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Abstract

Textured image/video processing for coding and super-resolution is investigated in this

thesis to improve coding efficiency and prediction accuracy. The research consists of three

main parts.

First, a synthesis-based texture coding technique that uses low-quality video as the

side information to control the output texture for video coding is proposed. As compared

with the current pure synthesis algorithm, the proposed algorithm is generic, in the sense

that the behavior and quality of the output texture can be adjusted by the amount of the

side information and determined by the user. We develop an area-adaptive side informa-

tion assignment technique to improve coding efficiency by given bit-budget. Additionally,

we also provide the texture decomposition algorithm to maximize the synthesis perfor-

mance by decomposing the non-synthesizable illumination component from the input

video. Simulations demonstrate the performance of the proposed technique.

Second, the addition of a new component to the traditional synthesis-based texture

video coding algorithm is investigated in this chapter. That is, we add the side infor-

mation in form of low-quality video to enhance the texture video synthesis performance

with reducing the unpleasant mismatch between analyzed and synthesized regions. As

compared with the conventional synthesis algorithm, our algorithm is more flexible since

x



the behavior and quality of the output texture can be adjusted by the amount of the side

information, which is determined by the user. To this end, we develop an area-adaptive

side information selection scheme that chooses the proper amount of the side information

for a given bit budget. Furthermore, we propose a texture decomposition scheme that

extracts the non-synthesizable illumination component from the source video for separate

coding so as to maximize the synthesis functionality. The superior performance of the

proposed texture video synthesis technique is demonstrated by several coding examples.

Third, a texture interpolation technique based on the locally piecewise auto-regressive

(PAR) model and the non-local (NL) training procedure is investigated. The proposed

PAR/NL scheme selects model parameters adaptively based on local image properties

with an objective to improve the interpolation performance of non-adaptive models, e.g.,

the bicubic algorithm. To determine model parameters for stochastic texture, we use

the non-local (NL) learning algorithm to update and refine these local model parameters

under the assumption that the PAR model parameters are self-regular. As compared

to previous interpolation algorithms, the proposed PAR/NL scheme boosts texture de-

tails, and eliminates blurring artifacts perceptually. Experimental results are given to

demonstrate the performance of the proposed technique.
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Chapter 1

Introduction

1.1 Significance of the Research

Many real world objects have textured surface appearance such as terrain, wools, fur,

skin, cloud, grass, and so on. Texture classification and segmentation is one of the oldest

research topics in image/video processing. Although texture has been carefully studied

for its specific property over four decades, it is still difficult to model and characterize

mathematically. Loosely speaking, texture has spatially homogeneous, quasi-stationary

statistical properties with repeated patterns.

The performance of texture analysis algorithms is directly dependent on the extracted

salient feature sets. From early 60’s, people tried the pixel-domain or the transform-

domain approaches with its statistical information [59, 61]. Among them, the application

of a set of FIR filters [36], wavelet filters [15], Gabor filters [32] offers better performance.

In addition, texture decomposition [2], modeling [58], coding [72] have been widely inves-

tigated. More recently, texture synthesis becomes popular [34, 35]. Some of these results
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have been applied other research problems, such as inpainting [4], compression [46] or

rendering.

Adaptation of texture synthesis technique for textured video coding can be assumed

as a content-adaptive algorithm. In current video coding standards, the encoder does not

distinguish different video contents and adopts the same coding techniques for all input

contents, for example, motion-compensated prediction (MCP) and quantization in the

block transform domain, where MCP and the block transform are used to remove temporal

and spatial redundancies, respectively. However, it may be possible to develop special

coding techniques for specific video contents by synthesis. There are two reasons that

synthesis can replace conventional encoding/decoding for texture. First, texture is often

perceived differently than other objects, and does not require reproduction with pixel

accuracy. Second, the repeated pattern enables us to generate visually-similar texture

by exploiting its statistical and stationary properties. Previous work on synthesis-based

texture coding will be reviewed in Sec. 1.2.

However, there are several challenging research problems in synthesis-based video

coding as described below. Some of them will be addressed in Chapter 3.

• Synthesized texture should be perceptually similar to the target one. In order for

synthesized texture to replace conventional texture encoding/decoding, perceptual

similarity of synthesized texture is critical. In fact, this requirement is valid not

only for synthesis-based coding but also for all texture synthesis algorithms.

• Synthesized texture should be well-matched with its decoded neighborhood. Being

different from the texture synthesis problem in computer graphics, the video output
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contains both decoded video background and synthesized texture. In this case,

it would be important to hide boundary artifacts between decoded video blocks

and synthesized texture blocks. In addition, the general structure and motion of

synthesized texture should be consistent its neighborhood. Otherwise, undesirable

artifacts will be noticeable.

• The synthesis algorithm should only be used for synthesizable texture. Since most

video content is not synthesizable, we need to classify or decompose them for the

proposed synthesis algorithm to be applicable.

As an application of synthesis-based texture coding, we propose a novel framework to

increase coding efficiency by handling film grain noise of high definition video in Chapter

4. Film grain noise can be viewed as a type of texture due to its perceptual unimportance,

large high-frequency energy and statistical property. Thus, synthesis-based texture coding

can be applied to film grain noise compression. Some research problems for film grain

noise analysis and synthesis algorithm are described below. They will be addressed in

detail in Chapter 4.

• Film grain noise should be well-suppressed to maximize the coding gain. Since the

ultimate objective for film grain denoising is to improve coding efficiency, film grain

noise should be extracted as much as possible in the encoder.

• The denoising filter used in film grain extraction should not distort the original

data. Note that the denoising filter tends to blur original video contents by its

low-pass filter property, which should be avoided.
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• Since film grain noise enhances the naturalness of video contents, we need a post-

processing step to re-synthesize the grain-like noise at the decoder. Extracted film

grain noise should be analyzed and parameterized for the rendering purpose. Be-

sides, synthesized grain noise should be perceptually similar to the original one.

• Finding objective quality measurement for synthesized film grain noise is impor-

tant. Objective quality measurement is needed to evaluate the performance of the

algorithm in addition to subjective quality measurement. For this reason, salient

features of film grain noise have to be studied.

Finally, we propose a method to increase the resolution of random texture by prop-

erly interpolating textured image. Since random texture is spatially complex and so-

phisticated, the traditional edge-oriented interpolation schemes do not work well. One

of the image restoration problem, i.e. texture super-resolution, has several challenges as

described below. This subject will be treated in detail in Chapter 5.

• The resolution-increased texture should properly represent its detail. Actually, the

simple frequency-domain extension with zero-padding would not produce satisfac-

tory results.

• The interpolation filter should be large enough to estimate the complex behavior of

random texture. Although a textured pattern may only have short-term correlation,

the prediction in the 2D image domain often involves a large number of pixels and

the corresponding filter coefficients are not easy to estimate.
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1.2 Review of Previous Work

Texture synthesis is an active research topic in many research fields. Besides of synthesis-

based texture coding approach, texture synthesis technologies have been broadly applied

to several research areas, such as image/video texture rendering [88], completion [70], and

inpainting [4]. Broadly speaking, there are two major approaches for texture synthesis.

The first one is based on the parametric approach [54, 57, 58, 87], where an image sequence

is modeled by a number of parameters such as the histogram or correlation of pixel

values. Given a sufficient number of model parameters, it is then possible to recreate

the ”look and feel” of any texture that meets the parameterized constraints. The second

approach is based on a non-parametric approach [21, 22, 34, 35, 39], where synthesized

texture is derived from an example texture as the seed that is known a priori. The

texture synthesis process creates additional texture data by inspecting the seed texture

and copying intensity values in the seed to the new texture region. Most texture synthesis

work considers the image domain, with only a few are applied to the video space.

There have been efforts in developing the texture synthesis approach to improve the

coding efficiency. In [46], the texture region of the target frame is first analyzed by TA,

and then it is reconstructed by TS using frame-to-frame displacement and image warp-

ing techniques. This method is however not effective for non-rigid texture objects, and

the frame-by-frame synthesis method can yield temporal inconsistence. Similar texture

synthesis technique using frame-to-frame mapping was proposed in [6], but it was more

focused on texture analysis and segmentation algorithms. A cube-based texture grow-

ing method was proposed in [47, 48], which can be viewed as an extension of [35] from
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image to video. Temporal consistency is guaranteed in [48] due to cube-based synthesis.

However, the global texture structure can be easily broken by texture growing with the

raster-scanning order. Furthermore, the output texture tends to have repeated patterns

by the fixed-size cube-based growing procedure. An algorithm with an alternative ap-

proach was proposed in [20], in which it replaces the input texture with a perceptually

similar and well-encodable synthesized texture. In comparison to other methods, the

approach only manipulates the input video at the encoder side, so that existing coding

modules can be used without any modification. However, its constraint-based texture

synthesis method based on [58] is generally not efficient for structured texture.

Image restoration including noise detection and removal has been one of active re-

search topics in image processing during last several decades. The main objective of these

algorithms is suppressing the noise as much as possible without distorting the original im-

age, and various approaches have been proposed so far [9]. When extending the denoising

problem from image to video, temporal correlation of noise should be considered. Ozkan

et al. [53] applied temporal filtering to noise suppression yet preserving image edges at

the same time. The integrated spatial and temporal filtering approach was examined in

[18, 56]. Temporal filtering methods in these works were built upon block motion esti-

mation. Boo et al. [5] applied the Karhunen-Loeve (KL) transform along the temporal

direction to decorrelate dependency between successive frames and then used adaptive

Wiener filtering to smooth frames. Most methods using temporal filtering work well for

still or slow-motion video since temporal filtering can be done nicely with accurate motion

information. However, large motion estimation errors occurring in fast motion video tend

6



to result in erroneous noise estimation. Furthermore, it demands a large memory buffer

to implement temporal filtering.

Among hundreds of papers published on this topic, some of them target at film grain

noise processing, e.g. [1, 5, 43, 84, 85]. It was assumed by Yan et al. [84, 85] and

Al-Shaykh et al. [1] that film grain noise is proportional to a certain power, p, of the

background signal intensity, which imposes strong limitation on the extraction and mod-

eling of film grain noise. More recently, Moldovan et al. [43] proposed new algorithms

using Bayesian model to detect film grain noise, where film grain noise is assumed to

be of the beta distribution and spatially independent. Under this assumption, an image

can be estimated by an iterative gradient descent method with a pre-determined model

and proper parameters. This approach is claimed to be robust against different image

contents. However, according to our observation, the distribution of film grain noise is

close to the Gaussian distribution and it is not spatially independent.

In the denoising process, it is important to find out an edge region of the image, since

most of denoising algorithm tends to blur the image, especially around the edge. There

has been a large amount of work for edge detection. In particular, Canny [13] proposed

an edge detection algorithm for noisy images. More recently, a multi-layer approach is

used to reduce false detection due to noise. For example, Mallet et al. [41] used local

maxima of overcomplete wavelet transform coefficients for edge detection. They proved

that finding local maxima is equivalent to multi-scale Canny’s edge detector. Instead

of finding local maxima of wavelet coefficients, Xiong at el. [83] used the cross-scale

correlation for edge detection by multiplying cross-scale wavelet coefficients under the

assumption that the multi-scale noise intensity is related in a logarithmic ratio. However,
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this method would not work well for film grain noise whose energy values deviate from

the logarithmic variation assumption. As more specific application for the film grained

image, Schallauer et al. [64] proposed new algorithms to detect homogeneous image

region, in which the block-based 2D DFT was adopted to detect the directionality of

edges and/or fine textures and, then, properties of film grain noise are extracted only

from homogenous regions. Since film grain noise is isotropic while edges and fine textures

have strong directionality, 2D DFT provides a good tool for their distinction. However,

the decision made based on several points with four-different angles { 0◦, 45◦, 90◦, 135◦

} and a couple of radial bands is not accurate enough to determine the directionality,

since the spectrum of image edges tends to be across a wide range of frequency bands

and sampled values at fixed points in the DFT domain may lead to false conclusion.

Two different methods were proposed for film grain synthesis. One is to use the film

grain database for the sake of low complexity. The film grain pattern is first identified,

and the decoder generates a larger size of film grain from a smaller size of film grain

stock. However, the block-based copy-and-paste method might yield artificial boundary

artifacts. Besides, the method is workable only when the film stock information is known

a priori. The other is to use some models for blind film grain synthesis. Several methods

have been proposed, e.g. high-order-statistics-based [84, 85], parametric-modeling-based

[11, 12, 58, 63] or patch-based noise synthesis methods [21, 22, 39, 35]. Since film grain

noise can be viewed as one type of random texture, the conventional texture synthesis

method can also be adopted. However, there is one challenge. That is, since film grain

noise has special properties as will be mentioned in Chapter 4, these criteria must be
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considered and satisfied when synthesizing the film grain. So far, there has been no effort

to generate the film grain noise based on the specific film grain properties.

As another class of image restoration problem, image interpolation can be done with

two major approaches: the model-based approach and the learning-based approach. In

the model-based approach, pixels are predicted using a pre-defined model. Some algo-

rithms may change the model and/or model parameters adaptively according to local

image contents. For example, Li and Orchard [38] proposed a piecewise auto-regressive

(PAR) model that adjusts local model parameters using a covariance duality assumption.

In the learning-based approach, the relationship between known and unknown data is ex-

tracted from a training set [25, 71]. The learning-based approach has more flexibility in

handling a broader range of image contents, but the training-set size should be restricted

due to limited memory space and computational complexity. Instead of relying on a pre-

selected training-set, a learning-based algorithm with the self training-set was proposed

by Buades et al. [8], which has received a lot attention due to its simplicity and superior

performance. This scheme, called the non-local (NL) algorithm, is initially developed for

image denoising. However, it is proven to be efficient for the image restoration problem

as well, including deblurring, inpainting and interpolation [37].

1.3 Contributions of the Research

The main contributions of this research are summarized below.

• We propose a novel framework to control the output synthesized texture by send-

ing additional side information, which is used to make the synthesized texture be
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consistent with the behavior of its neighborhood texture. As a result, the overall

output texture looks more natural. The side information can be obtained by the

standard encoder at a lower bit-rate so that we do not need any additional module

to generate the side information. Besides, the amount of the side information is

adjustable at the encoder by varying the quantization parameter (QP).

• We develop an optimal method to select the side information to maximize the

texture similarity and to minimize the texture synthesis distortion for a given bit

budget. The side information can affect its spatial or temporal neighbor in the

synthesis process, and its importance could vary in different local regions. Con-

sequently, the amount of the side information should be determined by its local

importance. We use the R-D based optimization to determine the local importance

of the side information.

