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Abstract

Oneof the most fundamental challenges in building speech-enabled systems is “know-

ing the users.” This information about users is captured in what is usually called a

“user model.” This study investigates user models for speech-enabled systems, which

include both human-machine spoken interaction and machine-mediated human-human

interaction systems. Because of the intrinsic error-prone property of statistical process-

ing of human speech technology, errors are inevitable during the interactions to/through

the speech-enabled systems. In this regard, this dissertation studies four different user

models under uncertain error conditions of spoken dialog systems and spoken media-

tion systems. The user models were driven based on the data of mixed-initiative spoken

dialogs, and multimodal (speech and visual) interactions of a spoken mediation system.

The user models of this dissertation aims to contribute to accelerate the optimization of

dialog management of the speech-enabled systems.

The addressed user models are about: (1) user behaviors under error conditions of

a spoken dialog system; (2) multimodal user behaviors under uncertainty in two per-

sons communication using a speech-to-speech translation system; (3) user behavioral

changes over time in uncertain communication when using a multimodal interface of a

speech-to-speech translation system; and (4) user level of tolerating errors implemented

with a dynamic Bayesian network and possiblespeech Accommodationbetween two

interlocutors. The model of dynamic Bayesian network was validated offline with the

xi



multimodal interaction data of a speech-to-speech translation system, and online with

agentfeedback used in a multimodal interface of a speech-to-speech translation system.
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ALEXANDER
No – wait – the moon’s falling out of orbit – that’s not possible!

VOX KIOSK (V.O.)
Well, considering it is, in fact, happening, I would assume it’s

possible. The retrograde orbit began in 2005 when the demolitions
for the lunar colonies –

ALEXANDER
Why is it – breaking up?

VOX KIOSK (V.O.)
I was getting to that... The moon has reached the gravitational Roche

Limit, ... the nearest public evacuation shelters can be found at
Grand Central Station, Madison Square Garden.

People have dreamed, for a long time, of a machine which can recognize and react

to humans using speech: where they freely converse with the machine, either a physical

or a virtual entity. This includes situation in which people speaking different languages

can communicate with one another without realizing the mediated translation machine.

The machine recognizing humans would be able to act like a real human being, adapting

itself to humans even in error conditions. It will not only communicate information but

also understand the complicated contexts.

A human (Right) has a conversation with a virtual library hologram agent (left).
In the movie,The Time Machine(2002).
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Chapter 1

Introduction

1.1 Significance of the Research

——————————–

“Speech has long been

a main tool for

information exchange

among human beings.”

——————————–

As speech technologies have evolved, people have

expected speech-enabled systems to be increasingly

intelligent and versatile. In particular, the development

of a speech-enabled system (e.g., using a speech recog-

nition interface) capable of effectively handling diverse

user populations and languages has become desirable

for many uses: it adapts to users effectively in multi-

tude, such as user demographics (e.g., age or gender) or the level of proficiency when

using the systems; it translates between different languages by considering each user’s

peculiar behaviors. The speech-enabled system equipped with the information about

users provides enhanced user satisfaction as well as efficient user-adapted system func-

tionalities.

The present study presents some of the important aspects of user models relevant for

the two settings, human-machine spoken dialog interactions and human-human spoken

interactions through a mediating device. In particular, the study limits the scope to four

issues related to user behaviors in error conditions – users face various error situations

when using the speech-enabled systems, and attempt to recover from those. Firstly, the

policy of spoken dialog management needs information about users in error conditions.

Users differ in the behavioral strategies to handle errors generated by the system, in

2



particular, a spoken dialog system. Many dialog optimization approaches have been

introduced without empirical validation of user models. Secondly, people emphasize

meaning transfer when using the speech-enabled systems – how much information is

transferred through the machine. This is a crucial challenge to address especially when

users use a mediated speech translation system to interact each other in different lan-

guages. Thirdly, users change in their behaviors over time according to many factors,

including system errors. These user changes are complex under the uncertain envi-

ronment of speech-enabled systems. Fourthly, the speech-enabled systems need to be

equipped with some strategies to deal with users differing in acceptance of system errors:

some are more accommodating, and some not (that is, picky). This makes the systems

more robust in terms of error handling. In the communication between interlocutors, the

mutual effect on behaviors is another challenging topic to address.

1.2 Methodology

The information and assumptions about users are called “user models [44].” Inherently

the user model is complex, and it is formed by combining multiple knowledge sources:

user behaviors, psychological aspects of users, and purely mathematical assumptions

about users. This dissertation investigates user models of the two speech-enabled sys-

tems by analyzing user behaviors profiled in the logs from the two systems. In particular,

user models under error conditions of the two systems were empirically investigated. In

the analysis, supportive user data (user opinion and observation on the user behaviors)

were provided by survey questionnaire and the recorded multimedia data (video and

audio).

3



(1) (2)

Figure 1.1: Two spoken interaction settings; (1) human-machine, (2) human-human with
a mediating device. The first one has only one communication channel, and the second
one has two communication channels –the mediating channeland the interpersonal
channel.

Two speech-enabled systems used in this study are: a Spoken Dialog System (SDS)

and a Spoken Mediation System (SMS), as illustrated in Figure 1.1. A Spoken Dia-

log System is a program supporting speech as an input modality to interact with a user.

For example, the “Defense Advanced Research Projects Agency (DARPA) Communi-

cator Travel Agency System [59]”, which enables spoken communication between a

human customer and a virtual travel agent program. The components of this system

are: Automatic Speech Recognizer (ASR), Natural Language Processing (NLP), Dialog

Management (DM) and Text-to-Speech (TTS). On the other hand, a Spoken Mediation

System supports speech as an input modality for two interlocutors, and mediates conver-

sations between them. One example system is the “Transonics Speech to Speech Trans-

lation System [64]”, which enables spoken communication between two people who do

not share the same language. The components of this system include all the compo-

nents of SDS and Machine Translation (MT) additionally. In the SDS setting, the user

and machine have conversations through one communication channel (direct human-

machine channel), and in the other SMS setting, users interact through two communica-

tion channels (direct human-machine and direct human-human channels), as shown in

(Figure 1.1).
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Figure1.2: Example image of a multimodal interface of Transonics. After speaking, a
user can choose one of machine-produced outputs presented onscreen.

The interface of speech-enabled systems incorporates not only speech input but

also other modalities, such as visual. “Defense Advanced Research Projects Agency

(DARPA) Communicator Travel Agency System [59]” used telephony speech interface

(speech only), and “Transonics Speech to Speech Translation System [64]” used a mul-

timodal interface equipped with speech and visual inputs. Figure 1.2 shows the multi-

modal interface incorporated in the Transonics system.

Speech-enabled systems are error prone. The errors arise from a number of sources:

They can be speech recognition error, mismatched dialog strategy, mis-transferred

meaning, or malfunctioning error. Even users may cause the errors by speaking off-

topic. Example 1.1 shows a typical user-system conversation with error conditions in

the DARPA Communicator corpus. In this example, the user gave up interacting with

the system after two turns. This number of turns is statistically lower than the average

number of turns with which users resolved the system errors in the DARPA Communi-

cator corpus. We can call this user type a “quick-terminate.” This user type incorporates

a strategy to finish the spoken interactions quickly in an error situation. Also the exam-

ple 1.1 shows statistics of the user behaviors corresponding to the system responses,

which include that the first user response was “repeat” when the system generated “sys-

repeat” response in the previous interaction. When the majority of user behaviors is

5



(1) System said: What is your destination
User said: Phoenix Arizona

Recognizer heard: ARIZONA [error, first time]
(2) System said: What is your destination [sysrepeat]

User said: Phoenix Arizona [repeat]
Recognizer heard: ARIZONA [error]

(3) System said: What is your destination [sysrepeat]
User said: [uh] my god destination Phoenix Arizona [frustrated]

Recognizer heard: ++UH++ I’D GET DESTINATION ARIZONA LAST [error]
(4) System said: What is your destination [sysrepeat]

User : [hang-up]

Table 1.1: A portion of annotated dialog between a human and the machine from the DARPA
Communicator corpus. The user first noticed that an error had occurred with the system cue,
sysrepeat. User behaviors, such asrepeat, rephraseand frustrated tend to co-occur with the
system actionsysrepeat.

“repeat” to the “sysrepeat”, we could model user behaviors, which include an interac-

tion pair of “repeat” and “sysrepeat.” Through such approaches, we can build data-

driven user models based on statistics acquired from interaction logs of speech-enabled

systems.

User modeling starts with the analysis of user behaviors in the offline dataset, the

logs of user interactions with a spoken dialog system (DARPA Communicator [59]).

The study shows the analysis of user behaviors when things do not go well in the com-

munication chain with the system. To investigate the situations, user behaviors under

problematic conditions of real human-machine mixed initiative dialogs were annotated

with tags identifying system error cues, recognizer errors and user behaviors. The first

step in the analysis was to find out how users perceive the errors. This is important

because the way in which errors are detected affects the amount of time it takes to get

back on track. In addition, we investigated not only the statistics regarding successful

user behaviors but also those regarding unsuccessful user behaviors. The analyzed user
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informationis needed so that the system designers can determine strategies to overcome

error situations effectively.

One of the major sources of error is an incorrect automatic conversion between

speech and text. In such interactive applications, it is important that these errors do

not impact the overall system performance in terms of meaning transfer between the

user speech and the machine-produced output. In this regard, user behaviors were ana-

lyzed in terms of the number of concepts transferred through a mediating (translation)

device. To clarify the definition of how many concepts are transferred in the utterances

produced by the system (from original user utterances), theConcept Matching Score

(CMS)was proposed. This score was defined based on “adequacy” levels, which assess

manually the quality of translations by the system (proposed by Linguistic Data Con-

sortium (LDC)). In addition, we compared machine translation performances between

the unimodal (speech) interface setting and the multimodal (speech and visuals) inter-

face setting by measuring the CMS. It is important for the system to be equipped with

strategies to optimize the translation quality either through unimodal or multimodal user

inputs.

Another important user modeling issue is user change. Previous user modeling stud-

ies assume that users get better over time in proficiency of using systems as they handle

systems more. This user model is challenging to address given that users get affected

by certain/uncertain factors over time, and the degree of that effect may change over

time. In this regard, we empirically investigate user data collected over the four weeks

of users’ using a multimodal interface of a speech-to-speech translation system. The

Concept Matching Score (CMS) was utilized in this study to measure meaning trans-

fer from user speech to successful/unsuccessful machine-produced output. The study

shows user behavioral changes over the weeks in terms of tolerating errors and user

strategies dealing with errors. Supporting materials – user survey questionnaire, user
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interview, and recorded multimedia data (video and audio) – were used for additional

analysis about users.

From the analysis of user behaviors under error conditions of Transonics above, it

was observed that users differ in tolerating system errors: some users were more accom-

modating to the system errors than others. In this regard, we modeled user behaviors

(retry/accept) with user types and speech recognition accuracy. The clustered users in

the case studies were defined here in relative terms asaccommodating, normalandpicky

user types. The user types and the features of the system – speech recognition accuracy

and user behaviors (accept/retry) – were used to build a dynamicBayesiannetwork

(DBN). This DBN keeps track of user types during the interaction turns. To validate the

model, it was used to automatically determine user types in the offline experiment with

the10-fold cross validation. To validate this model in real-time systems, online exper-

iment was conducted withagentfeedbacks.Agentfeedbacks were provided for both

accommodatingandpicky user types during the interaction turns, and interaction effi-

ciency and user satisfaction were measured by the analysis of log data and user survey

questionnaire. In addition, in the mediated device setting (as shown in Figure 1.1 (2))

of Transonics, we observed two channel communications; the mediated communication

and the interpersonal communication. We attempted to address modeling interpersonal

adaptation inthe interpersonal channel, focusing on the design of a model based on the

users’ utterance length.

1.3 Contribution

The contribution of this dissertation is to address four aspects of user behaviors under

uncertain error conditions of spoken dialog system and spoken mediation systems. The

addressed user models are about: (1) user behaviors under error conditions of a spoken
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dialogsystem; (2) multimodal user behaviors under uncertainty in two person commu-

nication using a speech-to-speech translation system; (3) user behavioral changes over

time in uncertain communication when users using a multimodal interface of a speech-

to-speech translation system; and (4) user level of tolerating errors implemented with

a dynamic Bayesian network and possiblespeech Accommodationbetween two inter-

locutors. The model of dynamic Bayesian network was validated offline with the mul-

timodal interaction data of a speech-to-speech translation system, and online with the

agentfeedback used in a multimodal interface of a speech-to-speech translation system.

1.4 Limitations

In the dissertation, work outcomes are restricted to statistics acquired from data with

human defined tags and transcription. This data-driven analysis and modeling in engi-

neering has gathered increased attention recently because of its objectivity and practi-

cality. Although we manually annotate and transcribe user data, it was conducted as

objectively as possible. We conducted cross-validation among annotators with calibra-

tion sessions. Some part of the data was annotated with clustering techniques such as

the k-meansalgorithm. This way, extendibility and objectivity were given high prior-

ity in the modeling process but we did not incorporate purely automatic annotation and

transcription that may be used for other purposes.

A mediated device between two interlocutors brings about many issues which were

attempted in this dissertation but not reported. For example, we investigatedspeech

accommodationin prosody and acoustic levels between two interlocutors. However, it

was not successful to find meaningful results. We believe the mediated machine between

humans somehow prevents natural conversations. We leave these issues for future work

to conduct research on how to improve that bottleneck.
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1.5 Dissertation overview

The dissertation is organized as follows. Chapter 2 provides background and details of

previous user modeling work. Chapter 3 reports user behaviors under problematic con-

ditions of spoken dialog. In Chapter 4, analyzed multimodal user behaviors is presented,

which use a measure of meaning transfer of a speech-to-speech translation system. In

Chapter 5, user behavioral changes over several weeks are analyzed in the data of users

using the multimodal interface of a speech translation system. In Chapter 6, the user

type model in regards to the speech recognition error tolerance levels is presented. A

dynamic Bayesian network is used as an inference mechanism of user types over time,

which is evaluated with both offline and online experiments.
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Chapter 2

Background and Previous Work

2.1 Spoken Interactions in Two Settings

In this section, two cases of spoken interaction system architecture are introduced:

Human-Machine and Human-Human with a mediating device. These provide the

proposed experimental environment for analyzing and modeling users of such systems.

2.1.1 Spoken Dialog System

A Spoken Dialog System (SDS) is a program supporting speech as an input/output

modality to interact with a user. Speech-enabled Human-Machine interaction appli-

cations have matured for decades. Those applications evolve and cover a wide range of

fields. For example, a “travel agency system” [59] provides itinerary services to a user,

a “help desk” [19] application plays a receptionist role in routing a call to human agents

or departments, and an “in-car speech recognition system” [96] offers a flexible and

comfortable driving environment for a driver. As the typical components in SDS, the

modules of the “Communicator” system [59] are depicted in Figure 2.1 with description

below.

• Automatic Speech Recognizer (ASR): receives a digitally encoded acoustic signal
and generates a string of words as output.

• Spoken Language Understanding (SLU): gets a word graph and generates the
most probable word sequence and meaning as output.
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Figure2.1: An architecture for Spoken Dialog System (SDS).

• Dialog Management (DM): monitors dialog flow between human and machine,
collects information from a user, and interacts with database and decides where
information is needed most.

• Spoken Language Generation (SLG): produces natural language text from
computer-internal representations of information.

• Text-to-Speech (TTS): converts text into audio output.

2.1.2 Speech Mediation System

A Speech Mediation System (SMS) is a program designed to mediate natural speech

interaction between two interlocutors, particularly when equipped with “speech transla-

tion capability”. Recent trends show that advanced research institutions have been devel-

oping the systems under this setting. In our group, “Transonics” is such a system, which

mediates a medical domain conversation between an English speaking doctor and a Per-

sian speaking patient [64]. A portable speech-to-speech translation system was devel-

oped between English and Croatian speakers [7, 105]. “VerbMobile” [98] was devel-

oped for the domains of appointment negotiation, travel planning and hotel reservation.
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Figure2.2: An architecture for a translation driven Spoken Mediation System (SMS).

It processes multilingual spontaneous speech (English, German and Japanese). Even

though detailed implementations are different, most of developed systems include typ-

ical components such as ASR, MT, DM, and TTS. The typical architecture is depicted

in Figure 2.2.

Most systems include:

• Automatic Speech Recognition (ASR): processes user speech signal with a tar-
get language (English/Farsi) and generates words of corresponding language as
output.

• Machine Translation (MT): translates text between natural languages (e.g.English
and Farsi).

• Dialog Management (DM): conveys translated spoken words to the output com-
ponents such as TTS/GUI. Also, this monitors information flows among users and
the device.

• Text-to-Speech (TTS): converts the translated text into spoken voice output.

Spoken interactions of SMS, compared to those of SDS, can be defined as two chan-

nel communication. As depicted in Figure 2.2, verbal information goes through one

channel and non-verbal information such as a gesture, a eye-gaze, or a cultural adapta-

tion of two users can be extracted from the other channel.
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2.2 Previous User Modeling Approaches

“User Modeling” is an interdisciplinary research topic aiming to define the information

about a user. This fundamental idea of it is applicable and reusable in other applica-

tions. In this chapter, the key contributions of relevant previous user modeling research

are summarized. We first introduce general user modeling work. After this, specific

user modeling research in the setting of Spoken Dialog System and Spoken Mediation

System are outlined.

2.2.1 A General User Model

“Stereotype” user model is known to be the most typical one in the user modeling com-

munity. Basically, it is a collection of frequently occurring characteristics of users and

covers a wide range of its applications. Rich [84] first proposed this mechanism for

diverse individuals based on distinctive or different personalities, goals, and so forth.

With the stereotype user model, the system can react to different users effectively with

little information about them. Although initial values are hand-crafted and the feature

selections are heuristic, it shows a productive user model in general as a pioneer work.

Kobsa introduced a generic (which means “domain” or “application” independent)

user modeling shell system [43, 46]. It allows assumptions about the user or stereotyp-

ical user groups to be represented in a first-order predicate logic and assists the adap-

tation to the current users by taking the user’s presumed knowledge, beliefs, and goals

into account. The shell developers decide the structures and processes based on the

intuition and experience from prior work on user-adaptive systems. Kobsa defined the

requirements of representational and inferential expressiveness that can be a summary

of various user modeling approaches [45]. These are:

14



• Representationof assumptions about one or more types of user characteristics in
models of individual users (e.g. assumptions about their knowledge, misconcep-
tions, goals, plans, preferences, tasks, and abilities).

• Representation of relevant common characteristics of users pertaining to specific
user subgroups of the application system (the so-called stereotypes).

• Classification of users that belong to one or more of these subgroups, and the inte-
gration of the typical characteristics of these subgroups into the current individual
user model.

• Recording of users’ behavior, particularly their past interaction with the system.

• Formation of assumptions about the user based on the interaction history.

• Generalization of the interaction histories of many users into stereotypes.

• Drawing of additional assumptions about the current user based on initial ones.

• Consistency maintenance in the user model.

• Provision of the current assumptions about the user, as well as justifications of
these assumptions.

• Evaluation of the entries in the current user model, and comparison with given
standards.

Predictive statistical user models are getting attention these days [108, 109]

and these cover the various aspects of human behavior, such as goals, actions, and

preferences. The main evaluation metrics of these models are recall and precision,

predicted probability and accuracy, and utility. The specific models includelinear, Term

Frequency Inverse Document Frequency (TFIDF), Markov model, Neural network,

Classification methods, Rule induction, andBayesian network.
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2.2.2 User Models in the Human-Machine Spoken Interaction Set-

ting

• Spoken Hyperarticulate and Disfluency

Coping with user’s spokenHyperarticulationanddisfluencyhelp the system in deal-

ing with various kinds of human speech. Oviatt studied hyperarticulating [73] and dis-

fluencies [65] in human speech under a Human-Machine spoken interaction setting. The

basic assumption is that a human speaks differently in the Human-Machine interaction

setting compared to Human-Human interactions; A human (1) hyperarticulates more as

the speech recognition error increases, (2) has fewer disfluencies with short and struc-

tured utterances.

Oviatt suggested a model of “hyperarticulate” with the two-stage CHAM

(Computer-elicited Hyperarticulate Adaptation Model). With a high error rate in

the experiment, the human speech includes more hyper-clear phonological features,

fewer disfluencies and changes in fundamental frequency. Based on the observations

under error situations, CHAM model specifies that users’ speech will adapt to the

linguistically-specified hyperarticulation profile as in Table 2.1.

Pause interjection +92%
Pause elongation +75%

Disfluencies -53%
Intonation final fall +19%
Speech elongation +12%

Hyper-clear phonology +9%
Pitch minimum -2%
Pitch average -1%

Table 2.1: Summary of relative change in linguistic dimensions of hyperarticula-
tion [73]. All magnitudes shown represent statistically significant change during rep-
etition.
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For a “disfluency” model, Oviatt suggested a simple linear regression model. Higher

disfluency rates were related to the length of utterance and lack of structure in the pre-

sentation format. When users’ utterances become lengthier, there occurs the higher

possibility of disfluency. Also, it turned out that structural speech lead fewer disfluen-

cies.

Regarding the disfluency, Shriberg [95] investigated and modeled it withfilled

pauses, repetitions, repairsand false starts. The model of disfluencies only utilized

the prosodic features –duration, distance from pauseandf0. All the features are related

to the disfluency model with thedecision tree.

* User Goal or Intention

A user goal or intention has been regarded as one of the most important user aspects

in user modeling. It gives the system an assumption of a user’s limited behavior pat-

terns based on a goal or intention. Therefore, it allows the system to reduce its burden

of determining all the possibilities in user behaviors. Allen [4] pioneered this area by

analyzing user utterances. It is claimed that a user expresses his or her goal information

in the utterances. Recently, Horvitz put a lot of effort into this topic under uncertain

conditions; harnessing models of users’ goals and needs [32, 30]. By utility-directed

procedures, probabilistic relationships among intentions and spoken utterances are mod-

eled and user actions are inferred (with the largest expected utility) through a Bayesian

network.

* User and Machine Initiative Modeling

Spoken dialog systems adopt the “initiative” model to give the best freedom of inter-

ruptions to a user in spoken interactions. Also, it allows the system to interrupt the

interactions whenever needed. Allen [3] seems to be the first researcher to deal with
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this issue with a taxonomy of mixed-initiatives. He proposed specific mechanisms such

as contextual interpretation, turn taking and grounding. Horvitz [31] approached this

issue with a more complicated condition, “under uncertainty”. Both hand-built and

automatically-learned probabilistic user models (Bayesian networks) give the system

the ability to take actions efficiently (mixed-initiative). Chu-Caroll [10] distinguished

betweentask anddialog initiatives and presented a model for tracking shifts in both

types of initiatives in dialog interactions. Chu-Caroll showed how to track the shift or

lack of shift in task/dialog initiatives by the eight cues:Explicit requests, End silence,

No new info, Questions, Obligation fulfilled, Invalidity, Suboptimality, Ambiguity. She

utilized the Dempster-Shafer Theory to model tracking initiative between a human and

a machine. New task/dialog initiative indices between a human and a machine were

computed based on the current indices. The current observed cues were utilized with

the current indices to determine the next task/dialog initiative holders.

