for all £, the solution u
of the PDE can then be obtained from the discrete sine transform (4.4).

Ny, Ny

Fast Fourier solvers rely therefore on the following three steps.
Step 1: Perform a 1-D fast sine transform of f, , with respect to n, to determine

the hybrid Fourier coefficients fk,,n,'

Step 2: For each k,, with 1 < k, < M—1, calculate the hybrid Fourier coefficients
iy, o, by solving the tridiagonal system corresponding to (4.5)-(4.6).

Step & Perform a 1-D fast inverse sine transform to compute the solution Un, n,

from the hybrid Fourier coefficients ﬁk“ﬂ’.

In the above discussion, we have assumed that the boundary conditions are
of Dirichlet type. However, other choices of boundary conditions, such as Neu-
mann or periodic conditions, are also possible. The effect of a change of boundary
conditions is to replace the fast sine transform in steps 1) and 3) above by fast
cosine transforms, or FFTs [85],[86]. The complexity of the resulting family of
FFT solvers is O(MZ%log(M)). However, it is important to keep in mind that
these solvers are restricted to problems with a rectangular domain, and where

either P(z) or @(y) has constant coefficients.



B. Other Direct Methods

The above FFT solver was introduced by Hockney in 1965 [53] for the Pois-
son problem over a rectangle. In both [53] and [54] Hockney discussed another
direct method, called cyclic reduction. This method is a Gaussian elimination pro-
cedure with a particular ordering. Specifically, assume that in (4.2), the variables
Un, n, aTr€ scanned column by column, and let u, be the M—1 dimensional vector
formed by the variables with column index n,. It is easy to check that the set of
vectors u, with 1 <n, < M-I satisfies a block tridiagonal system. Then,
assume that we eliminate one out of every two columns from this system, say the
columns with n, even. The resulting system remains block tridiagonal, although
the blocks may start to fill in. By proceeding recursively, after L = log(M) steps,
a single column of variables remains. The resulting system of size M —1 can be
solved, and its solution can be backsubstituted into the system obtained at the
previous level, thus enabling us to compute progressively all columns of the origi-
nal system. For more details on the cyclic block reduction method, the reader is
referred to [85],[86]. This method which was unstable in its original form, was

later stabilized by Buneman [20]. The complexity of the resulting procedure is
O(M?*log(M)), as for FFT solvers.

The FFT and cyclic block reduction methods can be combined to produce a
third technique, called the FACR (Fourier analysis-cyclic reduction) algorithm,
whose complexity is O(MZ%loglog(M)). The FFT, cyclic reduction and FACR
solvers are reviewed by Swarztrauber in [85]. Another survey [86] provides a more
elementary introduction to this topic.

The cyclic block reduction procedure can be viewed as a special case of a
more general family of direct solvers, called sparse Gaussian elimination methods.
These methods start from a system of the form

Az =b , (4.8)

where A is symmetric positive definite. The matrix A is usually sparse. However,
when (4.8) is solved by performing a Cholesky factorization A = LL T, the lower
triangular matrix L contains in general more nonzero elements than existed in the
lower triangular part of A, thus resulting in an increase in the storage and com-
putation time required to solve (4.8) by Gaussian elimination. However, the
amount of fill, i.e., the number of additional nonzero entries of L, depends highly



on the ordering of the variables. If P denotes an arbitrary permutation matrix, it

may be of interest to replace the solution of (4.8) by that of
By=c, (4.92)
with
B=PAPT, y=Pz, ¢=Pb. (4.9b)

An ordering is said to be optimal with respect to fill, if it results in the least possi-
ble fill-in, and optimal with respect to operation count if it minimizes the number
of operations required to solve (4.9a) by Gaussian elimination. If 4 is an NXN
matrix, there are N! different orderings of its rows and columns, and the problem
of finding the ordering with least fill-in is NP complete. Efforts have therefore
focused on obtaining efficient algorithms for finding suboptimal orderings with
low fill-in and operation count. Numerous reordering algorithms have been
developed based on results from graph theory. This topic is discussed in detail in
books by George and Liu [42], and Duff, Erisman and Reid [32].
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V. Relaxation Methods and Their Acceleration

A general mechanism for constructing iterative algorithms for the solution of
discretized elliptic PDEs consists in using relaxation. In this approach, instead of
requiring that the entire system (3.1) of discretized equations should be satisfied,
we force only one or a few equations to hold at any given time. For the case of a
single equation, the value of the variable U, n, is updated by forcing the discreti-
zation equation to hold at point (n,h ,nyh), while relaxing it at all other points of
the discretization grid {1,. By using this procedure sequentially, or if possible in
parallel, for all points of {1, an updated value of the solution is obtained at all
grid points, and one can then proceed to the next iteration. If the resulting itera-
tive algorithm converges, the complete system (3.1) of discretized equations will

eventually be satisfied.

In this section, we describe elementary relaxation methods, such as the Jacobi
and Gauss-Seidel iterations, and use a digital filtering viewpoint to analyze their
convergence behavior. The major shortcoming of these methods is their slow con-
vergence rate. Several acceleration schemes have been proposed to improve their
convergence. Acceleration schemes can be divided into two categories, depending
on whether they are stationary or not. In a stationary scheme, the same accelera-
tion procedure is used at each iteration. Thus, we can focus on a single iteration
and try to optimize its performance. The best example of such a procedure is the
successive over-relaxation (SOR) method. In a nonstationary scheme, the overall
performance of the algorithm is optimized by considering more than one iteration
at a time. Examples of such schemes include the Chebyshev semi-iterative (CSI)
and conjugate gradient (CG) methods. Both stationary and nonstationary

acceleration methods are discussed below.

A. Elementary Relaxation Methods

Consider the discretization (3.5) of the model Poisson problem. The Jacob:
relazation is given by

1
un(:ln-:l) = ‘_4"( un(:i{,n, = un(,nl)l,n, -+ un(,'?n),-i-l + un(::nn),—l - h’gfn,,n, ) ' (5'1)
where “n(,'?n), denotes the value of the variable Uy, o, ab the mth iteration, with

m =0,1,2,---.From (5.1), we see that given the values un(:':“n)y at all points of
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(m+1)

{1, the value u, at the next iteration is obtained by forcing equation (3.5) to

be locally satlsﬁed at (n,h,n, k), independently of whether it is violated at other
points of (1.

One way to modify the Jacobi relaxation (5.1) is to partition the grid points
into two red and black groups as described in Section IIT and to perform the itera-
tion

(n;,ny) red:

W) = Leulml bl bam) bl L), (520)

I

(n,,n, ) black:

(un(:i-li-}l)’ + un(’fi+l)y + g (m+D) u("““) an:,n’ ). (5.2b)

1,n ng,ny+1 Ny, Ny —

Thus, one iteration consists of two steps. In the first step, a Jacobi relaxation is
performed at all the red points and in the second step, the values obtained at the
red points in the first step are used to perform a Jacobi relaxation at the black
points. The iteration (5.2) is known as the Gauss-Seidel relaxation for the red-
black ordering. The reader is referred to [71] for a detailed comparison of the red-

black Gauss-Seidel and Jacobi relaxations.

To analyze the convergence behavior of relaxation methods, it is convenient
to view each iteration as corresponding to a digital filtering operation on the solu-
tion error. For example, if the Jacobi relaxation converges, the iteration equation
(5.1) reduces asymptotically to

L IS — IL¥ 2 9
un,,n, = _4"( un,+l,n, 25 run,—I,n, * un,,n,+1 T un,,n,—l —h fn,,n, ) ’ (5'3)

where u, , is the exact solution of the discretized problem. Subtracting (5.3)

from (5.1), we find that the errors evolve according to

e (m+1) =%(E +EV+E, +E™) n(n), , (5.4)

ng,ny

where

m) — ) P
eﬂ(z,n), “n(,,n, U

(5.5)

is the error at the mth iteration. Thus, the Jacobi relaxation can be viewed as a

digital filtering process, where at each iteration the FIR filter



J==(E, +E, '+ E, +E) (5.6)

o | =

is applied to the errors obtained at the previous iteration. Assume that the boun-
dary conditions for the Poisson problem are of Dirichlet type, so that the errors
are zero on the domain boundary. To analyze (5.4) in the Fourier domain, we

observe that the functions
sin(k,mn, b )sin(k,mn, b)), 1<k, k, SM—-1,

with M = h~1, are eigenfunctions of J which are zero on the domain boundary.

They can therefore be used to expand the errors e,,f:‘n), in the form (3.12). In the

Fourier domain, the iteration (5.4) is diagonalized and takes the form

ék(j:'cjl) = j(ka:’ky )ék(,i?;c,) ’ (5'7)
where the eigenvalues
- 1
Ik ky) = -2—[cos(kxvrh) + cos(k, mh )] (5.8)

specify the spectrum of J. The spectrum magnitude |j(lcr,lcy) | is plotted in Fig.
5.1. We see from this figure that the Jacobi relaxation acts as a bandpass filter. It
filters out the middle frequencies, but dampens only slightly the low and high fre-
quencies. Since |.}(Icr,ky)| < 1 for all feasible wavenumbers, the Jacobi relaxa-
tion converges. Its convergence rate is determined by the spectral radius

p(J) = 151:,%?5{—1 |J(lcz,ky) | = cos(mh) =1 — éﬂ'?hg : (5.9)
We see from (5.9) that the number of Jacobi iterations required to reduce the
error by a constant factor is proportional to O(h~2). In order to determine the
total number of iterations needed for convergence, it is useful to observe that since
the discretized system is only an approximation of the original continuous prob-
lem, the iteration can be stopped when the solution error for the discretized sys-
tem is of the same order as the discretization error. We saw in Section II.C that
the error for a 5-point discretization of the Laplacian is O(k?). The total number
of iterations required by the Jacobi relaxation is therefore O (h~2log(h~1)).

Similarly, denoting by er(.',’l‘r)in! and eb,?:,),n, the restriction of the error at the

m-th iteration to the red and black points, respectively, we find that the errors
for the red-black Gauss-Seidel relaxation evolve according to
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(m+1) e(m
TN, Ny T,ﬂ.,,ﬂ’
=G
m+1 b m y 5.10a
eb(:n:r;ﬂy) eb(,ﬂ,),n' ( )

where

o=l 1]

is the red-black Gauss-Seidel relaxation operator. For Dirichlet boundary condi-

(5.10b)

tions, the red and black error functions admit a Fourier decomposition of the
form (3.18). With respect to this basis, the error equation (5.10) decouples into a
set of 2X2 matrix equations

ol B e\ R,
eb(‘T’fk:) = Grb (k: ,ky ) éb(ﬁ;t),k! ’ (5.1 la.)
0 J(kyk,)
Gy (b, ; ,
b (Fz y) 0 Jg(kxsky) ’ (5.11a)

with (k;,k,) € K, where K, is defined in (3.19a). The spectral radius of G is
therefore given by

p(G,;) = max |j2(kz,ky) | = cos®(mh) =1 — 7% . (5.12)

r.yei

Comparing (5.9) and (5.12), we see immediately that the convergence rate of the
red-black Gauss-Seidel algorithm is double that of the Jacobi relaxation. Since
both algorithms require the same number of operations per iteration, the red-

black Gauss-Seidel algorithm is twice as efficient.