• We present a texture decomposition method to maximize the synthesis perfor-

mance by removing the non-synthesizable yet easily-coded background illumination

component from the input video. This allows the proposed algorithm to encode

illumination-varying texture more effectively. As a result, the resultant algorithm

becomes more flexible and robust.

For research on film grain noise modeling and applications, we develop a denoising

algorithm for film grain noise extraction, and a novel rendering algorithm for film grain

noise synthesis in Chapter 4. The following contributions are made along this line.

• The unique properties of film grain noise are studied and exploited fully. Film grain

noise is generated by the physical process and it is more visible than white noise.
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We analyze these properties and build an effective model for its extraction and

synthesis.

• In the denoising process, a variational approach is adopted due its superior behavior

in edge preservation. That is, we formulate a problem that minimizes the total

variational (TV) of the underlying image. It results in better estimation of the

noise behavior and helps extract film grain noise without distorting edges of the

original image.

• We develop a causal AR model for noise synthesis. Since the AR model only needs

a small number of parameters in texture synthesis, the number of additional bits

required to represent the side information is negligible. Furthermore, the synthesis

process at the decoder is fast by exploiting the causality of the AR model. We also

propose a quantitative metric to evaluate the performance of the proposed texture

synthesis method.

Finally, we develop a novel super-resolution algorithm for random texture in Chapter

5. The following contributions are made along this line.

• We propose a hybrid approach that consists of model-based and learning-based

schemes to solve the super-resolution problem. Consequently, it can reduce visual

artifacts caused by the learning-based algorithm while efficiently estimating the

adaptive model parameters.

• We adopt the self-learning based algorithm for texture restoration. Since random

texture is homogeneous itself, a self-learning training set can yield enough informa-

tion.
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• We propose to adopt the non-local information to break the ’curse of dimensionality’

problem in parameter estimation. The order of a texture model should be large to

capture its sophisticated behavior. However, it is often limited by the available local

information in traditional image processing algorithms. Here, we use the non-local

information with a proper similarity measure, which helps find out more accurate

parameter sets.

• We analyze the proposed scheme and compare it with the conventional non-local

algorithm. We also conduct theoretical analysis and provide an explanation to the

superior performance of the proposed algorithm.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. The background of knowledge about

standard video coding, texture analysis/synthesis, and textured region identification al-

gorithms are reviewed in Chapter 2. The synthesis-based texture coding using the side

information is studied in Chapter 3. Film grain noise analysis and synthesis is presented

in Chapter 4. Textured image super-resolution algorithm is investigated in Chapter 5.

Finally, concluding remarks are given and future research directions are pointed out in

Chapter 6.
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Chapter 2

Research Background

In this chapter, we provide a brief review to the background required for our current

research. An overview on H.264/AVC and the rate-distortion (R-D) optimization is first

described in Sec. 2.1. Then, previous work on texture synthesis, including parametric

and non-parametric texture synthesis methods, is reviewed in Sec. 2.2. Finally,

2.1 H.264 Video Coding Standard and Rate-

Distortion Optimization

2.1.1 H.264/AVC Video Coding Standard

The block-diagram of an H.264/AVC encoder is shown in Fig. 2.1. Being similar to

previous video coding standards such as MPEG1, MPEG2 [45] and H.263 [31], the input

sequence is encoded as one of three frame types, i.e., the intra-coded (I), the predicted

(P), or the bi-directionally predicted (B) frames. An input frame is further segmented

into macroblocks (MBs), where each MB is coded by the inter- or intra-prediction modes.

One 16x16 MB can further be partitioned into one 16x16 block, two 16x8 or 8x16 blocks
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or four 8x8 blocks, where each 8x8 blocks can be further partitioned into two 8x4 or 4x8

blocks or four 4x4 blocks, depending on the inter-prediction mode. On the other hand,

one MB can be partitioned into one 16x16 block, four 8x8 blocks or 16 4x4 blocks if the

intra prediction mode is selected.

For intra-coded blocks, a pre-determined block transform is directly applied according

to its block size. It is followed by scalar quantization, which is controlled by the quan-

tization parameter (QP). For inter-coded block, inter prediction is first performed using

the motion estimation (ME) process to search its best-matched block from the set of

reference frames. After the search, motion vectors and the residual signals are generated

as the output data. Then, this residual signal is encoded by the pre-determined block

transform and quantization, which is similar to that in the coding of intra blocks.

Finally, an entropy encoder encodes quantized coefficients of intra and inter blocks to

reduce redundancy furthermore. There are two kinds of entropy encoders in H.264/AVC:

the context-adaptive binary arithmetic coder (CABAC) and the variable length coder

(VLC). CABAC is used to encode all syntax elements. There are two VLC coders: the

context-based adaptive variable length coding (CAVLC) and the universal variable length

coding (UVLC), which are used to encode source data and header data, respectively.

2.1.2 Rate-Distortion Optimization

The rate-distortion optimization (RDO) process is often used to decide the best coding

mode among various coding modes in H.264/AVC so as to minimize the distortion under

a certain rate constraint [52, 69]. One of the example for RDO in H.264/AVC is in-

tra/inter/skip mode decision selection. Since the coded MB is partitioned into a different
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Figure 2.1: The structure of the H.264/AVC video encoder.

number of blocks according to the inter or intra prediction mode, the RDO process first

finds the best MV or the best intra prediction direction for a specific inter prediction

mode or intra type, respectively. After that, the RDO process either actually performs

the encoding task, which includes the spatial domain transform, quantization and entropy

encoding or uses a model to determine the associated coding rate and distortion. Finally,

the RDO process finds the best inter or intra prediction mode that yields the minimal

rate-distortion (RD) cost for the MB. Typically, the RDO process performs several times

of the encoding process to decide the best coding mode that minimizes the distortion and

meets the rate constraint simultaneously.
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2.2 Texture Synthesis

As mentioned in Sec. 1.2, there are two texture synthesis approaches: parametric and

non-parametric approaches. Their common objective is to generate naturally-looking

texture that is visually similar to given seed texture. However, they adopt different ways

to achieve this goal. We describe these two approaches and comment on their advantages

and disadvantages in the following two subsections.

2.2.1 Parametric Texture Synthesis

The parametric texture synthesis approach has a longer history. It first infers an appro-

priate texture model from the seed texture and identifies its model parameters. Then,

new texture is synthesized from the derived model. Since the parametric synthesis ap-

proach attempts to model the basic physical behavior of the seed texture with a model

and its parameters, it is also called physics-based synthesis.

In the early development of the parametric synthesis approach, the simple auto-

regressive (AR) or moving-average (MA) model was derived in the pixel [10, 17, 73]

or the transform domain [23, 62]. From late 90’s, a stochastic model was shown to be

more efficient in specifying the texture behavior, and several algorithms based on this

principle were proposed [54, 57, 58, 87]. They determine a set of statistical features

and new texture that matches these statistics with its seed is synthesized. Portilla et

al. [57, 58] considered a multi-resolution statistical model, and showed that matching

statistics between subbands plays a critical role in visual output experimentally.
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For the purpose of texture coding, the parametric texture synthesis method is depicted

in Fig. 2.2, where the texture analyzer (TA) analyzes the seed texture and finds an

appropriate model and its parameters. Then, the texture synthesizer (TS) synthesizes

new texture from the model and its parameters.

Figure 2.2: Texture coding with parametric texture synthesis.

The main advantage of parametric synthesis is its broad range of possible texture to be

synthesized. Since it is based on the features of seed texture, it can generate an arbitrary

shape of texture as long as the texture model is able to catch all texture behavior (which

implies a reasonable size of seed texture). However, it is in general difficult to find a good

model for given texture due to the limited size and the inherent physical complexity of

the seed texture. Besides, it is well known that the parameter approach cannot represent

structural texture well.

2.2.2 Non-parametric Texture Synthesis

In non-parametric texture synthesis, we do not analyze and build a model for the seed

texture. Instead, it uses the information from the seed texture directly through a copy-

and-paste process. It is sometimes called image-based texture synthesis.
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The main difficulty of the non-parametric approach is to hide the boundary between

adjacent patched blocks so that synthesized texture is perceptually natural. Various

algorithms have been introduced to hide patch mismatch, such as feathering [39], dy-

namic programming [21] or graph-cut [35]. The graph-cut algorithm proposed by Kwatra

provides a promising solution since it often gives a good result with low computational

complexity. Besides, it can be easily extended to the 3D case.

In the context of texture coding, we depict the non-parametric texture synthesis

approach in Fig. 2.3, where the TA determines the seed and the target textures and the

TS synthesizes new texture with translated seed texture.

Figure 2.3: Texture coding with non-parametric texture synthesis.

The main advantage of the non-parametric synthesis approach is that it generally

generates more natural texture than the parametric synthesis approach. Especially, it

can preserve the texture structure well while the parametric synthesis approach often

fails to render the strong structure of underlying texture. Besides, it does not need to

build a different model for each seed texture as the parametric synthesis approach does.

That is, the same mechanism such as raster-order patching or texture growing can be
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applied to the synthesis of all types of texture. However, the huge complexity is its main

disadvantage. This is especially true in the video coding application.

2.3 Texture Region Identification and

Segmentation

Extracting the textured regions from the input image/video is important pre-processing

step in our proposed framework, since the proposed synthesis-based coding or texture

super-resolution algorithm is only applied to the identified textured region. Typically, we

can classify the previous texture feature extraction algorithm into four classes : structural

methods, statistical methods, model-based methods and transform or spatial-frequency

methods [6].

Structural method assumes that texture is composed of small texture element, which

is often called ’texton’ or ’textel’ [16]. Statistical method represents texture by its sta-

tistical properties such as second order statistics [29]. It is generally true that second

order statistic is not enough to perfectly represent texture, so that high-order texture

analysis schemes are also popular [79]. Model-order texture analysis schemes rely on the

specific models, such as linear auto-regressive (AR) or moving-average (MA) model [42],

fractal model [33], etc. Finally, transform based method utilize the sparsity of texture by

compacting the texture signal into the specific bases. Gabor filter [32] , tree-structured

packet-wavelet filter [15] are its popular choice. Though we classify the texture analysis

and feature extraction methods as above, many algorithms adopt more than two schemes

at the same time to improve its performance and compensate the drawbacks.
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Chapter 3

Synthesis-based Texture Coding with Side Information

3.1 Introduction

Over the last two decades, video compression technologies have continued to improve

in coding efficiency. This is evidenced by the development of several successful video

coding standards, such as MPEG1, MPEG2 [45], H.261 [30], H.263 [31] and H.264 [82].

Although the storage capacity and the transmission bandwidth continue to increase, we

assert that further improvement in video coding efficiency is desirable for two reasons.

First, the size of video data is getting larger due to the arrival of high definition video

contents such as high-definition TV (HDTV), digital cinema, and ultra-high-definition

TV (UHDTV). The resolution of HDTV is 1920x1080, which is about six times of the

single-definition (SD) video, and UHDTV has a resolution of at least 24 times that of the

SD video. Second, new consumer electronics demands better visual quality than before

due to the state-of-the-art display technology. Historically, video coding systems have

been targeted at the cathode-ray-tube (CRT) based display. However, the CRT has been

largely replaced by alternative display technologies nowadays such as the liquid crystal,

20



plasma and digital micro-mirrors. These technologies have a brighter and higher dynamic

range that allows consumers to perceive more visual information. As a result, efforts in

developing the next generation video technology are still in progress, and various creative

ways have been attempted to improve coding efficiency furthermore.

One possible approach to video coding efficiency improvement is to develop a content-

adaptive compression algorithm. In current video coding standards, the same high-level

coding structure is used for all video contents; namely, the motion-compensated prediction

(MCP) and quantization in the block transform domain, where MCP and the block

transform are used to remove temporal and spatial redundancies, respectively. It is

however desirable to develop special coding techniques for specific video contents. Along

this line, dynamic motion texture is one class of contents receiving special attention.

Note that block-based MCP does not work well due to its dynamic motion while a block

transform does not work well due to fine details and high-frequency components of texture.

One special texture coding technique is synthesis-based coding. There are two reasons

that synthesis can replace conventional encoding/decoding for texture. First, texture is

often perceived differently in such a manner that it does not demand reproduction with

pixel accuracy. Second, its quasi-stationary pattern enables the generation of visually-

similar texture by exploiting its statistical properties.

The overall system of a typical synthesis-based texture coding algorithm is depicted

in Fig. 3.1. Instead of decoding the texture data directly, a module called the texture

synthesizer (TS) is used at the decoder to generate visually similar texture. For this

scheme to work properly, one module called the texture analyzer (TA) is included in the

encoder to examine the input video, separate texture and non-texture regions, extract
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parameters from texture regions and encode non-texture regions. When the coded bit-

stream is sent to the decoder, the decoder then decodes the bit-stream of non-texture

regions as usual and uses the TS to fill out texture regions.

Figure 3.1: A video coding system with the texture analyzer (TA) module and the texture
synthesizer (TS) module.

Texture synthesis is an active research topic in several fields. Besides synthesis-based

texture coding, texture synthesis technologies have been applied to image/video tex-

ture rendering [88], completion [70], and inpainting [4]. Generally speaking, there are

two major approaches for texture synthesis. The first one is the parametric approach

[54, 57, 58, 87], where an image sequence is modeled by a number of parameters such as

the histogram or correlation of pixel values. Given a sufficient number of model param-

eters, one may recreate the ”look and feel” of any texture that meets the parameterized

constraints. The second one is the non-parametric approach [21, 22, 34, 35, 39], where

synthesized texture is derived from an example texture as the seed that is known a priori.

The texture synthesis process creates new texture data by inspecting the seed texture and

copying intensity values from the seed for the extrapolated area. Most texture synthesis

work is conducted in the image domain with only a few done in the video space.

Most previous synthesis-based texture video coding algorithms follow the basic dia-

gram as shown in Fig. 3.1. In [46], the texture region of the target frame is analyzed by
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the TA and reconstructed by the TS using the frame-to-frame displacement and image

warping techniques. This method is however not effective for non-rigid texture objects

and the frame-by-frame synthesis can yield temporal inconsistence. A similar texture

synthesis technique using frame-to-frame mapping was proposed in [6], which focused

more on texture analysis and segmentation. A cube-based texture growing method was

proposed in [47, 48], which can be viewed as an extension of [35] from image to video.

Temporal consistency is guaranteed in [48] due to cube-based synthesis. However, the

global texture structure can be easily broken by texture growing with the raster-scanning

order. Furthermore, the output texture tends to have repeated patterns by the fixed-size

cube-based growing procedure. An alternative approach was proposed in [20], where it

replaces the input texture with a perceptually similar and well-encodable synthesized

texture. As compared with other methods, it manipulates the input video at the encoder

only so that existing decoding modules can be used without any modification. However,

the constraint-based texture synthesis method derived from [58] is generally not efficient

for structured texture.