* User Modeling Framework

User modeling middle-ware systems are effective in rapidly building an application

which can handle diverse users. There have been some general frameworks in HCI com-

munity such as BGP-MS by Kobsa [46], GUMS system by Finin [21], UM by Kay [41].

These are general in their utility by allowing a wide range of representations for an indi-

vidual user. Particularly Pakucs presented a framework for speech interfaces [74, 75]

which adapt to a user by recognizing a context such aslocation, time, oractivity. The

system architecture is generic and task-oriented and it utilizes a feature vector of con-

texts.

* Applications with a User Model

One of the successful spoken dialog applications with a user model was built by

Komatani [47]. Its domain is a “Kyoto city bus information kiosk.” Implemented user
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modelsincludeskill level to the system, knowledge level on the target domainanddegree

of hastiness. A decision tree with features obtained from a single utterance and dialog

sessions is used for a user modeling. Annotated tags are hand-crafted and the values of

a model are learned from the system’s real dialogs.

Another important application requiring a user model is a tutoring system. It needs

to know what knowledge the student has and what goals the student wishes to achieve.

Conati [12] implemented “Andes” which provides long-term knowledge assessment,

plan recognition and prediction of student actions. The probabilistic modeling tech-

nique (a Bayesian network) was used in the modeling of “Andes.” The uncertainties

defined in the design of “Andes” includeContext specificity, Guessing, Mutually exclu-

sive strategies, Old evidence, Errors, Hints, Reading latency, Self-explaining ahead,

Self-explanation menu selections. As an evaluation metric, Conati showed the overall

system performance enhancement by adopting the “Andes” to the tutoring system.

2.2.3 User Models in the Human-Human Spoken Interactions with

a Mediating Device Setting.

User modeling work for Human-Human interactions with a speech-enabled mediating

device is a relatively unexplored area compared to that for the Human-Machine spoken

interactions. Some speech-to-speech translation applications such as Verbmobil [98]

mediated the speech between two speakers who are using different languages but no

user modeling research was done in the development of the system.

Computer Mediated Communication (CMC) community has conducted some

research for user modeling in the clear communication between people under a mediat-

ing device setting. In this regard, the clear communication means no noisy operations

such as speech recognition and machine translation (which are basically error-prone).
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As one of the significant researchers, Isbister explored the cultural issues between Amer-

icans and Japanese with a helper agent in virtual meeting space [34]. The research

issues includeperception of each other, each others’ national groupandthe effects on

their style of behavior. This kind of work inspires us to investigate the social relation-

ship between people in spoken interactions under a mediating device setting, which is a

noisy mediating environment for the spoken interactions.

Recently, Shriberg [94] described four fundamental properties of spontaneous

speech when speech recognition technology is involved:punctuation, disfluencies, turn-

taking and user state (or emotion). These four phenomena suggested multiple levels of

speakers’ information contained in behaviors and speech itself (lexically and acousti-

cally). Shriberg proposed that we need to deal with these four phenomena to improve

the performance and the utility of intelligent spoken language applications, as well as

increased scientific understanding of natural speaking behavior.

On the other hand, in Cognitive Science, Linguistics and Phycology communities,

it is claimed that natural Human-Human spoken interactions include the information

of “Accommodation”between interlocutors. It can be either verbal such aswords and

prosody, or non-verbal such asgesture and emotionaccommodation. Participants of the

interactions concern about mutually combined social standing, task goals and communi-

cational efficiency. ThisAccommodation Theorycan be utilized to improve a mediating

device performance and user satisfaction by encouraging users to interact naturally as if

there were no machine involved.

Theoretical supports for the accommodation between interlocutors in theinterper-

sonal channelare based on theSpeech Accommodation Theory(Giles [26]). Giles

divided theAccommodationinto two strategies :convergenceanddivergence. The for-

mer refers to the processes whereby two or more individuals alter or shift their speech
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to resemble each other’s speech. The latter indicates the ways in which speakers accen-

tuate their verbal and non-verbal differences in order to distinguish themselves from

others. Both are deployed by individuals to signal identification with, or dissociation

from, the communication patterns of others. The Ultimate goal by adopting thisSpeech

Accommodation Theoryis to ensure successful communication. This achievement can

be defined by increased level of satisfaction and conversation efficiency. This poten-

tial achievement inspires the application ofSpeech Accommodationin various speech-

mediated device designs. In a medical domain, for instance, the satisfaction and the

efficiency are critical metrics in measuring performance of communication between a

doctor and a patient [87].

Fais [20] reported lexical accommodation studies in machine-mediated spoken inter-

actions and incorporated three different settings: Human-Human monolingual, Human-

Interpreted bilingual1 and Machine-Interpreted bilingual. Significant accommodation

results were found in all three settings that support the fundamental theories described

in Chapter 6. The underlying hypotheses suggested in this context are:

• In human-human interaction, we should find significant lexical accommodation.

• The human-interpreted setting constitutes both a Human-Human interaction and a
more stressful communication environment, one in which communicational effi-
ciency is a concern.

• The machine-interpreted setting only indirectly involves Human-Human interac-
tion; all dialog is mediated by the “machine” interpreter.

• We expect that clients will accommodate the machine to some extent, that clients’
word choice will be affected by their perception of “what works,” or “what the
machine knows.”

1English-Japanese
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2.2.4 User Modeling on Multiple Modality Usages

Communication or information exchanges by using multiple modalities such as pen,

speech or keyboard is referred to asmultimodal communication. The research on user

modality usages of multiple modalities expedites the design of an efficient speech-

enabled interface. The effective user model on multimoality supports users in managing

cognitive load [69]. Oviatt [66, 68, 72] investigated this issue extensively in terms of

• User preference

• The situation when users interact multimodally

• Integration and synchronization patterns

• Individual differences

• Complementarity and redundancy

• Performance and linguistic efficiency

• Error suppression

The assumption is that people can interact freely, differently and multimodally (e.g.,

speech, gaze, gesture, pen, visual, etc). Oviatt claimed that speech interface only is

not enough for the robust interactions between the system and a human; multimodal

approach expedites error handling and reduces a communication barrier such as hyper-

articulate.

2.2.5 User Simulation for Spoken Dialog System (SDS)

Along with the stochastic approach to develop a Spoken Dialog System, the user simu-

lation approach has been researched to improve the system performance in terms of less

expensive task, less labor and fewer errors. The system is designed to generate most

efficient responses to a user based on the simulation results.
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UserModel Informaldescription
Reference afirst try to construct a “reasonable” behavior;

all probabilities selected according to common sense.
Patient a reference user with nearly infinite patience that

would hang up the phone after 99 turns; all dialogues are
expected to lead to success.

Submissive questionswill be answered, but no additional
informationwill be volunteered.

Experienced muchmore over-informative than the reference
user;gives information on her own, with slightly higher
patience.

Table 2.2: Characteristics of experimental user models (Eckert [17]).

* A Conditional Probabilistic User Model

Eckert [17] first introduced this user simulation concept in speech community to

assess the dialog system performance. The user response (e.g., intention) is modeled

with a system stimulus by the conditional probability,

pi, j = p(Ut = Ii |St−1 = I j) (2.1)

where,Ii and I j denotes sets or sequences of intentions.St−1 is a system stimulus

at timet−1 andUt is a user response at timet. Also, user initiative is modeled by the

probability p(Ut = Ii—St−1 = ε) of presentingIi in response to an open ended question.

Based on this simple probabilistic user model, Eckert [17] tested the system with

handcrafted (partially learned from the corpus) values for each user type as described in

Table 2.2.

* A Constrained Probabilistic User Model

In the domain of air travel information systems, Levin [54] simulated a user who

learns dialog strategies automatically in an efficient way. Reinforcement learning was
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ConstrainedUser Model Description
Response ProbabilityP(n), n = 0,1,2,...,
greetings P(attribute), whereattribute= ORIGIN,

DESTINATION,..., and the probability distribution
on the value of each attribute
[e.g.,P(Boston|ORIGIN), P(Delta|AIRLINE)].

Responseto P(kR|kG), i.e., the probability of the user
constraining questions specifyinga value for attributekR

whenasked for the value of attributekG.

Responseto P(yes|kG) = 1 - P(no|kG), i.e., the probability
relaxation prompts of accepting (or rejecting) the proposed

relaxationof attributekG.

Table 2.3: The simulated user model characteristics in Levin [54].

used to estimate the optimal dialog strategy and supervised learning was used to estimate

a user model. Levin assumed that a user response depends only on the current system

action and it is constrained by some attributes. The simulated user is parameterized as

in Table2.3. The assumption is that there is no recognition and understanding errors.

* A Probabilistic User Model with Goal Information

By adding “Goal” information to the Eckert’s pure probabilistic user model (this

concept was initially introduced by Scheffler and Young [90] to keep goal consistency),

Pietquin [77] explicitly model the dependencies between a user’s actions and his goal:

P(provideAt |requestAt ,goal) (2.2)

where,At = user actions at timet.

User goal was represented by a simple table of attribute-value pairs and the probabilities

are handcrafted. This model was not evaluated with the real data or the system.
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* UserSimulation with a Linear Feature Combination and N-gram Language Mod-

els

Georgila [25] recently introduced a user model based on the dialog information

states with linear feature combination (Equation 2.3) and n-gram2. In this context,

n-gram treats a dialogue as a sequence of pairs of speech acts and tasks. The perfor-

mance of user models with linear combination and n-gram performances are measured

by comparing the perplexity3 and evaluated against the system policy.

P(a|s) =
exp(f (s)Twa)

∑aexp(f (a)Twa)
(2.3)

where,wa = weights being trained on the state-action pairs from the training data.

f (s)= vector of real valued features for the states. a= a user action.

* Evaluation Metrics of User Simulations

In [100], user satisfaction and system performance was measured with the PAR-

ADISE evaluation framework. Recently, Schatzmann [88] quantitatively evaluated three

user models introduced above: bigram user model (Eckert [17]), user models with con-

strained attributes and the goal information (Levin [54] and Pietquin [77]). This assesses

how realistic the best response is that the simulated user can predict. The precision and

recall rates of the three simulated user models are measured and the goal completion

rates are compared with those of the pre-existing systems.

2Originally n-gram is a subsequence of n letters from a given string after removing all spaces from
language modeling community. For example, the 3-grams that can be generated from “good morning”
are “goo”, “ood”, “odm”, “dmo”, “mor” and so forth.

3the state of being perplexed.
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Chapter 3

Analysis of User Behavior under Error

Conditions in Spoken Dialogs

——————————–

“User behaviors contain

abundant information

about users.”

——————————–

We focus on developing an account of user behavior

under error conditions, working with annotated data

from real human-machine mixed initiative dialogs. In

particular, we examine categories of error perception,

user behavior under error, effect of user strategies on

error recovery, and the role of user initiative in error

situations. A conditional probability model smoothed by weighted ASR error rate is

proposed. Results show that users discovering errors through implicit confirmations are

less likely to get back on track (or succeed) and take a longer time in doing so than other

forms of error discovery such as system reject and reprompts. Further successful user

error-recovery strategies included more rephrasing, less contradicting, and a tendency

to terminate error episodes (cancel and startover) than to attempt at repairing a chain of

errors.

3.1 Introduction

Modeling human-machine spoken dialog interactions is gaining a lot of attention

[54, 59] with the recent deployment of several complex dialog systems, for e.g., [101,

53, 106]. An important aspect of this problem is the understanding and modeling user
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behavior to enable realistic optimization of dialog strategies. It is well known that many

of the underlying components of the state-of-the-art dialog systems such as automatic

speech recognition and understanding rely on data-driven statistical models and, in gen-

eral, are prone to errors of varying types and extent. In addition, there are other possible

systems and user induced errors. Our work targets user behavior modeling under such

error conditions in the context of human-machine spoken dialogs.

The DARPA Communicator spoken dialog systems, implemented at several sites,

represent some of the most recent advances in the design of mixed-initiative spoken

language systems [101, 53, 59]. The availability of transcripts of realistic spoken dialogs

from some of those systems provides an excellent opportunity to investigate the behavior

of human and machine interactions in mixed-initiative dialogs. In the present work we

set out to understand the dynamics of user behavior under system errors and how the

combination of system errors and user reactions to them affect the ultimate success

of a dialog. In preparation for this study, we annotated a portion of the June 2000

Communicator dialogs for several features, including a categorization of both user and

system behavior. The data and the extended annotation scheme are described in section

2. The results of our study are described in section 3. The paper concludes with a

summary and discussion of the results in section 4.

3.2 Data and Annotation

The data used were the orthographically-transcribed travel arrangement dialogs from

the DARPA Communicator project recorded in June 2000. Each dialog consists of some

number of exchanges between a computer travel agent and a human and is represented

as a three-line triple consisting of a system utterance, a user utterance (manually tran-

scribed from recordings), and what the ASR system heard and provided as input to the
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dialogsystem. The data and the collection procedure are described in detail in [59]. In

the Communicator dialogs, 85 experimental subjects interacted with 9 different “travel

agent” systems. Out of the 765 possible dialogs, many are empty, or contain no user

participation. We worked with about 141 of those total dialogs (that consisted of at least

1 turn). The average length of these dialogs was 18 exchanges. The amount of data is

comparable to the data considered in a similar study by Aberdeen et al [1].

3.2.1 Tagging

Following a review of the recent work on analysis of human computer dialogs, we

devised a tagging scheme consisting of 23 tags with which to monitor 3 dimensions

of the dialogs: user behavior, system behavior, and task status. Since our goal was to

do a quantitative analysis of the (disruptive) effect of errors, existing tagging schemes,

while instructive, were not directly applicable. Automatic analysis of error conditions

beyond the ASR word error rate is difficult without the aid of manual tagging. Hence,

manual tagging was necessary. However, for example, unlike [1], we do not keep

track of the subtask in which the error occurred, nor do we distinguish between dialog

acts as in citeWalkerDialogTags. Finally, the user utterances in the communicator data

are very short, averaging 3 words. Under these circumstances, we also have not made

an to attempt labeling disfluencies as projects dealing with longer, more open-ended

utterances have done [56, 2, 51]. The detailed tag set together with usage conven-

tions and examples of application are provided in Appendix A. Briefly, the tag set for

our purposes included (1) SYSTEM tags: explicit confirmation, implicit confirmation,

help, system repeat, reject, non sequitur (2) USER tags: repeat, rephrase, contradict,

frustrated, change request, startover, scratch clarify, acquiesce, hang-up (3) TASK tags:

error (at the recognized utterance), back on track, task success. For error segments, we

locate the beginnings of errors, and place a generic “error” tag on the ASR output that
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resultedin an error (Note that the standard ASR word error rate for each turn is also cal-

culated). Within error segments we focus on three phenomena: system utterances which

exhibit a system reaction to the error, user utterances which react to or try to correct the

error, and the means by which the user becomes aware of the error. Sometimes the user

becomes aware of an error because of a system rejection such as, “I’m sorry, I couldn’t

understand you.” or a verbatim repetition of a system prompt for information. Other

times implicit confirmations or non sequiturs in system utterances alert the user to the

presence of an error, in which case the user must try to make the system aware of the

error. Because the scenarios were conducted by paid subjects arranging for hypotheti-

cal travel for this particular data collection, some users had a tendency to acquiesce to

errors that proved difficult to correct, or even to change the nature of the travel request in

response to repeated recognition errors. These deviations from the original plan are also

marked. Finally, we tag the point at which the dialog gets back-on-track (BOT), marking

the system utterance in which the user could reasonably discover that the portion of the

task derailed by an error has been successfully understood. At the end of the dialog we

indicate whether the arrangements were successfully completed or ended in a hang-up

or acquiescence to some error. The tagging was done by two annotators and showed

87% inter-annotator agreement. The tagging conventions used allow the assignment of

all applicable tags to the dialogs. The agreement measure used was the number of iden-

tically tagged lines, divided by the number of lines reviewed and tagged. The measure is

conservative in that it counts as agreement cases where 100% identical tagging appears

on exactly the same line for both annotators. It does not include partial overlap, or posi-

tional offset. Following the tagging itself, we analyzed the dialogs and user histories

from several perspectives, seeking patterns in user behavior, and correlations between

user behavior and the length and severity of error segments.
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Figure3.1: Normalized histogram of the length of error segments (number of turns).

3.3 Results and Discussion

Firstly it is useful to get a general sense of the presence of errors in the dialogs. The

data, overall, is dominated by errors of various types. The roughly 2528 turns we tagged

consists of 141 dialogs conducted with 35 paid subjects. The dialogs contain 235 error

segments. Note that according to our definition an error segment can (1) end in either by

getting back on track (BOT) with perhaps a complete success, acquiescence or abort (2)

be nested within another error segment. Of these 235 segments, 78% got back on track.

Figure 3.1 provides the distribution of error segment length (number of turns) in the data.

About 80% of these are between 1-9 turns with most of them between 2 to 4 turns. Of

these, the average length of the error segments that eventually get back-on-track is 6.7

and those that never recover is 10. From these numbers alone, we do not know whether

the length of the unrecovered errors represents something about the system or user, or

if it represents some threshold of user tolerance for error resolution beyond which users

will simply hang up rather than continue. We present analysis results on the following

points: (1) Categories of error perception (2) User behavior under error including user

initiative in error vs. non-error situations.
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3.3.1 Categories of error perception

Here, we see whether the manner in which the user discovered the error affects the time

to get back on track. In the case of a system prompt repetition or a system rejection,

the user is explicitly made aware of an “error” (from its perspective). In the case of

an implicit confirmation or a system non sequitur, it is up to the user to notice that an

error has occurred and draw the system’s attention to this. In Table 3.1, we present

error segments grouped by the way in which the user becomes aware of the error, to

see if the way in which the error is discovered affects the time to recover or success in

recovery. We can roughly divide the error discovery types into high frequency (system

rejection, implicit confirmation, & system prompt repeat), and low frequency (explicit

confirmation & non-sequitur). Among the high-frequency error discovery types, it is

striking that implicit confirmation results in a much longer time to get back on track (10

exchanges vs. 6), and a much lower rate of getting back-on-track at 68%, compared to

80% and 90% for the other high-frequency errors.

Errorperception # of err avg err length avg err length %BOT
segments for BOT not BOT

Reject 35 6 7.8 83%
Implicit 25 9.6 14.6 68%
Repeat 21 5.8 13 90%
Explicit 10 5.5 8.75 60%
Non-seq 9 6 7.5 77%

Table 3.1: Lengths of error segments which did get back-on-track (BOT) and those
which didn’t, as well as the percentage of errors that eventually got back on track.

31



Figure3.2: “User Behavior” after the first error within an error segment. Rephrasing was the
most frequent user behavior and Hang-up was the least frequent user behavior.

3.3.2 User behavior under error

We next examine the distribution of user behaviors in coping with errors. Figure 3.2

shows the distribution on the user behavior immediately following an error (in the pre-

vious turn).

The next two tables show the distribution of user strategies for segments that even-

tually did get back on track and for those that never got back on track:

frequency normalized User strategy in
for length of errors Errors that got back-on-track

0.130 Repeat
0.117 Rephrase
0.077 Contradict system
0.055 Start over
0.045 Ask
0.022 Change request
0.015 Scratch
0.005 Acquiesce to error

Table 3.2: Prevalence of user strategies in error segments which eventually got back on
track.
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We observe that users in the successful error recoveries (see Table 3.2) use signifi-

cantly (p ¡ 0.1, ANOVA) more rephrasing than those in the unrecovered errors and less

contradictions (e.g. “not 3 am, 3 pm”) (Table 3.3). They also make use of the “start

over” and “scratch” features more to terminate error episodes rather than trying to repair

chains of errors. Users in successful error recoveries were also much more likely to

work around system weaknesses by changing their travel plans. While this apparently

got the dialog back on track, it is not a viable strategy for real travel arrangements.

frequency normalized User strategy in
for length of errors Non-back-on-track

0.114 Repeat
0.102 Contradict system
0.071 Rephrase
0.055 Hang up
0.031 Start over
0.024 Ask
0.012 Scratch
0.012 Acquiesce to error
0.004 Change request

Table 3.3: Prevalence of user strategies in error segments which did not get back-on-
track.

Degree of Error and User behavior

Errors in spoken dialogs are not merely binary valued and it is critical to incorporate

the degree of error into the modeling. To illuminate user behavior under error fur-

ther, we considered the user response conditioned on the system strategy to estimate

the probabilityP(UserBehavior‖SystemBehavior), P(U‖S) from now on. It has been

well accepted in the field that ASR word error rate (WER) is a good correlate of dialog

performance [59]. Hence as a first approximation, we smoothed the probability mass

of P(U‖S) using an exponentially-weighted WER measure (1-10**(-WER*k/100)) that
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Figure3.3: P (User behavior — System behavior) smoothed by exponentially weighted WER.

maps WER (which can be between 0 and infinity) to a range between 0 and 1. For

the calculations below we chose k=1; it could vary from system to system. The results

are shown in Figure 3.3. The most common user behavior here is rephrasing or repeat-

ing the previous request, contributing to 82% of all user responses under error. Can-

celing/changing the previous request or starting over are relatively rare user behav-

iors under error. This is further exemplified in Figure 3.4 that shows the conditional

(smoothed) distribution forP(U‖S= SYSTEMREPEAT), corresponding to a highly

popular system strategy when the system is “cognizant” of an error.

It is similarly interesting to look at user behavior when the system is not (necessarily)

cognizant of an error such as when using an implicit confirmation strategy. Figure 3.5

shows the smoothed distribution forP(U‖S= IMPLICIT ). Not surprisingly, the user is

most likely to contradict the erroneous system behavior.
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Figure 3.4: Smoothed Conditional Probability for User Behavior in (N+1)th turn based on
weighted WER of ’IMPLICIT CONFIRM’ system behavior in the N-th turn.

Figure 3.5: Smoothed Conditional Probability for User Behavior in (N+1)th turn based on
weighted WER of ’IMPLICIT CONFIRM’ system behavior in the N-th turn.

User initiative in error and non-error environments

Here we look at the user’s tendency to use initiative over the course of the dialog. We

have considered user initiative to be the cases where the user did not simply respond to

system prompts, but attempted to guide the dialog themselves. The one part of the dialog

that often looks the most like user initiative (and which often fails) is the response to the

open prompt at the beginning of most of the dialogs. However, since this is a free-form
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answerto an open question, we have not tagged it as initiative. It is clear from Table 3.4

that user initiative behavior is significantly more in error segments than not (p ¡ 0.05).

UserInitiative tag Frequency Frequency
in error segments in non-error segments

Ask 0.0319 0.0060
Contradict 0.0707 0.0121

General initiative 0.1647 0.0424

Table 3.4: Frequency is normalized over all dialogs.