If the natural ordering is adopted, the Gauss-Seidel relaxation takes the form

1
ufmt) = —(u{W,, + oM ol + el =A%) (513)
and is called the lexicographic Gauss-Seidel iteration. The errors dynamics are
given by
Cn(:lnj-l) = G € n(fn), ’ (5.14a)
where
E, + B

o s (5.14b)
BT S R
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is a causal IIR filter. The spectral analysis of the operator Gj,, with Dirichlet
boundary conditions has been performed by Frankel [38], and was studied by Tre-
fethen and LeVeque [73] from a tilted grid viewpoint. For convenience, we con-
sider here the case of periodic boundary conditions. Then, the eigenfunctions of

GIC.’E are
el‘gﬂ'(kxnt-t-k! n)')h " 0 S kﬂ:’ ky S M_l !

and, decomposing the errors with respect to this basis, the spectrum of G, is

given by
12wk, h 12k, h
~ e z _I_ e y
Glep (kg ok, ) = PR (5.15)
Note that é‘,ez(kz,ky) =1 for (k,,k,) = (0,0) and |G,er(kz,ky) | < 1 for all other

feasible wavenumbers. This means that the filter Gj,, does not filter out the d.c.
component of the error. However, if u(z,y) is a solution of the model periodic
problem, u(z,y) plus a constant is also a solution, and the lexicographic Gauss-

Seidel method converges to one of these solutions.

To summarize, the Jacobi, red-black, and lexicographic Gauss-Seidel relaxa-
tions admit a digital filtering interpretation, where each iteration consists in
applying a filter to the errors obtained at the previous iteration. This filtering pro-
cess can be studied easily in the frequency domain, by decomposing the errors in
terms of properly selected Fourier eigenmodes, and examining each mode indepen-

dently.

B. SOR Acceleration

The red-black SOR iteration is obtained by introducing a relaxation parame-
ter w inside the Gauss-Seidel iteration (5.2), i.e.,

(ng,my ) red:

6 {mH) = (1 - wu™)

W
“+ T(un(,ri)l,n, + un(,nl)l,n, + un(,’?n) +1 ok un(:?n),—l BT h'zfn,,n,) ' (5'163')

Y

(ng,n,) black:

urz(mn+1) = (]‘ i w)uﬂ(mﬂ)



- 98 .

B ol ullndh + ol — 8%, ). (5.160)

When w =1, the SOR method reduces to the Gauss-Seidel method. The error
dynamics for the SOR iteration can be expressed as

(m+1) (m)

r,n,,n, Crxn!;ny
gm0 & Gy (w) elm) ’ (5.17a)
b,n.,n, b,n;,n,

where

1 sl 1—w wJ 1—w wJ
GulW)= lor il ol |= () 1—patsz| (617D)

is the red-black SOR iteration operator. With respect to the red-black Fourier
decomposition (3.18), the SOR iteration reduces to 2)X2 matrix iterations of the
form (5.11a), where G”,b(kx,ky) is replaced by

’ 1—w wj(kz,ky)
Gy (wiky by ) = : (5.18)

(=)W (k k) 1—wtwP Tk, k, )

Let X\ be an eigenvalue of the matrix G (w,k, ,k, ), and let p = J(kx,!cy).

Then, A and p are related via the quadratic equation

WPl

N —2(1—
2(1—w+ 5

M+ (1—w)? =0. (5.19)

Note that as w varies, the eigenvalues A\; and A, move about the complex plane.
We are interested in how the quantity p = max( |\, |, |y |) depends on w. When

viewed as a function of w, the discriminant
A = 4(1—w)oPp? + wip!
of (5.19) has a single real root which is given by
2

wy = . (5.20)
1+V 122

It is easy to check that p < 1 if and only if 0 < w < 2. Furthermore, we have
p= %[w || + VPpiHa—w)?, for 0 <w<wy,

p=w-—1, for wy <w<L2.
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The locus of eigenvalues A\; and A, as w varies is plotted in Fig. 5.2. When w = 0,
the eigenvalues A\; and A\, coincide at the value 1. As w increases from 0 to 1, both
eigenvalues move toward the origin along the real line but with different speeds.
When w reaches 1, the eigenvalues are 0 and p?. When 1 < w < wy, one eigen-
value increases its value from O and the other continues to decrease. They coin-
cide again at the point w; — 1 when w = w,;. The eigenvalues become complex
conjugate pair with magnitude w —1 for w > w,;. Thus, these eigenvalues lie
outside of the unit circle for w > 2. This plot shows that the spectral radius p is
minimized for w = wj.

Since pu = J(kz,lcy ), the relaxation parameter w; which minimizes the spectral
radius of G, (w,k;,k, ) is a function of the wavenumber (k,,k, ). In order to minim-
ize the spectral radius of the space-domain operator G,,(w), we must therefore
select for w the value which minimizes the maximum over all feasible
wavenumbers of the spectral radius of G‘(w,k,,ky). A straightforward analysis [71]
shows that the optimal relaxation parameter w,, is given by the value of w,

corresponding to the wavenumber (k,,k,)= (1,1). Since J(1,1) = cos(mh ), we

obtain
Wopt = 2 ~ 2 —omh (5.21)
1+ Vl—cosz('lrh)
and the corresponding spectral radius is
p(Grb (wapt )) = Wopt — 1=1-—2mh . (5.22)

We see from (5.22) that the number of iterations required by the red-black
SOR iteration to reduce the error by a constant factor is O(h~!), so that this
algorithm is one order of magnitude faster than the Jacobi or red-black Gauss-
Seidel relaxations. However, this rate of convergence is achieved only when the
relaxation parameter is equal to its optimal value Wyt and is sensitive to pertur-

bations of the relaxation parameter away from this value.

An interesting feature of the SOR method is that, since the optimum relaxa-

tion parameter w, is larger than w; for all wavenumber components

pt
(k;,ky) # (1,1), the eigenvalues of G (w,,) have all the same magnitude
Wypt — 1. To illustrate this phenomenon, the spectra of the Jacobi and SOR

(with w,, ) iteration matrices are plotted in Fig. 5.3. The eigenvalues of the
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Jacobi iteration matrix are all real and occur in + pairs. Their magnitude ranges
from O to cos(mh) = 1—0(h?). Thus, different Fourier components converge at
different rates, and the slowest converging Fourier component is the one that
establishes the convergence rate of the Jacobi method. Through the SOR
acceleration, these eigenvalues are redistributed around a circle of radius
Wopt — 1 = 1—O(h) in the complex plane. Since they have the same magnitude,
all Fourier components converge at the same rate. Thus the acceleration effect of
the SOR method is achieved by balancing the convergence rates of the different

Fourier components.

C. Polynomial Acceleration

The SOR procedure is a stationary one-step acceleration technique, in the
sense that it optimizes the convergence behavior of one iteration, and uses the
same acceleration scheme at every subsequent iteration. There exists an alternative
acceleration approach which optimizes the convergence behavior of the overall
algorithm, instead of considering only one step. Specifically, if a given iterative
procedure requires s steps to converge, we can select a set of acceleration parame-
ters w; with 1 <1 <s and apply w; at the ¢th iteration to increase the conver-
gence rate. This approach leads to the polynomial acceleration method described
below.

Consider the sequence of iterates generated by the iteration
w(m+l) = py(m) 4 ¢ | (5.23)

where P is assumed to have real eigenvalues, and p(P) < 1, so that (5.23) con-
verges. For example, one possible choice for P is the Jacobi iteration matrix J.
The error e(™) = w(™) — @ at the mth iteration is given by

efm) = Pmef0) (5.24)

To improve the convergence of the sequence {w(m)}, we can generate a new

sequence {u(m)} by performing a linear combination

m i
o™ = Yo, wl), (5.25)
i=0
where the coefficients a,, ; are real and satisfy

m
Sa, ;=1 (5.26)
1=0
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for all m. This condition is imposed in order to guarantee that when w'\ = u,
then «(™) = @ for m > 0. Let e(™) be the error associated with the new sequence

(™), From (5.24) and (5.25), we can relate e(™) and e™) via

m
el™) = @ (P)ef), where @u(P)= Yoy P"
1=0
is a matrix polynomial of degree m. Since e(0) = eu(,o), the errors associated with
the {u(™)} iteration satisfy

elm) = Q, (P)el?. (5.27)

The problem is to select the coefficients a,, ; so that the error sequence {e(™)}

converges to zero as fast as possible.

Since @,,(P) is a polynomial function of P, it has the same eigenvectors as
P, and if u is an eigenvalue of P, the eigenvalue of Q,,(P) corresponding to the
same eigenvector is @,, (it). Let S be the discrete spectrum of the matrix P, and
let ppn and p,,, denote the smallest and largest eigenvalues of P. The polyno-

mial acceleration problem can be formulated as the minimax problem

min max |Q,,(z) ] . (5.28)

&n, ZE

Since the discrete spectrum S is seldom known, the problem (5.28) cannot usually
be solved as such. A modified version which is easier to solve consists in replacing
S in (5.28) by the continuous spectrum § = {z : i, <z < f.. - In this case,

we can perform the change of variable

z(z') = 2z — (Jumax"i'iu'min) ’ (5.29)

Fmax — Hmin

so that (5.28) is transformed into a minimax problem defined on the interval
[—1,1]. The solution of this new minimax problem is well known and is given by
the Chebyshev polynomial of order m, T,,(z). In terms of the original variable z,

the solution is

Qu(2) = Ty (2(2))/ Tr (2(1)), (5.30)

where the scaling by T,,(2(1)) ensures that the coefficient constraint (5.26) is
satisfied.
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An interesting property of Chebyshev polynomials is that they satisfy the
three-term recurrence relation

T =2l (2 =T, _Xz), m' 21, (5.31)

with To(z) =1 and T,(z) = 2. This property can be exploited to generate the
new sequence {u(m)} efficiently, instead of using expression (5.25), which has a
high computational cost, and requires a large amount of storage. By taking into
account the recursions (5.23) and (5.31) inside (5.25), we obtain the following Che-
byshev semi-iterative (CSI) acceleration procedure [51],[87] for iteration (5.23):

gl B+ (Pu(m) +¢) + (1—y)ul™)] + (l*ﬁmﬂ)“(m_l) o (5.32)

with
2
N = ; (5.33a)
2_”'ma.x_lu'min
Pi=1, B=(1=%)", Bpyr =1 —%8, )", m >2, (538b)
and

Hmax—Hmin

g = >
2_Ju’ma.x_lt‘tmin

(5.33c)

To illustrate the redistribution of the eigenvalues of P which is accomplished
by the CSI acceleration method, the function @,4(z) describing how the eigen-
values of @,,(P) depend on those of P for m =10 is plotted in Fig. 5.4. From
this figure, we see that unlike the SOR method, where the eigenvalues of G, (w,,)
were all complex and equal in magnitude, the eigenvalues of the CSI matrix

@,, (P) remain real, and lie in the narrow interval
[—2r™/2/(1+r™) , 2r™/2/(141™)]

with

o 1 —-Vi-¢ .
1+:VI—02

As an example, consider the case where the CSI method is used to accelerate
the Jacobi iteration for the model Poisson problem with Dirichlet conditions, so
that P = J in (5.23). The resulting algorithm is called the J-CSI method. The
asymptotic convergence rate of the J-CSI method can be determined as follows.

(5.34)
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From (5.8), we know that
Pmax = cOS(Th)  ptpin = —cos(mh) , (5.35)
and from (5.33c),
o = cos(mh) .

Then, observing from Fig. 5.4 that the maximum value of |Qm(:r)| over the

interval [ty s Mmay i reached for z = p .., we find that
rm/2

e (5.362)

P(Qm(.f)) = |Qm (Ju’max) I =2

where, from (5.34),

g = sin(7h )
1 + sin(wh)

According to (5.27), the error of the J-CSI method at the m-th iteration is
obtained by multiplying the initial error by @,,(J/). The asymptotic error con-

(5.36b)

traction factor per iteration is therefore

1
lim [p(Qm(J));] =rl2=1—mh . (5.37)

m—0o0

This shows that the J-CSI method requires O(h™!) iterations to reduce the error
by a constant factor. A further improvement in this algorithm was introduced by
Golub and Varga [46], who observed that for the the red-black ordering, the
recursion (5.32) can be rearranged in such a way that only the odd iterates of the
red points and the even iterates of the black points need to be computed, thus
cutting the numerical complexity of the algorithm in half. The resulting procedure

is called the cyclic CSI method, and its numerical complexity is the same as that
of the SOR method.