We extend the result in [50] and provide thorough theoretical analysis in this work.

Specifically, we propose a new framework in which texture video is synthesized with the

help of a low-quality version of the source video obtained by the TA, which is called the

side information. Under the assumption that the texture region of input video is given,

we focus on the side information preparation at the encoder and texture synthesis at

the decoder in this research. Although the side information demands bits for its coding,

the proposed algorithm is more flexible since the behavior and quality of the output tex-

ture can be adjusted by the amount of the side information, which is determined by the
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user. To this end, we develop an area-adaptive side information selection scheme that

chooses the proper amount of the side information for a given bit budget. Furthermore,

we propose a texture decomposition scheme that extracts the non-synthesizable illumina-

tion component from the source video for separate coding to enhance the overall coding

performance. As a result, the unpleasant mismatch between analyzed and synthesized

regions can be removed and the output texture can be more visually similar to the target

texture. The superior performance of the proposed texture video synthesis technique is

demonstrated by several coding examples.

The rest of this paper is organized as follows. First, a brief review of example-based

texture synthesis is given in Sec. 3.2. Then, the overall structure of the proposed scheme

is detailed in Sec. 3.3. Experimental results are given in Sec. 3.4 to demonstrate the

effectiveness of the proposed scheme. Finally, concluding remarks are given in Sec. 3.5.

3.2 Example-based Texture Optimization

The example-based texture optimization technique proposed in [34] is adopted for texture

synthesis in our work. The core of the algorithm is defining the texture distortion between

the seed and the synthesized textures, and minimizing it using an iterative optimization

method. For the latter, various energy minimizing methods can be used.
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Figure 3.2: Illustration of the texture distortion.

Texture distortion is defined as the distance between a block of the synthesized image

and its best-matched block in the seed texture. The total texture energy is obtained by

summing distortion values in all blocks as

Esyn =
∑

p

DT (T syn
p , T seed)

=
∑

p

||T syn
p − T seed

Mp
||r, (3.1)

where T syn
p denotes a column-vectorized form of a block of size N × N in synthesized

texture around grid p, and T seed
Mp

indicates its best-matched vectorized block around grid

pixel Mp in seed texture. The texture distortion function DT between a block of the

synthesized texture (T syn
p ) and the seed texture (T seed) as defined in Eqn. (3.1) is shown

in Fig. 3.2. Typically, blocks are extracted from seed texture in an overlapping manner.

Although this equation is defined in the image domain, it can be extended to a 3D video

cube in a straight-forward manner.
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The optimized output will be the solution that yields the smallest distortion energy in

Eqn. (3.1). Unfortunately, it is not trivial to find the optimized solution. An Expectation-

Maximization (EM) algorithm was adopted in [34], where an initial texture estimate is

iteratively refined to decrease the distortion energy of the synthesized texture. One of

the difficulties of this cube-wise processing is finding an appropriate value for the cube

size. Generally, a larger cube is suitable in keeping the global structure while a smaller

cube is advantageous in representing local detail [49]. The difficulty was solved by the

multi-resolution and multi-scale texture-synthesis method in [34]. By multi-resolution,

the texture in the coarse-level image is first synthesized and, then, the up-sampled texture

in the finer-level image is refined. By multi-scale, the cube size can be varied from a larger

one to a smaller one. Both techniques can keep the global structure and synthesize fine

details at the same time. This algorithm is summarized in the following pseudo-code.

Algorithm 1 Texture synthesis by energy minimization

1: For each resolution and cube size
2: For each cube centered at pixel p,
3: T seed

Mp
← arg min

T seed
q

||T syn
p − T seed

q ||r for all grid space q

4: T syn ← arg min
T syn

∑
p

||T syn
p − T seed

Mp
||r

5: Repeat steps 2-4 until the change of T syn is small enough

3.3 Proposed Algorithm: Texture Synthesis with Side Information

The main novelty of our algorithm is to add a new component to the traditional texture

video synthesis process, which is a low-quality video representation of the source video,

called the side information. The basic framework of our algorithm is described in Sec.

3.3.1. The expectation-maximization optimization process is explained in Sec. 3.3.2.
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Then, discussion on proper side information selection is given in Sec. 3.3.3. Finally, the

texture decomposition scheme is presented in Sec. 3.3.4.

3.3.1 Basic Framework

The idea of texture video synthesis with the side information can be intuitively formulated

as

T syn = arg min
T syn

∑
p

DT SI(T syn
p , TSI

p , T seed)

= arg min
T syn

∑
p

[
||T syn

p − T seed
Mp

||r + α · DSI(T syn
p , TSI

p )
]
,

(3.2)

where TSI
p is a column-vectorized form of a cube of low-quality video around grid pixel

p, and DSI is a distortion measure between synthesized and low-quality video. This

equation demands that the synthesized texture should be closed to the given seed texture

as well as the side information. The weight between these two constraints is controlled by

parameter α. For example, if we set α = 0, this framework is reduced to the traditional

texture video synthesis algorithm as given in [48]. On the other hand, the contribution of

the side information to the final synthesized texture video increases as α becomes larger.

In this work, we adopt the standard video coding tool with a larger quantization

parameter to obtain low-quality video and use the reconstructed video as the side infor-

mation. This side information generation approach is advantageous in several aspects.

First, it can be readily incorporated in any video coding system since it does not need

any additional module to produce the side information. Second, the quality of the side

information can be easily controlled by adjusting the quantization parameter (QP) value.

Third, it allows the usage of any video coding technique. In this work, we use the
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H.264/AVC standard for the coding of the side information as well as the non-texture

part of the source video.

Figure 3.3: Comparison of two distance measures: the distance in the transform domain
denoted by DSI and the Euclidian distance denoted by DE .

Next, we examine an efficient way to compute the distortion term, DSI(T, TSI), in

Eqn. (3.2). A simple Euclidean distance in the pixel domain may not be effective since

it does not take the quantization process of the side information into account. This is

especially true when the QP value is large. Thus, we adopt another approach. That is,

we first determine the closest point by projection in the transform domain as proposed in

[86], and then compute the distance between the projected point and the synthesis point

as shown in Fig. 3.3. As a result, the proposed distortion measure only penalizes the

solution when the signal falls out of the quantization bin.
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Mathematically, this can be expressed as

DSI(T, TSI) = ||T − [T ]+||r,

where [Ti]+ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ti if |Ti − TSI
i | ≤ ∆,

TSI
i + ∆ if Ti > TSI

i + ∆,

TSI
i − ∆ if Ti < TSI

i − ∆,

(3.3)

where [·]+ represents a projection function, the overbar indicates the vector form of the

cube in the transform domain, subscript i indicates the ith vector element and ∆ is the

quantization step size.

3.3.2 Optimization via Expectation-Maximization (EM)

Since the objective function in Eqn. (3.2) has two unknown data (i.e., T syn as the

latent variable and {T seed
Mp

}P
p=1 as its unknown parameter set), we apply the expectation-

maximization (EM) algorithm for its minimization. In our implementation, we modify

the objective function as

T syn = arg min
T syn

∑
p

[ ||T syn
p − T seed

Mp
||r + α · DSI(T seed

Mp
, TSI

p ) ] , (3.4)

where we replace T syn by T seed in the second term for the ease of computation. Although

the objective function in Eqn. (3.2) is easier to understand, the two objective functions

eventually target at a very similar cost function during the iterative process due to the

closeness of T syn
p and T seed

Mp
, which will be further investigated later. For the rest of this
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section, we will describe the EM algorithm with respect to the objective function in Eqn.

(3.4).

In the proposed EM procedure, T syn is the unobserved latent image, {T seed
Mp

}P
p=1 are

its unknown parameters, and T seed and TSI as observations. For convenience, we let

θ = {T seed
Mp

}P
p=1.

Then, the EM alternating procedure will iteratively determine the sequence of estimates.

That is, for n = 0, 1, 2, · · · , we perform the following.

E-step:

Calculate the expected value of the log-likelihood function with respect to the con-

ditional distribution of T syn given observations (T seed, TSI) under the current esti-

mate of parameter θ. Mathematically, we have

Q
(
θ, θ(n)

)
= E

[
log p

(
(T seed, TSI), T syn|θ) ∣∣∣ (T seed, TSI), θ(n)

]
, (3.5)

where θ(n) denotes the nth iteration value of θ and θ(0) is the initial guess.

M-step:

Find parameter θ that maximizes Q in Eqn. (3.5):

θ(n+1) = arg max
θ

Q
(
θ, θ(n)

)
. (3.6)
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To carry out the computation in the E-step, we can have the following simplification.

First, it is clear that

p
(
(T seed, TSI), T syn

∣∣θ) = p
(
(T seed, TSI)

∣∣T syn, θ
)
p(T syn|θ)

= p(T seed|T syn, θ) p(TSI |T syn, θ) p(T syn|θ)

= p(T seed|T syn) p(TSI |θ) p(T syn|θ) ,

(3.7)

since T seed is independent of TSI and θ, and TSI is independent of T syn.

By assuming that the target texture obeys the following probability distributions

P (T syn|{T seed
p }) ∝ exp

(
− 1

2σ2
1

∑
p

||T syn
p − T seed

Mp
||2
)

,

P (TSI |{T seed
p }) ∝ exp

(
− 1

2σ2
2

∑
p

DSI(T seed
Mp

, TSI
p )

)
,

(3.8)

we obtain

log p
(
(T seed, TSI), T syn

∣∣θ)
= − 1

2σ2

∑
p

[
αDSI(T seed

Mp
, TSI

p ) + ||T syn
p − T seed

Mp
||2
]

+ A1

= − 1
2σ2

∑
p

[
αDSI(T seed

Mp
, TSI

p ) + ||T seed
Mp

||2 − 2(T seed
Mp

)T T syn
p

]
+ A2 ,

(3.9)

where A2 (or A1) is a constant which is independent of θ, and α can be viewed as a

regularization factor between variances of T syn and TSI . Since the log-likelihood of the
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distribution is linear in latent variable T syn, the E-step could be simplified by estimat-

ing the conditional expectation of T syn given observation T seed and current parameter

estimate θ(n) [24, 44]. This can be written as

(T syn)(n) = E
[
T syn

∣∣∣T seed, θ(n)
]

= E
[
T syn

∣∣∣{T seed
Mp

}(n)
]
.

(3.10)

Since the conditional probability follows the Gaussian distribution as given in Eqn.

(3.8), its expected value eventually becomes the (weighted) average of the current estimate

{T seed
Mp

}(n) in overlapped regions by solving a linear minimum mean square error (LMMSE)

problem. It is worthwhile to point out that we expand and derive equations using the

L2 norm, i.e., r = 2 in Eqns. (3.3) and (3.4), since it is more convenient to compute the

expectation value. The computation with an arbitrary r value can be done by introducing

an adaptive weight wp = || · ||r−2 at each grid p as [34]

||T syn
p − T seed

p ||r = wp · ||T syn
p − T seed

p ||2 .

After the above simplification, we can compute the Q-function required in the E-step as

Q
(
θ, θ(n)

)
= − 1

2σ2

∑
p

[
||(T syn

p )(n) − T seed
Mp

||r + αDSI(T seed
Mp

, TSI
p )
]

+ A1 . (3.11)
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Finally, the M-step updates parameter θ(n+1) by maximizing the above Q function via

θ(n+1) = arg max
θ

Q
(
θ, θ(n)

)
= arg max

θ

[
||T seed

Mp
− (T syn

p )(n)||r + αDSI(T seed
Mp

, TSI
p )
]

,

(3.12)

which is identical with the objective function in Eqn. (3.4).

If we attempt to solve the original objective function in Eqn. (3.2), the averaging

process in the E-step will demand the exact data of TSI which cannot be explicitly

obtained. For example, when the current candidate T syn
Mp

is outside of the quantization

cube of TSI
p , its optimal value in terms of DSI will be always the one on the quantization

boundary, which would often be far from the desired one. On the other hand, this problem

is avoided with the modified objective function in Eqn. (3.4) since the non-metric distance

function, DSI , is only involved in the penalty function of the M-step.

To sum up, the M-step chooses a well-matched seed block between T syn and TSI while

the E-step updates T syn based on the given set of seed blocks. Since we add the additional

distortion term w.r.t. TSI in the M-step, the selected best-matched seed block is affected

by the constraint of the side information so that it forces the synthesized texture to be

close to the original target texture. On the other hand, the low-quality video as the side

information is mostly composed of the low-frequency information and, consequently, it

only controls the general structure of the synthesize texture with texture details to be

synthesized flexibly. This is exactly what we achieve to accomplish.

The proposed texture video synthesis algorithm with the side information is summa-

rized by pseudo-codes in the following.
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Algorithm 2 Texture synthesis with side information

1: For each resolution and cube size
2: For each cube centered at pixel p,
3: T seed

Mp
← arg min

T seed
q

[||T syn
p − T seed

q ||r + α ·DSI(T
seed
q , T SI

p )] for all possible grid points q

4: T syn ← arg min
T syn

∑
p

||T syn
p − T seed

Mp
||r

5: Repeat steps 2-4 until the change of T syn is small enough

3.3.3 Side Information Selection

In the proposed framework, low-quality video controls the low frequency component of

synthesized output texture, and the importance of the side information will vary in differ-

ent regions. That is, parts of texture can be well-synthesized with little side information

while others cannot. For this reason, our algorithm assigns a different amount of side

information to different regions of texture.

To determine the proper amount of the side information, we formulate the rate-

distortion (R-D) optimization problem under the rate constraint as

Jad(Q) = Dad(Q) + λad · Rad(Q)

= ||T syn − T tar||r + λad · R(TSI) ,

(3.13)

where subscript ad means the adaptive side information selection scheme, T tar represents

the original target texture to be synthesized. It is worthwhile to emphasize that Eqn.

(3.13) is different from the traditional R-D optimization since the distortion in Eqn. (3.13)

is computed using synthesized output (rather than coded output). The above Lagrangian

formulation can regularize between the distortion of the output and the side information

bit-rate. In our implementation, we solve the problem by pre-computing all R-D pairs

for each coding unit with various QP values, and then find the QP value that minimizes
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the objective function in Eqn. (3.13) for each coding unit. After that, we sum up all

rates and see if the total rate exceeds the target or not, and then adjust λad accordingly.

This R-D optimization procedure will return the minimum distortion value for a given

bit budget. It is summarized in the following pseudo-code. The algorithmic speed-up is

possible if we are able to build the R-D model for synthesized texture, which is outside

the scope of this work.