3.4 Conclusion

Modeling user behavior is one of the most challenging problems in spoken dialog sys-

tems research. Empirical analysis and modeling using real user data helps to illuminate

user behavior patterns. The analysis reported represents a preliminary attempt at under-

standing user behavior under error and uncertainty in spoken dialogs. Results show that

users discovering errors through implicit confirmations are less likely to get back on

track (or succeed) and take a longer time in doing so than other forms of error discovery

such as system reject and reprompts. Further successful user error-recovery strategies

included more rephrasing, less contradicting, and a tendency to terminate error episodes

(cancel and startover) than to attempt at repairing a chain of errors. The most frequent

user behavior to get back on track from error segments when the system signals errors is

to “rephrase” and “repeat.” When a user discovers an error, say through an implicit con-

firmation, the user tends to “contradict” or “cancel” the action rather than “rephrase”

and “repeat.” There are many open and confounding issues. One key issue relates to

incorporating user behavior priors (i.e., probabilities) in the model. For example, we

observe that some users seem better able to avoid and/or get out of trouble. The authors

of [101] observe that in this specific experimental setup, where the subjects were paid
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participantswith no real stake in successful task completion, some users were simply

inattentive or careless. In the process of tagging the transcribed data, we additionally

observed that some participants had much more trouble than others getting usable ASR

output. Table 3.5 looks at some users who participated in 5 or more scenarios. In

Table 3.5, two users, A and B, seem particularly successful. Although they appear to

have higher numbers of errors per dialog, this is probably because they did not give up,

since they also have the highest rates of recovery with relatively short error episodes.

Two other users, C and D, seem the least successful. D has a very low percentage of

back-on-track errors, and C seems to experience inordinately long error episodes. When

we looked at the strategies these users adopted under error we found that all users tried

repeating themselves. However, the less successful users frequently hung up on the dia-

log or started the dialog sequence over; something that the successful users were less

likely to do.

UserID # of Errors/Dialog %BOT Avg length
dials of error segment

1 9 1.4 .69 8.5
2 9 1.4 .76 8.9
A 8 2.9 .87 7.8
B 8 2.4 .74 4.9
C 5 1.0 .60 10.2
D 5 1.4 .42 6.0

Table 3.5: Error-proneness in users: % BOT is the percentage of error episodes that got
back on track.

These types of prior user information need to be learnt and incorporated into the

models. Ongoing work focuses on those questions and how a user model interacts with

a system model in an optimization framework.
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Chapter 4

Analyzing the Multimodal Behaviors of

Users by using Concept Matching

Scores

——————————-

“Concept transfer rate is

one of the important

metrics to measure

system performance

and user satisfaction.”

——————————-

We investigate factors related to interfacing a speech-

to-speech translation device with multimodal capabil-

ities. We evaluate the efficacy of the interactions

using a measure for meaning transfer, we call concept

score. We show that employing a multimodal interface

improves translation quality, in this study, by 24%. We

also show that while some users require perfect repre-

sentation of what they said in order to allow transfer,

others accept concept degradation to some extent, in median up to 20% in our experi-

ments. An appropriate system strategy is required to recognize this behavior and guide

users towards optimum performance points. For example, we show that appropriate

feedback is required to guide the users in their choices of translation method, as 13% of

the choices users made are worse than the alternatives the system provided.
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4.1 Introduction

Current speech translation technologies support real time spoken language translation,

and are applicable in many areas such as medical services and business meetings. Suc-

cessful applications include Verbmobil [8], which provided a system for multilingual

scheduling, including airline and hotel reservations; Transonics [63], a medical diagno-

sis tool used by doctors; and MASTOR [24], a multilingual automaticSpeech-to-Speech

(S2S) translation system.

Although there has been intensive research on speech recognition technology [103]

and on machine translation [42], studies modeling users in S2S translation systems have

rarely been conducted. The need for studying user behaviors has already been demon-

strated under spoken dialog systems and it is our hypothesis that similar benefits from

user studies can be achieved in S2S systems. For our work we draw knowledge from

existing studies such as on system evaluation and multimodal interfaces. Kamm and

Walker [39] measured the performance of a spoken dialog system in terms of task suc-

cess and cost (number of turns). These two factors were utilized for maximizing user

satisfaction. Oviatt et al [70] reported that users of a spoken dialog system tend to

employ more of the available modalities as cognitive load increases with intensifying

task difficulty and communicative complexity. Also, Foster et all [22], in analyzing text

prediction models, have argued that by modeling the user they can provide improved text

prediction. For S2S translation systems, user studies can cover a vast range of topics,

such as language, culture, environment, education, and belief systems [11].

In particular, it is important to study the quality of the transferred concepts through

the S2S translation systems, and the level of transfer errors users are willing to accept

when using the system. Since a significant part of the machine error stems from speech

recognition errors, users are able to gauge in some part the degree of degradation by

observing the transcribed text of what they said. Some users are more accommodating
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to these system errors and still go ahead and accept erroneous speech recognizer output

as acceptable for translation, knowing well that they increase the chance of bad concept

transfer.

Another important research issue is the design of a flexible human-centric interface

for S2S translation systems based on user studies, and evaluating performance gains

due to such an interface. Potential system designs include speech-only, speech and text

output, speech and text input and output, or can include other modalities such as images,

touch screens and pen input etc. It is critical to know the resulting improvements through

combination of these modalities under specific conditions. For example in emergency

care, one would want very little in the way of device confirmation, visual modalities etc,

but instead would prefer a very high accuracy for a very limited number of concepts,

while in general practice one may accept a much larger range of modalities to allow for

a range of concepts and range of accuracy trade-offs.

Like a human translator, a translation device transfers meaning from and to one lan-

guage, such as English, to another language, such as Farsi (Persian) [11]. The process is

lossy. Vocabulary words and phrases need to be changed to their closest representation

in the target language, but will often be remapped to more distant equivalents, and gram-

mar and syntax will also degrade. As a result, the original meaning will be altered at

several different levels [52], conveying it sometimes quite closely and sometimes poorly.

It is important to measure how well meaning is transferred by translation devices. The

existing text translationmetrics, such as BLEU [76] and NIST [15], scores are based

on comparisons of several human translations with system-produced translations using

n-gram matching. In the study of this paper, to measure how well meaning is trans-

ferred by S2S translation system, we introduce a measure called a concept matching

score. This score refers to the number of concepts in a user utterance that is carried over

to the machine-produced utterance. We evaluate the performance of the S2S system
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andits subcomponents in terms of the concept agreement between the input and output

according to human annotators.

The section is organized as follows. Section 4.2 describes the S2S system used for

the experiments and section 4.3, the data collection and annotation. We present results

on multimodal versus single modality usage in Section 4.4.1, statistics on user error

tolerance in 4.4.2 and analysis on the quality of user choices in 4.4.3. Discussion and

conclusions follow in sections 6.6 and 7.

4.2 The Transonics System

Transonics [63] is a speech-to-speech (S2S) translation system, which facilitates two

way spoken interactions between English-speaking doctors, and Farsi-speaking patients.

This system is aimed at task-oriented interactions in the medical domain.

TheEnglish speaker(doctor) interacts with the system through two input modalities

of audio and a push-to-talk and selection keypad, and receives information through the

two modalities of audio and text representations on the screen. In addition there is

a more complex direct human-human channel that could potentially encode a lot of

information such as gestures and emotions, but that was not very actively used in this

collection due to the instructions given to the participants. ThePersian speaker(patient)

interacts with the device only in terms of the audio modality and has no access to the

keypad or the screen. The push-to-talk activation for the Persian speaker is handled by

the English speaker as well. This asymmetric design allows for minimal knowledge and

training of the Persian speaker.

In simple terms, the Transonics design processes the input speech as follows: First, it

converts the speech into text (Automatic Speech Recognition – ASR); second, it converts

the text into the target language (Machine Translation – MT); third, it plays out the
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Figure4.1: Example image of the system’s Graphical User Interface (GUI). After speak-
ing, the English speaker (doctor) can choose one of up to five translation candidates
presented onscreen. Section 1 shows the SMT optionE1 labeled with “I can try to trans-
late,” while the CCMT optionsEi ∀i ∈ {2,3,4,5} are labeled “I can definitely translate
these.”

translated text (Text-To-Speech synthesis TTS). The MT step operates in one of two

modes: The phrase-based translation (often called Statistical Machine Translation –

SMT); and the concept based translation (Concept Classification – CCMT). The English

speaker sees the various options on the screen after the MT step. We always show one

option (E1) that can be transferred through the SMT path, and up to 4 options (E2−E5)

that can be transferred through the CCMT path. The CCMT path has the advantage that

it provides a very accurate back translation since the concepts known by the CCMT were

previously humanly translated. Thus optionsE2−E5 will be transferred very accurately

in the target language, while optionE1 will undergo some further channel loss.

Figure 5.3 graphically shows the above description and defines the symbols for sub-

sequent clarity. In short:U is the original user input;A is the ASR belief (A'U); E1 = A

is the text that will be translated through the SMT and generate (lossy operation)F1

(F1'E1'U); andE2−E5 is the text already translated and mapped back (“non-lossy”,

human mapping) into English through CCMT (U ' A' Fi = Ei , ∀i = {2,3,4,5}).
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Synthesized

output

U A (A ~= U)

E1 (E1 ~= F1, E1 = A)

Display onscreen

Speech input

E5 (E5 = F5, E5 ~= A)
--------------------------------------

None of above

FiASR

SMT

Ei

None of above

E2 (E2 = F2, E2 ~= A)

E3 (E3 = F3, E3 ~= A)

E4 (E4 = F4, E4 ~= A)

User choice

CCMT

TTS

U: User utterance, A: ASR output,E1: SMT output in English, E2 ~ E5: CCMT outputs in English,

~= : Statistical operation, = : Lossless operationFi: Farsi translation of Ei(i = 1, 2,3,4, or 5),

ASR: Automatic Speech Recognition, SMT: Statistical Machine Translation,

CCMT: Concept Classification Machine Translation, TTS: Text-to-Speech,

Figure4.2: The internal procedure of generating speech translation candidates imple-
mented in the Transonics system. A doctor uses two-modality interface (push-to-talk),
and sees up to five candidates onscreen; one Machine Translation (MT) candidate (E1),
and up to four Classifier candidates (E2,E3,E4,E5).

The Persian to English path does not employ this choice interface, but the system

has the initiative and selects the best of the 5 options. Due to this asymmetry we will

constrain our analysis on the English user behavior.

For example, in Fig. 6.4 we see a screen-shot of the information provided to the

English speaker. In this example the speaker said “You have fever?” and sees up to

5 translation candidates (in this case 2) on screen. At this stage the user can detect

errors due to the machine speech recognition (ASR) component (option 1) and the ASR

and concept classification combined errors (options 2-5). In this case the ASR got the

user concept as “You have fever” that in ASR terms is quite accurate but which the

translation will likely be a statement. The second option of shows the ASR and concept

classification combined, which has resulted in the “Do you have fever” concept. Since

concepts are pre-translated by humans, this will result a very accurate, deterministic

translation if selected.
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4.3 Methods

4.3.1 Data collection

Two participants, a medical professional and an actor-patient, interacted with each other

through the S2S device. Both the doctors and patients were monolingual, so communi-

cation took place only through the Transonics system. A total of 15 sets of interaction

logs were collected from the experiments. The average number of utterances of the Eng-

lish speaker is 33, and that of the Farsi (Persian) speaker is 28. The data was manually

transcribed and annotated after the collection. The annotation included concept match-

ing scores between all pairs of same-path utterances such as(A,U), (E1,U), (E1,A),

(F1,E1), (F1,A), (F1,U), (E2,U), (E2,A), etc. These concept scores were generated by

two bilingual annotators that we ensured provided consistent results through training

and “calibration” sessions.

TheConcept Matching Score(CMS) was based on the Linguistic Data Consortium’s

human assessment metrics [60]. Ma and Cieri [60] say “Adequacy refers to the degree

to which the translation communicates information present in the original or in the best

of breed translation that serves as a proxy to the original.” Based on that the concept

matching score compares the number of concepts in an original utterance (source) and

the target utterance (destination), either through translation or within the same language,

e.g. through a lossy speech recognition channel. The score guidelines for CMS are:

1.0: All concepts are transferred.

0.8: Most concepts are transferred.

0.6: Many concepts are transferred.

0.4: Some concepts are transferred, such that users may sometimes get the whole

meaning.
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0.2: Few concepts are transferred, such that users rarely get the whole meaning.

0.0: None of the concepts are transferred.

The following example shows a user utterance and its corresponding translation. In

this example, the recipient of a translated utterance can easily recognize its meaning

even though some of the words in the utterance are not translated correctly. An aver-

age concept matching score of CMS[source,target]=CMS[U ,F]=0.8 is assigned to the

overall system translation path in this example.

Example, Average CMS=0.8:

User (U): DO YOU HAVE DOUBLE VISION

Translation (F1): VyA SmA v dyd dvgAnh dAryd

(DOES AND YOU HAVE A DOUBLE VISION)

4.4 Results and Analysis

In the study of this paper, we attempt to address three hypotheses. The methods and

results are presented in the following three sections 4.4.1, 4.4.2, and 4.4.3.

• Hypothesis 1:A multimodal interface, employing both the audio and text modal-

ities, will be better than a single-modality interface utilizing audio only, in terms

of translation quality.

• Hypothesis 2: Users will accept certain errors from the utterances provided by

the system. The degree of degradation in terms of concept representation that

different users are willing to accept varies.

• Hypothesis 3: Improving the feedback as to when it is appropriate to employ the

CCMT path can yield improved translation quality.
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4.4.1 Multimodal versus single-modality interface

Users are only able to make choices given a list of available options through the visual

modality, and are best able to choose the appropriate option by pen, mouse, or other

selection interface. The machine-denoted best choice corresponds in performance to the

single modality interface, while the user denoted one to the multimodal interface.

CMS[U ,Fu] whereu ∈ {1,2,3,4,5} and corresponds to the user choice was com-

pared to CMS[U ,Fm] wherem∈ {1,2,3,4,5} and corresponds to the machine-denoted

best choice.

To make the comparison more fair we assume that in the case of a single modality

a single spoken “yes” or “no” confirmation would be available to the user, emulating

in practice the same “None of the above” rejection that the user has in the multimodal

interface.

In our analysis, the multimodal interface resulted in CMS[U ,Fu]=78% while the

single-mode interface produced CMS[U ,Fm]=71%. This is a relative improvement of

24%.

By using the multimodal (audio and text) interface, users of Transonics achieved

24% error reduction in translation versus the single-mode interface (audio).

4.4.2 User Error Tolerance

User error tolerance level was measured in terms of the concepts lost between what

users said and what they accepted from the utterances that were provided by the sys-

tem. This is metric CMS[U ,Eu] whereu ∈ {1,2,3,4,5} and corresponds to the user

choice. It is different from the metric in the previous section as it does not consider sub-

sequent device losses in the translation. Note that users can chose to completely reject

an utterance, and those rejections are excluded from our analysis.
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Figure4.3: A box-plot and concept matching scores of user accepted utterances in the
15 sets of interactions. User retry utterances were not included in the total.

The left part of Figure 4.3 shows a box-plot of concept matching scores of user

selected utterances in the 15 sets of interactions. The median score of 0.95 indicates that

more than half of the users accepted the onscreen machine-produced utterances when

they contained 95% of the concepts in the original utterances. The standard deviation

(unbiased) was 0.21, and the mean absolute deviation was 0.17. We also note that

users accepted machine-produced utterances with concept matching scores as low as

0.4, which infers quite accommodating users. The mean concept matching score was

0.84, indicating that users on average are accepting of 16% concept loss from the speech

recongizer.

Next, we investigated how much users differ in terms of the number of concepts in

the original user utterances they would accept when using the Transonics system. The

right part of Figure 4.3 shows the box-plots of concept matchings scores of user selected

utterances in each set of 15 interactions. Users in the interactions, 6, 11, 12, 14 were

picky in accepting machine-produced utterances; half of their accepted utterances have

the perfect concept of the original utterances. Users in interactions, 5, 7, 8, 10 were more

accommodating than others in acceptance of concept errors in the utterances produced

by the system. We observed that some users changed their utterance selections relatively
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moreoften than others in terms of the number of concepts accepted, and that some users

were relatively consistent in their selections. In the right part of Figure 4.3, the standard

deviations ranged from 0.13 to 0.34 in the 15 sets of interactions, indicating that some

users were more consistent in their selections (users in interactions 3,12,13,15) than

others (users in interactions 1,2,7,10).

4.4.3 The quality of user choices

The quality of user choices using the Transonics system can be measured in relation

to the translation quality of the system. As explained in section 4.2 there are blocks

of utterance options displayed on the GUI corresponding to two paths of translation:

E1 which will get translated through the SMT, andE2−E5, which will be translated

through the CCMT.

By investigating user options and corresponding translations, we can measure the

quality of user choices; that is: how good were the resulting translations as opposed to

user selections.

We measured the CMS[U , Ei ] of user selections and corresponding CMS[U ,Fi ]

either provided by the SMT path (i = 1) or by the CCMT path (i ∈ {2,3,4,5}). Fig-

ure 4.4 shows the results. As expected, there is no drop between the two when the

CCMT path is the active one, but there is notable drop in the SMT path. This however

is counterbalanced by the fact that theE1 option is on average significantly better than

optionsE2−E5, which is also reflected in the 16% higher preference forE1 by the users.

This analysis motivates us to improve optionsE2−E5 by enriching the concept

domain. Despite the degradation in the best-concept classification performance that that

would entail, that still is countered by the fact that the user is given a 4-best list and that

E j = Fj ∀ j = {2,3,4,5}.

48



In the above analysis and in figure 4.4 we considered the input of the user as the

detected path. When analyzing the SMT path and the CCMT path for the same utterance

however, we found that in 13% of the data the users decided to take through the SMT

path, performance would have been improved if the users had chosen the CCMT path.

In the 13% of the data, we found that the average concept matching score of 0.83 was

degraded to 0.62 through the SMT path, but the average concept matching score through

the CCMT was 0.75.

We refer to this phenomenon discrepant translation quality. These are cases where

the users were focused so much on getting the minimal CMS[U,E1 = A] error that they

ignored their training that instructed them to chose options from the second category

(E2−E5) if those are acceptable. Thus they would reject accurate paraphrases. Dis-

crepant translation quality occurs because the additional errors made by the statistical

method of the SMT procedure are not shown on the GUI. The following notation repre-

sents such a case:

CMS[U,E1] > CMS[U,Ei ] ∀i = {2,3,4,5} (4.1)

but,

CMS[U,F1] < CMS[U,Fi ] for somei ∈ {2,3,4,5} (4.2)

Our hypothesis, that improving user feedback on when it is appropriate to chose the

CCMT path, can yield translation improvements has proven true. To optimize perfor-

mance, the translation system needs strategies to elicit better user choices onscreen in

cases of discrepant translation quality. This requires better self-assessment by the system

as to its expected translation accuracy through the SMT and better guidance to the user
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Figure4.4: Concept matching scores of the onscreen utterances selected by users with
the push-to-talk interface of the Transonics, and concept matching scores of the corre-
sponding final translations. User-selected utterances were processed through the SMT
path and the CCMT path. SMT is a statistical machine translation and CCMT is concept
classification machine translation.

on the expected degradation. To this end, we introduced back-translation functionality

in the SMT path in the newer version of the system. Although the effect of this will be

studied in future work, preliminary observations seem to indicate that this discourages

users significantly more than it was meant to, and encourages complete rejection.

4.5 Discussion

The lessons learnt from the Transonics user studies have been incorporated into the

design of our new translation system. We have implemented and are working towards

evaluating an agent that will mediate information flow between users and the system

in non-intrusive and productive ways. This can be as simple as hinting the user to

paraphrase after a rejection to aiding the user in disambiguating ambiguous utterances

by providing explanations.

One of the major hindrances in performing these experiments is the difficulty in

obtaining consistent annotation of the data. The annotators need to be fluent bilinguals,
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trainedextensively, and calibrated in their responses. In addition this grading of utter-

ances has to be seen in context, and often that is not easy. How do you judge if the

speaker would get certain concepts or not? Often that would be impossible to the anno-

tators given that they do not possess the same domain knowledge such as the medical

skills of the doctor, and illnesses details as the patient in the medical interaction domain.

An issue in the implementation of real time systems based on this analysis is the

correspondence of concept matching scores to real time system confidence levels. We

intend to address this in our future work.

4.6 Conclusion

This paper presented an empirical analysis of cross-lingual English-Persian interactions

using USC’s speech-to-speech translation system. We addressed and validated three

hypotheses: First, that additional modalities in the interface aid in communication accu-

racy, improving relative performance by 24% in the experiments of this study; Second,

that users are picky as accepting perfect representations over 50% of the time, and are

accommodating as having a median acceptance of 20% concept degradation; and Third

that accurate feedback as to the expected degradation of the SMT path can improve the

overall translation accuracy of the system, by showing that 13% of user choices led to

suboptimal translation.

The design and implementation of useful system strategies to elicit better user

choices will be the focus of our future work. In addition we intent to employ other

modalities, such as pictures for both input and output, that are universal symbols, to

solicit better synchrony among the participants.
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Chapter 5

Analysis of Behaviors of Users using a

Speech-to-Speech Translation System

over Time

——————————-

“People change over time,

which is happening

in most cases when

using computing systems.”

——————————-

In the chapter, we report final results from analysis of

users who used a multimodal interface of a speech-to-

speech translation system during the 4 weeks. Three

sets of collected data are investigated for the analy-

sis purpose: user interview data, user survey question-

naire, and log data of the system. In the analysis results

of user interview data and survey questionnaire, we

report that users incorporated the strategies to cope with system errors in unsuccess-

ful turns, such as repeat, rephrase, change topic, and start over. We also report that users

perceived their proficiency in using and learning the system improved during the first

three weeks. For the analysis of log data of the translation system, meaning of utterance

is considered important in the study. In this regard, we devised a metric called “Concept

Matching Score,” which measures the number of concepts transferred from source utter-

ance to target utterance. Using this metric, we first report the distribution of transferred

meaning level in two cases; successful and unsuccessful interaction turns of conversa-

tions. 91% of utterances in the successful turns contained more than half the meaning of

the original user speech, and 90% of utterances in the unsuccessful turns contained less
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than/equalto half the meaning of the original user speech in our data. Second, we inves-

tigate the meaning transfer level by the multimodal interface comparing with that by

the speech-only interface. We observed improvement of meaning transfer by 33% and

by 11% through the multimodal interface in comparison with two speech-only interface

settings respectively; one without and the other with filtering unsuccessful interaction

turn. Third, we report that users gradually accepted machine-produced utterances more

during the 4 weeks. Further analysis showed that users became more accommodating to

the system errors after having experiences of using the system, such as functional word

insertion errors, which usually does not impact on the final translation quality. In gen-

eral, users of speech-enabled interface have a strategy to deal with system errors, which

tends to change the length of speech. In our report, the length of user speech increased

after successful interaction turn, and decreased after unsuccessful turn. During the 4

weeks, average length of user speech was reduced gradually in the later 3 weeks.

5.1 Introduction

Speech is considered as a promising interface for future computing systems. It enables

us to talk freely to/through machine without extra efforts of learning interface func-

tionalities. Among many applications using speech interface, speech translation sys-

tems mediating communication between people who speak different languages are

demanded as the world become smaller, which is the system of the present study.