D. Historical Notes

The development of relaxation methods for the solution of large systems of
linear equations was initiated by Gauss, Jacobi, and Seidel in the 19th century,
and Ridchardson, Liebmann, and Southwell early in this century. Since a
comprehensive account of the history of relaxation methods can be found in a

recent paper by Young [94], our comments focus primarily on the application of
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Fourier analysis to the study of these methods. The development of the SOR
theory in the late 1940s [38],[91],[92] marked the beginning of a period of rapid
progress in the area of iterative methods. The Fourier approach adopted in this
section has for origin the work of Frankel [38] and Young [91], who used Fourier-
like basis functions to analyze the SOR method applied to the naturally ordered
Poisson problem with Dirichlet boundary conditions. Recently, LeVeque and Tre-
fethen [73] reinterpreted Frankel’s result from a tilted grid viewpoint. The same
problem with periodic boundary conditions was analyzed by Chan and Elman
[22]. The two-color Fourier analysis of the SOR method for the red-black ordered
model Poisson problem with Dirichlet or periodic boundary conditions was
developed by Kuo et al. [66],[71]. The use of Chebyshev polynomials was first pro-
posed by Flanders and Shortley [37] for the solution of matrix eigenvalue prob-
lems, and subsequently led to the development of the Chebyshev semi-iterative
(CSI) method for solving linear systems. A complete discussion of elementary
relaxation methods and of the SOR and CSI acceleration procedures can be found
in books by Birkhoff and Lynch [12], Hageman and Young [51], Varga [87], and
Young [93].
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VI. Multigrid Methods

The major limitation of elementary and accelerated relaxation methods is
that while the components of the error decrease very rapidly in certain frequency
bands, they decay only very slowly in other bands. The region of rapid decay
depends on the specific relaxation method that we consider, but it consists typi-
cally of middle or high frequencies. On the other hand, the region of slow decay
always includes the low frequencies. This phenomenon reflects the fact that the
low frequency components of the solution depend on global information, and a
large number of iterations are required for propagating information from the
edges of the problem domain to its center. Since the error becomes progressively
smoother as the iteration proceeds, it is natural to consider switching to a coarser
discretization grid, where we can assume temporarily that an exact solver is avail-
able. This solver can be used to compute the smooth components of the error on
the coarse grid, and the resulting correction can then be interpolated back to the
fine grid and combined with the original fine grid solution. Such a solution scheme
is called a two-grid method. In this approach, the fine grid provides the accuracy
required by the approximation while the coarse grid offers a faster convergence
rate for the low frequency Fourier components. Naturally, the weakness of the
above scheme is that we have assumed that an exact solver is available on the
coarse grid. This is generally an unreasonable assumption, but we need only to
observe that the problem on the coarse grid can itself be solved by a two-grid
method. By proceeding recursively, we obtain a multigrid scheme, where progres-
sively coarser grids are employed, until so few discretization points are involved
that a direct solver can be used to compute the error on the coarsest grid. The

resulting solution technique is called a multigrid method.

Since the two-grid method is the main component of multigrid methods, our
first step in this section is to perform a detailed analysis of the two-grid iteration
operator. We use two-color Fourier analysis to find the spectrum of this operator
for the 1-D and 2-D model Poisson problems. Then, we describe several of the
standard recursion patterns, namely the V-cycle, W-cycle, and full-multigrid
schemes, that are used to generate multigrid methods from the two-grid iteration.
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A. Two-grid Iteration

Consider two discretization grids (), and (L, with mesh sizes & and 2A,

respectively, and let
Lyuy, = [y (6.1)

be the equation that we seek to solve on the fine grid, where L,, f, and w,
denote the discretized operator, forcing function, and solution, respectively. An
(h,2h) two-grid iteration for solving this equation consists of the following three
steps.

Step 1: Presmoothing. Select a relaxation operator S; for solving (6.1) on the fine
grid. Typically, S, is the Gauss-Seidel relaxation, but other choices are possible,
such as the damped Jacobi iteration described below. Then, given an initial esti-
mate u,,(o) of the solution, apply the S, iteration v, times. If uh(l) denotes the

resulting approximate solution, the corresponding residual is
ro=/n — Lyu(V. (6.2)

Step 2: Coarse-grid correction. The residual r; can be projected onto the coarse
grid (L, by using a restriction operator I,,Q", thus yielding fo, = Ih‘lhrh. Then,
since we assume that an exact solver is available on (), , we use this solver, which

is denoted here by Lg;!, to find the solution u,, of the coarse grid problem

Lopugy = Jon - (6.3)
If I%, denotes an interpolation operator for transferring a function defined on (),

onto the fine grid {1,, we can interpolate the coarse grid correction u,,, and add

it to the solution obtained in Step 1, thus yielding
w® = w1 + Iugy . (6.4)

Step 8: Postsmoothing. Using u,,(2) as initial solution, we apply the S, iteration vy
times. The resulting approximate solution is uh(3).
The above three steps are illustrated in Fig. 6.1. Usually, the numbers v, and

v, of pre- and post-smoothing iterations are 0, 1 or 2, and v =v; + vy is 2 or 3. If

eold — ’U,,f[d =2 uh(O) , entv = uhnew - uh(3) , (6.5&)

are the solution errors before and after one full two-grid iteration, the error

dynamics for the two-grid iteration can be expressed as
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eV = M2he oid (6.5b)
where the two-grid iteration operator th is given by
M2 =82 K24 s, (6.6)
and Kf" is the coarse grid correction operator
Kt =1, — Iy Ly L'y, (6.7)

Naturally, the two-grid iteration needs to be repeated until the error becomes
sufficiently small. It will be shown below that the two-grid iteration operator M;>?
reduces the error by a constant factor independent of k, so that only O(log(h™1))
iterations are necessary to solve (6.1) within the discretization accuracy O(h?),

where p is a positive integer.

Note that equations (6.2)-(6.6) provide only a general description of the two-
grid iteration procedure. In order to obtain an actual two-grid iteration, we need
to select the operators Sy, I}, I%,, and L,, which have been left unspecified in
the above description. In spite of the fact that there exist many different ways to
choose these operators and that they need to be adjusted to achieve the best con-
vergence performance for different applications, the efficiency of multigrid methods
does not usually depend on this choice. It is the utilization of multiple discretiza-
tion grids that makes these methods converge very rapidly. In the following sub-
sections, Sy is the red-black Gauss-Seidel iteration operator, L,, is the usual 3-
point (resp. 5-point) discretization of the 1-D (resp. 2-D) Poisson operator on the
grid (L, and [2* and I}, are the full weighting restriction and linear interpola-
tion operators, respectively.

B. Solution of the 1-D Poisson Problem

Two-grid method and analysis: Consider an (h,2h) two-grid method for solv-
ing the discretized 1-D Poisson equation

1
F(un—1_2un+un+l)=fn , 1<n <N-1, (68)
where the boundary values u, and uy are given, h is the grid spacing, and
N = h~!is even. For the 1-D problem (6.8), it will be shown below that it is pos-

sible to choose the relaxation, restriction and interpolation operators so that
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M2h = 0. This means that the two-grid method is a direct solver for (6.8). How-

ever, this is not true in general for 2-D or 3-D problems.

Quite often, a simple but crude technique, called the smoothing rate analysis
[16], can be used to study the convergence behavior of two-grid or multigrid
methods. This analysis assumes that the coarse-grid correction operator K>t

annihilates all the low frequency components of the error and preserves its high
frequency components, i.e.,

s-inp B, " 1<k <N/
Kk =g welniia e < Fry (6.9)

By expressing (6.6) in the frequency domain and using assumption (6.9), we find

that the two-grid iteration operator admits the frequency domain representation

0, 1<k < N/2

$™ k), Nj2<k<N-1,

MM (k) = (6.10)

where S, (k) denotes the spectrum of S,. The largest magnitude p of S, (k) for
N/2 <k < N-1 is called the smoothing factor. Therefore, the convergence rate

of the two-grid method is related to the smoothing factor via
(M) = e (6.11)
To give an example, consider the damped Jacobi iteration,
u "t = (1 = wuf™ + P + 0T —h2,), (6.12)
where w is a relaxation parameter. The damped Jacobi smoother has the spectrum

J(wk) = (1 — w) + weos(kmh) , (6.13)

whose magnitude parameterized with w is plotted in Fig. 6.2. We can choose w to
minimize the magnitude of the largest eigenvalue in the high frequency region.

The optimal relaxation parameter is w = 2/3, which is obtained by solving

J(w,—) = =J(w,N), (6.14)

550 1
= Her==. (6.15)
# N/zgkaé{:v-i | (3 )| 3
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The estimated two-grid convergence rate becomes

1
M) = (3)7. (6.16)
We should point out that the assumption (6.9) for the smoothing rate analysis
does not actually hold in practice. However, because of its simplicity, this
analysis is often useful for estimating the convergence behavior of multigrid

methods.

There are situations where the smoothing rate analysis predicts completely
wrong results. One such case arises when the red-black Gauss-Seidel relaxation is
used as smoother. Following a procedure similar to the one employed for deriving
(5.11), we find that with respect to the coefficients (&, ;,é, ;) of the 1-D red-black

Fourier series expansion

N/2-1

e, = € gsin(kmnh), n even, (6.17a)
k=1
N/2

e, = é & gsin(kmnh), n odd, (6.17b)
k=1

the red-black Gauss-Seidel relaxation operator G, can be represented as

. 0 cos(kmh)
Gra (k) = [0 cos?(kmh)

with G, (N/2) =0. The expression (6.18) holds also for high frequency com-
ponents (K > N /2) which are aliased into the low frequency region. Thus, the
red-black Gauss-Seidel smoother attenuates rapidly the middle frequency com-
ponents (k = N /2) but works poorly for the low and high frequencies. According
to the smoothing rate analysis, we have

, 1<k <N/J2—1, (6.18)

G, (k)| = cos®(mh) =~ 1 — 7242 . :
N/2§mka%(N—1| (k)| = cos®(mh) (6.19)

This implies a poor convergence of the corresponding multigrid method. However,
contrary to this prediction, numerical experiments show that the multigrid
method with the red-black Gauss-Seidel smoother is an exact solver for the 1-D
Poisson problem and converges very rapidly in the 2-D case. Thus, in order to
explain the effectiveness of the red-black Gauss-Seidel smoother, we cannot assume

that the condition (6.9) holds. It is necessary to perform a complete two-grid
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analysis, i.e., to study the spectrum of the coarse-grid corrector th defined in
(6.7), as well as that of the smoother S .