Algorithm 3 R-D optimization for adaptive side information

1: Initialize λl and λh with a small and a large numbers, respectively.
2: We set λad ← (λl + λh)/2
3: For each non-overlapping block
4: Compute Dad(QP ) and Rad(QP ) for QP = QPn, n = 1, 2, ..., N
5: Finds k, which minimizes Dad(QPk) + λad ·Rad(QPk)
6: Compute the total required bit-rate Rtotal.
7: If the total rate does not exceed the given bit budget (i.e., Rtotal ≤ Rbudget), we set λh ← λad.

Otherwise (i.e., Rtotal > Rbudget), we set λl ← λad.
8: Repeat Steps 2-8 until the change of λad is small enough.

3.3.4 Texture Decomposition

The algorithm discussed above assumes that the input texture is stationary so that it

may not perform well for non-stationary texture. In this sub-section, we address the

issue of non-stationary texture synthesis using an appropriate pre-processing module.

The idea is to decompose non-stationary input texture (V ) into two components; namely,

easily-synthesizable texture (T ) and easily-encodable non-texture (NT ), as

V = T + NT. (3.14)

Then, NT can be encoded/decoded using a conventional method while T can be synthe-

sized by the proposed texture synthesis algorithm. One application of this decomposition
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technique is the coding of texture with spatially or temporally variant illumination, where

piece-wise smooth illumination changes can be easily encoded. For simplicity, we discuss

the texture decomposition problem in the context of 2D texture image. However, the

same idea can be easily generalized to the 3D texture video, and we summarize the

computational algorithm in the context of 3D texture video in the end of this subsection.

There has been research on the separation of texture from its smooth background

image, e.g., [2, 66, 80]. All of them exploit the sparsity of texture as an image prior, and

introduce various methods to specify the sparsity using an appropriate transform, such as

the Gabor filter. Since the statistical property of texture differs from smooth background,

one can build a model to compact the texture signal while minimizing the background

signal, where the model should leverage on the sparsity of input texture. However, as

mentioned in Sec. 3.1, the model-based approach is limited in its applicability a large

class of textures. Furthermore, to find an appropriate model and its parameters is also

challenging. Here, we propose a data-driven texture decomposition approach based on the

self-similar property of texture, where the sparsity transform is replaced by a data-driven

scheme. This approach has received attention in the image restoration field recently

[9, 19, 37, 60]. Since the data-driven approach is compatible with the proposed texture

synthesis scheme, the texture decomposition method can be easily integrated with our

synthesis-based texture coding framework.

Since our goal is to improve coding efficiency, the texture decomposition scheme should

be applied if the total cost after the decomposition is lower than

1. the R-D cost of the conventional coding method,
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2. the R-D cost of the synthesis-based coding method without decomposition.

For comparison, we have to measure the cost of decomposed NT and T components

quantitatively. The cost of encoding the source video signal, V , can be written as the

sum of those for T and NT as

J(V ) = J(NT ) + ωd · J(T ), (3.15)

where ωd is a weight parameter. A straightforward choice for J(NT ) is the R-D cost

of NT in form of J(NT ) = D(NT ) + λR(NT ). There is however an issue to consider.

That is, NT should be uncorrelated with T as much as possible. If the decomposed

NT still contains some texture information, the final summed result by synthesized T

and decoded NT may have an unmatched pattern, which would cause large perceptual

distortion. Based on this consideration, the R-D cost for NT is not appropriate, since the

decomposed NT with a smaller R-D cost does not guarantee a lower correlation between

NT and T . Here, we adopt a measure based on the total variation (TV) and define the

cost function of NT as

J(NT ) = TV (NT ) =
∫

NT
|∇NT |dxdy. (3.16)

Due to its excellent performance in controlling the gradient with the L1 norm, the TV-

based cost has been frequently used to measure the energy of the piecewise-smooth com-

ponent of an image in various applications [2, 40, 80]. It is shown to be effective in
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filtering out the texture/noise component. In addition, it can play a role similar to the

R-D cost of a piece-wise smooth component.

To determine J(T ) in Eqn. (3.15), we only have to consider the synthesis cost, since

the decomposed texture information will be re-synthesized in the decoder. The texture

distortion energy by synthesis, denoted by DT in Eqn. (3.1), serves as a good metric to

measure the synthesis cost, since similar texture might yield smaller texture distortion

as discussed in Sec. 3.3. However, pixel-wise comparison of DT often results in large

distortion between blocks of texture image (or cubes of texture video) in spite of their

visual similarity. To circumvent this problem, we define function fr to relax the seed set

by allowing small pixel-wise translation and intensity deviation with respect to a given

block of texture image. For example, for an N ×N block I ∈ T seed, Ir will be the element

of a relaxed seed set Ir ∈ fr(T seed) if it meets the following equation:

Ir(m, n) = I(m + δm
m,n, n + δn

m,n) + δI
m,n, (3.17)

where (δm
m,n, δn

m,n) and δI
m,n are small offsets for spatial translation and intensity deviation,

respectively.

This approach is based on the assumption that the limited size of the seed pool, which

is one of the disadvantages of example-based method, can be overcome by small spatial

texture deformation and/or intensity variation, and the assumption that relaxed T is still

well-discriminated from NT . Then, the synthesis cost J(T ) can be defined as

J(T ) = DT (T, fr(T seed)). (3.18)
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The advantage of seed relaxation is graphically illustrated in Fig. 3.4, where T is the

target block for synthesis and C1, C2 and C3 are three best matched blocks as shown

in Fig. 3.4(b). Without relaxing the seed set, the residuals between the target and the

best-matched blocks are still obvious as shown in Fig. 3.4(c) despite their perceptually

similar outlook. In contrast, with slight texture deformation, the residuals can be reduced

significantly via the distortion defined in Eqn. (3.18) as shown in Fig. 3.4(d). In other

words, the correlation between decomposed NT and T is greatly minimized.

Figure 3.4: Illustration of an adjusted synthesis cost using a relaxed seed set.

To summarize, we maximize the piece-wise smoothness of the NT component as image

prior with given texture candidates as the data fidelity term. This problem can be viewed
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as the conventional energy minimization problem between J(T ) as the data fidelity term

and J(NT ) as the regularization term. The objective function can be written as

inf
NT

(J(NT ) + λd · J(T ))

= inf
NT

(
TV (NT ) + λd · DT (T, fr(T seed))

)
.

(3.19)

Our approach is analogous to certain image/video processing techniques for de-noising

[80] and super-resolution [60]. For example, a de-noising process may use the observation

image as its data-term while a super-resolution process may use the set of low-resolution

images as its data-term. In the current context, the synthesized image is gathered using

the self-similarity property. The optimization problem in Eqn. (3.19) can be solved using

the variational approach [2, 80].

Based on the above discussion, one can generalize results from 2D texture image

decomposition to 3D texture video decomposition. In the following, we summarize the

texture decomposition scheme for 3D texture video.

Algorithm 4 Texture video decomposition from its illumination background

1: Initialize T ← V , NT ← 0
2: For each resolution and a cube size
3: Assign the seed and target regions and obtain T seed, NT tar and T tar

4: For each cube centered at pixel p in the target texture:
5: T seed

Mp
← arg min

T seed
q

||T tar
p − T seed

q ||r for all grid space q

6: Relax the found best-matched set {T seed
Mp
}

7: {NT tar, T tar} ← arg min
{NT,T}

(∫
NT
|∇NT |dxdy + λd ·DT ( T, fr(T

seed
Mp

))
)

8: Update NT and T with obtained NT tar and T tar

9: Repeat steps 2-8 until the change of {NT, T} is small enough

Although it is more accurate to first relax the entire seed set and, then, find the best-

matched block from the relaxed seed set, the search complexity is too high. Thus, we

40



swap the computational order in the implementation as described above. That is, we find

the best-matched seed cube for each overlapping grid and relax it by relaxation function

fr. Due to the overlapping grid search and seed texture relaxation, each grid position

has dozens of candidate pixel values as texture prior. The intermediate best-candidate

fr(T seed
Mp

) at each iteration will be the candidate with the minimum distance, and its

best-candidate can be altered at every iteration.

The above decomposition process targets at illumination-variant texture decomposi-

tion under the assumption that stationary seed texture is given. It is however not trivial

to identify the stationary part of the seed from the source texture. This could be re-

solved using an iterative decomposition process (i.e., randomly choosing the seed from

the given input and applying the decomposition algorithm under the assumption that the

seed is stationary at each iteration.) We may also apply the multi-resolution/multi-scale

approach, since it tends to avoid being trapped to the local minimum in the optimization

process. Generally speaking, the seed texture and the target texture become gradually

stationary through iteration.

3.4 Experimental Results

In this section, we show both image and video texture synthesis results. To obtain the side

information, we used the JM reference software (ver.11) maintained by the Joint Video

Team (JVT) [75] operating with the IPPP GOP structure and the 4 × 4 transform only.

For the multi-resolution/multi-scale approach, we conducted experiments using 1/4, 1/2

and full resolutions as well as with cube (or block) size = 64, 32, 16 and 8. For more
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experimental results and visual performance evaluation, please visit the following website:

http://www-scf.usc.edu/˜byungoh/TS/TS.htm.

3.4.1 Visual Comparison of Synthesized Texture

Figs. 3.5 and 3.6 show synthesized texture image and texture video from a seed coded

with QP = 20 and a certain amount of side information. In the toilet sequence, only

the center regions of the sequence are processed as the seed or target texture. Results

without the side information are given in (c) using the patch growing method in [48]

and in (d) using the example-based optimization method with α=0. Results using the

texture growing method often have spatial or temporal discontinuity even with the use

of the seam-hiding technique due to the difficulty of finding a suitable size of blocks or

cubes. The noticeable seams in the straw image and the duck-take-off sequence are its

good examples. The example-based optimization could overcome this disadvantage using

the multi-resolution/multi-scale approach. However, results from both methods have

repeated texture patterns with a global structure quite different from that of the original

texture, which is undesirable in many cases. It is obvious when comparing the target

texture and synthesized texture in the toilet sequence, where the synthesized toilet hole

are moving with different shape.

As our proposed approach, results with the side information are given in (e) and

(g), where a larger amount of the side information makes them closer to the target as

shown in (h) while a smaller amount of the side information yields more natural-looking

image/video as shown in (f). In (f) and (h), we fix α = 1 in the TS, but allow the

TA to adjust the α value to control the contribution of the given side information. The
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synthesized texture with the side information is perceptually better than the decoded

texture which is temporally inconsistent and discontinuous and the synthesized texture

without the side information. The superiority of the proposed algorithm can be easily

verified by viewing video sequences given in the website described above.

3.4.2 Texture Distortion versus Bit-Rate Saving

To show the advantage of sending the side information, we study the improvement of

texture similarity by comparing the original target texture and the synthesized texture.

As shown in Figs. 3.7 and 3.8, we vary the side information amount by adjusting the

QP value and record the bit-rate saving and two distortion types: DT and DD. Here,

DT (the dotted line) represents the distortion between the seed and the synthesized

texture as given in Eqn. (3.1), and DD (the solid line) represents the texture deviation

by computing the pixel-wise distortion between the target and the synthesized texture

as defined in Eqn. (3.13). Although the pixel-wise distortion does not offer a good

way to measure the similarity of textures, it is still meaningful by evaluating the overall

deviation. The bit-rate saving is computed as

bit-rate saving =
(

1 − bits for the side information
bits for the target with high fidelity

)
× 100 (%) . (3.20)

For distortion analysis, we set r = 2 in all distortion computation, i.e., we use the

Euclidean-norm for distortion analysis so that it is compatible with the conventional

PSNR. On the other hand, we set r = 0.8 in the texture synthesis process for better
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Table 3.1: Bit-rate saving for two sequences.

toilet seq. duck-take-off seq.

QP for SI bits for SI bit-rate saving bits for SI bit-rate saving

- 0 kbps 100 % 0 kbps 100 %

40 3.0 kbps 96.8 % 9.4 kbps 95.4 %

35 3.7 kbps 96.1 % 16.4 kbps 92.1 %

30 14.0 kbps 85.1 % 28.2 kbps 86.4 %

25 47.9 kbps 48.9 % 65.4 kbps 64.5 %

20 93.8 kbps 0 % 207.4 kbps 0 %

visual output, since it boosts the texture detail more as mentioned in [34]. The numerical

bit-rate saving is provided in Table 3.1.

We see that the pure-synthesis algorithm can achieve 100% bit-rate saving while it

yields perceptually obvious texture distortion. A small amount of the side information

(at the cost of a small amount of bit-rate increase) helps increase the quality of synthesis

texture dramatically. Since the target bit-rate saving is computed using the decoded

image with QP = 20, we get 0% bit-rate saving when QP = 20. It is also observed that

texture quality is preserved or even slightly improved by the side information, since the

side information offers a good initial point for the optimization process in Eqn. (3.2).

Furthermore, the increase of the side information does not improves texture similarity

linearly, since the degree of synthesized texture is governed by the size of the seed texture

pool. It is therefore important for the TA to determine the proper side information

amount that balances the trade-off between texture quality and the bit-rate.
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3.4.3 Fixed versus Adaptive Amount of Side Information

Although the side information helps in texture synthesis, only a small amount is needed

since it is only used in providing the low-frequency trend for the target texture. This

problem was addressed in Sec. 3.3.3 by the use of an area-adaptive side information

technique. Its merit is illustrated in Fig. 3.9, where we compute the rate and the

distortion for various candidate QP values and find the optimal adaptive side information

by the Lagrangian optimization method as studied in Sec. 3.3.3. The improvement of the

adaptive side information algorithm is illustrated in Fig. 3.10, where the side information

amount is determined by three candidate QP values, and these results are compared with

a fixed side information amount for all blocks at the same bit-rate. This figure clearly

show that the adaptive side information scheme improves the performance in both texture

distortion (DT ) and texture deviation (DD).

3.4.4 Texture Decomposition

Finally, illumination-variant texture decomposition results are shown in Fig. 3.11, where

the block image and the toilet sequence are spatially and temporally illumination-variant,

respectively. The input texture shown in (a) is first decomposed into texture and non-

texture components as shown in (b) and (c), respectively. We set regularization parameter

λd = 0.05 in Eqn. (3.19), and all offset parameters δm
m,n, δn

m,n, δI
m,n ∈ {−2,−1, 0, 1, 2} in

Eqn. (3.17) experimentally. Without decomposition, the synthesis algorithm cannot

regenerate the input texture well as shown in (d). After decomposition, the proposed

synthesis-based texture coding algorithm was applied to the texture as given in (f) with

45



the help of its side information as given in (e), and the final result is obtained by sum-

ming the synthesized texture and the decoded non-texture as given in (g). To compare

the synthesis-based and the conventional coding methods, we encode/decode the input

texture as given in (h) with the same bit-rate as the synthesis-based method. We see

that texture coded by the conventional coding method has lots of spatial or temporal dis-

continuity, such as blocking or flickering artifacts, while the proposed method generates

perceptually similar and visually pleasant results in spite of its pixel-wise difference.