In the field of text-based translation, there are already many commercialized applica-

tions; for example, Google introduced “Google Machine Translation Systems beta”

(http://www.google.com/translatet) in early 2007. In the field of speech translation,
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commercialapplications were yet to be brought in, though research activities are grow-

ing; Transonics (now SpeechLinks) system from USC [63], IBM MASTOR system [24],

and SRI IraqComm.

To implement a well-performing speech interface for the Speech-to-Speech (S2S)

translation system, intensive research efforts are demanded; from speech recognition

and translation to cognitive load theory ([103, 42, 67]). In particular, studies about

modeling a user are critical for the wide application of the system, and also higher

user satisfaction. There are some projects successfully carried out with user informa-

tion from user modeling community: research and application with user demographic,

culture, and preference [86, 49, 37, 35]. Likewise, the speech interface equipped with

user information would provide benefits by adapting to diverse people efficiently and

expedite conversations between users, and finally users become comfortable using the

interface. It can be accommodated to various users in multiple levels of factors, such as

gender, error tolerance, and expertise of using the interface.

In practice, most of user modeling studies in the speech technology community were

conducted for spoken dialog systems, yet rarely done for spoken mediating systems

(e.g., S2S translation system). Few research activities were conducted in parts of the

Verbmobil system [98] and in our previous work [92]. Some studies with spoken dialog

systems are simply applicable to spoken mediating systems, but it depends on the cases.

Important user modeling studies of speech technology community include design and

evaluation of multimodal interface [71, 16, 14], analysis of user behaviors [71, 93], prob-

abilistic user model [18, 107], utility-based model [33], knowledge-based model [48],

and user simulation [55, 18, 89].

With comprehensive approach using the previous studies, a motivation of the study

comes from the perspective that users get used to the system as they use it more. In [57],

evolution of expertise over time with desktop application was reported. Conventionally,
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theexpert users are regarded as experienced users with the system [38]. Another moti-

vation is that using multiple input modalities (e.g., speech, mouse, touchpad, and key-

board) together is beneficial for users in many aspects. In the previous work, cognitive

load was reduced through a multimodal interface, in comparison with the speech-only

interface of spoken dialog systems ([67, 71]). Also, it was reported that the multimodal

interface significantly improved user experiences [14]. Indeed, it becomes a general

trend to use multiple modalities together to achieve a goal regardless of its usage. As

in another study [16], speech-centric multimodal interfaces are growing to be a popular

topic in research, though unimodal interface are common at the present time.

In the study, we set up and performed a scenario-based experiment, in which native

speakers of English and Farsi interacted with each other using a multimodal interface of

a speech-to-speech translation system. In total, three different types of data were col-

lected from the experiment – interview, survey and log data, and we investigate the data

in the following aspects: (1) user opinion about the multimodal interface, the system,

and the experiment; (2) user satisfaction, and user perception on the level of proficiency

in using the multimodal interface, and general speech interface and technologies; (3)

user actions upon successful/unsuccessful interaction turn, focusing on user retry/accept

behavior and user utterance length; (4) meaning transfer rate through the multimodal

interface of the system.

One critical point in the study is that we consider the meaning as part of a metric

to assess performance of the translation system. Like a human translator, a translation

system transfers meaning from one language, such as English, to another language, such

as Farsi (Persian) [63]. The process is inherently lossy. Vocabulary words and phrases

need to be changed to their closest representation in the target language. However, they

will often be re-mapped to more distant equivalents, and grammar and syntax will also

degrade. As a result, the original meaning will be altered at several different levels [52].
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It is conveyed sometimes quite closely and often poorly. It is important to measure how

well meaning is transferred by translation systems. Existing text translation metrics,

such as BLEU [76] and NIST [15] scores, are based on the comparisons of several

human translations with system-produced translations using n-gram matching. In the

study, in order to measure how well meaning is transferred by S2S translation system,

we introduce a measure called, “Concept Matching Score.” This score refers to the

number of concepts in a user utterance in the source language that is carried over to the

machine-produced utterance in the target language. We evaluate the performance of the

S2S system and its subcomponents in terms of the concept agreement between the input

and output according to human annotators.

The section is organized as follows. The system used for the experiment is described

in Section 5.2. The collected data with its descriptions are laid out in Section 5.3. The

results are explained in Section 5.4. The discussion and conclusion are in Section 6.6

and Section 7 respectively.

5.2 System

Transonics system is a two-way translation system with a multimodal interface, called

“push-to-talk.” Speech and visual are two input modalities for this Graphical User Inter-

face (GUI). The system facilitates two way spoken interactions between an English

speaking doctor and a Farsi speaking patient. The goal of the system is to facilitate a task

oriented rather than a free-form socio-emotional interaction between two participants.

The domain of the system is not fixed, but primarily the medical-related conversations.

Figure 5.1 shows a set-up scene of performing a diagnosis for the disease of a patient by

a doctor, and one example of recognized user speech with the GUI.
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Figure 5.1: A set-up scene of conversations using the Transonics system between
English-speaking doctor and Farsi-speaking patient (left). The doctor is conducting a
diagnosis of the disease of the patient. The GUI (right) of Transonics shows an example
of the recognized results of what user said, “YOU HAVE A FEVER?”

By design, the interface control of the system is asymmetric in the sense that the

(English-speaking) doctor has exclusive control over the interface, and access to the

GUI, while the (Farsi-speaking) patient does not. This was to allow even untrained and

non-educated patients access to the system. Under this asymmetric interface design set-

ting, the monolingual patients are assumed to be untrained in using the system, and to

ensure uniform results in the experiments, they are not even allowed to see the screen.

The system decides, based on confidence scores of automatic utterance to concept classi-

fication, whether their utterance is close enough to a particular concept class. If deemed

confident, the cluster-normalized form concept will be transferred to the doctor, and if

not, a direct potentially noisy statistical translation of the text will be provided. Most of

the time an incorrect transfer can be detected by the doctor due to the lack of coherence

with the discourse of the interaction. The Persian patient can also repeat, verbally or

through gestures, repetitions or repairs. Note that an experienced doctor, in the case of

receiving information that does not match the discourse, can assume that he needs to do

error control by rejecting the solution provided by the system with the user retry option.

57



With the push-to-talkinterface, users initiate a speaking turn which has its advan-

tages and limitations; users verify concepts before executing the final decision for

‘speaking-out,’ but work under less spontaneous and less natural environment. In the

recognized example in Figure 5.1, when the doctor says, ‘You have fever?’ the user

can decide whether to synthesize ‘You have fever’ or ‘Do you have a fever?’, which are

translated through machine translation or statistical classifier.

The internal process of the Transonics system involves seven components. Fig-

ure 5.2 shows a simplified block diagram of Transonics with its components. The

user’s spoken utterance is converted into textual form by an automatic speech recog-

nizer (ASR) in the appropriate language of the speaker (English for the doctor and Farsi

for the patient in this case) and further processed by two parallel mechanisms: one by a

phrase-based statistical Machine Translation (MT) module that translates the text form

one language to another and the other by a statistical classifier which attempts to cate-

gorize the utterance into one of several predetermined “concept” categories. The Dialog

Management (DM) module is the center of mediating messages between the modules,

and interacts with the MT/classifier, the GUI and the TTS to deliver the data to the user.

To better understand the translation system operation, and the associated issues, we

can identify three distinct operations in the process. The first is the conversion from

speech (audio) into a textual transcription of the spoken utterance through statistical pat-

tern recognition. This procedure is commonly referred to as Automated Speech Recog-

nition (ASR), and is an inherently lossy operation, i.e. often the transcript may not

accurately represent what the user characterized by deletion/insertion/substitution of the

spoken words. The second procedure is the machine translation (MT). At this stage

the text is mapped from the source language (e.g., English) to the target language (e.g.,

Farsi). We have two parallel approaches to this step, both again statistical in nature, and
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Figure 5.2: Simplified data flow diagram of our two way speech translation system
for doctor-patient interactions. English and Farsi Automatic Speech Recognition(ASR)
models get the input from users (doctor and patient, respectively) while the Machine
Translation(MT) module is responsible for automatic translation and classification of
user utterances. The Dialog Manager(DM) manages the interactions between the mod-
ules, and delivers the data to users through the GUI. Users finally hear the synthesized
output through the the Text-to-Speech (TTS) synthesizer.

represent a lossy mapping process. The approaches we consider are a phrase-based sta-

tistical machine translation and an utterance concept classifier – details are in the below

paragraphs. The third stage is the conversion of the target language transcript from text

to audio by synthesizing the speech, through the TTS.

Figure 5.3 graphically shows the details of above description and defines the symbols

for subsequent clarity. As described above, the MT step operates in one of two modes:

The phrase-based translation (often called Statistical Machine Translation - SMT); and

the concept based translation (Concept Classification - CCMT). The English speaker

sees the various options on the screen after the MT step. We always show one option

(E1) that can be transferred through the SMT path, and up to 4 options (E2 - E5) that

can be transferred through the CCMT path. The CCMT path has the advantage that it
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U: User utterance, A: ASR output,E1: SMT output in English, E2 ~ E5: CCMT outputs in English,

~= : Statistical operation, = : Lossless operationFi: Farsi translation of Ei(i = 1, 2,3,4, or 5),

ASR: Automatic Speech Recognition, SMT: Statistical Machine Translation,

CCMT: Concept Classification Machine Translation, TTS: Text-to-Speech,

Figure5.3: The internal procedure of generating speech translation candidates imple-
mented in the Transonics system. A doctor uses two-modality interface (push-to-talk),
and sees up to five candidates onscreen; one Machine Translation (MT) candidate (E1),
and up to 4 Classifier candidates (E2 - E5).

provides a very accurate back translation since the concepts known by the CCMT were

previously humanly translated. Thus options E2 - E5 will be transferred very accurately

in the target language, while optionE1 will undergo some further channel loss.

Description of the symbols is follows:U is the original user input;A is the ASR

belief (A'U); E1 = A is the text that will be translated through the SMT and generate

(lossy operation)F1 (F1'E1'U); andE2−E5 is the text already translated and mapped

back (“non-lossy”, human mapping) into English through CCMT (U 'A'Fi = Ei , ∀i =

{2,3,4,5}).

5.2.1 Multimodal Interface of Transonics

In the previous studies, multimodal interfaces were considered flexible, accommodating

to large user differences, and supporting rich expressiveness for the user familiarity in

modalities [71]. In this regard, the interface of Transonics was designed multimodally
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to fulfill the requirement of quality translation, accommodating diverse users, and less

flimsy with errors.

The push-to-talkinterface of Transonics consists of two input modalities, speech

and visual. After voice input, users are able to make choices given a list of available

options through the visual modality, and are best able to choose the appropriate option

by mouse. Figure 5.3 symbolizes this description.U is the output of user speech, andEi

wherei ∈ {1,2,3,4,5} and “None of Above” are the items of the list available to users

to choose.

5.3 Data Collection

5.3.1 Experimental Setup

For the experiment, we hired 4 native speakers of English and 4 of Farsi. The age

range of the participants was from 20 to 30, and they were graduate and undergraduate

students at USC. An hour training session was given to all before the experiment, so

they knew what they were supposed to do in the experiment. The training session was

about how to do the experiment with given scenarios and the Transonics system. Flash-

style interactive instruction was given to the participants for 30 minutes, and verbal

explanations were given for 30 minutes. No special training on speech interface was

given to the participants in this training session. The compensation for each person was

$15 US dollars per hour.

To make more realistic interactions between the participants (participants were not

real doctors or real patients), a role-play experiment was designed. English speakers

became doctors and Farsi speakers were patients. They were given experimental mate-

rials for each role. The materials for doctor-role English speakers were a diagnosis
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Figure 5.4: Experimental materials for doctor-role English speakers and patient-role
Farsi speakers. On the left, a sample of a diagnosis manual of doctor is presented,
which is designed for common cold. In the full size table, there are 12 diseases in the
column and 30 symptoms in the row. On the right, a patient card for common cold is
presented.

manual, a disease treatment manual and a medical term dictionary. The diagnosis man-

ual is a table, consisting of 12 diseases in the column (common cold, flu, food poisoning,

lactose intolerance, depression, insomnia, hypertension, high cholesterol, liver cancer,

lung cancer, SARS, and diabetes), and 30 symptoms in the row. Each disease’s diagnosis

manual differs in sorts of symptoms; the 30 symptoms were varied depending on the dis-

ease. We developed the diagnosis manual using the medical diagnosis information from

“http://www.medicinenet.com.” The other two experimental materials for doctor are

disease treatment manual and medical term dictionary, which are treatment descriptions

of each disease and definitions of diseases and symptoms respectively. Farsi speakers

were given two experimental materials – symptom card and medical term dictionary.

The symptom card is written in Farsi characters, and 4 symptoms of the targeted disease

were selected for each interaction session. The medical term dictionary was the same as

a doctor’s definitions of diseases and symptoms. Example diagnosis manual of doctor

and symptom card of patient are presented in Figure 5.4.
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5.3.2 Procedure of Experiment

Each conversation team of English and Farsi speakers conducted eight different sessions

for 4 weeks, each team performed two interaction sessions per each week. The inter-

action session was set up with different scenario (different disease with corresponding

symptom card), and the doctor worked out to figure out what the disease the patient has

with the symptom card. Both parties were not informed about the disease information

before the session. All 4 teams followed the same sequence of scenarios: common cold,

liver cancer, food poisoning, SARS, hypertension, lung cancer, insomnia and depres-

sion. We assumed that the difficulty levels of the eight scenarios were equivalent, which

were open-ended. Participants filled out survey questionnaires before and after sessions,

and the interaction sessions were video-recorded with a Sony Hi-Fi video recorder for

the analysis purpose.

We tried to set up the experiment as objective and in equal conditions as possi-

ble. Participants put on headsets and were instructed only to interact through the chan-

nel with Transonics, which ensures translations are only being transferred through the

device (audio masking effect). The experimenter left the room during the experiment

and notified the participants when the time of the interaction session reaches thirty

minutes. Therefore, all sessions were finished approximately in thirty minutes.

Figure 5.5 shows a snapshot of one interaction session. The doctor-role English

speaker (right) is doing a diagnosis of the disease of the patient-role Farsi speaker (left),

under a set-up scenario. The English speaker controls the Transonics system, and there

are three experimental materials in front of her. On the other side, two experimental

materials of the Farsi speaker are located on the desk.
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Figure5.5: A snapshot of an interaction session. A doctor-role native speaker of English
(right) controls the device and have a conversation with a patient-role native speaker of
Farsi (left) to identify a disease.

5.3.3 Analyzed Data

The data collected during the experiment are in three types: log data, survey question-

naire, and user interview. First, the log data of the Transonics system was collected

after each interaction session. It contains all user actions and system information during

the session; system confidence levels on the machine-produced utterances, user selec-

tions on the machine-produced utterances, recognized hypotheses of the ASR, translated

hypotheses of the translation components (SMT and CCMT), recorded user voices, and

synthesized system voices in text. Table 5.3.3 shows one cleaned sample of the log data.

The system routing tag represents the information flows from the source module to the

target module, for example, ‘FADT’ indicates that the data went from the audio server

to the dialog management module in text form. In the content column, the processed

data are presented, which comes with this routing tag. Second, survey questionnaires

were given to the participants before and after the interaction sessions. Also, the initial

survey questionnaire was given to the participants to assess the perception on the level

of their general technology proficiency, demographic information, and feeling about the
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SystemRouting Tag Content

FADT YOU HAVE OTHER MEDICAL PROBLEMS|
DO YOU HAVE OTHER MEDICAL PROBLEMS

FDMT YOU HAVE OTHER MEDICAL PROBLEMS
FMDT SmA mSkl pzSky dygry dAryd|

YOU HAVE OTHER MEDICAL PROBLEMS
FDGT YOU HAVE OTHER MEDICAL PROBLEMS
FDMT DO YOU HAVE OTHER MEDICAL PROBLEMS
FMDT VyA hyC mSkl pzSky dAryd|

DO YOU HAVE ANY MEDICAL PROBLEMS
FDGT DO YOU HAVE ANY MEDICAL PROBLEMS
FDGC ShownAllOptions
FGDT Choice*1

Table 5.1: Table shows a simplified portion of the data log acquired automatically by running the Transonics speech translation
system. There are system routing tags(FADT, FDMT, FMDT, FDGT, FDGC, FGDT – F: Flow, A: Audio server, D: Dialog manage-
ment, M: Machine translation, G: Graphical User Interface, T: Text, and C: Control) indicating the data flow from/to on the left side
and the data being processed on the right side. Actual data are in the content column. Additional information logged, not shown for
simplicity, include time stamps, utterance sequence, confidence and class numbers.

multimodal interface. The questions before the session include feeling of today, the

number of experiences using speech interface, and any changes of participants com-

pared to those of the previous sessions. The questions after the session include user

satisfaction, perception on the overall system performance, difficulty of topic and using

system, and any suggestions. Detail analyses with the survey questionnaire are in the

result section. Third, user interview was conducted after each interaction session. In

this interview, participants verbally expressed what they felt during the interactions of

the session. The experimenter spent 10 minutes for this interview.

5.3.4 Transcription and Annotation of Log Data

The analysis of the log data was two-fold: first, we examined some explicit information

in the log data, such as user behaviors (accept and retry), and the machine-produced

utterances (speech recognition and translation); second, we annotated the log data with

concept scores, which indicate how much correct concepts are transferred by the system,
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andinvestigated this annotated log data. The following paragraphs present the details of

this second approach.

Concept Matching Score

In [52], meaning is considered as the most important metric for the translation. In

this regard, to assess the transferred meaning through the system, we devised a metric,

called “Concept Matching Score (CMS).” The idea of the CMS was borrowed from the

Linguistic Data Consortium’s human assessment metrics [60]. In particular, Ma and

Cieri [60] say “Adequacy refers to the degree to which the translation communicates

information present in the original or in the best of breed translation that serves as a

proxy to the original.” Similar to the previous study, the CMS is assigned based on the

number of concepts in an original utterance (source) and the target utterance (destina-

tion), either through translation or within the same language, e.g. through a lossy speech

recognition channel. The CMS scores were manually assigned by human to all the pairs

of same-path utterances in the log data, such as(A,U), (E1,U), (E1,A), (F1,E1), (F1,A),

(F1,U), (E2,U), (E2,A), etc, as shown in Figure 5.3.

To assign CMS scores to utterances of the log data, we hired 4 bilingual speakers,

fluent in English and Farsi. Because of a large amount of data (total number of investi-

gated utterances – from English and Farsi speakers – was 2435), the data were divided,

two persons took charge in transcriptions of utterances, and the other two in assigning

scores to utterances. Two hours of training and calibration sessions were given to these

4 bilingual speakers, in which they were given verbal instructions with some examples

for transcribing user speeches and assigning the CMS scores. The CMS scores were

assigned based on the following guideline:

1.0: All concepts are transferred.

0.8: Most concepts are transferred.
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0.6: Many concepts are transferred.

0.4: Some concepts are transferred, such that users may sometimes get the whole

meaning.

0.2: Few concepts are transferred, such that users rarely get the whole meaning.

0.0: None of the concepts are transferred.

Reliability in Concept Matching Score Assignment

We acquired two sets of CMS scores assigned for all the pairs of same-path utterances,

which were processed by 2 bilingual speakers. The reason for this was to avoid biased

CMS scores. We averaged two CMS scores for each pair of utterances, and used the

averaged CMS scores for analysis in the result section. For the reliability in the scores,

we computed inter-annotation agreement between two sets of CMS scores. The preci-

sion was 0.52, and the number of entries of pairs for the comparisons was 6353.

5.4 Results and Analysis

In the study, we analyzed user behavior and system performance in two types of mea-

sures. One is subjective and the other objective. The subjective measure includes user

interview and survey questionnaire, while the objective measure includes the analysis of

user actions, user utterance length, and machine-produced utterances in the log data. In

the analysis of objective measure, humanly annotated Concept Matching Score (CMS)

was utilized for the assessment of concept transfer rate from original utterance to target

utterance. Statistical analysis toolkit, SPSS 15.0 was used for generating statistical data

and graphs.

Before giving details, it may be interesting to see how many diseases the doctor-

role participants found out correctly. After each interaction session, we assessed the
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correctnessof the diagnosis result by doctor-role English speakers. They finalized a

diagnosis of the disease based on the information collected during the session. Out of

32 interaction sessions, 19 sessions has a correct diagnosis. This means, each participant

took part in 8 sessions, and found out the correct disease in 4.75 sessions (std. 0.957)

overall. We attempted to investigate user behaviors and its relation to the correctly-

diagnosed sessions and the incorrectly diagnosed sessions, but there was no explicit

evidence from the results.

5.4.1 Subjective Measure

User Interview

In the interview with participants after sessions, the experimenter asked about what the

participants felt about the conversation and the system. Most of the interviewees said

they managed to communicate through the system successfully, and during the session,

they not only focused on the communication but they thought about the strategies to

deal with system errors. The major strategies they used were repeat, rephrase, change

topic and start over. In the session of the 4th week, one interviewee mentioned that

she became comfortable coping with the errors generated by the system. In particular,

some interviewees commented that there were some words unrecognized, and suggested

“making the system prone to language would benefit the communication.”

Survey Questionnaire

There are three types of survey questionnaire given to the participants. First, every

participant filled out a one-time survey questionnaire before the actual experiment. As
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describedin Section 5.3, general questions were given to the participants. In the col-

lected survey questionnaire data, all the participants had no experiences in using speech-

enabled systems before the experiment. In this result, the speech-enabled systems repre-

sent any applications with speech recognition interface, such as translation or call center

spoken dialog systems. Also, the average level of proficiency in general technology (1:

comfortable – 7: never comfortable) was 3.0 (std. 1.4) for the 4 native speakers of Eng-

lish, and 2.5 (std. 1.0) for the 4 native speakers of Farsi. The average level of proficiency

in dealing with computers (1.0: better than most - 5: worse than most) was 2.25 (std.

0.95), and 1.25 (std. 0.5) in the data of English speakers and Farsi speakers respectively.

In the second and third types of survey questionnaire, which are “before” and “after”

survey questionnaires, we investigated only the survey data of doctor-role English speak-

ers. This is because of the asymmetric interface design of the Transonics system, mean-

ing only doctor-role English speakers control the multimodal interface of the system,

though still patient-role Farsi speakers use the speech-only interface. The “before” sur-

vey questionnaire includes the questions before each interaction session, and “after”

includes those after each session. We focus primarily on the “after” survey question-

naire in the following analysis because there was no explicit difference in the analysis

results of the “before” survey questionnaire. In the survey data of English speakers, we

investigated user perception on overall satisfaction, difficulty in using the system, adap-

tation to the system, and overall system performance. Table 5.4.1 summarizes overall

statistics from the collected user survey data in this regard.