We have first to define more precisely the operators appearing in (6.2)-(6.4).
The h-grid and 2h-grid Laplacians are

L =

1 s 1
—(Ey'—2+4E,), and Ly =

where E,; = Ej% To restrict a function from 2, to (), we perform an averaging

(Esi' =2+ Eg ), (6.20)

operation with coefficients 1/4, 1/2 and 1/4 and then down-sample the averaged
sequence on {l,;. The restriction operator is denoted by

Lo (6.21a)

1 1
Ihgh: I?,?,il

To interpolate a function from (), to (},, we use a linear interpolation scheme

for grid points belonging to {2, — (1,. The interpolation operator is written as

1
y: | 701 |25 - (6.21b)

w]n—a

With respect to the red-black Fourier expansion (6.17), the action of the A-
grid discretized Laplacian and identity operator [, on the red/black Fourier vec-
tor (&, 4,& )7 can be represented by the 2)X2 matrices

" 9 —1  cos(kmh) " 10
Lh(k)zﬁ COS(IGTfh) iy y Ih(k = 0371 (6223)

Observing that in the 1-D case, the points of the coarse grid coincide with the red
points of the fine grid, we find that the red-black spectral representations of the
restriction and interpolation operators If" and Ié‘h correspond respectively to
mappings from (&, ;,é, x)supT onto &, ;, and from €, ; onto (é,.’,,,éb,k)T, and are

given by

: 1
| and fg,,(k)=[cos(kwh)]. (6.22b)

Furthermore, with respect to the Fourier component €, , the 2h-grid discretized

cos(kh)
9

5 1

I?h k — b=l :
) = (o, <
Laplacian is represented by the spectrum

Tyl = Z(COS(gZ'I;;z =) (6.22¢)
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We obtain therefore
0 0

Ry2M(k) = I, (k) — T34 (k)L g (k) L2k )Ly (k) = [—cos(kfrh) 1 ] (6.23)
Finally, choosing S, = G,;, and vy =1, =1 in (6.6), we find that the red-black
spectral representation of the two-grid operator is given by

M (k) = Gry (B)K (k)G (K) - (6.24)

From (6.18) and (6.23), it is easy to check that M,;2*(k) are 2 X 2 zero matrices for
1 <k <NJ/2—1 and M**(N/2) =0. Thus, the two-grid method with red-back
Gauss-Seidel smoothing is a direct solver.

Multigrid methods: The implementation of the two-grid method requires
inverting the coarse-grid Laplacian operator L,,. An efficient way to carry out
this inversion is to use a (2h,4h) two-grid iteration. By using nested two-grid
iterations, we can therefore reduce the original problem to one defined on progres-
sively coarser grids, until a direct solver can be used to invert the discretized

operator on the coarsest grid. Thus, if the mesh-size on the finest grid is b = 2~%

with L > 2, the following nested iteration specifies an L-grid solver:
Mt = Gy (L — I Xy 4G, (6.25a)
with

M2t for h =27t 2<I<[L-1

X =
Bl for ho=1/2

(6.25b)

One can prove by induction that this multigrid algorithm solves the 1-D Poisson
problem directly. It is possible to simplify this algorithm to save computations.
See [69] for details.

C. Solution of the 2-D Poisson Problem

Let L, and Ly, be the 5-point discretizations of the Laplacian on 2, and

ﬂzh: 1.6.,

1 _ N
L, = IQ—(E,,J + B =4 4By +. B ) (6.26a)
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1
(2h)?

Then, L?* and Igh denote the full-weighting restriction and linear interpolation

Loy = (Eghz + Eghy —4+ Egpy +Ezly) . (6.26b)

operators, given respectively by

A gl oL
16 8 16
1 1 1
I2h = 1 1 0
TN S B
6 8- 18 il
and
i Lol |
4 2 4
1 1
1 — 1 — 6.27b
b | : (6:27b)
e oo da gl
4 2 4 op

We consider only the case 1 <k, , k, < N/2. Each of the 4 X 4 frequency
domain matrices appearing below corresponds to a mapping from the vector space

spanned by
('Fk )_'fﬁv bk!_bE)T )
onto itself, where

Ty
(ky,N—k, ) for k, < &, .

N =

k=(k:k) 1<kk <T, k=

(N—ky,k,)  for k, >k,
(6.28)

When £k, or lcy is equal to N/2, the 4 X 4 matrices reduce to 2 X2 or 1 X1
matrices. The analysis of these degenerate cases can be found in [69] and is omit-

ted here. We also use the abbreviations

cosfl,+cosf, _  cost,+cosd,
=, = —

2 2
where 0, = k,7h , 0, = k,7h, f, = k,Th, and ay = i:yﬂ'h.

, B = cosb, cost, , 8= cos@z coséy (5.29)

The matrices representing operators I, L;, and Lg;! in the frequency domain

can be written as
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) 10 L & #ab o
I (ky ok, ) = [0 I], Lh(kz,ky)=—[ 7 _I], (6.30a)
§=2a°—p—1, (6.30D)

where 0 is the 2 X 2 zero matrix, I is the 2 X 2 identity matrix, and
J =diag (a, &) . (6.30¢)

The decomposition shown in Fig. 6.3, which is commonly used in multirate digital
signal processing (28], provides a simple physical interpretation of the interpola-
tion and restriction operators, and is also useful for deriving their frequency
domain matrices. In this decomposition, the restriction procedure I,,")h is divided

into two steps,

Step 1. Lowpass filtering ( or averaging ) at every point of (), , where the weight-
ing coefficients are specified by the stencil (6.27a).

Step 2: Down-sampling ( or injecting ) values from (), to {1y.
The interpolation operator Sh is also decomposed into two steps,

Step 1: Up-sampling values from l,, to (), where we assign 0 to points which
belong to €2, —(1,, .

Step 2: Lowpass filtering at every point of {2, , where the weighting coefficients are
specified by the stencil (6.27b).

It is relatively easy to find a frequency domain matrix representation for each
of the above steps. Combining them together, we obtain

14 0 2a O

— 1[0 148 0 2a| . )
I (6!)_[11001><Z 2% 0 1+8 0 =I[1+ﬁl+ﬁ2a2akﬁ.3la)

| 0 2z 0 1+3]

and
148 0 2 0 1 1+
3 0 148 0 2& 1 144
it 1 B
=190 o 148 0 | X5 |0o]|=7| 2a (6.31b)
0 2 0 1+B_ 0 28

Thus, in the frequency domain, the down-sampling operation adds the high
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frequency component —7 to the low frequency component 7i- This phenomenon
is known as aliasing [28]. Similarly, the up-sampling operation sets the high-
frequency component —7 equal to the low-frequency component #,. This duplica-
tion effect is called imaging [28]. The lowpass filters which are cascaded with the
down- and up-sampling operations have for function to reduce the aliasing and
imaging effects. For example, when 6, and 0, are close to 0, a =1, B =1, & =0,
and f? ~ —1. Hence, the aliasing and imaging effects occuring between (fk,l;k)T

and (?R,SE)T are substantially eliminated by the associated lowpass filters.

From (6.30) and (6.31), we can compute the spectrum Ighgh(kz,ky) of the
coarse-grid correction operator. The frequency domain matrix corresponding to the
red-black Gauss-Seidel iteration is

A 2N §
Grb (kmky) i [0 JQ]' (6'32)

Note that érb (k;,k,) is a matrix of rank 2 rather than 4. Combining the spectra
of the smoothing and coarse-grid correction operators, we obtain the spectrum of

the two-grid operator
~ A I A A U
Mh‘zh(kx ’ y) e Grb 1(‘lczv: fky ) Kh%(kz 1ky ) Grbz(kr ’ky ) ’ (6'33)

which is again a matrix of rank 2. In [84] this feature was exploited to find a

closed-form expression for the spectral radius of the two-grid operator. If

v= =U; + Uy, We get
i— v=1
2h —
P(Mh ) = L( v )V+1 — (6.34)
2v " v+l 5

In (6.34), the maximum of p[M,**(9)] occurs at 0 = (121-,0) or (0,%) when v =1

and at (COS'l[(V—Vl—)V”] ’ COS_I[(U_.T_]_ )%]) when v > 2. Note since M;** # 0, the

+
two grid method is not a direct solver in the 2-D case. However, the spectral

radius p is a constant independent of the grid size k, so that only O (log(h™Y))
two-grid iterations are needed to solve (6.1) with an accuracy equal to the 5-point

discretization error O (h?).



Multigrid methods: As in the 1-D case, we can recursively invoke the two-grid
method to obtain multigrid algorithms. However, different recursion patterns may
be needed for different 2-D or 3-D problems. Three commonly used recursion pat-
terns, the V-cycle and W-cycle and full multigrid algorithms are shown in Fig.
6.4.

From this figure, we see that while the V-cycle multigrid algorithm applies
the coarse-grid correction operator once per cycle, the W-cycle algorithm applies it
twice. The numerical complexity per cycle of the V-cycle algorithm is therefore
smaller than that of the W-cycle algorithm. On the other hand, since the W-cycle
algorithm yields a better approximation of Lg;!, it requires fewer cycles to con-
verge. The choice of cycling scheme depends on how the above tradeolfl is affected
by the problem that we seek to solve. For the model Poisson problem, the V-cycle
algorithm works well. It requires just a few cycles (two or three) to converge
within a fixed accuracy (independent of A ), so that there is no need to use the W-
cycle algorithm. However, the W-cycle algorithm is usually superior for difficult

problems, such as highly anisotropic or nonlinear problems.

In the full multi-grid (FMG) scheme, instead of solving the discretized prob-
lem (6.1) on the fine grid only, we solve it on all grids, starting from the coarsest
grid. Once (6.1) has been solved within the discretization accuracy of a given
grid, we interpolate the solution to the next finer grid, and use this solution as ini-
tial estimate for the V- or W-cycle multigrid algorithm applied to the next prob-
lem. The advantage of this approach is that, because we are using a good initial
estimate for each each successive problem, only a constant number of V- or W-
cycle iterations are needed to solve (6.1) within the discretization error O (h?) of
each grid. The total computational cost of the FMG algorithm is therefore very
small, and equals the cost of a constant number of smoothing iterations on the
finest grid [16],48],[84].

D. Historical Notes

The idea of solving elliptic PDEs by using relaxation on multiple grids was
first proposed by Fedorenko [36] and Bakhvalov [1] in the 1960s. However, it was
not until the work of Brandt [16], Nicolaides [78] and Hackbush [48] in the 1970s
that the efficiency of multigrid methods was recognized, and that their conver-

gence properties were fully analyzed. Brandt used Fourier analysis to study the
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error-smoothing rate in the high frequency region. Subsequently, Stiiben and Trot-
tenberg [84] used also a Fourier approach to analyze a complete two-grid method
including fine-grid smoothing, restriction, coarse-grid inversion and interpolation.
Since all the elements of multigrid methods are already present in a two-grid
cycling scheme, the results obtained for this scheme are usually a good indicator
of the performance of more general multigrid algorithms. More recently, it was
shown in [69] that the analysis of two-grid iterations can be simplified
significantly by using two-color Fourier analysis. The book by Briggs [18] and
article by Jespersen [58] provide a good introduction to multigrid methods for
readers not acquainted with the subject. The proceedings of European multigrid
conferences in 1981 [49] and 1985 [50] include several interesting theoretical and
practical contributions, particularly concerning the application of multigrid
methods to problems of fluid dynamics and aerodynamics. A book edited recently
by MecCormick [76] contains several articles on various aspects of multigrid
theory, as well as an exhaustive multigrid bibliography until 1987. Finally, [48]
gives a rigorous mathematical treatment of multigrid methods, and in particular

of their convergence properties.
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VII. Preconditioned Conjugate Gradient Methods

In the previous two sections, we have examined relaxation methods for solv-
ing elliptic PDEs on single and multiple grids. In this section, we consider solution
techniques which combine the conjugate gradient algorithm with a precondition-
ing procedure, whose role is to reduce the condition number of the original system,
thereby decreasing accordingly the number of iterations required by the conjugate

gradient algorithm.

A. The Preconditioned Conjugate Gradient (PCG) Algorithm

When the conjugate gradient (CG) algorithm was introduced in the 1950s to
solve SPD (symmetric positive definite) systems of the form (3.1), it was con-
sidered by some researchers as a direct method, since in the absence of roundoff
errors, it yields an exact solution in at most N steps, where N is the order of the
system. However, because of roundoff errors, this finite termination property does
not hold in practice. Furthermore, since the SOR or CCSI methods require only
O(N*logN) iterations for the model Poisson problem, the conjugate gradient
algorithm would in fact be relatively inefficient if it truly required N steps to
solve this problem.