3.5 Conclusion and Discussion

A new approach for synthesis-based texture coding was proposed and several important

contributions were made in this work. First, a novel framework to control the synthesized

texture by sending the side information was developed, and a small amount of side infor-

mation can improve texture synthesis performance significantly. The side information can

be easily obtained by a standard encoder operating at a larger quantization parameter.

Second, we showed a way to increase the synthesis efficiency by selecting the side infor-

mation adaptively. The adaptive side information selection scheme outperforms the fixed

side information scheme for a given bit budget. Third, a texture decomposition algorithm

was investigated to address the problem of illumination-variant texture synthesis.
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Figure 3.5: Texture image synthesis results for (I) the block image and (II) the straw
image: (a) decoded seed image with QP = 20, (b) target image to be synthesized,
(c) synthesized texture by [48], (d) synthesized texture without the side information,
(f) synthesized texture with the decoded side information (QP = 50) as given (e), (h)
synthesized texture with the decoded side information (QP = 40) as given (g).
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Figure 3.6: Texture video synthesis results for (I) the toilet sequence and (II) the duck-
take-off sequence: (a) decoded seed sequence by QP = 20, (b) target sequence to be
synthesized, (c) synthesized texture by [48], (d) synthesized texture without the side
information, (f) synthesized texture with the decoded side information (QP = 40) as
given (e), (h) synthesized texture with the decoded side information (QP = 30) as given
(g).
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Figure 3.7: Plots of texture deviation, DD, and texture distortion, DT versus the bit-rate
saving for the ’block’ image.

Figure 3.8: Plots of texture deviation, DD, and texture distortion, DT versus the bit-rate
saving for the ’duck-take-off’ sequence.
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Figure 3.9: Texture synthesized results by varying the side information amount.

Figure 3.10: The improvement of texture similarity and distortion by area-adaptive side
information algorithm for the ’block’ image.
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Figure 3.11: Illumination-variant texture synthesis results for (I) the block image and
(II) the toilet sequence: (a) the original Illumination-variant texture, (b) the decomposed
non-texture (NT) component, (c) the decomposed texture (T) component, (d) synthesized
texture without decomposition, (f) synthesized texture with the decoded side information
(QP=40) as given (e), (g) final results summed by decoded NT (QP=20) and synthesized
T as given in (f), (h) decoded texture with same bit-rate as (g).
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Chapter 4

Film Grain Noise Analysis and Synthesis for High

Definition Video Coding

4.1 Introduction

Film grain noise in motion pictures is caused by the developing process of silver-halide

crystals dispersed in photographic emulsion [67]. It is unavoidable in the analog film due

to the physical process. When we digitize and compress high resolution movie contents

obtained by scanning the analog film, such randomly distributed film grain noise is a

major burden to typical video coding methods. Since film grain noise has a relatively

large energy level in the high frequency region, it is more expensive to encode in the

DCT domain. Besides, the underlying video suffers from inaccurate motion estimation.

A natural idea to overcome this problem is to remove film grain noise as much as possible

as a pre-processing step at the encoder so as to achieve a higher coding gain for denoised

video [26, 27, 65, 74].

A lot of efforts have been done for Gaussian noise detection and removal. Under the

assumption that film grain noise is one of the Gaussian additive or multiplicative noise,
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many existing denoising methods could be used. However, this assumption does not hold

since film grain noise has the following distinctive properties [26, 27, 51, 67, 84].

1. It is temporally independent.

2. Its power spectrum density is close to pink noise.

3. It is spatially dependent.

4. It has strong cross-color correlation in the RGB domain.

5. Its histogram is close to the Gaussian distribution.

6. It is dependent on the signal intensity.

Because of these properties, we need to develop a specific algorithm for film grain noise

detection, modeling and removal.

To remove the film grain noise from the original video is however not enough. As high

resolution devices such as HDTV are getting popular, film grain noise becomes percep-

tually important to human eyes since noise-removed video tends to bring an unnatural

feeling to people. As a result, we should reproduce and render film grain noise at the

decoder. Previous work following this line of thought will be reviewed in Sec. 4.2. In this

work, we consider a novel implementation of this approach.

Specifically, we present a method to remove film grain noise from general input video

without distorting the underlying video content. In the denoising process at the encoder,

we adopt a method based on the principle of total variation minimization for film grain

noise removal. It suppresses film grain noise effectively so that the video coding gain can

be significantly increased. It is important to preserve the quality of the original video

content as much as possible. Otherwise, it would lead to false extraction of film grain noise
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and, consequently, inaccurate noise parameters. To achieve this goal, we detect edges or

fine-texture regions of input video in advance and extract (or remove) noise in smooth

homogenous regions only. In the meantime, we analyze film grain noise using a parametric

model and determine its parameters. Based on the model and its parameters, artificial

noise (which is close to the extracted one) is generated and added back to the decoded

video at the decoder. Furthermore, we provide a method to measure the performance of

film grain synthesis by comparing the statistical information of distinctive properties of

film grain noise between the synthesized and extracted noise.

The rest of this chapter is organized as follows. The overall structure of the pro-

posed scheme with previous work on film grain noise removal and modeling is briefly

reviewed in Sec. 4.2. Then, algorithms for noise removal and synthesis are detailed in

Sec. 4.3 and Sec. 4.4, respectively. Experimental results are provided in Sec. 4.5 to

demonstrate the effectiveness of the proposed scheme with several performance metrics.

Finally, concluding remarks are given in Sec. 4.6.

4.2 Review of Previous Work

Generally speaking, the film grain noise modeling scheme for video coding consists of

two parts: 1) noise removal and extraction at the encoder, and 2) noise synthesis at

the decoder as shown in Fig. 4.1. These can be viewed as the pre-processing and the

post-processing steps in video coding. It is worthwhile to emphasize that it does not

modify the encoding and decoding modules in any adopted video coding standard. The

only additional information to be transmitted is noise parameters, with which noise can
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be synthesized. Since a small set of parameters can represent the whole image, or a set

of images in a GOP, the overhead of parameter transmission is negligible. One method

for parameter transmission was proposed by Gomila et al. [26, 27] using the so-called

SEI messages, with which no auxiliary transmission channel is needed. The detailed

description of these two parts with the proposed algorithms will be given in Sec. 4.3 for

noise removal and Sec. 4.4 for noise synthesis, respectively.

Figure 4.1: Overview of a film grain noise processing system.

The film grain noise modeling scheme for video coding was first proposed by Gomila et

al. [26, 27], where noise removal was adopted as a pre-processing step in video encoding

and noise synthesis as a post-processing step in video decoding. This idea has been

standardized by AVC [74], and even deployed in commercial products for HD DVD in

[77]. However, there is some room for further improvement. First, they did not provide

any specific denoising method for film grain noise. As will be described later in this

section, most of previous denoising schemes aiming to the conventional Gaussian additive

noise is not sufficient to suppress film grain noise efficiently. One approach proposed

in [27] uses the reconstructed video as its denoised version, which is attractable since

it does not need an additional denoising module. However, it is observed that residual
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images usually contain image edges and some structure information besides noise. Poorly

extracted film grain noise would lead to false estimation of noise parameters.

Finally, it is worthwhile to mention that a similar idea was used for speech coding [3],

where inactive voice signal is pre-processed before encoding, and noise is added back to

the decoded signal for the comfort of human perception.

4.3 Film Grain Noise Removal

For film grain noise removal, we use the total variation minimization method to suppress

film grain noise. Since a denoising process might distort areas that have sharp transition

between neighboring pixels in the original image, it is important to identify regions of

image edges before applying the denoising algorithm. Then, we can perform denoising

selectively in smooth regions only. Moreover, the denoising process based on the total

variation minimization principle could be more complete with some prior information of

noise. Here, we propose to use the independence of film grain in the temporal domain to

identify prior noise information. The overall pre-processing task at the encoder can be

divided into three steps : 1) extract noise characteristics using the temporal information,

2) identify smooth regions of the image, and 3) denoise each image with prior noise

information. The pre-processing module is shown in Fig. 4.2, and each processing step

will be detailed below.

4.3.1 Extraction of Noise Characteristics

It is important to identify the accurate film grain characteristics, since the proposed

denoising algorithm is conducted using the noise prior. Generally, it is non-trivial to
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Figure 4.2: The block diagram of the pre-processing task.

identify them in that the film grain noise is not given in this stage. However, what we

want to obtain is just statistical properties of film grain noise, and it can be indirectly

exploited without computing film grain itself.

To obtain film grain characteristics, we assume an additive model of film grain noise

of the following form:

Un
o = Un + Nn(Un), (4.1)

where Uo is the observed image, U is the original image and N is the film grain noise, and

superscript n denotes the frame index. Since film grain noise is signal dependent, noise

N(·) is a function of image U . If blocks of two consecutive frames are static, we can find

the differential noise, Nd, as

Nn
d = Nn − Nn−1

= (Un
o − Un) − (Un−1

o − Un−1)

≈ Un
o − Un−1

o ,

(4.2)
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since Un ≈ Un−1. The static area is identified by analyzing motion vectors of a set of

non-overlapping blocks, where motion vectors are computed in noise suppressed images

as done in [18].

Since film grain noise is almost temporally independent and spatially Gaussian dis-

tributed as mentioned in Sec. 4.1, differential noise Nd is another Gaussian noise with

its variance twice as large. Then, all statistical values of film grain noise, such as vari-

ance, auto-correlation and cross-color correlations can be easily obtained from temporally

differential noise Nd. It is also worthwhile to point out that the extracted noise charac-

teristics remain stable for a long sequence of image frames. In practice, they can be use

for the whole video sequence or, at least, for a large number of consecutive image frames.

In other words, it is unnecessary to estimate the noise parameters frequently. Further-

more, as compared to other previous work that performs filtering along the temporal

direction directly, the fact that only static areas of consecutive frames are considered in

noise extraction makes our algorithm more robust in the presence of object motion.

4.3.2 Enhanced Edge Detection

For input image sequences that contain film grain noise, simple edge detection methods

such as the Sobel or the Prewitt filter does not work well since these filters are sensitive

to local noise. Note that we need to identify the edge region of noisy image, so that some

additional process is necessary to suppress noise as much as possible to facilitate edge

detection. In this manner, an enhanced edge detection method using multi-resolution

filters is described below.
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To extract edges from the input image effectively, we consider a set of filters to maxi-

mize frequency selectivity. These filters are built upon a pair of low- and high-pass filters

as

h =
1
8
[−1 2 6 2 − 1], g1 =

1
2
[1 0 − 1]. (4.3)

Then, we can construct three filters by f1 = h ∗ g1, f2 = h ∗ g2, f3 = h ∗ g3 accordingly,

where ∗ is the convolution operation and g2 and g3 are the upsampled filters of g1 as

g2 =
1
2
[1 0 0 0 − 1], g3 =

1
2
[1 0 0 0 0 0 − 1].

These filters are applied along the horizontal as well as the vertical directions to detect

edges of all possible orientations. This process is similar to the overcomplete wavelet

decomposition. In [51], we proposed to use a multi-resolution overcomplete wavelet de-

composition with simple integer-valued low- and high-pass filters. However, we found

that its frequency selectivity is not good enough so that it could miss some signal with

specific frequency bands. Instead, these filters are chosen to improve frequency selectivity

while keeping integer-valued filter coefficients.

By following the terminology used in wavelet theory, the application of filter fi, i =

1, 2, 3, horizontally and vertically can generate LHi and HLi output images. Then, the

edge energy map is calculated by

EEi = ( |LHi|p + |HLi|p )1/p, i = 1, 2, 3, (4.4)
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and the unified edge energy map is obtained by

EE = max[ EE1, EE2, EE3 ], (4.5)

where the maximum operation is performed pixel-by-pixel. Then, the binary edge map

(EM) is obtained by thresholding, i.e. if the value of EE(i, j) at pixel position (i, j) is

larger than a pre-determined threshold, it is set to an edge point.

Since the proposed noise extraction and removal algorithm depend on the edge map,

it is critical to find a reliable edge threshold value. Recall that the edge threshold depends

on the signal intensity due to the unique property of film grain noise. For example, 8-bit

image should need 256 different threshold values according to its signal intensity. To the

threshold value, we set the initial threshold to 3 for all signal intensities, and adaptively

update them according to the noise level in smooth areas (i.e. where the edge map value

is equal to 0). The update formula is given by

Thnew[L] = (1 − w) · Thold[L] + w · c · EE, (4.6)

where weighting coefficient w is set to a small number (e.g. 10−4) to avoid abrupt

change, L is the background signal luminance, coefficient c is a scaling factor used to

adjust the input value, and EE is the current edge energy value obtained by the above-

mentioned method. Note that the updating process is done pixel-by-pixel manner, i.e.

each threshold value corresponding to pixel illumination L is a scaled mean of EE by c.

It is observed that threshold values converge after 4-5 frames with the updating process
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and this algorithm is not sensitive for initial threshold value. Under the assumption that

film grain noise is Gaussian distributed, we can show analytically that c = 2.5 would help

detect more than 99% of film grain noise. Details of the analysis and its experimental

verification are given in Sec. 4.3.3.

In the implementation, we use the luminance channel to get the edge map rather

than processing each RGB color channel individually, and quantize the signal pixel value

U(i, j) by step size Qs = 8 via

L = floor(U(i, j)/Qs). (4.7)

As a result, a total of 32 different threshold values are used to determine the edge map.

In the last stage of edge detection, an additional post-processing module is added after

thresholding to minimize the false detection of edge pixels. That is, all isolated pixels

are detected and eliminated under the assumption that edge pixels are connected with

each other. In spite of the post-processing, there might still be misclassified pixels. One

possible example is that film grain noise may have a wider spatial dependency than edge

detection kernels, by which misclassified pixels are likely to be connected. As a result of

false decision, the overall coding gain would be degraded slightly, and the re-generated

noise will be added to the original decoded noise as edge regions. However, regions with

false decision are often small, and the overall coding performance will not be significantly

affected.
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4.3.3 Adaptive Threshold Selection

To determine threshold values discussed in Sec. 4.3.2, we have to find the distribution of

film grain noise first. It is observed that the distribution of film grain noise is close to the

Gaussian distribution. Furthermore, the distribution of film grain noise in each subband

is also close to the Gaussian distribution, which is experimentally verified in Fig. 4.3(a)

for the LH subband. A similar observation holds for other subbands. Note also that

subbands LH and HL are independent of each other, since film grain noise is isotropic.

In the following analysis, we assume that both LH and HL subbands have the normal

distribution with zero mean and standard deviation σ.