In another question, we measured user perception on their performance on each

interaction session – user performance is defined as the level of using and learning the

functionalities of the system. In the survey questionnaire, we explained that the user

performance can be dependent upon the system performance (speech recognition and

69



Usersatisfaction (1: very unsatisfied - 7: very satisfied) 4.6(0.9)
Difficulty in using the interface (1: difficult to use - 7: easy to use) 5.4(1.2)
Useradaption to using the system (1: difficult to adapt - 7: easy to adapt) 5.3(1.3)
Overall system performance (1: no concepts delivered - 7: all concepts delivered)4.4(0.7)

Table 5.2: Summary of overall statistics from the survey data of doctor-role English
speakers, which were collected after each interaction session during the 4 weeks: user
satisfaction, user perceived difficulty when using the interface, user adaptation to using
the system, and user perceived system performance.

translation), and asked the participants to try to ignore recognition and translation qual-

ity of the system when answer this question. This was to reduce the effect of system

performance on user performance. Table 5.3 shows what the participants perceived

their performance during the weeks in the range of (1: “very bad” - 7: “very good”).

The figures show that the participants were getting better in their performance overall,

despite a performance drop in the 4th week.

week1 week 2 week 3 week 4
perceived user performance4.25(0.96) 4.75 (0.96) 5.25 (1.2) 5.0 (0.8)

Table 5.3: User performance during the weeks, in terms of using and learning the func-
tionalities of the system. The answer was in the range of (1: “very bad” - 7: “very
good”). Participants were instructed, when they assessed their performance, try to ignore
the recognition and translation quality of the system.

Objective Measure

Objective measure in the study is the analysis of the features, such as user behaviors

and machine-produced utterances in the log data. Additionally, humanly assigned Con-

cept Matching Scores between all the pairs of utterances were utilized for this analysis

purpose. Before going details, it is worthwhile to take a look at general statistics about
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thedata. We present the statistics of the data from doctor-role English speakers, which

contains more valuable data for the analysis because of the asymmetric interface design

of the system: total number of utterances of 4 speakers during the 4 weeks was 1489; the

average number of utterances per interaction session was 46.5 (std. 16.7); the average

user acceptance rate in machine-produced utterances per each interaction session was

0.64 (0.09); the average number of words per utterance was 5.16 (2.0); and the aver-

age concept matching score between the user speeches and the user-accepted utterances

(from the machine-produced utterances) was 0.84 (0.19). The general statistics about

the data of Farsi speakers were: total number of utterances of 4 speakers during the

4 weeks was 946; the average number of utterances per session was 29.6 (11.8); the

average number of words per each utterance (translated word by word in English) was

3.34 (2.3); and the average concept matching score between the user speeches and the

translations (machine-produced) was 0.56(0.39). Note that Farsi speakers did not have

an access to the push-to-talk interface, therefore most of utterances were transferred

through the system without being filtered by Farsi speakers.

* Distribution of Transferred Meaning from User Speech to Successful and Unsuc-

cessful Machine Recognition.

In the study, users of the multimodal interface accepted or retried the machine-

produced utterances depending on certain conditions. The conditions involve the num-

ber of concepts of user speech transferred through the system: users speak and see the

recognized utterances by the system using the multimodal interface. Intuitively, users

accept the machine-produced utterances when “most” of the concepts in user speech

are in the machine-produced utterances, and retry with “low” concept transfer in the

machine-produced utterances. The question is how many concepts “most” represents

when users accept the machine-produced utterances. For example, “most” can represent

the perfect concept transfer or half of concept transfer from the original user speech.
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Figure5.6: Top left: CMS between user speech and user accepted utterance (between
U and Ei where i ∈ {1,2,3,4,5} in Figure 5.3); Top right: cumulative CMS of the
left distribution; Bottom left: CMS between user speech and user rejected utterance
(betweenU andEi wherei = None of above); Bottom right: cumulative CMS of the left
distribution.

In this regard, we investigated the number of concepts transferred from user speech

to user-accepted utterances (successful turn) and user-retried utterances (unsuccessful

turn). Figure 5.6 shows the distributions of Concept Matching Scores in two conditions

(successful and unsuccessful), represented by the symbols in Figure 5.3,(U,Ei) where

i ∈ {1,2,3,4,5} and(U,Ei) wherei = None of Above, with the cumulative sum graphs

of the Concept Matching Scores.

In overall, CMSs between user speech (U) and user-accepted utterance (Ei , where

i ∈ {1,2,3,4,5}) and between user speech (U) and user-retried utterance (Ei wherei =

None of Above) were 0.84 (std. 0.19) and 0.25 (std. 0.21) respectively. The individual
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average CMSs of 4 users between user speech and user-accepted utterance were 0.83

(0.24), 0.86 (0.15), 0.80 (0.2), and 0.87 (0.14) and between user speech, and CMSs

between user speech and user-retried utterance were 0.33 (0.25), 0.20 (0.18), 0.29 (0.22),

and 0.21 (0.16) respectively.

* Boosted Concept Transfer Rate by Multimodal Interface.

The Transonics system incorporated a multimodal interface with speech and visual

input modalities (called “push-to-talk”) to expedite higher concept transfer rate in con-

versations between speakers. The motivation of designing the multimodal interface of

a S2S translation system was drawn in parallel with advances in the previous studies

([71, 14]), in which overall system and user performance enhancement were achieved

by multimodal interface of spoken dialog systems. In the study, we conducted an exper-

iment comparing concept transfer rates in two settings: (1) multimodal interface; (2)

unimodal interface. The log data of the Transonics system were utilized in this study.

Detail experimental settings are the following. When using the multimodal interface,

users selected one of the machine-produced utterances onscreen or retry it using “none

of the above” retry option. After this, the corresponding translations of the user-selected

utterances were through the internal procedure (refer to Figure 5.3), and synthesized to

the other user. In the unimodal interface setting, the system internally selects the best

utterance matched with user speech and synthesizes it (no retry option). We compared

the Concept Matching Scores between user speech and translation in these two settings.

As shown in Table 5.3, 33% relative CMS improvement was achieved in the multimodal

interface setting when there was no filtering option (retry) for bad machine recognition

in the unimodal interface setting. To make the comparison more fair, we assume that in

the case of the unimodal interface, a single spoken “yes” or “no” confirmation would be

available to the user, emulating in practice the same “none of the above” rejection that

the user has in the multimodal interface. This experiment can be formalized using the
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CMS between user speech and translation
without retry option with retry option

unimodal 0.51(0.33) 0.63(0.25)
multimodal 0.67(0.23)

Table 5.4: Concept Matching Score (CMS) (standard deviation) between user speech
and translation in two settings: unimodal interface and multimodal interface. The uni-
modal interface with retry option was set up with a single spoken “yes” or “no” confir-
mation which would be available to the user emulating the “None of the above” retry
option of the multimodal interface.

symbols in Figure 5.3; CMS[U ,Fu] whereu∈ {1,2,3,4,5} and corresponds to the user

choice was compared to CMS[U ,Fm] wherem∈ {1,2,3,4,5} and corresponds to the

machine-denoted best choice respectively. In this experiment, we acquired 11% relative

CMS improvement in the multimodal interface setting (Table 5.3). Note that, in this

setting, only 10% of the utterances from both interface settings were different, which

primarily boosted the concept transfer rate in the multimodal interface setting.

* Increase in User Acceptance Rate over Time.

During the experiment, the users using the multimodal interface of the Transonics

system accepted or retried the machine-produced utterances onscreen. According to the

investigation on the number of user acceptance in the machine-produced utterances, we

observed that users’ acceptance rate increased during the 4 weeks in overall, as shown

in Figure 5.7. User acceptance rate is defined as:

the number of user-accepted utterances in a session
thenumber of whole utterances in a session

(5.1)

This increasing user acceptance trend during the weeks may be related to some

factors. Table 5.5 presents the Concept Matching Scores of two cases during the 4

weeks: (1) CMS between user speech (U) and ASR output (A); (2) CMS between user
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Figure5.7: Linear trend representing increasing user accepted rates during the 4 weeks.
User accepted rates were acquired over the 32 interaction sessions, in which the English
speakers accepted the machine-produced utterances using the multimodal interface of
Transonics. Each circle represents user accepted rate per each interaction session.

speech (U) and user-accepted utterances in the machine-produced utterances (Ei where

i ∈ {1,2,3,4,5}). Statistical analysis with ANOVA measure on the first case (CMS

between user speech (U) and ASR output (A)) confirmed no significant difference dur-

ing the 4 weeks: F=2.0, p=0.12. However, ANOVA measure on the second case (CMS

betweenU andEi wherei ∈ {1,2,3,4,5}) confirmed a significant difference over the

weeks: F=4.17, p<0.01. Post-hoc test with Tukey HSD on the second case confirmed

that the CMS of Week 1 and that of week 4 are significantly different. Conjecture is

that the reason for the increased acceptance rate during the weeks is that users accepted

more functional word errors as they became accustomed to the usage of the system. The

example “AND ANY OTHER SYMPTOMS” was observed in our data.

One question is that decrease in concept transfer from user speech to user-accepted

utterances (CMS betweenU andEi wherei ∈ {1,2,3,4,5}) may or may not affect on the

translation quality (CMS betweenU andFi wherei ∈ {1,2,3,4,5}). In this regard, we

investigated the translation qualities during the 4 weeks: 0.69 (0.22), 0.64 (0.22), 0.66
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week1 week2 week3 week4
CMS (U , A) 0.66(0.31) 0.64(0.32) 0.68(0.3) 0.64(0.37)
CMS (U , Ei wherei ∈ {1,2,3,4,5}) 0.88(0.19) 0.85(0.2) 0.84(0.18) 0.82(0.2)

Table 5.5: Overall CMS (standard deviation) of two cases in the interaction sessions
during the 4 weeks. The first case is between user speech (U) and ASR output (A),
and the second is between user speech (U) and user-accepted utterances in the machine-
produced utterances (Ei wherei ∈ {1,2,3,4,5}).

(0,21), and 0.65 (0.24). The ANOVA on the translation qualities during the 4 weeks

confirms that there is no significant difference (F=1.3, p=0.17).

* Effect of successful and unsuccessful interaction turn on the length of user utter-

ance.

Users using speech interface have an effective way of dealing with system errors.

Users reduce the length of their speech and rephrase the previous utterance after sys-

tem error or in the consecutive chains of system errors. On the contrary, they attempt to

speak long sentences when the system works fine. Table 5.6 shows the average utterance

lengths of the participants in three conditions: (1) in overall; (2) after accept behavior;

(3) after retry behavior. It indicates that the participants spoke relatively longer utter-

ance after accepting previous machine-produced utterance, and shorter utterance after

retrying the previous machine-produced utterance.

From an another perspective, we hypothesized that the users of the multimodal inter-

face gradually felt and learned how to deal with system errors effectively by modifying

the utterance length while retrying or accepting previous machine-produced utterances.

In particular, from our data, users reduced the length of their utterances when error hap-

pened, and this trend increased over the weeks. Table 5.7 shows the percentages of

reduced utterance length after user retry behavior, through the multimodal interface of

Transonics during the 4 weeks. The statistics were from the 32 interaction sessions of
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Overall After accept After retry
Average utterance length5.16(2.0) 5.26(2.1) 5.0(1.9)

Table 5.6: Average utterance length (standard deviation) in three conditions: in over-
all, after accepting previous machine-produced utterance, and after retrying previous
machine-produce utterance. The utterance length is defined as the number of words in
an utterance. The statistics were collected from the 32 interaction sessions of the English
speakers who controlled the multimodal interface of the Transonics system.

the English speakers. Users in the third and the fourth weeks have higher percentages in

reducing their utterance length after retrying the previous machine-produced utterance,

compared to the first and second week (though the percentage in the second week did

not increase from the first week). On the other hand, the percentages of increased utter-

ance length after accepting the previous machine-produced utterance during the 4 weeks

were 62%, 62%, 67%, and 68% respectively (the same utterance length inclusive).

week1 week2 week3 week4
23% 20% 28% 30%

Table 5.7: Percentage of reduced utterance length after user retry behavior using the
multimodal interface of the Transonics system. The statistics were from the 32 interac-
tion sessions of the English speakers during the 4 weeks.

Investigating details about individual difference in the utterance length, ANOVA

measure confirm that there is a significant difference in the lengths of individual

utterances: F=48.7, p<0.01 (English speakers), and F=90.7, p<0.01 (Farsi speaker).

Table 5.8 shows the difference of utterance length between users. User 1 and 4 (from

both English and Farsi) used shorter utterances compared to user 2 and 3. In an attempt

to investigate the different utterance lengths of users during the 4 weeks, for example
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User1 User2 User3 User4
Englishspeaker 4.1(1.6) 5.7(2.3) 5.6(2.0) 4.6(1.2)
Farsi speaker 3.0(1.8) 4.4(2.3) 3.7(2.3) 1.7(1.3)

Table 5.8: Average utterance length (in words) and its standard deviation of English
speakers and Farsi speakers, which were collected from the 32 interaction sessions dur-
ing the 4 weeks.

users may have a tendency of decreasing utterance length during the 4 weeks, but we

could not find a significant difference in the result.

5.5 Discussion

One of primary hypotheses for the study was that translation quality would improve as

users became used to using the system. Intuitively, users become proficient over time in

dealing with the system gradually, and they got better system performance eventually.

However, the study showed that there was no significant improvement or retrogression

in the translation quality during the 4 weeks in terms of correctly transferred concepts.

Conjecture is that the reason why translation quality did not improve during the weeks:

(1) Too many unknown and combined factors caused system errors (speech recognition

and translation errors), which can be mistaken user behaviors, mismatches of acoustic

and lexical models between user speech and the system, and intrinsically statistical prop-

erty of the system. (2) The system could not process all the utterances of users, some

words in user speech were not in the vocabulary or in the n-gram matches (language

model) of the system. The problem is that this “malfunctioning” (above two conditions)

can happen anytime. In the interaction sessions during the 4 weeks, participants worked

with given scenarios, which were pretty much open-ended. Therefore, the participants

could speak any type of utterances in the domain of the scenarios. In this condition, the
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“malfunctioning” problem happens in any week during the experiment, not depending

on user skills or user experience levels.

Another important issue in the study was bias in the assignment of Concept Match-

ing Scores between utterances. Concept Matching Score (CMS) is a subjective metric

assigned by human. Although we hired 4 bilingual people to make two sets of scores,

gave careful instructions to them, averaged the scores between the two sets, and inves-

tigated statistically huge enough data, still it does not guarantee perfectly unbiasedness

in the data. In the future work, we plan to devise more unbiased metrics than CMS for

the assessment of the number of transferred concepts from source utterance to target

utterance.

5.6 Conclusion

In the study, we investigated three sets of user data to identify various aspects of users

using a multimodal interface of a speech-to-speech translation system during the 4

weeks. The various aspects of users include how users react on system errors and how

well users use and learn the multimodal interface during the 4 weeks. The analyzed

data include interaction data between English speakers and Farsi speakers, user survey

questionnaire, and user interview data. In the analysis results of subjective measures,

which are user interview and survey questionnaire, it was reported that users utilized

some strategies to cope with system errors, such as repeat, rephrase, change topic, and

start over. Also, it was reported that perceived user performance increased during the

first three weeks, despite a drop in the week 4. For the analysis of the log data, we

transcribed user speeches and assigned Concept Matching Score (CMS) between all the

same-path utterances, with the help of 4 bilingual speakers. The CMS was used for mea-

suring the number of concepts transferred from source utterance to the target utterance.
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As for the findings, first we presented the distribution of CMS over the utterances.

91% of successfully recognized utterances by the system has more than half the con-

cept of user speech (CMS: 6.0–10.0), and 90% of unsuccessfully recognized utterances

contain less than/equal to half the concept of user speech (CMS:0.0–0.5). Second, we

presented how much improved concept transfer rate we acquired through the multimodal

interface of a speech-to-speech translation system. We observed improvement of con-

cept transfer rate by 33% and by 11% through the multimodal interface in comparison

with two speech-only interface settings respectively; one without and the other with

filtering unsuccessful interaction turn. Third, gradual increase in user acceptance rate

over the utterances was observed in our data. Further analysis showed that users became

accommodating to the system by accepting more errors, such as functional word inser-

tion error, during the 4 weeks. Fourth, user utterance length increased after accepting

the previous utterance (successful turn) and decreased after retrying the previous utter-

ance (unsuccessful turn). Further analysis showed that a trend of increasing percentage

of reduced utterance length (after retrying the previous utterance) was observed in the

later three weeks.
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Chapter 6

User Modeling in a Speech Translation

driven Mediated Interaction Setting

———————————

“Dynamic Bayesian network

is one of the best tools

representing user behaviors

under uncertain conditions.”

———————————

The study addresses user behavior modeling in

interactions between two people that do not share a

common spoken language and communicate with

the aid of an automated bidirectional speech trans-

lation system. These interaction settings are com-

plex. The translation machine attempts to bridge

the language gap by mediating the verbal commu-

nication, noting however that the technology may not be always perfect. Additionally, in

a face-to-face scenario, there may be information directly exchanged between the inter-

locutors, typically through non-verbal gestures. In a step toward understanding user

behavior in this mediated communication scenario, usability data from doctor-patient

dialogs involving a two way English-Persian speech translation system are analyzed.

We specifically consider user behavior in light of potential uncertainty in the communi-

cation between the interlocutors. We analyze the Retry (Repeat and Rephrase) versus

Accept behaviors in the mediated verbal channel and as a result identify three user types

– namelyAccommodating, NormalandPicky, and propose a dynamic Bayesian network

model of user behavior. To validate the model, we performed offline and online exper-

iments. The experimental results using offline data show that one of the 3 user types

is clearly identified as a user keeps his/her consistent behavior in a given interaction
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condition. In the online experiment, agent feedback is presented to users according to

the user types. The analysis showed high user satisfaction and interaction efficiency in

the data of user interview, recorded video, survey questionnaire and log of the system.

Additionally, we investigate communication patterns in the direct “interpersonal” chan-

nel, focusing in patterns on the users’ utterance length. The analysis showed that the

average utterance length of a user reflects specific user types and can be in turn used

for facilitating interpersonal adaptation. Speech Accommodation Theory supports the

argument that greater degree of utterance length accommodation is related to higher user

satisfaction in Human-Human interactions.

6.1 Introduction

Spoken conversations have been recognized as the primary information delivery mecha-

nism between humans. With increasing globalization, the need for cross-lingual interac-

tions has become a necessity for a variety of domains including business and travel. As

speech and language technologies evolve, we can envision intelligent speech-enabled

systems mediating dialogs between people who do not share a language through auto-

mated speech to speech translation. Significant progress is being made in this direction

by several research institutions [64, 105, 80, 7]. The goal of such systems is to be

truly cognizant of the interaction, intelligent and performing as a communication aide,

beyond serving as a mere message conduit.

Drawing parallels with advances in human-machine spoken dialog systems, we can

see that incorporating intelligence into a spoken language based communication media-

tion system requires, among other things, careful user modeling in conjunction with an

effective dialog management. User modeling has been attempted at different levels and

using a variety of approaches. Rich [85] has proposed a 3-dimensional space to describe
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Interpersonal Channel

Mediated Channel
Too much system error.

Very terse expression!
System error is okay.

What a lengthy statement!

Strategy, Filtering, 

Probability,Inference

Interpersonal Channel

Mediated Channel
Too much system error.

Very terse expression!
System error is okay.

What a lengthy statement!

Strategy, Filtering, 

Probability,Inference

Figure6.1: There are two channels of parallel interaction between two users: aninterpersonal
path, that contains direct cues such as prosody, gestures, facial expressions, as well as indirect
such as adaptation to one others speaking style and a computermediatedpath containing mainly
translated lexical information.

the relationship between user models, defined as the knowledge about people, and their

uses. In Table 6.1 the three axes of these descriptors relate to the size of the population

the model describes, the fashion in which the model is created and also the temporal

scale the model is attempting to characterize.

Dim. 1 A single, canonical user A group, collection of users
Dim. 2 Specifiedby the system designer Inferredby the system
Dim. 3 Long term Shortterm

Table 6.1: User model dimensions(Dimension 1,2,3) based on the knowledge about
people [85].

While there has been a fair amount of excellent user modeling work in the con-

text of human-machine spoken dialogs including user simulation [17, 25], reasoning

about a user’s goal or intention [30], user expertise modeling [47], and evaluation tech-

niques [58], relatively little effort has been devoted in this regard on machine mediated

human-human cross-lingual dialogs, the topic of this paper. The motivation stems from

the need for informing designs of speech translation systems for their increased effec-

tiveness and usability as communication aids.
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Constructionof a user model based on the desired user features, however, can be a

daunting task. Generally, two approaches – “Profiling modeling” and “Statistical model-

ing” - are widely used in building a user model. The profile acquired from a user can be

used for generating an appropriate system response, such as personalized search [78], or

in appropriate help to the user when needed [30, 6, 102]. For the objectivity and extend-

ability of the system, we prefer to use predictive statistical user models. It is considered

a powerful approach to model user behavior [108] and its effectiveness has been demon-

strated by previous research [47, 50]. We specifically propose incorporating a Bayesian

network user model for our analysis to exploit its effective reasoning capabilities under

uncertain situations.

In order to study user modeling issues in speech-to-speech translation systems, we

consider two separate but mutually dependent channels (Figure 6.1) – the Human-

Machine-Human (machine mediated) and the direct Human-to-Human (interpersonal)

channels. The verbal communication is handled through the machine, and effects of

uncertainty and errors in the machine can be expected to be predominantly manifested

in the verbal behavior of the user. On the other hand, the interpersonal channel is char-

acterized by direct gestural non-verbal exchanges (such as head nods) as well as indirect

verbal means (such as through adaptation to one others speaking styles). Our analysis

in this section is restricted to aspects of the verbal behavior in these channels.

The rest of the section is organized as follows. After a description of the speech-to-

speech system used in this study for doctor-patient interactions and the corresponding

data in Section 6.2, in Section 6.3 we analyze and model user behavior in the medi-

ated channel under potential uncertainty by focusing on the “Retry”(Repeat/Rephrase)

behavior. We describe a dynamic Bayesian model to predict such behavior and evaluate

its performance in offline data. In Section 6.4, online experiment with agent feedback

is presented and results are reported. Motivated by Speech Accommodation Theory
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(SAT), in Section 6.5 we explore verbal (lexical) patterns in the direct human-human,

interpersonal channel. A discussion of the results and future directions is provided in

Section 6.6. It includes a discussion about the relation between the user behavior in the

mediated and the interpersonal channels, as well as a preview into the design of a cross-

lingual conversation assistant. Finally, conclusions as well as a description of future

work plans are given in Section 6.7.

6.2 System and Dataset

6.2.1 A Two-way Speech Translation System with a Push-to-Talk

Interface

The system used for the study of this paper is a Speech-to-Speech translation device

that facilitates two way spoken interactions between an English speaking doctor and a

Persian (Farsi) speaking patient [64]. This version of the system uses a push-to-talk

modality to initiate a speaking turn which has its advantages and limitations. The push-

to-talk interface minimizes recognition and translation errors since users can verify con-

cepts before executing the final decision for “speaking out” the translation but has the

disadvantage of creating less spontaneous and less natural interactions.