This forced researchers to view the CG method as an iterative method, and
‘n this context it was found that a useful bound for the norm of the error elm)
after m iterations is [8],[9]

m

Vi , (7.1)

—1
etm) ||, <21le@]l, [7’;._—1—

where K(A) denotes the condition number of the matrix A in (3.1), and
llz |4 = (zT Az)®. For the 2D model Poisson problem, since for Dirichlet or
periodic boundary conditions the eigenvalues are given respectively by (3.14) or
(3.17), it is easy to check that x(A) = O(h™%) = O(N). Substituting this value
inside the bound (7.1), we can conclude that the CG procedure reduces the error
by a constant factor in at most O(N*) iterations, so that its rate of convergence
is comparable to that of the SOR and CCSI methods. However, since the CG
algorithm requires more operations per iteration than either the SOR or CCsI

methods, these two methods are usually preferred.
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Although the bound (7.1) is rather conservative, since it does not take into
account, the clustering of the eigenvalues of A, it provides an important clue for
improving the CG method. Specifically, by introducing a SPD preconditioning
transformation M, the system (3.1) can be transformed into

Aﬁd T fd ’ (7'2)
where A, iy and f, are related to A, uy and f, via
Ji “_‘M_%AM”% [ &d =M’/8ud 3 fd =Ml/éfd ’ (7'3)

and M* denotes the symmetric square-root of M. From the definition of fi, we

see that it is SPD. If the transformation M is easy to invert, and if the condition

number K(A) of the transformed system is much less than k(A ), it becomes
advantageous to apply the CG algorithm to the preconditioned system (7.2)
instead of the original system (3.1). Note that since the matrices A and M~14
are related by a similarity transform, we can examine the spectrum of M~!A
instead of that of A in order to find the convergence rate of the PCG method. In
the following, M and M~!A will be called respectively the preconditioner and the
preconditioned operator.

Each iteration of the PCG algorithm consists of the following two steps[45].
Step 1: Preconditioning. Solve

Mz, =1, (7.4)
for z.
Step 2: CG iteration. Compute

Bes1 = (2,1 )/ (5 —1sme—1)

Pis1 =% + Briim

g1 = (%7 )/ (Pr41APE41) (7.5)

Tpp1 = T + Qy1Pe+1

Thal = Tk — QU1 ADry

If the spectrum of A has no special clustering feature, and if the condition
number £(A) >> 1, the bound (7.1) for the error norm indicates that the number

of PCG iterations required to reduce the error by a constant factor is proportional
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to O(VK(A)). Thus, the goal of preconditioning is to find preconditioners M
which are easy to invert, since each PCG iteration requires the solution of a sys-
tem of the form (7.4), and such that the condition number of A is as small as

possible.

If both A and M have Fourier functions as eigenfunctions, the spectrum of
M~'A can be analyzed directly in the frequency domain. In this context, the
design of preconditioners corresponds to an inverse filtering problem. That is,
given an FIR filter A, we seek to construct a filter M~ = A~ such that M~!
can be implemented efficiently. Note that since A~! is a noncausal IIR filter, this

last constraint precludes selecting M = A.

Many elliptic preconditioners have been proposed in the literature. Depending
on whether they rely on operations performed on a single discretization grid, or a
sequence of discretization grids, they fall into the category of single-level, or of
multi-level preconditioners. Examples of single-level preconditioners include the
SSOR (symmetric successive over-relaxation) [6], ILU (incomplete lower and upper
factorization) [77], MILU (modified ILU) [33] methods, as well as polynomial
preconditioners [5],[59]. Examples of multilevel preconditioners include the mul-
tigrid method [61],(62] as well as the HB (hierarchical basis) [95] and MF (mul-
tilevel filtering) [67] preconditioners. The design of elliptic preconditioners is an
active research area. We do not attempt to survey all existing preconditioning
techniques. Instead, our goal is to relate the design and analysis of some precondi-

tioners to familiar concepts in DSP to motivate further research along this line.

B. Preconditioners Based on Incomplete Factorization

Among single-level preconditioners, we focus on those obtained by incomplete
factorization. Note that the Cholesky algorithm can be used to factor the
coefficient matrix A into a product of lower and upper triangular matrices. How-
ever, although A is sparse, its lower and upper triangular factors are usually full,
so that the Cholesky algorithm requires O(NN®) operations. We are therefore led to
consider preconditioners which require only an approximate factorization of A,
l.e., A = LU, and with a computational complexity of O(N). Efficient approxi-
mate factorization procedures of this type can be obtained by requiring that the
lower and upper triangular factors L and U should have the same sparsity pat-
tern as A. From the multidimensional signal processing viewpoint, constructing
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an incomplete factorization is equivalent to factoring of a noncausal IIR filter A ~!
approximately into the product of two causal IIR filters U~! and L~! of fixed size.

The ILU and MILU factorizations, which were originally introduced in [77]
and [33| respectively, rely on two different rules for constructing L and U. Both
factorizations require that L and U should have the same zero entries as the
lower and upper triangular parts of A, and that the nonzero off-diagonal entries
of A should be equal to the corresponding entries of M = LU. The difference
between both factorizations lies in the way the diagonal elements of M are
specified (see Fig. 7.1). For the ILU factorization, the diagonal elements of A and
M are required to be the same, whereas for the MILU factorization we require
that, for all rows, the row sum of M must differ from the corresponding row sum

of A by a small quantity ch?, where ¢ is a constant independent of 4.

Each row of the matrix factors L and U specifies local finite-difference opera-
tors L(E,,E,) and U(E,,E,). Even if the PDE discretization operator A (E,,E, )
has constant coefficients the local operators L(E,,E,) and U(E,,E,) have usually
space-dependent coefficients, due to boundary effects. However, for points far away
from the domain boundary, these coefficients tend asymptotically to constant
values. In the following, we ignore boundary effects and restrict our attention to

the asymptotic behavior of incomplete factorization preconditioners.

ILU Preconditioner: For the model Poisson problem with the natural order-
ing, the local factorization operators L(E,,E,) and U(L,,L,) take the form [77]

L(B, By) = (o — B - BY, (7.6a)

1 1
U(E, Ey) =1~ —E, — —E, , (7.6b)

where @ is a constant to be determined. Since the only nonzero coefficients of
L(E,,E,) (resp. U(E,,E,)) are those of 1, E,;"' and E,”" (resp. 1, E, and E), L
and U have the same sparsity pattern as the lower and upper triangular parts of
A(E,,E,). The local ILU preconditioner M;(E;,,E,) is the product of L(E;,E)
and U(E,,E,):
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My(E, E,) = L{a + % — (B, +E, + ;' + E;7)

£
4

+

Q|-

(E,E " + E7'E,) . (7.7)

Comparing (3.7) and (7.7), we see that the coefficients of the off-diagonal terms
B, B, E, and Ey'1 of operator A (E,,E,) are matched by those of M;(E,,E,).
Note that M; contains some additional off-diagonal terms of the form FE, Ey_l and
E’z—lEy. The ILU factorization imposes the additional requirement that the
coefficients of the diagonal terms of M; and A should be the same. This implies
(see Fig. 7.1)

a +

%= 4, (7.8)

so that @ = 2 + V2. This value of @ is in fact observed asymptotically in the ILU

factorization of the model Poisson problem with Dirichlet boundary conditions.

Therefore, the ILU-preconditioned Laplacian can be written in operator form

as
- 1 o A4 1 = 4 .
(M 'A)E, E,))=[1— Z(Ez Y E, + B+ ES) 4+ 8_|_4—\/§(E2:Ey L BB
X [1 - %(EJE +E, +E,T+EY) . (7.9)

It is straightforward to compute the spectrum of M;'A with respect to the

Fourier basis functions c'.g’r(k‘ Hethy "’)h. We obtain
MI—I(!C:C ’ky )fi (kz ’ky ) =

1— %[cos(,’cz 2mh ) + cos(k, 27h )]

, (710

1
1— E[cos(lc::c 2mh ) + cos(k, 27h)] + cos((k, —k, )2mh)

1
4+2V2
where k, and k, are integers between 1 and N—1. This spectrum is plotted in Fig.
7.2. From this plot, as well as from a direct analysis, it is easy to check that the
spectrum reaches its minimum at the four corners of the domain
1 <k;,ky < N—1, and its maximum at the center, i.e., for k, =k, = N2,
Furthermore, the minimum and maximum are proportional to O(h?) and O(1),
respectively. This gives
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xmax(‘i) S >\max(MI_1A) =1 -2
XmJA)_AmAM;uJ"OM ) - (7.11)

”KA)=

Since the condition number of A is of the same order as that of A , it is tempting
to conclude that the ILU factorization is not a good preconditioner for the CG
algorithm. However, from Fig. 7.2, we see that except at the four corners of the
(/cz,ky) domain, the eigenvalues of A are close to 1. A consequence of this eigen-
value clustering property is that the ILU preconditioner has a significant accelera-
tion effect on the CG algorithm which is not reflected by the bound (7.1).

MILU Preconditioner: The MILU preconditioner has the same sparsity pat-
tern as the ILU preconditioner, so that (7.6) and (7.7) also apply. Thus, for the
model Poisson problem with the natural ordering, the MILU preconditioner can be

represented as

My(E, By) = Ho + 2 — (B, + B, + B;' + B;)

i %(E,Ey"l +EE,) . (7.12)

The difference between the ILU and MILU factorizations lies in how the constant
a is determined. For the MILU factorization [33], it is required that the row sum
of My(E,,E,) should differ from the row sum of A(E,,E,), which is zero, by a
small quantity é. This gives

Had =y dj=0, (7.13)

and selecting § = 471¢ch? with ¢ > 0, we obtain

2
i V8ch? + c2h? . (7.14)

1

As was observed above, the spectrum of the ILU preconditioner M; approximates
poorly the spectrum of A at the four corners of the domain 1 < £;,k, < N—1. In
the modified ILU scheme, the condition (7.13) is imposed in order to guarantee
that the preconditioner My, approximates A well in this region. By performing a
Fourier analysis identical to the one employed for the ILU case, the spectrum and
condition number of the MILU-preconditioned Laplacian can be evaluated. A sur-
face plot of the spectrum is shown in Fig. 7.3. This plot indicates that the smal-
lest eigenvalues are of order 1, and the largest eigenvalues occur near the end
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points of the transverse diagonal k, + Icy = N. These eigenvalues are of order
h~1, and consequently
—1
Kpr(A) = AmaclMy 4) o(h7Y). (7.15)
)\min(Mz\:f-lA )

Comparing (7.11) and (7.15), we see that the condition number of the MILU
preconditioned system is one order of magnitude smaller than that of the ILU
preconditioned system. Numerical experiments have confirmed that the MILU-CG
and ILU-CG require respectively O(h~!) and O(h™") iterations to converge [22].

The ordering of grid points plays in general an important role in determining
the form of the coefficient matrix A, and hence of the preconditioners. With the
red-black ordering, the ILU and MILU preconditioners take completely different
forms and the spectra of preconditioned operators behave very differently. See [66]

for more details.

C. Multilevel Preconditioners Based on Filtering

The focus of research on elliptic preconditioners has shifted recently to the
design of preconditioners with a multilevel (or hierarchical) grid structure. Since
the global features of elliptic operators can be reproduced more easily by mul-
tilevel preconditioners, the resulting preconditioned systems have often very small
condition numbers, ranging from O(1) to O(log*h™!) where  is a small integer,
and hence the corresponding PCG algorithms converge very fast. Another advan-
tage of multilevel preconditioners is that they can be effectively implemented on
massively parallel computers [67] and, therefore, are attractive for parallel compu-

tation.