The distribution of the edge energy map of film grain noise can be derived based on

the above assumptions. By choosing p = 2 in Eqn. (4.4), EE represents the Euclidian

distance of the corresponding pixels in LH and HL subbands. It is known that EE has

the following Rayleigh distribution

P (EE � t) = 1 − e−
t2

2σ2 . (4.8)

This is experimentally verified in Fig. 4.3(b). Thanks to the explicit distribution function,

threshold value th can be determined by setting variable r as

P (EE � th) = 1 − e−
th2

2σ2 = r,

th =
√
−2 log(1 − r) · σ.

(4.9)

In the Rayleigh distribution, its mean is determined by σ, i.e. m = σ
√

π/2. Thus,

the threshold value can be determined by Eqn. (4.10). For example, if we want to include

62



(a) Distribution of film grain noise in the LH subband

(b) Distribution of edge energy values in the LH subband

Figure 4.3: Distribution of film grain noise and its edge energy values in a typical subband,
where the LH subband is used as an example.

exactly 99% of grain noise (i.e. r = 0.99), the scaling coefficient, c, in Eqn. (4.6) should

be set to 2.42 due to the following relationship:

th =
√

−2 log(1 − r) ·
√

2/π · m. (4.10)

As an alternative, we may use the median value instead of the mean value since the

median is proven to be more robust with respect to outliers and/or noise. In the edge
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map decision step, there must be false decision, which may lead to undesired perturbation

of the threshold value. Under such a scenario, we may use the median to determine the

threshold value. Being similar to the previous case, the median is also determined by σ,

i.e., med = σ
√

log 4. Then, the threshold value can be determined as

th =
√

−2 log(1 − r) ·
√

1/ log 4 · med. (4.11)

It is worthwhile to point out that the median-based algorithm needs additional memory

to store the signal distribution while the mean-based method can be performed without

additional memory due to the dynamic updating process as specified in Eqn. (4.6).

4.3.4 Fine Texture Detection

When detecting smooth regions using the edge energy map for denoising, the main diffi-

culty is that we often misclassify fine texture regions into smooth regions. It is desirable

to treat fine texture regions the same as edge regions, since the fine texture pattern is

perceptually visible when it has strong periodicity in the spatial domain in spite of its low

edge energy. That is, we should not perform the denoising algorithm on them. However,

since the edge energy of these texture pixels tends to be low, they may not be detectable

by thresholding. To address this problem, we include the fine texture detection task as

shown in Fig. 4.4, in which periodicity property of fine texture is explored for its detec-

tion. Finally, the non-smooth region is obtained by taking the union of detected edges

and fine texture regions.
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Figure 4.4: Detection of non-smooth regions in an image.

The fine texture detection process is illustrated in Fig. 4.5. First, the edge energy map

is binarized by its local median to even identify low-intensity texture. Then, we check

whether there is strong auto-correlation R(m, n) along 8 different directions denoted by

vector (m, n). In the discrete domain, we approximate the 8 directions by

(m, n) ∈ D = {(1, 0), (2, 1), (1, 1), (1, 2), (0, 1), (−1, 2), (−1, 1), (−2, 1)}.

Since film grain noise has no directionality, the maximum correlation value of film grain

noise is smaller than that of the fine texture. However, there may be some false alarm if

the correlation value of film grain noise becomes larger. To improve the robustness of our

algorithm, we check the correlation value twice. That is, if |R(p, q)| gives the maximum

correlation value, we compute the correlation value for |R(2p, 2q)|, too. The final decision

is made based on the product of |R(p, q)| and |R(2p, 2q)|.
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This procedure can be explained mathematically as follows. The correlation value of

a pixel c can be written as

Mc = |Rc(p, q)| · |Rc(2p, 2q)| where (p, q) = arg max
(m,n)∈D

|Rc(m, n)|. (4.12)

A pixel c will be determined as fine texture when it satisfies

Mc > β · MNd , (4.13)

where Nd is the differential noise obtained in Eqn. (4.2). This condition says that the

threshold value for fine texture detection is directly dependent on the autocorrelation

value of the estimated grain noise. In our implementation, we fix β = 2, which means a

pixel is assumed as fine texture if its maximum correlation value is at least twice as large

as the maximum correlation of film grain noise.

As discussed above, our approach relies on the periodicity of fine texture under the

assumption that strong periodicity boosts the perception of fine texture. On the other

hand, low-intensity non-periodic fine texture would be missed by the proposed algorithm.

Spatially non-periodic but temporally continuous low-intensity texture should be handled

by temporal-based filtering, which is out of our current scope.

Figure 4.5: The process of fine texture detection.
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4.3.5 Denoising with Total Variation (TV) Minimization

As mentioned in Sec. 4.1, film grain noise has many specific properties, and it is desirable

to exploit these properties in noise removal. Traditionally, linear spatial smoothing filters

such as the Gaussian filter have been widely used as the denoising filter. Their perfor-

mance is however limited since a linear filter is not effective in detecting and extracting

low-frequency energy of film grain noise. Here, we proposed to use a non-linear filter-

ing approach based on the variational principle for film grain denoising, especially total

variation (TV) minimization method. Note that the denoising process is only applied in

smooth regions, which are detected by methods discussed in Secs. 4.3.2 and 4.3.4. For

more references about the TV method, we refer to [8, 28, 40, 68].

4.3.5.1 Denoising with TV Minimization

The variational approach with TV minimization [40] is an effective non-linear denoising

algorithm. It can preserve edges well while removing background noise. In addition, it

can provide a complete solution if the noise prior is given, which is suitable in our current

context. The algorithm is detailed below. For the additive noise model in Eqn. (4.1), we

want to reconstruct the noise-free image Un based on observed noisy image Un
o . Then,

the solution of the ill-posed inverse problem can be obtained by solving the optimization

problem:

min
U

∫
Ω
|∇U |dU, s.t. ||U − Uo||2 = σ2, (4.14)

67



where function U : Ω → R, Ω is a non-empty bounded open set in R2, ∇ is the differential

operator [28, 40], and superscript n is dropped for simplicity. In this case, noise is assumed

to be white. By Lagrange’s theorem, the best estimator can be written as

Û = arg min
U

[∫
Ω
|∇U |dU +

λ

2
||U − Uo||2

]

= arg min
U

⎡⎣∫
Ω

√
U2

x + U2
y du +

λ

2

∫
Ω

(U − Uo)
2du

⎤⎦ .

(4.15)

To solve the above problem, the Euler-Lagrange differential equation is used as a necessary

condition, and the update process is given by

Ut = div(
∇U

|∇U |) − λ(U − Uo)

=
∂

∂x

Ux√
U2

x + U2
y

+
∂

∂y

Uy√
U2

x + U2
y

− λ(U − Uo),
(4.16)

where λ is the Lagrangian multiplier, which is iteratively updated via

λ =
1
σ2

∫
Ω

div(
∇U

|∇U |) (U − Uo) dU. (4.17)

4.3.5.2 Film Grain Denoising with TV Minimization

It is worthwhile to point out that the conventional TV-based denoising algorithm is

not enough since it does not take the properties of film grain noise into account. Our

main contribution in this work is to exploit the distinctive properties of film grain and

incorporate them as a constraint in the denoising process. Specifically, Properties 2, 3

and 5 can be used in a single channel input image, i.e. the gray (or luminance) channel.
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With assuming that film grain noise has Gaussian distribution by Property 5, we can

find a coloring matrix P to estimate the spatial correlation of noise among neighborhood

pixels by Property 2 and 3, such that

U − Uo = P w, (4.18)

where P is a linear transform and w is white Gaussian noise, so that the spectrum of Pw

matches with that of the extracted noise. Then, Eqn. (4.15) can be rewritten as

Û = arg min
U

[
F (U) +

λ

2
(U − Uo)T R−1(U − Uo)

]
, (4.19)

where R = PP T is the auto-correlation matrix of (U -Uo). This whitening process helps

estimate the noise behavior in the spatial domain, and it eventually leads to better noise

suppression. To reduce the computational complexity, we approximate it by computing

only 9 × 9 local blocks in the implementation.

If the input image is a color image of RGB three channels, we can use Property 4 (i.e.

the cross-color correlation) furthermore to improve the noise estimation. We first find the

G-channel noise data as the reference, and obtain R- and B-channel noise data based on

the given extracted noise information of G-channel. For this case, we have two constraints

at the same time so that the minimization process for B-channel can be modified as

ÛB = arg min
UB

[F (UB) + λ1(UB − UBo)T R−1
B (UB − UBo)

+ λ2(UG − UGo)T R−1
GB(UB − UBo)].

(4.20)
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where λ1 and λ2 are updated similarly to that in Eqn. (4.17).

4.4 Film Grain Noise Modeling and Synthesis

Film grain noise modeling and synthesis are discussed in this section. For noise modeling,

a few parameters are determined to represent the extracted noise and transmitted to the

noise synthesizer at the decoder.

4.4.1 AR Noise Model

There is no commonly agreed objective metric to measure the closeness of the synthesized

and the real film grain noise. Thus, this is often done by visual inspection. As a result, film

grain noise modeling is a challenging problem. There are several factors to be considered,

including the spatial power spectrum density, the noise probability density, and the cross-

color correlation as mentioned in Sec. 4.1

In this work, for film grain noise modeling, we consider the following AR model:

N(i, j, c) =
∑
i′

∑
j′

∑
c′

ai′j′c′ · N(i − i′, j − j′, c − c′), (4.21)

which is a 3D AR model with the 2D spatial correlation and the 1D spectral correlation.

Please note that the AR model is an IIR filter, which in general has a better frequency

representation than a FIR filter. The power spectrum of synthesized noise can be con-

trolled by the frequency response of the IIR filter with a white input signal. Furthermore,
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the AR model as given in Eqn. (4.21) includes both the spatial and the cross-color cor-

relation naturally. Generally speaking, the model can capture the desired properties of

film grain noise well.

A set of AR parameters is obtained by following the Yule-Walker AR estimation

method from the extracted noise at the encoder. Since film grain noise has the same

characteristics over a sequence of image frames, a set of AR parameters is sufficient for

the noise synthesis purpose. Besides, we only need a small number of coefficients for the

AR model. Empirically, we choose values of (i′, j′, c′) to be

(1, 0, 0), (0, 1, 0), (1, 1, 0), (−1, 1, 0), (2, 0, 0), (0, 2, 0), (0, 0, 1).

This choice results in a causal filter in the raster scanning order so that it is convenient

for noise synthesis and the overhead of coding these parameters is very low.

4.4.2 Signal Dependent Noise Synthesis

The synthesized noise by the given AR model has no information about the background

signal. Since film grain noise has the signal dependency property, we should modify the

synthesized noise according to the decoded signal. Basically, scaling factors are obtained

from the extracted noise like AR parameters, and both are transmitted to the decoder as

the side information. Then, we can scale synthesized noise based on its background signal

intensity according to the transmitted scaling factors. However, it is not easy to preserve

the cross-color correlation by treating the signal-dependent noise directly. That is, if we

scale the synthesized noise according to the background signal, it is likely to modify the
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cross-color correlation as well. To preserve the cross-color correlation as much as possible

in generating signal-dependent noise, the scaled excitation as shown Fig. 4.6 is adopted.

That is, instead of scaling the synthesized film grain noise, we scale the excitation white

signal before noise synthesis.

Film grain synthesis using the AR model was first proposed by Gomila et al. [27, 26]

and standardized in AVC [74]. However, they did not fully utilize specific film grain

properties in the AR model, e.g., the signal dependent property as we do here. Moreover,

they showed the advantage of the AR model only using a subjective approach. In contrast,

we will show statistical properties of synthesized film grain noise in this work (see Sec.

4.5.2).

Figure 4.6: Film grain noise synthesis with scaled white noise.

4.4.3 Output Image Construction

The noise synthesizer generates film grain noise that has properties similar to the ex-

tracted one according to the procedures described above. Then, the final output image

is obtained by

Uout(i, j) = Udecod(i, j) + Ngen(i, j), (4.22)
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where Udecod is the decoded image and Ngen is film grain noise generated by the AR

model. Since the signal-dependent property has been considered in noise synthesis, a

simple summation of the decoded image and synthesized noise is adopted in Eqn. (4.22).

It is worthwhile to mention that, since the film grain noise of edge areas is not removed

at the encoder, to add synthesized noise to the edge areas of the decoded image as shown

in Eqn. (4.22) could cause some problem. However, we observe that noise in edge regions

is much less visible than noise in non-edge regions due to the masking effect so that this

issue is negligible. Besides, the decoded image is a reconstruction of the smoothed version

of the original image. Regardless of the compression method used, film grain noise in edge

regions is actually suppressed during the encoding process.

4.5 Experimental Results

The film grain noise removal and synthesis processes can be integrated with any typical

coding method. We use the JM(ver 11) software [75] of the H.264/AVC reference as

the codec module in the experiment. We choose two RGB formatted color and one grey

high definition (HD) video sequences as test sequences. Each sequence has 30 frames,

and the first frames of sequences are shown in Fig. 4.7. Each sequence has different

film grain noise characteristics and different type of contents. For example, ’Rolling

tomatoes’ sequence has lots of smooth regions, ’Playing cards’ sequence mostly consists

of textured region, and ’Old town cross’ has both smoothed sky and textured buildings

so that they provide a set of good test examples to evaluate our proposed scheme. For
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more experimental results and visual performance evaluation, please visit http://www-

scf.usc.edu/˜byungoh/FGN/FGN.htm.

(a) Rolling tomatoes (b) Playing cards (c) Old town Cross

Figure 4.7: The first frames of HD (1920×1080) test sequences.

4.5.1 Smooth Region Detection and Denoising

Fig. 4.8 shows edge maps of the first frame of sequences, where the results of edges ex-

traction and fine-texture extraction with the final edge map are given. They demonstrate

that our algorithm can detect most of edge regions and fine texture regions successfully.

Fig. 4.9 shows the close-up view of the denoised first frame of each sequence. It is worth-

while to mention that the proposed denoising algorithm is not sensitive to video contents

or algorithm parameterization, since the TV minimization method automatically finds

and updates the λ value, which is one of the main advantages as compared with other

regularization methods.

To demonstrate the superior performance of the proposed denoising algorithm, we

consider the power spectrum density (PSD) of extracted film grain noise. That is, we

use the temporally extracted noise as the ground-truth and compare it with 1) Gaussian

filtered noise, 2) spatio-temporal filtered noise [18], 3) noise extracted by the traditional

TV algorithm [40] and 4) noise extracted by the proposed TV algorithm. The squared-

roots of PSD of noise extracted by different algorithms, where the 2D power spectrum
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(a) Rolling tomatoes (b) Playing cards

Figure 4.8: The edge-regions by threshold method (top), fine-texture region (middle) and
final edge map (bottom).

density is projected to 1D, are shown in Fig. 4.10. We see that the TV minimization

method outperforms the traditional smoothing filter and the spatio-temporal filter.