Furthermore, the goal of the system is to facilitate a task oriented rather than a free-

form socio-emotional interaction between the two participants. Specifically, the domain

of usage of the system under study is task-specific (or goal-oriented) interaction between

a doctor and a patient. It is within this context, the system design strives to achieve

not only optimal technology performance, such as of automatic speech recognition and

translation, but also maximal user satisfaction. Prior work has clearly shown that user
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Figure 6.2: Simplified data flow diagram of our two way speech translation system
for doctor-patient interactions. English and Farsi Automatic Speech Recognition(ASR)
models get the input from users (doctor and patient, respectively) while the Machine
Translation(MT) module is responsible for automatic translation and classification of
the input. The Dialog Manager(DM) manages the interaction and communicates the
translated results to a graphical user interface (GUI) and a text to speech (TTS) synthe-
sizer (in English and Farsi as appropriate).

satisfaction is one of the most important efficacy metrics of medical domain interac-

tions [29, 87].

A functional block diagram of the system and its data flow are shown in Figure 6.2.

The user’s spoken utterance is converted into textual form by an automatic speech recog-

nizer (ASR) in the appropriate language of the speaker (English for the doctor and Farsi

for the patient in this case) and further processed by two parallel mechanisms: one by a

phrase-based statistical Machine Translation (MT) module that translates the text form

one language to another and the other by a statistical classifier which attempts to cate-

gorize the utterance into one of several predetermined ”concept” categories. The Dialog

Management (DM) module interacts with the MT/classifier and the GUI and TTS mod-

ules to deliver the data to the user. In the system of this study, the visual output provided
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Figure6.3: The internal procedure of generating speech translation hypotheses in our
system. Two parallel mechanisms are implemented. In the first one, the topmost recog-
nition candidate i.e., the first-best choice of the ASR – that has already gone through
a lossy speech to text mapping process – will go through another lossy operation – the
statistical translation. In the second one, that utilizes an utterance classifier, the top four
recognized candidates from the ASR (the so called four-best results) are mapped into
conceptual classes, also a lossy operation, but the canonical form result – after both
lossy operations – is the one displayed on the screen for the doctor’s choosing.

by the GUI is made available only to the (English-speaking) doctor, who is assumed to

have the primary control of the interaction.

To better understand the translation device operation, and the associated issues, we

can identify three distinct operations in the process. The first is the conversion from

speech (audio) into a textual transcription of the spoken utterance through a statisti-

cal pattern recognition. This procedure is commonly referred to asAutomated Speech

Recognition(ASR), and is an inherently lossy operation, i.e. often the transcript may

not accurately represent what the user characterized by deletion/insertion/substitution

of the spoken words. The second procedure is the translation. At this stage the text

is mapped from the source language (e.g., English) to the target language (e.g., Farsi).
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We have two parallel approaches to this step, both again statistical in nature, and repre-

sent a lossy mapping process. The approaches we consider are a phrase-based statistical

machine translation and an utterance concept classifier. The third stage is the conversion

of the target language transcript from text to audio by synthesizing the speech, through

Text-To-Speech(TTS) synthesis.

By design, the interface control of the system is asymmetric in the sense that the

(English-speaking) doctor has exclusive control over the interface, and access to the

GUI, while the (Farsi-speaking) patient does not. This was to allow even untrained and

non-educated patients access to the system. The system allows for the doctor to decide

whether to transmit one of the several alternate hypotheses offered by the system to the

patient or reject all of them (repeat or rephrase). Some of the options provided to the

doctor can be seen in Figure 6.4 and the hypotheses belong to one of two classes:

1. The first is the English transcription of what the machine thinks the user said. The

machine does not provide a translation on the screen (presumably it would not

be useful for the doctor who doesn’t know Persian) but a statistical phrase based

translation would be provided to the patient if the doctor chooses this option.

However, such statistical machine translationcan notguarantee accurate transla-

tion of the displayed text. This option mainly allows the user to detect errors from

the ASR stage of the translation process, and thereby reducing the risk of error

during the translation.

2. The second category of options takes the recognized transcript (output of ASR

stage) and maps it into one of over several pre-determined concept categories.

These categories were manually specified and for this domain there were about

1200 concepts. This mapping operation from text to concept is also lossy, but

unlike the first hypothesis, since these concept categories are pre-programmed in
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thesystem, a back-translation (canonical form) in the language the doctor under-

stands can be displayed for the doctor’s choosing. This means that what the doc-

tor sees on the screen already includes any errors likely made by both the ASR

and translation steps, and that the translation the patient will hear will be lexically

identical to the hypothesis displayed on the screen. Figure 6.3 depicts these proce-

dures conceptually. It is clear that if one of the canonical sentences is satisfactory

from a concept transfer perspective, it should be the best choice for the user since

these guarantee accurate translation.

Users of the device were encouraged to employ the second category of options

(labeled on the GUI: “I can definitely translate these”) if these options were deemed

valid representations of their utterances, rather than the first option (labeled on the GUI:

“I can try to translate this”). For example, in Figure 6.4 when the doctor says “You have

fever?” the device can try to translate the ASR text output “You have fever” or it can

definitely say “Do you have a fever?”, the surface form for a concept category related to

“fever-inquiry”.

The monolingual patients on the other hand are assumed to be untrained in using

the system – and to ensure uniform results in the experiments described in this paper –

are not even allowed to see the screen. The system decides, based on confidence scores

of automatic utterance to concept classification, whether their utterance is close enough

to a particular concept class. If deemed confident, the cluster-normalized form concept

will be transferred to the doctor, and if not a direct potentially noisy statistical translation

of the text will be provided. Most of the time an incorrect transfer can be detected by the

doctor due to the lack of coherence with the discourse of the interaction. The Persian

patient can also choose to request, verbally or through gestures, repetitions or repairs if

they so chose. Note that an experienced doctor, in the case of receiving information that
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Figure6.4: Transonics system screen GUI. After speaking, the user(doctor) can choose
one of several hypotheses presented on the GUI.

does not match the discourse can assume that he needs to do error control by rejecting

the solution provided by the system (and repeat/rephrase).

In terms of component level performance of the system used in the present study,

the ASR word error rate, the concept transfer rate and the IBM BLEU translation score

are given in Table 6.2. These results stem from the evaluation done under the DARPA

Babylon program. The overall concept transfer rate of the system is 78% – this denotes

how many of the key concepts (such as symptom descriptions) were correctly transferred

overall in both languages according to human observers for the 15 sessions examined in

this paper. Also, in the Table 6.2 the word error rate(WER1) and the IBM BLEU2 scores

are provided.

1Word Error Rate is the sum of the number of words in error (substitution, deletion and insertion)
divided by the number of words in the reference transcription.

2In simple terms, the more ways a certain utterance can be translated, the lower will be the maximum
possible score, since one translation will be compared with many possibilities. So although the score is
on a theoretical scale of 0≤ IBM BLEU ≤ 1, even the best human expert translators can only achieve
average ranges of near a half of that.
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DARPA Evaluation results

English Persian
ASRWER 11.5% 13.4%

Englishto Persian Persian to English
IBM BLEU (text) 0.31 0.29
IBM BLEU (ASR) 0.27 0.24

Overall concept transfer 78%

Table 6.2: DARPA evaluation on medical domain for the speech translation system of
this paper. Component and Concept measures as: ASR word error rate (lower is better),
SMT BLEU score (higher is better) with the clean text transcript input or with the ASR
output as an input.

6.2.2 Data-set

The data analyzed are from 15 interactions between doctors and standardized patient

actors. Both the doctors and patients are monolingual and, in addition, acoustic mask-

ing was in place to ensure translations are only being transferred through the device.

The spoken interactions were logged by the system and also transcribed manually. Auto-

matic logs contain recognized utterances (hypotheses) of the ASR, all translated hypoth-

esis from the translation component (both SMT and classified concepts). These come

with the confidence levels and the system procedure information.

Automatic tagging of the retry behavior was made possible through system logs, and

the speech recognition WER scores were acquired by comparing automatically recog-

nized utterances and their human transcriptions. It may be interesting to note some

relevant information regarding the data characteristics. The average number of turns

(each turn is a doctor or a patient utterance) in a conversational dialog is 30.13, with a

slightly higher number (33.46) for the doctor than for the patient (26.8) with standard

deviation of 8.7 and 10.6 respectively. The longest utterance was 13 words long for
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SystemRouting Tag Content

FADT YOU HAVE OTHER MEDICAL PROBLEMS|
DO YOU HAVE OTHER MEDICAL PROBLEMS

FDMT YOU HAVE OTHER MEDICAL PROBLEMS
FMDT SmA mSkl pzSky dygry dAryd|

YOU HAVE OTHER MEDICAL PROBLEMS
FDGT YOU HAVE OTHER MEDICAL PROBLEMS
FDMT DO YOU HAVE OTHER MEDICAL PROBLEMS
FMDT VyA hyC mSkl pzSky dAryd|

DO YOU HAVE ANY MEDICAL PROBLEMS
FDGT DO YOU HAVE ANY MEDICAL PROBLEMS
FDGC ShownAllOptions
FGDT Choice*1

Table 6.3: Table shows a simplified portion of the data log acquired automatically by running the Transonics speech translation
system. There are system routing tags(FADT, FDMT, FMDT, FDGT, FDGC, FGDT – F: Flow, A: Audio server, D: Dialog manage-
ment, M: Machine translation, G: Graphical User Interface, T: Text, and C: Control) indicating the data flow from/to on the left side
and the data being processed on the right side. Actual data are in the content column. Additional information logged, not shown for
simplicity, include time stamps, utterance sequence, confidence and class numbers.

both the doctor and patient side, while on average utterance length was 4.45 and 2.42

words for the doctor and patient, respectively. The shorter average utterance length of

the patient reflects the fact that a significantly large number of their answers were short,

such as yes/no answers. The total time for the whole data set is 4 hours.

Because of the dynamics created by the push-to-talk interface (managed by only the

doctor), the doctor-side data contains abundant information we can utilize to model user

behavior in the mediated (verbal) channel.

6.3 The Mediated Channel

We refer to the information path between the two participants through the machine as

theMediated Channel. In this channel, a user is cognizant of the machine and acts by

considering both the response of the system and his own prior actions. Also, the system

can detect how a user behaves or what information is going through the channel. In this

sense, it can be regarded as similar to a Human-Machine interaction scenario.
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Themethods of identifying the user’s model from interactions with a device include

investigating behavior patterns [79, 61] and stereotypes [84]. Following these gener-

ally classified assumptions, considerable research efforts have been undertaken cover-

ing various topics and systems: Komatani [47] introduced a general user model with

skill level, knowledge level, degree of urgency in a spoken dialog system, Carberry [9]

modeled user preferences in a natural language consultation system, Conati [12] pro-

posed how to manage uncertainty in a student model by performing assessment and

recognizing plans for a tutoring system, and Prendinger [81] utilized physiological data

for determining affective states for an emotion recognition system. Furthermore, some

frameworks have been suggested for rapid and efficient implementation of user models

such as in [46, 74, 97].

Error handling mechanism is important in the design and optimization of a spoken

dialog system. The spoken communication channel between a human and a machine is

inherently noisy, and can further be exacerbated by user-dependent uncertainty such as

due to limited world or task knowledge. The significance of considering user behavior

under problematic conditions in human-machine interaction is demonstrated for exam-

ple by our prior work [?], where we highlighted the importance of repeating and rephras-

ing cues. Similarly, the work of Batliner [5] utilized the features such as prosody and

linguistic behaviors to model and recognize trouble in communications. Detection and

modeling of problematic communication conditions helps to prevent and recover from

errors effectively.

Specific user behavior patterns can be attributed to specific user types. Similar to the

notion of expert/novice users, in this work, we consider the idea of identifying accom-

modating and non-accommodating (“picky”) user types under problematic interaction

situations with the motivation that distinct interface strategies can be developed for each

case. Our experimental analysis indicates that for the same average speech recognition
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WER,one user retried 95% of the time while another user only 65%. For example, we

have observed that certain users are more accepting of minor errors in translation and

recognition (e.g., function word insertion such as in “And do you have fever?” when they

actually spoke “Do you have fever?”) while others completely reject such a hypothesis

from the machine as not their intended utterance, despite the fact that it conveys for all

practical purposes the identical meaning.

We therefore propose modeling users in one of three categories(Accommodating,

Normal and Picky) based on the analysis of the active participant, the doctor. Following

which, we train a system that can detect in which category the user belongs based on

the user behavior through the interaction history and current utterance features. While

devising specific interventions based on the model outcome is not the goal of this paper,

we hope that this approach will however enable future research in building agents that

can appropriately adapt the system according to detected user behaviors similarly to

what previous studies have demonstrated [36, 40, 47].

6.3.1 Analysis of Repeat/Rephrase(“Retry”) Behavior

Repeat or rephrase(Retry) is the primary user behavior observed under problematic

conditions caused by non-optimal or poor system performance in the Transonics sys-

tem. In addition to the user type being an important factor in determining the degree

of retry actions, the level of speech recognition error was found be an important fac-

tor. However, in ourstandardized subject3 experiments, the difference range of the

speech recognition error among users is small, therefore we assume that the user type

has a stronger effect on the observed retry behavior. In addition to the small variance

in the speech recognition error, we observed that most of errors stem from insertions

3The subjects are all native U.S. English speakers, medical professionals and trained equally before
using the system.
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of function words and that keywords are mostly correctly recognized. Typical exam-

ples of errors with erroneously inserted words underlined are: ”Ahow are you”, or ”tell

me THEaboutyour pain”. Other potential contributing factors such as user’s emotion,

knowledge, gender, physical condition, hastiness, etc. are not considered at this stage,

but are of interest and will be included in the analysis once larger data sets become

available.

Categorizing User types: Accommodating, Normal and Picky

User type is a casting of a user along several categories; it can be based on demo-

graphic information, such asGenderor Ageor a heuristic category such asExpertise

or Knowledge level. We consider, in this paper, the degree of user’s accommodation to

speech recognition errors as the criterion to decide a user type. The use of such heuristic

domain-specific criteria has been prevalent in user modeling research. For instance, in

[47], user skill level is defined by the maximum number of slots filled by utterances and

in [43, 12], knowledge level is decided based on correct answers to the domain ques-

tions. In most cases, heuristic methods are used for user type classification even though

those may not always be too accurate – for example, if we assume that knowledge level

is judged by the number of correct answers to system questions, this is usually a good

metric, but not a perfect one since the user may give wrong answers on purpose to trick

the system, may be tired and not pay enough attention, or may not be motivated enough

to devote the necessary attention.

For our off-line model, we cluster user types based on the total number of each user’s

retries. We assume that accepting different ranges in WER depends significantly on the

user type, as conceptualized in Figure 6.5, and hence we define

• Accommodating: users tend to accept highly erroneous transcriptions compared

to other users.
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Figure6.5: TheAccommodatinguser tends to “Retry” significantly less than the other
users while thePicky user tries significantly more. A user in between these extremes
is defined to be aNormal user. WER is the speech recognition Word Error Rate and
the above graph semantically demonstrates the ranges of WER for which each user type
tends to “Retry.”

• Normal: users accept some degree of errors

• Picky: users tend to reject all but the most exact transcriptions, thus being very

strict in what they accepted for translation.

Based on data from the 15 sessions analyzed in this work, we clustered the users with

the k-means algorithm into the 3 classes as shown in Figure 6.6. Note that one could

argue in favor of fewer or more quantization steps along the accommodation axis. Such

decisions depend more on the action to be taken upon classification, and the available

data for the analysis.

From the clustering results, 7 (47%) users present themselves as accommodating,

5 (33%) as normal and 3 (20%) as picky. The users tend toretry at different degrees:

Accommodating19.3%, Normal 31.3%, andPicky: 40.7%. The average WER rate

acrossall the utterances, however, does not vary significantly and stands at 35.9, 43.8

and 38.7 for Accommodating, NormalandPicky, respectively. Hence we did not employ

WER as a feature for the clustering of user types. Note that although the average WER
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Figure6.6: The quantized retry rate over 15 interaction sessions on the doctor side. The
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Figure6.7: Conditional Probability Table(CPT) over user behaviors(discrete) – “Retry”
and “Accept”. Each user type is represented numerically with regard to Low Qual-
ity(LQ) and High Quality(HQ) system performance(recognition error rate). The Y-axis
represents the probability of user behavior conditioned on user type and system perfor-
mance.

is relatively constant from user to user, the error that users consider acceptable is not, as

demonstrated by the variable degree of retries.
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Assuminga certain threshold separating the High-Quality (HQ) speech recognition

performance from a Low-Quality (LQ) performance (a detailed discussion of how the

two regions of performance can be decided is provided in the next section, Sec 6.3.1), we

empirically acquired the Conditional Probability Table(CPT) over all the 15 interactions

as shown in Figure 6.7. We can clearly see the difference in user accommodation when

operating in the LQ region.

When the condition represents relatively high system performance (HQ perfor-

mance), other behaviors (“Accept”) dominate covering over 90% in most cases, and

allowing us very small amounts of data for observing the “Retry” behavior. However,

we can still see that thePickyusers tend to be more selective than others - they “Retry”

less when there is a high quality system performance.

User Behavior Model with the Transonics System

Since in our analysis we observed that the system error alone can not account for the

large variability in user actions, we hypothesize that the user type combined with the

system error under problematic conditions affects the retry behavior. The following

conditions are assumed: 1) The system is stationary and the performance is shown in

the Table 6.2; 2) The subjects are native speakers(U.S. English) and user performance

is consistent in terms of machine recognition (no acoustic/lexical mismatch issues in

speech recognition); 3) Domain knowledge of subjects is the same (all medical profes-

sionals) 4) Skill and adaptation levels are expected to be the same based on the given

environment (trained with equal time and materials and provided the same experimental

environment for equal time).

98



Thr eshold of High/Low Quality System Performance

Another important issue we need to deal with is the threshold of average acceptable

WER for each user. This is a complex issue that is related to each user’s personal

preferences and traits. We empirically approached this problem with the relative WER

average based on retry and accept behaviors across all other users. We assume that a

user retries if the system performance falls below a threshold, thus we clustered the

per-utterance WER into two groups: the group of accepted utterances and the group of

the utterances that are rejected. The Low Quality(LQ)/High Quality(HQ) performance

threshold is the separating point of the two clusters, at a WER of 56% for the data of

these 15 interactions. This implies that there is a high probability of a retry if the WER

increases above 56%. For training and testing purpose, the threshold is acquired in a

n-fold validation from 14 interactions and tested on the remaining 1 interaction. Note

that although the threshold WER may seem to imply a very low accuracy for allowing a

concept transfer, the classifier frequently may allow accurate concept transfer with WER

much higher than that if a keyword has been recognized correctly and the classification

gave at least one option which is valid. For example: “Are you having a headache now?”

will have a classifier top choice of “Do you have a headache?” even if only the word

“headache” has been correctly recognized by the ASR.

6.3.2 A Dynamic Bayesian Network User Behavior Model

A dynamic Bayesian network is a promising representation for modeling the inter-

casual relationships of “Retry” behavior with temporal information. The network has

been highlighted in the user modeling field across various applications. The Lumiere

project [30] utilized Bayesian models for capturing the uncertain relationships between

the goals and needs of a user. Conati [12] used Bayesian network to model a student
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Input: User behavior(“Retry” or “Accept”) and HQ/LQ recognition information.
Output: The most believable user type
Initial: User types with the same probability

Step1: The probability of each user type is given by the Bayesian reasoning.
Step2: Update the prior of each user type
Step3: Check whether the belief of the highest user type probability is enough
Step4: If it is not enough to be believed, go to the Step1

Return A user type with the highest probability

Table 6.4: User type inference algorithm computes the probability of user types,Accommo-
dating, NormalandPicky respectively. Each user type is predicted by Bayesian reasoning and
updated until one of them becomes believable.

for an automated tutoring system which assesses the knowledge, recognizes plans and

predicts actions of each student. Recently, Grawemeyer [28] modeled users’ informa-

tion display preferences by using Bayesian reasoning. Also, the theoretical benefits in

its performance and extensibility as a classifier have been thoroughly described in [23].

In spite of their remarkable power and potential to address inferential processes,

there are some inherent limitations and liabilities to Bayesian networks. First, a

Bayesian network cannot represent every possible situation (uncertainties and depen-

dencies) and it takes a long time to choose necessary nodes for the network. Second,

the prior knowledge (probability) of each node of the network may be biased depending

on the measurement approach and this may distort the network and can generate unreli-

able response to a user. For example, in [30], experts constructed Bayesian models for

several applications, tasks and sub-tasks by doing user studies however, that assumes

sufficient and representative coverage of user activities in the observed data.

The details of the proposed DBN implementation are presented in the following

sections and general user type prediction algorithm is given in the Table 6.4.

In this analysis the variables of user behavior (retry/accept) and the system feature,

the utterance confidence score (or for off-line processing WER), are the observed vari-

ables and the user type, the unknown variable. In the design phase, the network is built

by learning parameter values and interrelations of user type and observed variables.
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Theuser type is assumed to be constant, despite the fact that some user characteris-

tics may vary during the course of an interaction. For example, talkative people may be

more reserved in communicating when depressed, tired or under stress. A person who

is in general sensitive to any kind of system errors can ignore those when he/she is busy.

In addition, we often observe that users take time to exhibit their steady state behavior

due to an initial adaptation to the other entity, be that a human or a system. It is assumed

that the executed behavior and observed feature value are the best representatives for the

user type at each time and the model with these variables is extended dynamically with

the temporal information.

We are operating under the assumption that information about the user type could

help in altering the system strategy. In addition, this strategy enhances the experience of

the user-machine interaction similar to the use of expertise model developed in previous

efforts and employed in efficient system strategy design [40, 47].

A Model of User Behavior over a Single Iteration

We quantize the variables of user type (UT), behavior (B), and system accuracy (F))

and these satisfy:

n

∑
i=1

P(UT = uti) = 1

m

∑
i=1

P(B = bi) = 1

k

∑
i=1

P(F = fi) = 1 (6.1)

where we chosen = 3 discrete levels for the user type,m= 2 for behavior andk = 2 for

the WER. Note that we represent variables by an upper-case letters (e.g.,UT,B,F) and

its values by that same letter in lower case(e.g.,ut,b, f ).
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Figure6.8: A generic directed graphical model; the Bayesian network represents the
relation in which a user behavior(B) is influenced by a user type(UT) and a feature (F1).
There may be unknown features such as emotions and skill level but only one feature is
considered for the suggested model.

The Bayesian network in Figure 6.8 shows the complete directed graphical model

(static) with the relations among a specific behavior, user type, and features (including

unknown features).

Multiple features can exist and each can have different effect on the user behav-

ior. Prior work has demonstrated that fewer features are better for improved accu-

racy/performance [13], particularly in small data-sets. Also, unimportant features can be

eliminated by utilizing probabilistic measures related to the features [91]. In the design

of the suggested Bayesian model, we chose to incorporate only one feature due to the

small amount of data: the quantized (HQ/LQ) WER variable is incorporated with an

independent user type variable.

Based on this general procedure, an actual sequence of stepwise conditional proba-

bilities is formed as in the equation (6.2) with the random variables of parents (UT and
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F) and a child(B). In the user behavior model, we assume that there is no relationship

between user type and feature.