Several multilevel preconditioners have been proposed. One such precondi-
tioner is the MG algorithm of Section VI. When combined with the CG method, it
yields the MG-CG algorithm. The motivation for using the MG algorithm as a
preconditioner is that its speed of convergence is governed by the smoothness of
the solution function, whereas the convergence rate of the CG method is not
affected by this feature. Consequently, the MG-CG method is more effective than
the MG method alone for certain applications, such as the solution of interface
problems, where because of presence of several materials, the elliptic PDE has

discontinuous coefficients. Two other types of multilevel preconditioners have been
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proposed by Yserentant [95],(96] and Bramble, Pasciak and Xu [15],[90] in the
context of finite-element methods. Yserentant considered a new set of basis func-
tions, known as the hierarchical basis. Bramble et al. introduced a sequence of
basis functions which are defined at various discretization levels and called mul-
tilevel nodal basis functions. Roughly speaking, the preconditioning step M~!r
consists in projecting the residual r onto these basis functions. In the following,
we examine yet another preconditioner, the multilevel filtering (MF) precondi-
tioner, which was proposed recently in [67]. This preconditioner relies explicitly on
multirate digital signal processing techniques and can be best described in the

Fourier domain.

The filtering approach to the design of preconditioners can be described as
follows. Suppose that we approximate the spectrum of an elliptic operator by a
piecewise constant function. In the space domain, this approximating function
corresponds to an operator which (i) splits the input function into several com-
ponents, where each such component consists of wavenumbers within a narrow
band, (ii) scales each component by a constant, and (iii) recombines all the scaled
components. The inverse of such an operator is easy to implement, since it has the
same form, except that the scaling constants are inverted. In multirate digital sig-
nal processing, the decomposition of a signal into components consisting of
different wavenumber bands, and vice versa, is accomplished by a filter bank
analyzer (resp. synthesizer). Although there exists a number of techniques for
designing filter banks (see [28], Chapter 7), the filter bank which is used for the
MF' preconditioning technique is obtained by cascading a sequence of lowpass
filters operating on different discretization grids, in combination with down- and

up-sampling operations.

To be more precise, consider the 1D Poisson equation on [0,1] with zero boun-

dary conditions. After discretization on a uniform grid (2, with spacing A = o-L,
where L is a positive integer, we obtain
(—%E+1~—%E‘l)un=fn, 1<n <N—1, (7.16)
with N = 2L, This system can be rewritten as
Au = |, (7.17)

where A is a tridiagonal matrix with diagonal elements —1/2, 1 and —1/2. A can
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be diagonalized as

A=WIA, W, (7.18)
where
Ay =diag (N, - N, © yAyo1)s A =1 —cos(kwh), (7.19a)
and W is a square matrix of size N—1, whose kth row is
wl = (%)"”(sin(lcﬂ'h) .-+, sin(kmnk), - ,sin(ka(N—1)k)). (7.10b)

The diagonalization of the matrix A can be interpreted as a decomposition of the
driving and solution functions into their Fourier components. Futhermore, A\, is
just the spectrum A (k) of the 1D Laplacian.

In the wavenumber domain, the spectrum fi(!c) can be approximated by a

piecewise constant function
P(k)=¢, k€eB, 1<ILL, (7.20a)
where
B ={keN:2"1<k <2} (7.20b)

denotes the {th wavenumber band. Let Ap be the diagonal matrix with P(k) as
kth diagonal element and P = WTAP W. Then, the P-preconditioned Laplacian
takes the form

PlA =WTAp W, (7.21a)
with
Apay =(Ap)'Ay
A A Kl Aol _ Xy
=diag(_lsﬁ:_37"'1 2{1;"'1 2‘15"', Nl)(7.2lb)
€1 Co Cgq Y C cr

The question is how to choose the constants ¢; in order to reduce the condition
number of P~'A . If we select
¢ =4~(L=4) (7.22)

it can be shown [67] that the eigenvalues of P7!A satisfy

2
1 <NP4) < “7 ~4.93 (7.23)
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so that the condition number xK(P~'4) is bounded by 4.93, a constant indepen-
dent of the grid size h. In Figure 7.4, we plot the spectra A(k), P~'(k) and
P7Yk)A (k) for N = A~ = 256, when ¢, is given by (7.22).

For P to be an effective preconditioner, P~'r has to be easily computable for

any given vector r. It is clear that P~! = WTAEIW is a piecewise constant

function in the wavenumber domain. The preconditioning procedure
P7lr = WIAR W, (7.24)

consists therefore of three steps: (i) filter bank analysis, (ii) scaling, and (iii) filter
bank synthesis, which are represented here by multiplications by W, Ap! and
WT | respectively. To clarify this comment, we can rewrite (7.24) as
%]
Pl =(SLWIW ), (7.25)
=14
where W, 1 <[ <L, are (N—1)? square matrices which have the same 2/~ to

2! —1 rows as W and zero vectors for remaining rows. Then, we have

W kEBl

-
0, otherwise , (7.26)

WIWw, = {

where w;, is defined in (7.19b). From (7.26), we see that W, functions as an ideal
bandpass filter for the band B;. Although it is possible to implement the ideal
bandpass characteristic (7.26) with FFTs or bandpass filters of size IV, the result-
ing implementations either cannot be extended to more general PDEs, or are too
expensive (i.e., of complexity O(N?). This leads us to approximate the ideal
bandpass filter W, with a nonideal filter F;, with

W kEBl

0, otherwise , (7.27)

F{TFw, z{

and such that F), can be implemented cost effectively for general problems. The
resulting preconditioner is
Lo
Qlr = (S —FTF,)r . (7.28)
1=1¢
The block diagram of Fig. 7.5 describes a procedure for constructing the
bandpass filters F;, with 1 <! <L, in terms of a cascade of elementary low-pass

filters Hy, Hy_;, -+, Hy. From Fig.7.5, we see that F, can be expressed in
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terms of the filters H, as
Fp=1—-H , (7.29a)
L
B=(I=H) O H], 2i<L-1; (7.29b)
p=l+1
5
Fl = Hg Hp (7.290)
p=

Let the elementary filter H; be an FIR filter of the form

J ; ;
Hy =ag+ Y o;(EY + E77), (7.30)
j=1
where the coefficients a; are selected so that the spectrum Ay (k) approximates an

ideal lowpass filter, i.e.

) 1, 0O6<k <2t
(7.31)

HE)= o, ott<p <ot

The coefficients a; can be determined by using any standard digital low-pass filter
design technique. One specific choice is examined in [67]. The same coefficients are
also used for constructing the {th-level elementary filter

H =ay+ f} a;(E¥ 7T + E7¥TY, (7.32)

J=1

with 2 <! < L. Comparing (7.30) and (7.32), we see that the only difference
between elementary filters H; and H, is that while Hj constructs a weighted
average of points separated by a distance of h, the [th-level filter H;, performs the

same average over points separated by a distance of ol—=tp,

Since some of the points needed to perform the above averages may be
located outside the domain (2, the system (7.16) is viewed as defined on an

infinite grid with an odd-periodic extended driving function, i.e.,

f_n=—fs and fn+2pN =/n (7.33)
for p integer. The filtering operations that we have just described are performed
at every grid point, for all levels 2 <! < L. If the order J of filters H, is finite,
the number of operations required for such an implementation is proportional to

O(NlogN), where N is the total number of unknowns. However, since waveforms

consisting only of low wavenumber components can be represented accurately on
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coarser grids, we can incorporate the multigrid structure into the above frame-
work. This is illustrated in Fig. 7.6. The preconditioners shown in Figs. 7.5 and
7.6 are called the SGMF and MGMF preconditioners, respectively. Note that the
MGMF preconditioner is obtained by inserting 2:1 down-samplers (I/~!) and 1:2
up-samplers (If_l) into the SGMF preconditioner. It is easy to see that the
number of operations required by the MGMF preconditioner is proportional to
O(N) instead of O(NlogN) for the SGMF case.

The MGMF preconditioner of Fig. 7.6 can be simplified further by deleting
paths corresponding to I — H;. The resulting modified MGMF preconditioner is

shown in Fig. 7.7. It can be expressed as

L
R =(Y1¢fq)r, (7.34)
[=1 d
with
GL =T ’ (7.353)
L
G= Il IP7'H,, 2<l<L-1, (7.35b)
p=l+1
- 1
G, = nggs 17 (7.35c¢)

and where the scaling constants ¢, are related to thé constants ¢; via

idi =) (7.36)

1= % Cl

Note that unlike the preconditioner @, which relied on bandpass filters F), the
modified preconditioner R is implemented in terms of lowpass filters G,. A conse-
quence of this feature is that the wavenumber components of the residual r
belonging to the band B, are present at the first L —{+1 levels. Since according to
Fig. 7.7, these components are multiplied by d;™, - - -, d;! respectively, the
preconditioners R and @ will be equivalent only if the constants ¢, and d; satisfy
the relation (7.36).

The generalization of the MF preconditioner to multidimensional problems on
regular domains is straightforward. For example, the two-dimensional elementary
filter H, can be obtained as the tensor product of one-dimensional elementary

filters along the z- and y-directions. It has been shown by Fourier analysis that

]
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the condition number of the MF-preconditioned Laplacian implemented with
nonideal filters is proportional to O(1) for the 1-D, 2-D and 3-D cases. This
implies that the MF-CG method converges in a finite number of iterations

independently of A, which has been confirmed by numerical experiments [67].

D. Historical Notes

The conjugate gradient method for solving linear systems of equations was
developed in late 1940s and early 1950s by Hestenes, Stiefel and others. For a his-
tory of the conjugate gradient algorithm and the closely related Lanczos algo-
rithm, the readers are referred to a recent survey by Golub and O'Leary, which
contains an annotated bibliography for the period 1948-1976. A detailed presenta-
tion of the SSOR, ILU and MILU preconditioners can be found in the book by
Axelsson and Barker [8]. The Fourier analysis of the ILU, MILU and SSOR
preconditioners for the naturally ordered Poisson problem with periodic boundary
conditions was performed by Chan and Elman [22]. They also observed strong
similarities in the eigenvalue distribution of incomplete factorization precondition-
ers for the Dirichlet and periodic problems. Kuo and Chan [66] used two-color
Fourier analysis to study the eigenvalue distribution of the ILU, MILU and SSOR
preconditioned Laplacian with the red-black ordering. In the last few years, a
growing amount of work has focused on the design of multilevel preconditioners.
A brief survey of recent advances in this area can be found in the paper by Kuo,
Chan and Tong [67].
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VIII. Domain Decomposition Methods

Domain decomposition methods rely on a partition of the domain of
definition {2 of a given PDE into subdomains {1; with or without overlapping
regions. The original problem is then decomposed into smaller problems defined
over each subdomain, which can be solved independently, provided that a strategy
is developed for evaluating the variables corresponding to overlapping regions, or
to interfaces between subdomains. Domain decomposition techniques present
several advantages. First, it is often possible to select the subdomains {2; in such
a way that special solvers, such as fast direct solvers or MG methods, can be
applied to the subproblems, even though they are not applicable to the problem
defined over the entire domain (1. This is the case for example when (1 is irregular,
but can be represented as the union of regular subdomains {1;, or when the PDE
has constant parameters over each subdomain, but not over the entire domain,
such as for interface problems between different materials. Domain decomposition
methods are also attractive from the point of view of parallel computation, since

all subproblems can be solved in parallel.