The superiority of the proposed TV algorithm can be stated below. First, the proposed

TV method using spatial correlation and cross-color correlation detects film grain noise

more accurately, especially for low-frequency energy of noise. Since most energy of film

grain noise lies in the low-frequency band as mentioned in Sec. 4.3, the proposed TV

method works well. Second, the power of extracted noise using the TV method is closest

to the ground truth. To illustrate this point, we compare the power of noise extracted by
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(a) Rolling tomatoes

(b) Playing cards

Figure 4.9: The close-up view of the original (left) and the denoised (right) images.

various algorithms in Table 4.1. To conclude, the proposed TV algorithm can efficiently

suppress film grain noise and improve the coding gain, which will be discussed in Sec.

4.5.3

4.5.2 Film Grain Noise Synthesis

For synthesized noise evaluation, the conventional metrics such as the MSE or PSNR

value are not useful. Here, we consider several criteria to evaluate the performance of

different synthesis methods based on unique properties of film grain noise given in Sec.
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Table 4.1: Comparison of extracted noise power by different algorithms.

Temporally
extracted

Spatio-
temporal
filter

Gaussian
filter

general
TV
method

proposed
TV
method

Rolling

tomatoes

G 5.10 3.95 3.75 4.56 4.89
R 5.71 4.22 3.97 5.10 5.49
B 16.72 7.44 5.98 13.50 15.28

Playing

cards

G 9.86 4.97 4.40 6.74 6.80
R 6.95 4.32 3.82 5.07 5.23
B 38.20 19.56 18.23 28.56 29.64

Old town Y 13.41 9.65 10.12 12.87 12.88

4.1. Out of the six properties, temporal independency and Gaussian distribution are

automatically satisfied, since we use the i.i.d. Gaussian noise as the excitation signal.

In the frequency domain, the power spectrum density determines the visual appearance

of noise. Since the signal with stronger low-frequency components is more visible to

human eyes while film grain noise has higher low-frequency components, it is important

to re-synthesize noise to have a similar power spectrum density. Likewise, the spatial

distribution of noise plays an important role for human perception in the spatial domain.

In the RGB domain, the correlation between three color channels should be considered in

noise generation. Even though pixels in the RGB domain have different values, the same

film grain noise is physically created at each pixel and the cross-color correlation should

be preserved. In addition, the background signal with a different intensity has different

noise power, which is also perceptually visible. All these criteria will be considered and

tested one by one in the following.

Among these criteria, the matching of cross-color correlation appears to be the most

important one since it leads to intensity compensation between color channels. Due to this

reason, we use the white signal scaling to preserve the cross-color correlation as mentioned
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Table 4.2: Comparison of the cross-color correlation.

Rolling tomatoes Playing cards
extracted synthesized extracted synthesized

G-R 0.85 0.92 0.21 0.25
G-B 0.95 0.97 0.80 1.23

in Sec. 4.4.3. The cross-color correlation values between the extract and synthesized noise

are compared in Table 4.2. The signal dependency property is compared in Fig. 4.11 while

the power spectrum density of the extracted and synthesized noise with the 7-coefficient

AR model as described in Sec. 4.4.1 is compared in Fig. 4.12. As shown in these two

figures, their power spectrum density plots are similar. We can make these curves closer

to each other using a higher-order AR model or more complicated model such as ARMA

model at the cost of higher complexity. Since the performance of a more complicated

model is not significantly better, the 7-coefficient AR model is accurate enough as far as

the power spectrum density is concerned.

Finally, we also evaluate the results by subjective quality testing method with Table.

4.3 as proposed in [81]. Based on the subjective quality rating, we selected 10 experts

and 10 non-experts, and asked them to compare the original video with 1) convention-

ally decoded video with QP=24, and 2) output video by the proposed framework, i.e.

denoised, decoded with QP=24 and noise added sequence. We show the subjective test

results in Fig. 4.13, where each shaded bar and its middle dotted line represent the 95%

confidence interval and its mean value, respectively.
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Table 4.3: Quality rating on a 1 to 5 scale.

Rating Impairment Quality
5 Imperceptible Excellent
4 Perceptible, not annoying Good
3 Slightly annoying Fair
2 Annoying Poor
1 Very annoying Bad

4.5.3 Coding Gain Improvement

We show the bit-rate savings as a function of the quantization parameter (QP) in Fig.

4.14 for different denoising algorithms with similar output video quality. Here, we have

tested 30 frames (1sec) for each case with one intra-coded (I) frame and 29 predicted

coding (P) frames. In Fig. 4.14, we also provide the portion of smooth regions, since the

bit-rate saving is directly affected by this portion. We see that the film grain denoising

algorithm significantly reduces the coding bit-rate, especially for smaller QP values, and

denoising with the proposed TV minimization method demands the lowest bit rate for

the same QP.

Finally, we show parts of two image frames and their corresponding re-synthesized

counterparts in Fig. 4.15 for visual performance comparison, where re-synthesized images

are obtained by adding the synthesized film grain noise to decoded images with QP=24.

Since the whole image is too big to reveal the advantage of the proposed algorithm, we

only show the close-up views that cover the homogenous region (for the sequence of rolling

tomatoes) and the edge region (for the sequence of playing cards), respectively.
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4.6 Conclusion and Discussion

A novel approach to HD video coding based on film grain noise extraction, modeling,

resynthesis was presented. There are several important contributions in our proposed

scheme. First, the edge-preserving denoising technique is used for film grain noise ex-

traction. The edge-detection filters and the fine-texture detection algorithm allow us to

separate non-smooth regions from smooth regions in an image. Second, the denoising

method based on the modified total variation (TV) minimization method using specific

film grain properties was designed to suppress film grain noise efficiently without distort-

ing the original image. Third, noise characteristics are extracted by temporal difference,

and they can be used in the denoising process. Last, a novel film grain noise synthe-

sis algorithm is obtained by using the AR model excited by scaled white noise. It was

shown that the coding gain is much improved by encoding the denoised image sequence.

Furthermore, we show that the synthesized film grain noise is subjectively satisfactory to

human eyes and argue that it is objectively similar to observed film grain noise in terms

of its statistical properties.

All time-consuming tasks are implemented at the encoder in our proposed algorithm.

Only simple noise synthesis and addition is needed at the decoder. Thus, the additional

complexity required by consumer electronic devices is negligible. Moreover, it demands

only a small number of parameters per frame or per GOP as the overhead. As a result,

the proposed film grain noise model can be easily added to the any current video coding

standards.
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(a) Green

(b) Red

(c) Blue

Figure 4.10: Comparison of the squared-root of the PSD for extracted noise using several
algorithms.
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(a) Green

(b) Red

(c) Blue

Figure 4.11: Comparison of signal dependency between extracted and synthesized noise
for the rolling tomatoes sequence.
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(a) Green

(b) Red

(c) Blue

Figure 4.12: Comparison of the square root of PSD between extracted and synthesized
noise for the rolling tomatoes sequence.
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Figure 4.13: Comparison of subjective test results, where A denotes the coding result
using the conventional H.264/AVC reference codes and B denotes the coding result using
the proposed method.
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(a) Rolling tomatoes, smooth regions : 72.5%

(b) Playing cards, smooth regions : 19.5%

(c) Old Town Cross, smooth regions : 37.8%

Figure 4.14: The coding bit-rate savings comparison of different algorithms as a function
of quantization parameters (QP).
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(a) Rolling tomatoes

(b) Playing cards

Figure 4.15: Close-up of the original images (left) and the re-synthesized images (right).
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Chapter 5

Super-Resolution of Stochastic Texture Image

5.1 Introduction

The task to generate a high-resolution image from a set of lower-resolution images is called

image super-resolution. This problem has received a lot of attention for its enormous

potential applications The well-known image interpolation (or upsampling) method can

be viewed as one super-resolution technique. Image interpolation has been studied for

about four decades. Polynomial interpolation algorithms, such as bilinear or bicubic

interpolation methods, have been widely used due to their simplicity. However, they

often yield blurred results around sharp edges and textured regions. A lot of efforts have

been made to overcome blurring artifacts in image edges with a substantial amount of

progress in recent years. However, an effective super-resolution technique for textured

image is still a challenging issue.

Image super-resolution can be treated as an image restoration problem. However,

most previous super-resolution algorithms focused on the processing in edge regions.

Few of them targeted at texture processing, especially stochastic texture interpolation.
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Edge-oriented super-resolution algorithms are not adequate for stochastic texture, since

random texture is more complex to model and predict than image edges. The state-of-

the-art non-local (NL) super-resolution algorithm does not produce satisfactory results

for random texture, either. Since the block similarity measure of the conventional NL

algorithm was conducted based on the pixel intensity difference, the upsampled image

may contain artificial patterns and/or undesirable artifacts.

In this work, we propose a new image interpolation scheme, which is especially suit-

able for random texture. To interpolate a coarse-resolution input texture image, we adopt

a piecewise auto-regressive (PAR) model and apply the NL strategy to estimate model

parameters adaptively under the assumption that random texture is self-regular in model

parameters. This new scheme, called the PAR/NL algorithm, can be viewed as a hybrid

of the model-based (i.e., PAR) approach and the learning-based (i.e., NL) approach. In

the proposed PAR/NL scheme, we first select a model structure and then model param-

eters adaptively using the learning-based approach with a self training set. Theoretical

analysis is conducted to understand the consistency and robustness issues of the PAR/NL

algorithm, and experimental results are given to demonstrate its performance.

The rest of this chapter is organized as follows. The basic NL algorithm for im-

age denoising and interpolation is briefly reviewed in Sec. 5.2. Then, the new texture

interpolation algorithm is proposed in Sec. 5.3. Experimental results are provided to

demonstrate the performance of the proposed PAR/NL-based texture interpolation algo-

rithm in Sec. 5.4. Finally, concluding remarks are given in Sec. 5.5.
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5.2 Image Restoration with Non-Local (NL)

Algorithm

We review the NL algorithm and its application to image restoration in this section. The

objective of image restoration is to estimate the unknown original image, X, from an

observed image, Y , in form of

Y = f(X) + N, (5.1)

where f denotes an image distortion process and N is the noise image. For example,

f can be a down-sampling operator for the image interpolation problem, or a blurring

operator for the image deblurring problem. In the following sections, we will investigate

the basic idea of the NL algorithm, and also provide its derivation and analysis for

theoretic consistency.

5.2.1 Non-Local Means (NLM) Denoising Algorithm

The NL algorithm was first proposed to solve the image denoising problem [8]. If f is

an identity operator, the image restoration problem is reduced to an image denoising

problem as

Y = X + N. (5.2)

The main idea of the NL-denoising algorithm is to restore a pixel with its local neighbor-

hood as well as non-local pixels that are in a similar environment. Simply speaking, the

target pixel will be obtained as a weighted average of local and non-local pixels, where

the weight is computed based on the similarity between two image regions. That is, a
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pixel surrounded by a more similar block will contribute more to the restoration of the

target pixel than that surrounded by a less similar block. For this reason, NL-denoising

algorithm is often called NL-means (NLM) algorithm.

Mathematically, the NLM algorithm to the solution of Eqn. (5.2) can be written as

X̂(i) =
1
Zi

∑
j∈I

wi,jY (j), (5.3)

where wi,j is a weight denoting the contribution from Y (j) to X̂(i), Zi is a normalization

factor to make
∑

j wi,j/Zi = 1, and I is the image space. Specifically, an adaptive weight

is determined by measuring the neighborhood distortion as

wi,j = exp
(
−D(Y (Ni), Y (Nj))

h2

)
, (5.4)

where D is a distortion measure, Ni is a squared neighborhood of pixel i = (i1, i2), and h

is the filter coefficient that adjusts the decay of the weight. As shown above, the distortion

measure directly affects the overall performance. In [8], it is determined by

D(Y (Ni), Y (Nj)) = ||Y (Ni) − Y (Nj) ||2a, (5.5)

where a > 0 is the standard deviation of the Gaussian kernel.
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It is worthwhile to compare the NLM scheme with the well known bilateral filter [78],

since the bilateral filter shares the same form as Eqn. (5.3) with a different definition of

the weight factor as

wi,j = fs(Y (i), Y (j)) · fc(i, j)

= exp
(
−||Y (i) − Y (j)||2

h2
s

)
· exp

(
−||i − j||2

h2
c

)
,

(5.6)

where fs and fc are functions used to compute the pixel-intensity similarity and the

geometrical closeness between these two pixels, respectively. As an example, the Gaussian

function of the Euclidean distance can be used for controlling parameters hs and hc. As

given above, the bilateral filter could be viewed as one specific form of the NLM filter

by taking the geometrical distance into account, and using the dirac delta kernel as the

distortion measure (i.e. a → 0 in Eqn. (5.5)). On the other hand, the NLM scheme

does not consider the geometric closeness (i.e. hc → ∞ in Eqn. (5.6)), and measure the

similarity based on its local information instead.

5.2.2 Derivation and Analysis of NLM

The NLM algorithm is fundamentally rooted on the ’block-wise regularity’ assumption

of images. This assumption has been shown experimentally to be valid for most common

images. For two pixels surrounded by identical local neighborhoods, it is reasonable to
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assume that the corresponding noise-free pixels will be identical as well. This idea can

be mathematically formularized with the following objective function

JNLM =
∑
i∈I

∑
j∈I

wi,j ||X̂(i) − Y (j)||2. (5.7)

Then, the optimal solution of Eqn. (5.7) can be obtained by setting its derivative

∂JNLM

∂X(i)
= 2

∑
j∈I

wi,j(X̂(i) − Y (j)) (5.8)

to zero. Then, we have

ˆX(i) =

∑
j wi,jY (j)∑

j wi,j
. (5.9)

Actually, the above optimal solution is the same as that given in Eqn. (5.3).

Note that the objective function in Eq. (5.7) is generic and its adaptive weight values

can be chosen based on a denoising filter kernel. For example, wi,j can be chosen using the

isotropic Gaussian kernel which assigns a higher penalty value (i.e. a smaller weight) for

far-away pixels by the Euclidean distance. This implies that a noise-free pixel would have

the identical value with its local neighborhood, which is valid in the smooth background.