P(B,UT,F) = P(B|UT)P(UT)P(B|F)P(F)/P(B) (6.2)

where,B = user behavior,UT = user type,F = feature.

Once the network structure is defined and the conditional probability is decomposed,

the quantization of the data in the chosen levels needs to take place. In the suggested

model, we have 2 discrete levels for user behavior (retry/accept) and system perfor-

mance (HQ/LQ) and three user types (Accommodating, Normal and Picky). To give

a value for each discrete level, we can utilize a domain expert’s knowledge or learn it

from the data-set. The second method is adopted in this experiment and the values are

learned in a n-fold validation from the training data-set (using 14 out of 15 interactions)

for testing on 1 interaction allowing for presenting averaged results over a total of 15

experiments for the 15 interactions in the corpus.

A Dynamic Model – Temporal Belief Reinforcement

In reality, it takes time to grasp an accurate user type by observing user behaviors and

factors (features). For example, by observing a one-time accommodating behavior of a

user is not enough to decide a definite user type while the observation of some consistent

behavior over time strengthens the belief of the user’s type. This idea is formulated as a

dynamic Bayesian network (DBN) shown in Figure 6.9. The user type transition mech-

anism from timet−1 to t is supported by the Markovian property that the conditional

probability of the current user type(t) depends on the previous user type(t − 1) and it

includes the history implicitly by this assumption.
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Figure6.9: A dynamic Bayesian network is used to infer a user type over time in the
mediated channel. The belief of a user type becomes strengthened as the interaction
progresses.

During training, we employ the complete interaction to reason on the user type by

using the Maximum Likelihood Estimate (MLE) as in equation (6.3).

P(B|F,UT) =
P(F,UT,B)
P(F,UT)

(6.3)

where,UT = {ut1 . . .utn}, B = {b1 . . .bm}, F = { f1 . . . fk}.

The prior for the feature, Word Error Rate(WER) is also acquired from the train-

ing data and the prior of the user type is initially set equally distributed and updated

dynamically.
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In the absence of large amounts of training data, unconstrained identification of the

priors of transition probabilities in a data-driven fashion is not feasible. We instead place

parametric constraints on the transition probabilities and identify these parameters in a

data-driven fashion. The parameters are the probability of:

• Staying in the same type. This probability is expected to be the highest.

(PSameType)

• Transitioning across adjacent types (Normal to/from Accommodating and Picky).

(PWithNormal)

• Transitioning across opposite types (Accommodating to/from Picky). Expected

to be the lowest probability(POpposite)

In addition we define a parameter that reinforces beliefs over time by modifying

each of the above probabilities and is defined in terms of the ratio:

µ= λ
(Turn Number)

(TotalNumbero f Turns)
(6.4)

whereλ is expected to be a very small number because we want smooth increase of the

same user type transition probabilities over time. Resulting in:

PSameType(n) = PSameType(1+µ)

PWithNormal(n) = PWithNormal(1− 1
3

µ)

POpposite = POpposite(1− 2
3

µ) (6.5)
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UTt
Acc UTt

Nor UTt
Pic

UTt−1
Acc 0.90 0.05 0.05

UTt−1
Nor 0.05 0.90 0.05

UTt−1
Pic 0.05 0.05 0.90

λ 0.05

Table 6.5: Values of transition priors. The parametrization allows 4 variables to repre-
sent nine time-varying priors, thus allowing estimation from limited data.

Table 6.5 presents the values of the parameters. We can also observe that over time

the probability of transitioning across opposite types will decay faster than the probabil-

ity of transitioning across adjacent types.

To infer a user type, the posterior probability of user type conditioned on behavior

and feature is computed as in Equation (6.6) by applying Bayes’ rule.

P(UT|B,F) = ηP(B|UT,F)P(UT) (6.6)

The user type is independent of the observed feature thereforeP(UT) = P(UT|F),

while η = P(B|F) plays the role of a normalizing factor, ensuring that probabilities of

user types sum to one.

At each turn, by maximizing the probability of each user type(uti) as in Equa-

tion (6.7), we obtain an estimate of the most probable user type, however the decision is

not made until confidence in the belief of user type is significant.

argmaxi P(uti |B = b1,F = f1) = argmaxi P(B = b1|uti ,F = f1)P(uti) (6.7)
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Figure6.10: Entropy of three user types becomes lower as the dialog turn increases.
The threshold of deciding the final user type can be set based on this tendency under a
dynamic Bayesian reasoning.

where,b1 = an evidence of the user behavior,f1 = an evidence of the feature.

In identifying when a decision on the user’s type can be made, we need to consider

an acceptable“Threshold” in confidence. This includes two dimensional conditions,

when and how to draw a conclusion from the inference. One approach is to decide the

final user type when all the available data has been processed (the last state of the DBN)

and the evaluation in section 6.3.3 is based on this method. An alternative approach is

maximum entropy, a good measure that has been utilized in previous work to classify

user behaviors [61]. This may be a more objective and concrete measure of convergence

and more appropriate for real-time implementations. As in the Figure 6.10, we can see

the tendency of decreasing entropy for the user type probabilities over all 15 interactions.

The entropy decreases as the DBN converges and a lower entropy means that the intra-

speaker probabilities of user type are more discriminating. To utilize this mechanism,

we could set a certain threshold below which a decision would be made. Otherwise, a

user type would be labeled as still unpredictable or not inferrable.
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6.3.3 Model Validation

We evaluated the automatic identification of the user type by employing the n-fold vali-

dation, thus using 14 interactions for training and one for testing, and performing a total

of 15 experiments. The goal was to identify user type through the interaction data. Priors

were set to be equal (0.33) for the three user types. The classification was successful 13

out of the 15 dialogs by assuming a convergence of the DBN at the end of the available

data (method 1, described above). Both errors occurred in identifying the normal user

type, and in both cases it was clear that convergence had not been reached. The DBN

was fluctuating betweenNormalandPickyin one case andNormalandAccommodating

in the other case. We believe, that this may reflect a switching user behavior where,

users may behave as picky (if the error is for example in a keyword) or as accommodat-

ing (if all the errors are in function words), or it may reflect users who exhibit behavior

very close to the user type quantization boundaries.

In the following sections, two representative results ofPickyandNormaluser type

inference by the suggested DBN model are presented.

Analysis of thePickyUser Type Inference Result

Dynamic inference results on an interaction(labeled asPicky type) that lasted over 44

turns is depicted in Figure 6.11. We can observe that the belief of thePickyuser type

is strengthened over time and is detected early on in the interaction. This implies that a

user strongly follows a pattern,Retryingon most device errors andAcceptingless when

the system operates with high quality.

By observing the data of this interaction we can also note that this user (Figure 6.11)

suspended the flow of conversation in many more cases compared to other users by

being very selective.
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Figure6.11: The belief that the user type is “Picky” is strengthened over time in this
example data set.
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Picky

Figure6.12: The belief that the user type is “Normal” is strengthened slowly over time.

Analysis of theNormal User Type Inference Result

Figure 6.12 shows one of the most challenging users to classify in our corpus. The

system in this case takes over 24 turns to eliminate the accommodating type, although it

eliminated the Picky type from the 12th turn. Manual analysis of the data revealed that

this user, despite beingNormal in his average behavior, often exhibitsAccommodating

and sometimesPickybehaviors – crossing the boundary of two types, thus causing the

DBN to take longer to converge.
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Figure6.13: Inference on the data of various “Accommodating” user types in the corpus.
X-axis indicates the dialog interaction turn. Y-axis indicates three levels of prediction
results – wrong, accommodating, and converged to accommodating user types.
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Figure 6.14: Inference on the data of “Normal” and “Picky” user types over the dialog
turns.

Analysis of Successful User Type Inferences

In this subsection, we present the analysis of successful user type classifications by the

suggested model(13 out of 15 interactions in our dataset were successful). Figure 6.13
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and Figure 6.14(b) represent the identification of the accommodating and picky user

types. The correct user type is determined early in most cases (less than 10 interaction

turns) even though some “Accommodating” users show different user types shortly in

the middle of the whole interactions. The results imply that users in these two extreme

types behave in their own style, especially, when the system performance is low. And,

we can classify these two types early on by observing user behaviors and the system

performance.

Different from the previous two extreme user types, the belief of “Normal”

user type is gradually strengthened over turns by tailing off those of the other user

types(Figure 6.14(a)). This implies that it took comparatively more time to be in mid-

dle point, in terms of the number of retry/accept under low/high system performance,

between the two extremes.

6.4 Online Evaluation of User Model

In the following sections, we report the results of online evaluation of the user model

using agent feedback. For this purpose, newTransonics system (now,SpeechLinks)

was used, and English user behaviors were analyzed. The motivation comes from the

observation in which users using a mediated device, sometimes, communicate in unnat-

ural fashion: they are extremely picky or accommodating to system errors. Picky type

users tend to reject even small recognition errors which do not affect on overall meaning

transfer from user-spoken utterance to machine-generated utterance. In the opposite sit-

uation, accommodating type users tend to accept even critical recognition errors, which

breaks natural conversations between users by causing completely incorrect meaning

transfers through the device.
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By providing agent feedback to users according to the user types, we could acquire

better interaction efficiency (which will be defined in the result section) by encouraging

users to change their behaviors in better direction.

6.4.1 Experimental Setup

Participant and Experimental Domain

To hire native speakers of English, we put a recruiting flyer on campus. Eight English

speakers were paid $15 US dollars per hour. They were four males and four females and

the age was between 20 and 28. All of them were undergraduate and graduate students at

University of Southern California (USC). Two Farsi speakers were contracted students

with theSpeechLinksproject. Farsi speakers were one male and one female with the age

of 21 and 24, and undergraduate students.

In total, 32 interaction sessions were collected from 8 native Speakers of English

interacted with 2 native speakers of Farsi. For each interaction session, one native

speaker of English and one native speaker of Farsi performed a diagnosis of the dis-

ease based on the provided scenario. The experimental time of each interaction session

was approximately 30 minutes.

The domain of the experiment was doctor’s medical diagnosis of the disease of a

patient. Native speakers of English played a role of doctor and native Farsi speakers

played a role of patient. Before the actual experiment, we gave one hour training ses-

sion to English speakers and it included how to do a diagnosis of the disease with the

supplied materials: the doctor’s diagnosis manual table (An example on the left in Fig-

ure 6.15) and the instruction of the experiment. For Farsi speakers, we gave enough

instructions to use the system and to play a role of patient with the disease symptom

card (An example on the right in Figure 6.15). The purpose of the experiment was
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Figure6.15: Example materials for the experiment: a part of doctor’s diagnosis manual
table for common cold (left). In the full size table, there are 12 diseases (column) and
30 symptoms (rows). A patient card for common cold is presented on the right.

rather to study English speaker behaviors reacting to agent feedback than to study Farsi

speaker behaviors. The mission of the English speakers (doctor’s role) was to find out

a disease of a patient in each interaction session (The disease varies in each interaction

session). Four diseases (flu, SARS, depression and hypertension) were used equally for

8 English speakers during the experiment.

Scenario

We prepared four scenarios for the experiment using four diseases (flu, SARS, depres-

sion and hypertension), and each experiment team (one native speaker of English and

one native speaker of Farsi) used these four scenarios in the same order during the exper-

iment. For each scenario, we provided a doctor’s diagnosis manual table consisting of

twelve (12) diseases in the column and related symptoms in the rows. The diseases in

the column were: common cold, flu, food poisoning, lactose intolerance, depression,

insomnia, hypertension, high cholesterol, liver cancer, lung cancer, SARS, and diabetes.

The symptoms in the rows were, for example: ‘chills’ and ‘fatigue,’ and the number of
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thesymptoms was 30, in which the actual symptoms were varied depending on the dis-

ease. We built this table as realistic as possible using the medical diagnosis information

from “http://www.medicinenet.com.”

Farsi speakers (the patient role) were given a symptom card which provided only

a few symptoms of the disease. On the right image in Figure 6.15, a symptom card

for common cold is presented. We intentionally provided a few symptoms in each

patient card to elicit more expressions from both speakers; English speakers needed to

go through many combinations of diseases and symptoms in the look-up table to reason

about a disease of the symptom card of a Farsi speaker.

Neither in the doctor role English speaker and the patient role Farsi speaker knew

the disease name of each interaction session. We informed them of the disease names at

the end of all four interaction sessions.

Procedure of Experiment

The experimental procedure was designed with two tasks, borrowing the idea of the

evaluation method in the user modeling work by [47]. Figure 6.16 shows this exper-

imental procedure. In “Task A”, native speakers of English performed the interaction

session of “without feedback” first and the session of “with feedback” later. In “Task

B”, native speakers of English performed the interaction sessions in the reverse direc-

tion. In each task, English speakers interacted with different Farsi speakers – one male

speaker for one task and the other female speaker for the other task. For the tasks, each

English speaker visited the experimental room twice (two days). For more objective

data collection, we assigned Farsi speakers evenly to the two tasks: each Farsi speaker

participated in “Task A” 4 times, and the “Task B” 4 times. In total, we collected 32

interaction sessions from this experiment.
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Task A

WithoutWith

Task B

With      : Interaction session with agent feedback

Without : Interaction session without agent feedback

survey survey

Figure6.16: All 8 English speakers performed both “Task A” and “Task B” with 2 Farsi
speakers in different ways: four of English speakers performed “Task A” first and “Task
B” later, and the other four performed in the reverse direction. Each English speaker
met different Farsi speaker in the different Task.

For evaluation purpose, we collected 5 survey questionnaires from each participant

during the experiment. One is the initial survey about demographic information of the

participant and user perception on many subjects, such as user type and error tolerance

level and past speech interface experience. After each interaction session, an question-

naire was given to each participant for the evaluation of system performance in multiple

dimensions, such as user satisfaction and interaction efficiency. In total, 4 evaluation

questionnaires were collected from each participant. Detail analyses of questionnaires

are provided in the section 6.4.2.

Each session lasted for thirty minutes approximately - we gave a notice to them (to

finish the session) when they did not finish the session in thirty minutes. After finishing

two sessions (with feedback and without feedback in the order or in the reverse order),

participants gave us opinions about the experiment.
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For Accommodating User Type For Picky User Type
(1) “Considerrejecting bad options and

rephrasing.”
“Accepting system errors, if those
have little impact on meaning, may
improve system performance.”

(2) “The system is not always right.
Some errors can cause significant
degradation in your communica-
tion. When presented with bad
options consider rejecting them and
re-trying”

“The system often inserts some
additional words in its recognition
results. Consider accepting some
errors if those affect little the con-
cept of the recognized sentence.”

Table 6.6: Actual wordings of agent feedback for two user types. Two different word-
ings were used alternately for the same user type in case of triggering the same agent
feedback over and over.

All the interaction sessions were recorded with video cameras. ‘Sony Hi-8’ and

‘Sony high definition’ video cameras were used for this purpose. We analyzed thirty

two (32) interaction sessions in the video data in terms of identifying user types with

their behaviors and, user behavior changes and system performance.

Agent Feedback for Accommodating and Picky User Types

Two different wordings of agent feedback were prepared for two user types - accom-

modating and picky. When the system detects one of the two user types with high

probability, it triggers the corresponding wording of agent feedback as in Table 6.6. The

threshold of triggering an agent feedback was set as 0.65 which was acquired system-

atically from user training sessions. When the system detects either accommodating or

picky user type first time, the wording (1) was presented to the users. After consecutive

same user type identifications (e.g., three times), the system changed the wording, in

this case, the wording (2) was presented to the users. The agent feedback was presented

to users in this fashion throughout the whole interaction session.
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User type identification was conducted by dynamic Bayesian reasoning as intro-

duced in the section 6.3.2. At each turn in interaction sessions, previous user behavior

and ASR confidence level of the previous turn were utilized for computing the posterior

probabilities of three user types. These probabilities were updated dynamically as the

interaction proceeded.

The underlying assumption of the online experiment was that the ASR confidence

level can be used to measure the ASR performance, which was measured offline by Word

Error Rate (WER) as introduced in the section 6.3.2. The correlation between ASR

confidence level and WER was mentioned and studied in [25, 104]. ASR confidence

level was computed using features at multiple levels, such as weighted acoustic model

and language model scores.

6.4.2 Experimental Result

We present the results of online experiment using subjective and objective measures

from various sources; user interview, questionnaire, video analysis and log data analysis.

Statistical analyses were performed with SPSS 15.0.

Subjective Measure 1: User Interview

The interview with participants gave us insightful information about user opinions about

agent feedback and its relation to system performance. Participants told us that the agent

feedback provided hints when the interactions wend wrong and it helped for smooth

conversation flows and information delivery. In particular, the participants commented

that agent feedback helped to get less frustrations caused by repetitive errors. One of

picky type users said:

“Agent feedback expedites conversation since users will not be repeating them-

selves in attempts to find an EXACT replication of their phrase.”
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Subjective Measure 2: Video Analysis

By analyzing the video data of 32 interaction sessions, we subjectively identified user

types of 8 English participants: 7 participants were picky and 1 was accommodating. For

this identification, we specifically investigated the behaviors of users when the machine-

recognized utterances have functional words which do not affect on the whole meaning

of the utterances. The comparison between the classified users by the analysis of video

data, and those by the analysis of log data is presented in Table??.

The analysis of video data suggested us a trend of user accommodating to system

functionalities and errors. We observed that the participants became accustomed to

agent feedback in the early turns of the interaction session, and in the later turns, they

did not pay attention to agent feedback. We conjecture that they already knew what

the agent feedbacks were and perceived when the agent feedbacks would be triggered.

From this viewpoint, the users of “Task A” (interaction session from ‘with feedback’ to

‘without feedback’) seemed to cope with system errors better than the users of “Task

B.” More analysis in this regard is presented in the following section.

Subjective Measure 3: Questionnaire Analysis

We collected five questionnaires from each participant and the Likert-scale questions

were given to the participant. The initial questionnaire was intended to measure users’

own perceptions about their ability to deal with general technology and speech interface,

utterance length, and error tolerance level (Table 6.7).

One finding from the initial questionnaire is that some users did not have speech

interface experience at all but others had already enough experience. To reduce this gap,

we gave a one hour training session to all participants, which included how to use the
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Likert-scale questions mean std.dev.
Speechinterface experience(0:none - 10: more than ten
times)

5.94 4.23

Inclinationfor the general technology (0: never comfort-
able - 10: comfortable)

6.81 1.51

Error tolerance level in the interactions with computers
(0: not at all - 10: completely)

4.88 1.96

Errortolerance level in the communications with humans
(0: not at all - 10: completely)

6.25 2.74

Utterancelength (0: terse - 10: lengthy) 5.88 1.82
Hasty level when using computers (0: not at all - 10:
completely)

6.44 1.41

Ability to work with computers (0: worst - 10: best) 5.63 1.31
Today’s feeling (0:bad - 10:good) 7.63 1.20

Table 6.7: The statistics collected from the Likert-scale questions of the initial survey
given to the participants. We measured users’ own perception about their ability of deal-
ing with general technology and speech interface, utterance length, and error tolerance
level.

system. Another interesting finding was that the error tolerance level in the communi-

cation with human was higher than that with computers, indicating that they are more

generous in tolerating errors in the communication with human than with computers.

In the other four questionnaires, we measured (after interaction sessions) user opin-

ions in multiple levels, such as the system performance, user satisfaction and usefulness

of agent feedback.

General user feeling (1: not at all 10: very much, standard deviation) about the

interface of SpeechLinks indicates that the interface is intuitive (8.71(1.3)) and easy to

learn (8.18(1.1)) but not foolproof (3.5(1.0)).

To measure the effect of agent feedback, the comparison of user satisfaction between

the interaction session with agent feedback and the interaction session without agent
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Task A Task B
First session with:7.0(1.1) without:5.25(1.7)
Secondsession without:6.0(1.93) with:7.25(1.3)

Statisticalsignificance p = 0.264 p = 0.041

Table 6.8: Overall user satisfaction (Likert scale – 1: worst 10: best) after interaction
session in each of the two tasks (standard deviation). In “Task A”, participants conducted
an interaction session with agent feedback first, and that without agent feedback later.
In “Task B”, participants conducted the interaction in the reverse order (without agent
feedback first, with agent feedback later). “Paired-Samples T Test” shows that there is
a significant difference in user satisfactions of two interaction sessions in “Task B” (5%
level)).

feedback is presented in Table 6.8. In addition, this comparison was conducted sepa-

rately in each of the two tasks. Higher user satisfaction was observed in the interaction

session with agent feedback across the two tasks. More specifically, to find out statisti-

cal significance, “Paired Sample T-test” was performed on each Task and we acquired p

values, 0.264 from “Task A”, and 0.041 from the “Task B”. The observed significance

level of the “Task B” is enough to say the statistical difference between two interaction

sessions (p ¡ 0.05).

Fundamental statistics collected from the questionnaires which support for the

results of Table 6.8 are the following. Overall, user feeling about the usefulness (1:

not at all 10: completely) of agent feedback was 6.5 (2.4) in “Task A” and 7.4 (1.7) in

“Task B”. The average number of triggered agent feedback per session was 7.1 (5.0) in

“Task A” and 7.9 (3.6) in “Task B”. The distraction levels (1: not at all 10: completely)

of agent feedback in the two tasks were 1.4 (1.3) and 1.7 (1.1) respectively. The topic

difficulties (1: difficult 10: easy) in “Task A” and “Task B” were 5.7 (1.8) and 5.3 (1.4)

respectively. User retry tendency (1: not at all 10: completely) in “Task A” was 6.8

(1.5) and that in “Task B” was 6.2 (2.1).
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Objective Measure: Log Data Analysis

In this section, we investigated user behaviors accommodating to errors, and effects of

agent feedback on the interaction efficiency. For measuring the interaction efficiency, we

attempted to observe some objective metrics which were introduced in the PARADISE

framework [99]. The metrics were to measure user satisfaction, and the efficiency and

cost of interaction sessions of spoken dialogs. However, most of the metrics were not

applied to our data: we conjecture the reason that first, our system is a mediated device

between two interlocutors – but, the PARADISE framework is for evaluating human-

machine spoken dialogs, and second, the domain of our system is medical diagnosis

which does not require exact parameters in the metrics of the PARADISE framework.

Before going into detail, it may be interesting to know some statistics collected from

the two types of interaction sessions – with/without agent feedback. Averages (with

standard deviation in the parenthesis) of session dialogue time were 33 minute and 36

seconds (3 minute and 2 seconds) with agent feedback, and 32 minute and 27 seconds (4

minute and 13 seconds) without agent feedback. Averages of the number of utterances

in both sessions were 77.2 (26.6), and 70.0 (19.0), respectively. Averages of utterance

length (in words) were 5.3 (1.5), and 4.6 (1.2), and averages of lasting time of each utter-

ance (in seconds) were 4.2 (0.59), and 4.1 (0.37), respectively. Finally, overall number

of triggering agent feedback in an interaction session was 10.7 (7.87) – excluding the

interaction sessions without agent feedback.