Domain decomposition algorithms can be divided into two categories,
depending on whether the subdomains overlap or not. Algorithms with overlap-
ping subdomains fall into the category of Schwartz alternating methods [83],
whereas those with nonoverlapping subdomains are called iterative substructuring
or capacitance matrix methods. We restrict our attention here to capacitance
matrix methods, where the domain is decomposed into regular sudomains, and the
capacitance system governing the variables on the interfaces between subdomains
is solved by an iterative method, such as the PCG algorithm. Since each iteration
requires the solution of problems over each subdomain, it is important to find
good preconditioners for the capacitance system. To do so, we use Fourier analysis
to study the capacitance system corresponding to a simple model problem consist-
ing of Poisson’s equation defined over a rectangle divided horizontally into two
subrectangles. This analysis leads to FFT based preconditioners, which are then

shown to be effective for more complex domain geometries.
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A. Capacitance Matrix Formulation

Consider a discretized elliptic PDE with Dirichlet boundary conditions,
Au = |, (8.1)

whose domain (1 is partitioned into two nonoverlapping subdomains {1, and {2,
with an interface region [, as shown in Fig. 8.1. By partitioning the solution u
and driving function f into subvectors u; and f;, with « =1, 2, 3, corresponding
to the unknowns and driving terms indexed by points of {2}, {1, and I, respec-

tively, (8.1) can be expressed in block form as

Ay A || /1
Agg Agg||ua|= (/2] (8.2)
AL AL A ||vs f3
Using block Gaussian elimination, the system (8.2) can be solved as follows:
Step 1: Determine uz by solving the capacitance system
Cuz = g3 (8.3)
where the capacitance matrix
C=Ap—ARAT'A;3 —ABAs Ay, (8.4)
is the Schur complement of diag (A, , Ay, ) inside A, and
g3=/ 3 —ABAGY 1 —ABAZ 5. (8.5)
Step 2: Compute 4, and u, from
up=Af'gy, u=A57,, (8.62)
with
g1 =1/ 1 —Apug, and gy =/ y— Apus. (8.6b)

In (8.5) and (8.6), we need to invert the matrices A, and A4, which describe
the coupling among variables of subdomains {2, and {1, respectively. The opera-
tion A j'w (or Ag'w), where w is an appropriate vector, is called a subproblem
solve. It can often be implemented by using fast direct or MG methods. The solu-
tion of the capacitance system (8.3) is more difficult. It is usually not desirable to

form the capacitance matrix C explicitly, since the direct computation of the
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elements of C' is very expensive. Instead, when (8.3) is solved by iterative methods
such as the PCG algorithm, only the computation of Cw is required, which
involves two subproblem solves. Due to the high cost of computing Cw, it is
important that iterative methods should converge very fast. Consequently, the
design of good preconditioners for the capacitance matrix C is the key to the

development of efficient nonoverlapping domain decomposition algorithms.

B. Fourier Analysis of the Capacitance System

As a first step, we consider the case where the matrix A in (8.1) represents
the 5-point discretized Laplacian with local operator (3.7), defined over a rec-
tangular domain (1. We also assume that {1 is decomposed horizontally into two
rectangular strips {); and (), as shown in Fig. 8.2. In the z-direction, {1 is discre-
tized uniformly with mesh size & = N~!, where N — 1 is the number of internal
discretization points. In the y-direction, we assume that the widths L, and L, of
(1, and (1, satisfy

Ll =M1h and L2 =M2h y (8.7)
where M, and M, are positive integers.

A consequence of this simple decomposition geometry is that Fourier analysis
can be employed to study the capacitance system (8.3). Specifically, we show
below that the matrices Agg, ALA['A ;3 and AKA 5403 appearing in the
definition (8.4) of C' have all for eigenvectors the sine vectors

wd = V2h (sin(kmh), - - -, sin(kmnh), - - -, sin(km(N—1)k)), (8.8)
with 1 <k < N-1.

First, the local operator corresponding to A 33 can be expressed as
1 -1
1- ?( E, +E).
Consequently, by operating with A 33 on wy, we obtain

Agaw, =1 — %cos(k’irh)]wk =L +o)u, (8.9)

1
4
with

kmh

=) (8.10)

o, = 4sin’(
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Thus, wy is an eigenvector of A 53.
Next, we examine —A A ['A ;3. Let A 7'A 3w, = v, so that
Allvk =A13wk ' (811)

The equation (8.11) can be viewed as obtained by discretizing Laplace’s equation
(the driving function is zero) on 1; with zero boundary values along the east,
north and west boundaries and w, along the south boundary. It turns out that its

solution v, admits the closed-form expression
ve(ng,my ) = V2h sin(kn, wh)d 4(n, ) , (8.12)
where d; |(n, ) satisfies the difference equation
dya(ny=1) — (2 + G )dy o(ny) + dy o(my+1) =0, 1< ny <M, —1,(8.13)
with boundary conditions dj ,(0) =1 and d; ;(M,) = 0. We are interested here in
the quantity

1

—u(n,,n -
4k )

—ARAG A gu, = —ATy, = =1) = Tdk,l(l)wk ~ (8.14)

v
Thus, w; is an eigenfunction of —A fA ['A,; with eigenvalue d (1)/4. The
same procedure can be used to analyze the matrix —A &4 554 5. This gives

e 1
—AFA R Agu, = Idk,:z(l)wk , (8.15)

where d,, (1) is obtained by solving
dp o(ny—1) — (2 + 0} )dg o(ny ) + dj o(n, +1) =0, 1 <n, <M, —1,(8.16)
with boundary conditions di 5(0) =1 and d; 4(M,) = 0. Combining (8.9), (8.14)
and (8.15) yields
Cwy = %( 2+ 0p + dg 1(1) + dg o(1) Jwy = Npwy (8.17)

for 1<k <N-—1, so that w, is an eigenvector of C, as claimed. Further

analysis shows [21] that the eigenvalue A, associated to w; can be expressed as

where o} is given by (8.10), and

1+fyM‘ 1+’7M”
g(k,M,M,) = = B LA (8.192)
4 M, M,
11— 1—g




o

with

v = (1+%o, — \/ o, +%ho? )2 . (8.19b)

Note that o, is the spectrum of the 1-D Laplacian operator L =2 — (E,+E,™})
defined on I';. The respective spectra A, and o, of the capacitance matrix C' and
Laplacian L, and the function g¢(k,M;,M,), are plotted in Fig. 8.3 for
M, = M, =40 and h~! = 256.

The geometric parameters M; and M, which specify the sizes of subdomains
(1, and (), affect only the function g(k,M,M,). From Fig. 8.3, we see that this
function has values of O(1). For large M; and M, with fixed &, g(k,M,M,)

reaches its asymptotic value 0.5 rapidly. Therefore, (8.18) can be simplified as
e = 0.5\ 0, +hof . (8.20)

Since 0 << 0} for small k and %o? = o} for large k, an even rougher estimate

for A is
>\k = 0.5 \/ O . (8.21)

In summary, we have shown in this section that if W is the orthonormal
matrix of size N—1 whose columns are the sine vectors wy, the capacitance matrix
C associated to the partition of a rectangular domain into two horizontal strips

admits the eigenvalue/eigenvector decomposition

C =WAWT with A=diag{\, ", N, ", A=y} (8.22)

C. Preconditioners for the Capacitance Matrix

From (8.22) and (8.18), it is easy to check that, for h sufficiently small, the
condition number of the capacitance matrix C is given by

max N, _ 9V3

C) = = =07}, 8.23
i v aoder o ol ) (8:29)
with
1 1+e—2ﬂ'L! 1_}_6"‘27?[42
S = _5- 1_6—214'[;1 1_6—2?I'L2 g

It is therefore of interest to design preconditioners M such that k(M~!1C) = O(1).



Several such preconditioners have been proposed in the literature. These precon-
ditioners are all of the form

M= wDpwT (8.24)

and differ only by the choice of diagonal matrix D. Dryja [30], and Golub and
Mayers [44] proposed preconditioners with

Dp = 0.5 diag{oy} and Dg = 0.5 diag{"\/ oy +%0}}, (8.25a)

respectively. These preconditioners can be motivated by the eigenvalue decomposi-
tion (8.22) for C, and approximations (8.21) and (8.20), respectively, for the
eigenvalues A, of C. More recently, Chan [21] proposed the selection of

De =A, (8.25b)

where A is given by (8.22). The preconditioner M given by (8.24), (8.25b) is ezact
for Poisson's equation and the domain decomposition geometry of Fig. 8.2.
Finally, observe that all preconditioners of the form (8.24) admit FFT implemen-

tations.

An interesting feature of the above preconditioners is that, although they
were designed for the case where {1 is a rectangle divided horizontally into two
subrectangles, they are applicable to complex domain geometries where {1 is the
union of an arbitrary number of rectangles. Consider for example the Poisson
equation defined on the L- or C-shaped regions of Figs. 8.4(a) and 8.4(b). For the
L-shaped domain of Fig. 8.4(a), {1 can be viewed as obtained by assembling the
three elementary rectangles {1, with ¢« =1, 2, 3. The corresponding interfaces are
I, and T}. Consider now a decomposition of {1 into two rectangles {}; and

(L = ), U 3. The corresponding capacitance system defined over interface Iy is
Cuuy=gy. (8.26)

To precondition this system, we can ignore the presence of {13, and let M, be
preconditioner given by (8.24), (8.25b) when we partition {2, = {1, U {1, into {}
and (), with interface I'y. It was shown by Chan and Resasco [25] that with this
choice, the condition number k(M ;1C,) is of O(1). A similar result holds for the
C-shaped domain geometry of Fig. 8.4(b) [25]. This indicates that precondition-
ers designed for rectangular domains remain effective for more complex domain

geometries. More generally, for an arbitrary problem such as the one depicted in
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Fig. 8.1, one may fit the domain with two subrectangles in such a way the
geometric parameters M, and M, can be estimated, and then used to design a
preconditioner of the form (8.24)-(8.25).

D. Historical Notes

The first domain decomposition technique for solving elliptic problems was
introduced by Schwartz in 1869, who proposed an alternating procedure, where
the problem is solved by going in alternance from one subdomain to another. A
short history of the early work on domain decomposition methods can be found in
[89]. The recent interest in domain decomposition techniques is due to the fact
that these methods are intrinsically parallel, and are therefore well adapted to
parallel computers. A recent paper by Keyes and Gropp [63] provides a good
introduction to domain decomposition methods for readers unfamiliar with this
topic. It gives an overview of various domain decomposition techniques, compares
their performance, and discusses their parallel implementation. The Fourier
analysis of the capacitance matrix for a rectangular domain divided into two
subrectangles was first proposed by Chan [21]. The extension of this analysis to
the case of a rectangle divided into an arbitrary number of rectangular strips is
described in [24]. In [25], Chan and Resasco presented a general framework for the
analysis and construction of domain decomposition preconditioners over irregular
regions. For a more general perspective on domain decomposition methods, and on
their application to a wide variety of PDEs, readers may wish to consult the
proceedings of two conferences on domain decomposition methods held in 1987
[43], and 1988 [23].
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IX. Parallel Computation

A great deal of progress has been accomplished during the last 20 years in
developing vector and parallel computer architectures [55],(56] and algorithms for
solving elliptic PDEs. In this section, we focus on algorithms for parallel comput-
ers and will give a brief account of the main achievements in this area. For a more

thorough review, we refer readers to the work of Ortega and Voigt [80],[81].

As indicated in Section III, one way to parallelize PDE algorithms is to
reorder the sequence of grid points to be processed in such a way that a large
number of operations can be performed in parallel. For example, the red-black
ordering is more attractive than the natural ordering for solving 5-point discre-
tized elliptic PDEs, as far as parallel implementation is concerned. One interesting
question that arises in this context is whether the convergence rate of iterative
algorithms is affected by the reordering scheme. This problem has been studied in
(2],[35],(66],(71],[73]. In particular, the effect of the red-black ordering on SOR
and PCG algorithms is discussed in detail in [66]. Briefly speaking, the conver-
gence rate of the SOR algorithm is independent of ordering schemes, but the con-
vergence rate of PCG algorithms depends on the choice of ordering. For the CG
method preconditioned by the MILU or SSOR method, the convergence rate of the
red-black ordering is one order of magnitude slower than that of the natural ord-
ering [35],[66]. For PCG methods, there exists therefore a tradeoff between the
rate of convergence and the degree of parallelism that can be achieved.