In the video analysis results, we observed that only one participant was the accom-

modating type, who endured relatively more recognition errors compared to the other 7

participants. In the log data of 8 participants, we measured retry rates of the participants

under low system performance, and the same participant was classified as the accom-

modating type by thek-meansalgorithm: we only classified the participants into two
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Figure6.17: User retry rates over the interaction sessions when the ASR performance
is low. Interaction sessions without agent feedback were investigated. Seven users was
clustered as picky and one as accommodating.

types, accommodating and picky. The low system performance is the low ASR confi-

dence level, and we investigated the interaction sessions without agent feedback for this

analysis. The user retry rates over the interaction sessions are presented in Figure 6.17.

Interesting part in the analysis of log data was whether we could find interaction

efficiency (e.g., naturalness of interactions or smooth conversation flows) in the sessions

with agent feedback. We defined this interaction efficiency as the number of normal user

type appeared during an interaction session: the more normal type appears during the

interaction session, the more efficient the interactions are. The reason for this definition

is as follows. Normal type users are not extreme to accept/reject system errors so we

expect to avoid extreme cases (such as severe repetitions) in their interaction sessions.

Intuitively thinking, we have smooth conversations with people when we are in normal

type. In one of the analysis results, the normal user type appeared more during the

interaction sessions with agent feedback than during the interaction sessions without

agent feedback as in Table 6.9.
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withoutagent feedback with agent feedback
0.37(0.14) 0.44(0.14)

Table 6.9: Percentage (with standard deviation in parenthesis) of normal user type
appeared during the two interaction sessions: with/without agent feedback. More nor-
mal user type during the interaction sessions indicates more efficient interactions.

Another interesting aspect to study is to investigate the effect of agent feedback on

user behaviors in better direction, and it contributes to the efficient interactions. The

agent feedback can be presented to users before the users catch the chain of same error

situations. In this way, users can escape from the chain of possible error situations

easily. Note that it is dependent on users to accept agent feedback, and to use alternative

strategies to recover from error situations. To illustrate the effect of agent feedback in

this regard, we compared the percentages of user behavioral change from the previous

turn during the interaction session without agent feedback, and during the interaction

session with agent feedback (Table 6.10). In this result, the user behavioral changes were

counted only when the dynamicBayesianreasoning identified two extreme user types

(picky and accommodating) during the interaction session. In the interaction session

without agent feedback, we triggered the agent feedback internally and observed user

behavior whether it was changed from the previous turn or not. Note that it is a possible

chain of errors when the two extreme user types were triggered by the dynamicBayesian

reasoning. As shown in Table 6.10, users changed their behaviors more with the help of

agent feedback onscreen, indicating that the users had more chances to escape from a

chain of error situations.
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withoutagent feedback with agent feedback
0.31(0.21) 0.40(0.16)

Table 6.10: Percentages of user behavioral change from the previous turn in the possi-
ble chain of errors: during the interaction sessions without/with agent feedback. The
changes of user behavior (accept/retry) were counted only when the dynamicBayesian
reasoning identified two extreme user types (picky and accommodating) during the inter-
action session. Note that two extreme user types were identified internally during the
interaction session without agent feedback, and user behaviors were observed at this
point.

6.5 The Interpersonal Channel

6.5.1 Early Attempts at Analyzing Speech Accommodation

Human-Human conversation research for spoken dialog systems relies on multi-

dimensional analysis of a variety of speech and language characteristics. Shriberg [94]

describes 4 properties –punctuation, disfluencies, turn taking and hearing speaker’s

emotion/statebased on human-human spontaneous speech conversation analysis. In

addition to the features directly stemming from the interaction, many other user dispo-

sitions, such as mood (longer term emotions), culture, gestures and eye-gaze [83], are

considered as appropriate features for user modeling issues.

To investigate user behavior in the interpersonal channel, we base our work on

Speech Accommodation Theory (SAT). SAT provides insights into how a human modi-

fies his/her speech style when interacting with another human (agent) and shows conver-

gence and divergence of verbal and non-verbal behavior [26]. Speech accommodation

is regarded as a good skill for acquiring social approval or acceptance – and is likely

to correlate with high user satisfaction in the system evaluation. For instance, prior

research has found that speakers tend to show lexical adaptations(coincidental overlap)

in conversation in mediated contexts and suggest that users’ lexical accommodation can
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beutilized to improve system performance [20]. Matessa [62] showed that accommo-

dating speech style boosts the communication efficiency of the conversation mechanism

as well as helps in social approval creating greater rapport.

A challenge in the present domain is the concurrent face-to-face (interpersonal)

communication channel being open between the interlocutors. The users can exchange

explicit non-verbal gestures, or implicitly modify their verbal behavior such as to accom-

modate each other’s speech. Despite the limited amounts of available data, we have

attempted to analyze the interpersonal channel of this translation system.

We first analyzed the 15 simulated doctor and patient iterations in an attempt to iden-

tify prosodic accommodation, but the data did not support this hypothesis. We believe

this can be attributed to the effects of the mediation channel that regenerates the prosody

(with synthetic speech) and removes some of the social aspects of the interaction, thus

making conclusions from such a limited data set impossible. Another point of view on

this is that it is artificially generated data. These are role playing doctor-patient interac-

tions, even though we tried to make the experiment as real as possible by hiring medical

professionals and standardized patient actors.

We then performed an analysis testing the participantsutterance lengthaccommoda-

tion. This also did not give us reliable results to assert the hypothesis of human-human

utterance length accommodation but nevertheless provided us with information regard-

ing user accommodation to problematic conditions as discussed in the following section.
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6.6 Discussion

6.6.1 Performance Dependency between Retrying and Utterance

Length

In the data set, we observed how users differ in expressing themselves and how that is

reflected in the overall utterance length. The average length of doctor utterances is 4.45

with the Standard Deviation(STD) 0.39 and that of patient is 2.42 with STD deviation

0.62. Doctors mostly ask direct questions such as, “Do you have difficulty breathing?”

and patients usually keep their answers short. The length of doctor utterances is more

consistent than that of patients because, they were trained to ask specific questions rel-

evant to their field and were trained to use the translation system, which handles single

concept utterances best. This is a barrier in revealing the user type of the doctor based on

utterance length. By contrast, a patient is less constrained and free in revealing his/her

personal characteristics. Longer utterances will implicitly include details or extra infor-

mation.

Human behavior is an extremely complex process dependent upon a multitude of

variables. The two specific user behaviors (RetryandSpeech Accommodation) studied

above can be further analyzed in terms of their correlation.

It is observed that users tend to employ shorter utterances following errors in the

mediation channel. On average, the utterance length decreased by 60% following a

“Retry” but increased by 62% following a successful exchange.

Utterance length also affects recognition performance since longer utterances tend to

generate higher error rates. An utterance length increase was followed by a significant

probability (63%) of “Retry”. A case can be made on the mutual dependence of the

mediated and interpersonal channels based on these observations.
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In summary, based on the observations above, we concluded that it is difficult to

draw trustworthy speech style accommodation results, especially regarding the direct,

human-human communication path. However we believe that there is speech accom-

modation taking place in the human-machine interaction channels. This is due both

to the extra effort required by the users in accommodating the device and the current

implementation of cross-lingual mediation devices; people tend to put emphasis on how

to operate the device, thus affecting their communication styles. Additionally, since the

conversation is task oriented, users are less likely to try to overcome the mediation chan-

nel barriers in order to exhibit socially acceptable behavior, such as that described by

the SAT.

6.6.2 Data Size and Data-Driven Modeling

One of the major challenges of an empirically-based user modeling study is the avail-

ability of data. It is especially important to note that it requires a huge effort to collect,

process and interpret the complex data from these bilingual spoken interactions. It is

well known that real human dialog data are complex to analyze, and due to the high

degree of variance in the data, a large volume is required to create sufficiently accurate

models. In terms of data size, more training data increase the accuracy of test set [?].

In addition, it is often unclear how much data is needed for optimal performance and

what the appropriate features are to build a user model. These issues are of critical

importance, especially when we attempt to model a user in a data-driven way.

6.6.3 Lessons from the Online Experiment with Agent Feedback

In designing a mediated device, it is important to have a good understanding of user

model, thus be able to appropriately modify the communication strategies, for example,

by taking system initiative. These system initiatives must be well founded on robust
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usermodels to ensure minimal user disruption. We designed triggering agent feedback

in this fashion (not disruptive). However, some participants in the online experiment

using agent feedback commented that they needed the feedbacks mostly in the early

time of interaction sessions and the repetitive feedbacks might be disruptive. How best

to exploit the user model is still not a fully explored area, especially in light of partial

observations (both temporally and qualitatively) of the user actions.

In the online experiment, we assumed that word error rate (WER) of offline experi-

ment can be substituted by ASR confidence level. This assumption is considered accept-

able widely in speech technology community. However, it is still debatable whether, in

what situation, with what features, we can accept this assumption.

6.6.4 Future Directions

Determining the subject of accommodation should also be considered in a design phase.

In our case, a doctor is more likely to accommodate the patient’s speech style because

he/she provides a medical service to a patient [87, 29]. In addition, as we observe, there

is another layer of accommodation stemming from the user’s accommodation towards

the device.

In addition to utterance length, there are many features that can be considered for

analyzing accommodation behaviors including speech rate, pausing, culture, social sta-

tus, etc. It is an interesting topic to consider the information content of such features in

future research.
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6.7 Conclusions

The paper addressed user behavior modeling approaches in a machine-mediated set-

ting involving bi-directional speech translation. Specifically, usability data from doctor-

patient dialogs involving a two way English-Persian speech translation system was ana-

lyzed to understand two specific user behaviors. For realistic application of the model,

online experiment with agent feedback was performed and results with subjective and

objective measures were reported.

We modeled a specific user behavior with 3 user types,Accommodating, Normaland

Picky. The granularity of user type can be adjusted according to the desired response.

For example, classifying users in two categories, such asPickyandNormal, may work

better when we do not want to take any steps for the case the users are extremely tolerant

of errors. In the offline data, we showed that one of 3 types becomes obvious as a user

keeps his/her consistent behavior under the same condition belonging to a specific type.

This model can be utilized for the design of an efficient error handling mechanism; in

previous research [82], a correct interpretation of user’s goal (intention) was helpful in

dealing with errors in human robot dialogs. Ultimately, we believe we can improve dia-

log efficiency and quality, task success, and user satisfaction that are important measures

of success similar to past work on the PARADISE framework [99]. In the online exper-

iment, we addressed some of these issues with agent feedback being presented to users

according to the model. High user satisfaction and interaction efficiency were reported

in the interaction sessions with agent feedback.

We presented ideas for future work, including a first attempt at addressing speech

accommodation issues, which, however, are currently inconclusive due to limited data

availability. We notice, however, in analyzing utterance length statistics that there is

an apparent correlation of the retry behavior with utterance length changes. This, we

believe, suggests an accommodation response to the device limitations, but one that
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needsfurther investigation. As part of on-going work, we described a preliminary

design of a conversation assistant agent based on the suggested user model between

two interlocutors. Evaluation on user satisfaction, conversation efficiency and system

performance improvement will be the next steps.
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Chapter 7

Conclusion and Future Work

——————————-

“Collection of the

information about users

is the key for better

system performance and

higher user satisfaction.”

——————————-

The study presented four user modeling work for

human-machine spoken interaction and mediation sys-

tems (speech-enabled systems), especially focused on

user models in error conditions. Under error conditions

of the speech-enabled systems, the systems, not just

wait for users to correct the errors, need to actively take

initiative to help users to get over the errors. For ana-

lyzing and modeling work, We utilized the data logged

by two speech-enabled systems: (1)DARPA communicatorwhich is a human-machine

Spoken Dialog System (SDS), and (2)Transonics (new name: SpeechLinks)which is

a translation driven human-human Spoken Mediation System (SMS). The domains of

these systems are travel agency service(the system 1) and medical diagnosis(the system

2) respectively. The research investigated the logged data of users using the speech-

enabled system, and modeled users based on the statistics. For evaluation purposes,

user survey questionnaires and user interview data as well as statistical analysis of log

data, were used in the study. The goal of the study is to contribute to the implementa-

tion of speech-enabled systems which can handle diverse users under error conditions.

Eventually, the user modeling work of this dissertation is expected to lead the higher

user satisfaction and enhanced system functionalities that provide user-centered func-

tionalities and services.
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Usermodeling work started with the analysis of user behaviors under error condi-

tions of a spoken dialog system – when things do not go well in the communication

chain. In particular, we examined categories of error perception, user behavior under

error, effect of user strategies on error recovery, and the role of user initiative in error

situations. A conditional probability model smoothed by weighted ASR error rate was

proposed. From the analysis we found: (1) users discovering errors through implicit

confirmations were less likely to get back on track (or succeed), and took a longer time

in doing so than other forms of error discovery such as system reject and reprompts; (2)

Further successful user error-recovery strategies included more rephrasing, less contra-

dicting, and a tendency to terminate error episodes (cancel and startover) than to attempt

at repairing a chain of errors. These analyzed results of user behaviors can be utilized for

the better design of an efficient error handling mechanism in building a spoken dialog

system.

One of major sources of errors is due to incorrect automatic speech to text con-

version. In interactive application, it is important that these errors do not impact the

overall concept transfer between users and the system. For speech-to-speech translation

system, this becomes more important because the evaluation metric of the translation

relies mostly on the meaning (the number of concepts) delivered through the informa-

tion exchange channels. In this regard, user behaviors were analyzed in terms of the

number of concepts transferred through the mediating device,Transonics. To clarify the

definition of how many concepts are transferred in the utterances produced by the system

(from original user utterances), theConcept Matching Score (CMS)was proposed, and

was defined based on “adequacy” levels which asses the quality of translations by the

system (proposed by Linguistic Data Consortium (LDC)). The results showed that while

some users require perfect representation of what they said in order to allow transfer,

others accept degradation to some extent. An appropriate system strategy is required to
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recognizethis behavior and guide users towards optimum performance points. In addi-

tion, we compared machine translation performances between the unimodal (speech)

interface setting and the multimodal (speech and visuals) interface setting by measuring

the CMS. The analysis showed that employing multimodal interface improves transla-

tion quality by 24%.

In a viewpoint of a system designer, users are considered as a changing subject over

time while their using the speech-enabled systems. They change behaviors, intentions,

or even goals while using the speech-enabled systems. In this regard, we reported the

analysis results of users who used a multimodal interface of a speech-to-speech transla-

tion system during the 4 weeks. Three sets of collected data were investigated for the

analysis purpose: user interview data, user survey questionnaire, and log data of the sys-

tem. By using the user interview data and the user survey questionnaire, we reported: (1)

users incorporated the strategies to cope with system errors in unsuccessful turns, such

as repeat, rephrase, change topic, and start over; (2) users perceived their proficiency in

using and learning the system improved during the first three weeks. For the analysis of

log data of the translation system, meaning of utterance was considered important in the

study. We used the Concept Matching Score (CMS) as introduced in the previous chap-

ter. Using this metric, we first reported the distribution of transferred meaning level in

two cases; successful and unsuccessful interaction turns of conversations. 91% of utter-

ances in the successful turns contained more than half the meaning of the original user

speech, and 90% of utterances in the unsuccessful turns contained less than/equal to half

the meaning of the original user speech in our data. Second, we investigated the mean-

ing transfer level by the multimodal interface comparing with that by the speech-only

interface. We observed improvement of meaning transfer by 33% and by 11% through

the multimodal interface in comparison with two speech-only interface settings respec-

tively; one without and the other with filtering unsuccessful interaction turn. Third, we
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reportedthat users gradually accepted machine-produced utterances more during the 4

weeks. Further analysis showed that users became more accommodating to the system

errors after having experiences of using the system, such as functional word insertion

errors which usually does not impact on the final translation quality. In general, users

of speech-enabled interface have a strategy to deal with system errors, which tends to

change the length of speech. In the report, the length of user speech increased after

successful interaction turn, and decreased after unsuccessful turn. During the 4 weeks,

average length of user speech was reduced gradually in the later 3 weeks.

From the analysis results above, we observed that users differ in accepting system

errors – the system errors are word-level lexical errors which can be identified easily by

the system. Some people are more accommodating to the system errors than others. In

this regard, we defined and clustered users asAccommodating, Normal, andPickyuser

types with features, the word error rate and the user retry behavior. The user models

were defined and evaluated in the setting of speech-enabled mediating device,Tran-

sonics(now,SpeechLinks). A dynamic Bayesian network was proposed to model three

user types with two features (as described above), which is an inference mechanism to

automatically determine the user type in offline and online experiments. To validate the

model, we performed both offline and online experiments using the log data ofTranson-

ics and the agent feedback implemented in theSpeechLinkssystem. The experimental

results using offline data showed that one of the 3 user types is clearly identified as a user

keeps his/her consistent behavior in a given interaction condition. In the online experi-

ment, agent feedback was presented to users according to the user types. We analyzed

recorded video, user interview data, survey questionnaire, and the system log data of

this online experiment. The analysis results showed high user satisfaction and enhanced

interaction efficiency for both users and the system.
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Oneof the challenging issues in the study of this dissertation was communication

between two persons. The case of mediated interactions is more complex than a human-

machine interaction setting. Under a human-human interaction with a mediating device

setting, there are two channels delivering the information: (1) the mediating channel,

and (2) the interpersonal channel. We attempted to address modeling users interpersonal

adaptation in the “interpersonal” channel, focusing on the design of a model based on

the users’ utterance length. This analysis implies that the average utterance length of a

user reflects a specific user type and can be used for dealing with interpersonal adap-

tation. TheSpeech Accommodation Theory[27] was adopted to support the argument

that greater degree of utterance length accommodation is related to the higher user sat-

isfaction in the Human-Human interaction. Some results were presented in the analysis

part; user utterance length was related to the recognition errors and users did not show

perfect interpersonal adaptation because of this recognition error effect. In the future,

more investigations on correlations and effects between the “mediating” channel and the

“interpersonal” channel are demanded.

Because of the error-prone property of statistical processing in speech technology,

speech-only interface may not enough to convey information. Multiple user input usages

will be desirable in this case for practical applications using speech technology. This

multimodal interface would provide alternative options to users who may have problems

in using speech technologies. In this regard, we would like to extend our work to investi-

gate multimodal user behaviors under a setting of two person’s communication (who are

speak different languages) using a speech-to-speech translation system. In particular, it

will be challenging to study the aspects of two person’s cooperations using a multimodal

interface, comparing those between two settings, a machine-mediated communication

(translation device) and a human-mediated communication (human translator).
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Appendix A

Tag Set and Guidelines

Each category of tag is preceded by the conventions for applying it. Examples of utter-

ances that would receive each tag are provided in the tables where practical.

A.1 System Tags

Definition: Clues by which the user becomes aware of an error.

Put tag on system said: line inside and outside of error segments wherever the phe-

nomena occurs. Multiple tags are okay.

A.2 User Tags

Definition: Users response to errors.

Put tag on “user said” lines inside and outside of error segments wherever the phe-

nomena occurs. Multiple tags are okay.

A.3 Task Tags

Definition: Tags about the state of system/user interaction.
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expl : Explicit confirmation.
User is asked to confirm certain input.
An example;
Was the arrival city Wichita or London ?

impl : Implicit confirmation.
The system repeats the users last input
to introduce the following prompt.
An example;
A flight from Miami. Where do you want to go?

reject: Rejection.
The system tells the user that the recognizer
either did not hear or did not understand the last input.
An example;
Sorry, I misunderstood.
Please say the name of the city
or airport you wish to depart from. (reject + aid)

aid : Aid.
The system instructs the user
to give the input in a certain way.
Often used with reject and
also often used in the first system prompt.
An example:
Try asking for flights between two major cities.

nonseq: Non Sequitur.
An inappropriate system response
gives the user evidence of error.
An example;
User said: [throatclearing]I would like to
book a flight from Columbus Ohio to Phoenix Arizona
to arrive before six p. m. on October fifth
System said: Where are you departing from? (nonseq)

sysrepeat: System Repeat.
The system repeats its last prompt.
(a pathological example where ASR looks ok,
but response is not accepted)
An example;
System said: What is your destination?
User said: Phoenix Arizona
Recognizer heard: Phoenix Arizona
System said: What is your destination?
User said: the destination is
Phoenix Arizona (user rephrase)
Recognizer heard: The destination is Phoenix Arizona
System said: What is your destination ?

Table A.1: Clues by which the user becomes aware of an error.
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repeat: User repeats exactly what they said in the previous turn.
rephrase: User rephrases the last input,

modifying choice of words, their order, etc.
An example;
System said: What time would you like to depart?
User said: early
Recognizer heard: early (err)
System said: Sorry, I misunderstood.
Please give the approximate time
you would like to depart. (reject + aid)
User said: eight a. m. (rephrase)
Recognizer heard: eight a m

contradict: The user contradicts the system, often as a barge-in.
An example;
System said: What time do you want to
leave phoenix (impl)
User said: no I don’t want to leave Phoenix
I’m starting from Columbus Ohio

frust : The user shows signs of anger (frustration),
contempt, disgust, and frustration.
An example;
Oh my god [uh] can we start over
(frust + startover)

chngreq: The user tries different dates,
different cities in the same state/country
in an attempt to circumvent an error.
An example;
System said: Flying from Dulles.
What city are you flying to?
User said: Hilton Head South Carolina
System said: At the Hilton.
What city are you flying to?
(nonseq + sysrepeat)
User said: Hilton Head South Carolina
System said: At the Hilton.
What city are you flying to? (sysrepeat)
User said: Savannah Georgia (chngreq)

startover : The user has the system start over
from scratch using the start over command
used by most of the systems.
An example;
System said: Sorry, I didn’t understand that.
What city are you flying to?
(reject + sysrepeat)
User said: START OVER

138



scratch: Cancel the last input.
Recognizer heard: I want to fly
from Seattle to San Diego (err)
User said: I want to fly from Seattle to Tokyo
System said: flying to San Diego
on what date? (impl)
Recognizer heard: scratch
User said: scratch (scratch)
System said: Canceling only this flight segment request.
Please give me the details of the request
for this segment again. For example, you can say,
I want to fly from Boston to Dallas
next Sunday morning. (aid)

ask: The user directs a question to the system or asks for help.
An example;
Do I have to fly to Rome to get to Berlin?

acq: The user continues a dialogue without trying (acquiescence)
to correct errors. May end an error segment
without getting back-on-track
(in this case the tag may not be on a user said line).
When there is an acq, a note is added about
what was acquiesced to.

hangup: The user hangs up in response to an error
(if it is the computer that hung up,
place tag on the “system said” line

Table A.2: Users response to errors.
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err : Placed at the “Recognizer heard:” turn (error)
where the initial error occurred.
Ignore any problem in the requests for ID numbers
at the beginning of dialogues.
When the error is minor
(e.g. late afternoon instead of early afternoon)
and the user doesnt try to correct it,
use acq instead of err.

bot : Back-on-track.
The user and system successfully negotiated
the correction of an error.
Placed on the system said line that
provides the user (and tagger) with evidence
of being totally back on track
(at the end of an error segment?never in nested errors).

succ: The user got the tickets s/he wanted (success)
If there are small errors like flight time,
then use with acq.

Table A.3: Tags about the state of system/user interaction.
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