No such tradeoff exists for the SOR method, but another difficulty arises
when one seeks to implement it in parallel. Specifically, when the coeflicients of
the PDE are space-dependent, the optimal relaxation parameter depends in gen-
eral on global information and must be estimated adaptively [51]. The estimation
of the relaxation parameter requires global communication between all processors,
a feature that slows down the SOR algorithm significantly. To overcome this
difficulty, a local relaxation procedure was proposed in [14],[34],(71] where different
relaxation parameters are used at every grid point, and are determined on the
basis of local information. Since, unlike the conventional SOR algorithm, no glo-
bal information is needed for determining the optimal local relaxation parameters,
the communication time between multiple processors is significantly reduced.
Another extension of the red/black SOR algorithm involves the use of more than

two colors for ordering the grid points. The motivation for considering multiple
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coloring schemes is that when elliptic PDEs are discretized on high-order stencils,
more than two colors are necessary to decouple all grid points of the same color.
For the case of a 9-point stencil discretization, four colors are needed. The exten-
sion of the red/black SOR algorithm to multiple coloring schemes can take
different forms. For the 9-point discretized Poisson problem, two such extensions
have been proposed by Adams, Leveque and Young [3], and by Kuo and Levy
[70], which rely respectively on a single- or two-level relaxation scheme. Both of

these methods are easily parallelizable on mesh-connected processor arrays.

In parallel implementations of the PCG algorithm, the major bottleneck is
usually the parallelization of the preconditioner (7.4), since the remaining steps of
the PCG algorithm can be parallelized in a straightforward way. The main
difficulty lies in the fact that elliptic PDE problems involve a global coupling of
all the grid points. In order to be effective, preconditioners must take into account
this global coupling by including a mechanism for transmitting information from
one point of the problem domain to another. Consequently, preconditioners that
use purely local information, such as the red-black ordered MILU and SSOR and
polynomial preconditioners, are fundamentally limited in their ability to improve
the convergence rate of the CG algorithm. On the other hand, global coupling
through a natural ordering grid traversal is not highly parallelizable. To construct
highly parallelizable and effective preconditioners, we are therefore led to consider
preconditioners which share global information through a multilevel grid struc-
ture, thus ensuring a good convergence rate, but perform only local operations on
each grid level, and hence are highly parallelizable. Preconditioners that have this
feature include the multigrid method when used as a preconditioner [61],(62], and
the hierarchical basis preconditioner [95],[96]. More recently, new multilevel
preconditioners have been proposed by Bramble, Pasciak and Xu [15],[90] and
Kuo, Chan and Tong [67]. These preconditioners differ from multigrid methods by
the fact that the smoothbing operation in multigrid methods is replaced by a sim-
ple scaling operation, as was shown in Section VIL.B. Other types of multilevel
preconditioners have been examined in (7],[10],[11],[72],[88]. A detailed comparison

of several multilevel elliptic preconditioners can be found in [67].
The parallelization of multigrid methods or multilevel preconditioners on

multiprocessor machines is one of the most challenging areas in parallel computing

for elliptic PDEs. A significant amount of work has focused on parallelizing
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standard multigrid algorithms on mesh-connected arrays [17],[40] and hypercubes
[26]. Variants of standard multigrid algorithms aiming at achieving more paral-
lelism on massively parallel computers have also been proposed. These parallel
multigrid algorithms include the concurrent multigrid method [40] and the super-
convergent multigrid method [39]. A thorough survey of the state-of-the-art in
this field is presented in [27]. Roughly speaking, two fundamental isssues arise in
parallelizing multigrid methods. One is to find an appropriate mapping which
assigns adjacent grid points to neighboring processors so that only local communi-
cation is required. Since the hierarchy of grids in the multigrid algorithm compli-
cates the flow of data, this is in general not easy. However, for the hypercube
machine this mapping problem has been solved by Chan and Saad [26]. The
second problem is usually known as that of load balancing. To get maximal paral-
lelism, we need as many processors as there are points at the fine grid level. How-
ever, when relaxation is performed on the coarse grid, the majority of the proces-
sors become idle. Thus, the problem is to reduce the number of idle processors as
much as possible so that the efficiency of the entire multiprocessor system is max-
imized. One promising way to solve this problem is to perform concurrent itera-
tions at different grid levels. For example, we may use filtering to split the prob-
lem into multiple subproblems defined on different grids, where each subproblem
corresponds to a different spectral component of the original problem. These sub-
problems could then be solved simultaneously by performing concurrent relaxa-
tions on all grids. However this approach raises many questions: what is the
optimal splitting scheme? What is the best filter for dividing a given problem into
subproblems? How is the convergence and efficiency of standard multigrid algo-

rithms affected by this decomposition procedure?

Domain decomposition provides a natural way to achieve parallel computa-
tion. This approach is particularly suitable for a coarse grain parallel computing
environment where there are considerably fewer processors than grid points. One
important issue in domain decomposition is the selection of the number of sub-
domains. On one hand, more subdomains imply more parallelism. On the other
hand, the communication cost per iteration and the overall number of iterations
tend to increase with the number of subdomains. Thus, the answer is generally
architecture- and problem-dependent. The complexity of parallel implementations

of domain decomposition techniques on a ring, a two-dimensional mesh, and an



T

n-cube has been studied by Keyes and Gropp [64]. Some performance analysis

results and numerical experiments have also been reported in [19],[47],[52],[57].
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X. Conclusion and Extension

Digital signal processing (DSP) and the numerical solution of PDEs have
been traditionally considered as separate research areas. However, during the last
30 years Fourier analysis has been used increasingly by numerical analysts to
analyze and design numerical PDE algorithms. Without surprise, results obtained
by Fourier analysis can be reformulated within the DSP framework. Recent
research work [65],(67],(68],[70],[71] has focused on bridging the gap between these
two separate research areas, and a number of interesting new results have been
obtained as a consequence of this effort. In this paper, we have described in detail
the link existing between DSP and the numerical solution of PDEs, so that
numerical PDE algorithms can be understood by electrical engineers in a more
familiar setting. In addition, a number of recent developments on iterative solu-
tion techniques for elliptic PDEs have been reviewed so as to provide readers with

the most up-to-date knowledge in this area.

The effort to bridge the gap between DSP and numerical differential equa-
tions will benefit to researchers in both areas. From the electrical engineering side,
researchers will be able to study existing numerical algorithms for differential
equations more easily. They will also find numerous interesting and challenging
problems in the solution of differential equations, for example, the solution of
PDEs consisting of both space and time variables. From the numerical analysis
side, researchers will have a new set of tools to analyze and design numerical algo-

rithms. Further advances based on this connection can be expected in the future.

It is worthwhile to emphasize that the DSP approach relies on tools that are
usually not used in the matrix context: the theory of multidimensional signals and
systems [31] and frequency-domain analysis. To form a matrix equation, a 1-D
ordering is required and, therefore, the proximity of grid points in multidimen-
sional meshes is disguised. This phenomenon does not occur for multidimensional
DSP techniques, since they are fully adapted to the spatial nature of the signals
being studied. The discretized system of equations for the elliptic problem is
loosely coupled in the space domain, but totally decoupled in the frequency
domain. In other words, transforming the system from the space domain to the
frequency domain corresponds to a diagonalization procedure whereby a sparse
matrix is transformed into a diagonal matrix, thus leading to a much simpler

analysis. Due to its simplicity, the DSP approach provides some valuable insight
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into the choice of solution method, as well as some guidelines towards the
development of more versatile and efficient solution techniques. This point has
been demonstrated in the application of digital filtering theory to the design of
elliptic preconditioner as discussed in Section VII. Thus, we conclude that the
DSP approach can serve as complement to the classical matrix analysis, which is

more generally applicable but less transparent.

In this tutorial paper, we have examined discretization schemes and solution
methods for solving elliptic PDEs from the DSP viewpoint. We studied mode-
dependent finite-difference schemes for three model elliptic PDE problems, i.e., the
Poisson, Helmholtz and convection-diffusion equations. The extension of mode-
dependent discretization schemes to coupled differential equations and time-
dependent problems, such as hyperbolic and parabolic PDEs, is currently being
investigated. We also reviewed various methods for solving self-adjoint positive
definite elliptic PDEs modeled by the Poisson equation, including direct methods,
elementary and accelerated relaxation methods, multigrid methods, preconditioned
conjugate gradient methods and the domain decomposition technique. We expect
that the DSP viewpoint will also be helpful to develop new efficient algorithms for
solving more difficult elliptic PDEs such as indefinite and nonself-adjoint problems

modeled by the Helmholtz and convection-diffusion equations.
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Figure Captions
Coincident frequencies of the mode-dependent (a) 5-point, (b) rotated

5-point, and (c¢) 9-point stencil discretization of the Helmholtz equation.

Coincident frequencies of the (a) central difference, (b) Allen-Southwell,
and (c) uniformly distributed mode-dependent 5-point discretizations of
the convection-diffusion equation.

(a) Conventional and (b) folded two-color Fourier domains where
0, = k,mh and 8, = k,mh.

The spectrum magnitude of the Jacobi iteration operator.
Root loci of A\; and A\, with fixed p.

A typical eigenvalue map in the complex plane for (a) Jacobi iteration
and (b) SOR iteration with the optimal relaxation parameter, where the

case h = % and w = 1.757 is plotted.

A typical plot of the eigenvalues of the Chebyshev semi-iterative
method as function of the eigenvalues of the Jacobi method, where the

case h = %, Emax = — Mmin = 0.98 and Q(z) is shown.

Structure of an (h,2h) two-grid method.

The spectrum of the 1-D damped Jacobi smoother parameterized with
w.

Decomposition of the (a) restriction and (b) interpolation operators.
Ilustrations of (a) V-cycle, (b) W-cycle, and (c) full multigrid methods.

Stencil representation of local operators for the (a) ILU and (b) MILU
preconditioners.

Typical surface plot of the spectrum of the ILU preconditioned Lapla-
cian where 8, = 27k, h, 0, =27k, h and h = 0.02.

Typical surface plot of the spectrum of the MILU preconditioned Lapla-
cian where 0, = 2wk, h, 0, =27k h, h =0.02 and ¢ =70.

Spectra of A, P~! and P7'A.

Block diagram of the MF preconditioned with a single discretization
grid (SGMF).
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Block diagram of the MGMF' preconditioner.

Block diagram of the modified MGMF preconditioner.

A general domain and its partitioning.

A rectangular domain and its partitioning.

Plots of \;, o, and g(k,M,M,) as functions of the wavenumber k.

(a) L-shaped and (b) C-shaped domains and their partitionings.
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Fig. 2.1 Coincident frequencies of the mode-dependent (a) 5-point, (b) rotated
5-point, and (¢) 9-point stencil discretization of the Helmholtz equation.
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Fig. 2.2 Coincident frequencies of the (a) central difference, (b) Allen-Southwell,
and (c) uniformly distributed mode-dependent 5-point discretizations of
the convection-diffusion equation.
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Fig. 3.1 (a) Conventional and (b) folded two-color Fourier domains where
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Fig. 5.1 The spectrum magnitude of the Jacobi iteration operator.
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Fig. 6.4 Illustrations of (a) V-cycle, (b) W-cycle, and (¢) full multigrid methods.
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Fig. 7.1 Stencil representation of local operators for the (a) ILU and (b) MILU
preconditioners.



Fig. 7.2 Typical surface plot of the spectrum of the ILU preconditioned Lapla-
cian where 8, = 27k, h, 0, = 27k, h and h = 0.02.
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Fig. 7.5 Block diagram of the MF preconditioned with a single discretization
grid (SGMF).
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Block diagram of the modified MGMF preconditioner.
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Fig. 8.1 A general domain and its partitioning.
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Fig. 8.2 A rectangular domain and its partitioning.
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Fig. 8.3 Plots of \;, o, and g(k,M,,M,) as functions of the wavenumber k.
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Fig. 8.4 (a) L-shaped and (b) C-shaped domains and their partitionings.