In the sharp-edge region, the weight values should be changed according to the edge

orientation to avoid the same weight across two different sides of an edge in spite of

their geometric closeness. Likewise, the NLM filter is an adaptive filter which involves

the non-local information (i.e. the size of the NLM kernel filter could be as large as the

whole image).
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To determine a good set of adaptive kernel weights is a challenging research issue. In

the NLM scheme, it is obtained by measuring the block similarity. Although it would be

more reasonable to measure the block distance between two noise-free blocks, we have no

choice but measure the block distance between two noisy blocks. On the other hand, we

can derive the following relationship under the i.i.d. white Gaussian noise assumption:

E||Y (Ni) − Y (Nj)||2a = E||(X(Ni) − X(Nj)) + (N(Ni) − N(Nj))||2a

= E||X(Ni) − X(Nj)||2a + 2σ2
N ,

(5.10)

where σN is the standard deviation of i.i.d white noise N . Actually, the impact of noise

will be statistically cancelled out.

5.2.3 Adaptation for Image Super-Resolution

Although the NL algorithm was initially developed for image denoising, the same strategy

can be extended to image super-resolution. The mathematical form for super-resolution

can be expressed as [55]

Yk = gm(fk(X)) + Nk, k = 1, 2, ..., K, (5.11)

where fk(·) is a function of geometrical warping and blurring and gm(·) is an m-to-1

down-sampling operation.

It is intuitive that more observations (K 
 1) yield better results since one can

predict the unknown pixel value with a large number of observations. Inaccuracy caused

by noise, imperfect models, or false estimation can be compensated by these observations.
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On the other hand, for a smaller K value, the high-resolution image is mostly estimated

based on its prior model such as piece-wise smoothness. When K = 1, the accuracy of

the prior model is critical, since the resultant image is only determined by its prior model.

In this sense, the NL strategy is advantageous by assuming that the local information

will be repeated in somewhere else to increase the value of K. The above discussion is

particularly true if a given image has strong self-regularity such as tiles, blocks, windows,

etc.

The adaptation of the NLM algorithm to the interpolation problem is straightforward.

That is, it initializes the high-resolution image by an arbitrary interpolation algorithm,

and then assumes the initially interpolated image is a noisy version of the ground-truth.

Then, we can follow the same restoration procedure as described above. Mathematically,

the weight can be chosen as

wi,j = exp
(
−D(Yu(Ni), Yu(Nj))

h2

)
, (5.12)

where subscript u represents the intermediate upsampled image that matches the desired

resolution. A more generalized version of NL-based interpolation was formulated and the

corresponding super-resolution methods were proposed in [60].

5.3 PAR/NL Texture Interpolation Algorithm

In this section, we will develop an interpolation algorithm for random texture such as

sand, wool, fabric, etc. Note that there is another type of texture called structured texture
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with bricks and tiles as examples. Structured texture is not considered here, since it can

be well handled by the previously developed edge-oriented interpolation algorithms.

Due to the stochastic property of random texture, the application of the NL-based

interpolation algorithm described above does not yield satisfactory results. Generally

speaking, the NL-based interpolation using the NLM scheme strongly relies on the ’self-

regularity’ in the pixel domain as defined in Eqn. (5.5), which is however not valid for

random texture. The following experiment shows the difference between these two cases

clearly. First, we randomly select blocks from a common image (’Lena’) and the random

texture image (’Food #5’), compute the MSE of samples in each block, and then plot

the MSE histogram in Fig. 5.1. As shown in the figure, the pixel-wise similarity does not

hold for random texture.

(a) Lena (b) Food #5

Figure 5.1: Comparison of MSE histograms of arbitrarily chosen blocks.

To overcome this limitation, we use the NL algorithm to estimate and refine model

parameters, which is the main contribution of this research. To be more specific, the

conventional NL-based interpolation estimates unknown pixel values, X̂(i), by explor-

ing other non-local similar image patches to maximize probability P (X̂(i)|X(Ni)). In
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contrast, the proposed algorithm estimates the hidden model parameter set, θ̂, by max-

imizing probability P (θ̂i|X(Ni)). This idea is rooted on the assumption that the model

parameters that govern the random texture behavior are self-regular.

In the following subsections, we first introduce the piece-wise auto-regressive (PAR)

model as the selected linear model, and then show the detailed algorithm for the objective

function and distortion measurement with its theoretic analysis next.

5.3.1 Piecewise Auto-regressive (PAR) Model

For random texture interpolation, we adopt the PAR model in form of

X̂(2i1 + 1, 2i2 + 1) =
∑
k∈K

θi(k1, k2)X(2(i1 + k1), 2(i2 + k2))

=
∑
k∈K

θi(k1, k2)Y (i1 + k1, i2 + k2),

(5.13)

where θi is the adaptive interpolation coefficients at pixel i, Y and X are M × N low-

resolution and 2M × 2N high-resolution images, respectively, and X(2i1, 2i2) = Y (i1, i2).

Eqn. (5.13) shows that an unknown high-resolution pixel is obtained by a linear sum of

its known low-resolution neighborhood pixels. Once we complete the whole interpolation

process in Eqn. (5.13), all X(i) (i1 + i2=even) are interpolated. To fill out remaining

pixels (i.e., X(i) with i1 + i2 =odd), we can simply rotate the image by 90 degrees and

repeat the above process. As a result, each dimension of the interpolated image becomes

twice as large as that of the original image.

In fact, the above PAR model has been adopted for quite a few image interpolation

algorithms. For example, the well-known bilinear or bicubic algorithms can be viewed as
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one of the PAR methods with a fixed set of model parameters. However, the use of fixed

parameters has a strong limitation and, consequently, the resulting model cannot capture

the complex behavior of random texture and image edges well. Li [38] proposed a new

edge-directed interpolation (NEDI) algorithm by selecting model parameters according to

its low-resolution local covariance information adaptively. It improves the interpolation

performance in strong edge regions. This idea was further improved in [89] by jointly

estimating unknown pixels in groups.

However, we observe that the performance of these improved algorithms is still not

adequate for random texture due to following reasons. First, adopting the low-resolution

information directly for the high-resolution grid space would be too restrictive, since tex-

ture has weak regularity across scales than strong edges [14]. Second, estimating model

parameters using the local neighborhood information is not sufficient due to the stochas-

tic, and non-stationary nature of underlying texture. Third, estimating the target pixel

with only its four neighbors (e.g., k1, k2 ∈ {0, 1}) cannot capture the texture behavior

well while increasing its model order, |K|, would involve more unreliable local information

for the parameter estimation. To overcome these drawbacks, we propose to adopt the NL

strategy to compute model parameters adaptively.

5.3.2 Model Parameter Estimation

The difficulty in texture prediction lies in that the increase of the model order will demand

more samples for parameter prediction. For homogenous and stationary texture, a model

of a larger order is not a problem. However, for spatially non-stationary texture, we

are not able to get accurate estimation if far-away pixels are needed in the estimation
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process. The proposed PAR/NL scheme can overcome this limitation using the non-local

information for PAR model parameter estimation.

The way to use the non-local information is the same as that of the conventional NL-

based interpolation algorithm. The main difference is that the objective of the PAR/NL

model is to estimate model parameters, {θi|i ∈ I}, instead of pixel values. We define the

objective function of the PAR/NL algorithm as

JPAR/NL =
∑
i∈I

∑
j∈I

wi,j ||Yu(vj) θ̂i − Yu(j)||2, (5.14)

where vj is a vector consisting of the spatial neighborhood around pixel j and model

parameter θ is a column vector. By this objective function, model parameters are con-

strained to satisfy the self-regularity property and the optimal parameters at pixel i can

be obtained as

∂J

∂θ̂i

= 2
∑

j

wi,j(Yu(vj))T Yu(vj) θ̂i − Yu(j)) = 0 (5.15)

Therefore, we get

θ̂i =
[∑

j
wi,j(Yu(vj))T Yu(vj)

]−1∑
j
wi,j(Yu(vj))T Yu(vj). (5.16)

Once the whole set of model parameters, {θi | i ∈ I}, are obtained, the estimated pixels

X̂(i) can be automatically computed by Eqn. (5.13).
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Under this framework, we only need to find the parameter set at odd grid i = 2i′ + 1

in practice. That is, we can partition the whole image set into even-grid and odd-grid

sets, i.e.,

I = Ie ∪ Io,

where Ie and Io are the even-grid and odd-grid image sets, respectively. In a similar fash-

ion, we can divide the high-resolution image X into the observed data Xe and unobserved

data Xo, and the upsampled image will be union of these two, i.e.,

Yu = Xe ∪ X̂o,

since the odd pixel of the upsampled image Yu is the estimated data. Then, the objective

function can be re-written as

JPAR/NL =
∑
i∈Io

∑
j∈I

wi,j ||Yu(vj) θ̂i − Yu(j)||2

=
∑
i∈Io

⎡⎣∑
j∈Io

wi,j ||Xe(vj) θ̂i − X̂o(j)||2 +
∑
j∈Ie

wi,j ||X̂o(vj) θ̂i − Xe(j)||2
⎤⎦ .

(5.17)

For the further algorithm development, we only consider the first term of the above

equation as our objective function as

JPAR/NL =
∑
i∈Io

∑
j∈Io

wi,j ||Xe(vj) θ̂i − X̂o(j)||2, (5.18)

since this form is more convenient to compute and derive other formulas.
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5.3.3 Determination of Intermediate Up-sampled Image

For the PAR/NL scheme, it is important to determine the intermediate upsampled image,

Yu, which will be the initial guess of the proposed PAR/NL algorithm. It even determines

the consistency of the proposed algorithm to be discussed later. Basically, we assume

that the inaccuracy of model parameters is caused by the non-stationarity of the spatial

covariance. In other words, texture with a spatially-stationary covariance function will

have constant model parameters. This is our start point.

Based on the local stationarity assumption, the optimal model parameters and the

corresponding upsampled image will be obtained by minimizing the following objective

function

JPAR/L =
∑
i∈Io

∑
j∈Ni∩Io

wG
i,j ||Xe(vj)θ̂L

i − X̂o(j)||2, (5.19)

which is similar to Eqn. (5.18) except for two items. One is the range of index j, which is

restricted to the local neighborhood of i, represented by Ni, while the other is the weight

factor, wG
i,j , which is calculated based on the fixed Gaussian kernel and only a function

of distance ||i − j||2.

However, the minimization of this objective function is not trivial, since it has two

unknown variables, i.e., θL and Xo. Here, we assume Xo as unobserved latent vari-

ables, and apply the expectation-maximization (EM) algorithm to determine the optimal

parameters by following two iterative procedures.
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E-step) Calculate the expected value of the log likelihood function with respect to the

conditional distribution of Xo given observation Xe under the current estimate of

parameter θ

Q(θ, θ(t)) = E
[
log p(Xe, Xo|θ)|Xe, θ

(t)
]
.

M-step) Find the parameter that maximizes the following quantity

θ(t+1) = arg max
θ

Q(θ, θ(t)).

In the E-step, the log likelihood function is expanded as

log p(Xe, Xo|θ) = log p(Xe|Xo, θ) + log p(Xo|θ)

= log p(Xe|Xo, θ) + log p(Xo),

(5.20)

since the Xo is independent of θ. It can be simplified as

log p(Xe(i), Xo(i)|θ) = −
∑

j∈Ni∩Io

||Xe(vj) θi − Xo(j)||2
2σ2

+ A1

= −
∑

j∈Ni∩Io

||Xe(vj)θi||2 − 2θT
i Xe(vj)Xo(j)

2σ2
+ A2,

(5.21)
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where A1 and A2 are constants, whose values are independent of θ. This equation is

linear in variable Xo so that the E-step is to compute the conditional expectation of Xo

given observation Xe and current parameter estimate θ(t) as

Xo(i)(t) = E[Xo|Xe, θ
(t)]

=
∑

j∈Ni∩Io

wG
i,j · Xe(vi) θ

(t)
j .

(5.22)

Then, the Q-function can be given as

Q(θ, θ(t)) =
∑
i∈Io

∑
j∈Ni∩Io

−||Xe(vj) θi − X
(t)
o (j)||2

2σ2
+ A1 (5.23)

Finally, the M-step updates the parameter with given parameter estimate θ(t) and

computed latent data X
(t)
o as

θ(t+1) = arg max

⎡⎣∑
i∈Io

∑
j∈Ni∩Io

−||Xe(vj) θi − X
(t)
o (j)||2

2σ2
+ A1

⎤⎦
∴ θ

(t+1)
i =

⎡⎣ ∑
j∈Ni∩Io

wG
i,j(Xe(vj))T Xe(vj)

⎤⎦−1 ∑
j∈Ni∩Io

wG
i,j(Xe(vj))T Xo(j) .

(5.24)

It is advantageous to adopt the EM procedure since it always guarantees the conver-

gence of the iterative solution. Experimentally, we find that the optimal set of parameters

is not sensitive to the initial guess of the upsampled image. We use the bicubic algorithm

for the initial upsampling in our implementation.
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5.3.4 Analysis of PAR/NL Algorithm

This section will provide more analysis to the above-mentioned algorithm by comparing

it with the conventional NL algorithm. Specifically, we are going to investigate the

relationship between a locally obtained upsampled image with parameters and its ground-

truth. Then, it will provide the objective and the expected improvement of the proposed

PAR/NL algorithm.

The ground-truth upsampled image can be written as

Xo = X̂o + ε1

= Xe(vi)θo + ε1

= Xe(vi)θ̂L + Xe(vi)(θo − θ̂L) + ε1

= X̂L
o + ε1 + ε2

= X̂L
o + ε,

(5.25)

where Xo is the ground-truth high-resolution image, X̂o is the optimal estimated data,

and θo is the optimal parameter set that minimizes i.i.d. forecast error ε1. On the other

hand, the locally obtained parameter set, θ̂L, will yield X̂L
o and produces another type of

error ε2, which is called the ’miss-prediction’ error.

Since the proposed framework involves two different types of errors, we will explain

them more clearly below. The forecast error, ε1, is caused by the projection process

of the estimation since the dimension of the data is larger then the dimension of the

parameters. Consequently, the forecast error can be reduced by increasing the model

order, K. However, a larger order number tends to increase the miss-prediction error due
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to the limit number of samples satisfying the stationary property. On the other hand, the

miss-prediction error, ε2, can be reduced by an advanced parameter estimation algorithm.

This is achieved by the proposed PAR/NL scheme in our work. As a result, the proposed

PAR/NL algorithm is meaningful when the miss-prediction error is much larger than the

forecast error. Otherwise, the improvement by the proposed PAR/NL algorithm will not

be perceptually significant. Thus, the prediction error by θ̂L
i at grid i becomes

E||εi||2 = E||X(vi) θ̂L
i − X(i)||2

= E||X(vi) θo
i − X(i) + X(vi) (θ̂L

i − θo
i )||2

= E||X(vi) θo
i − X(i)||2 + E||X(vi) (θ̂L

i − θo
i )||2

= ε2
1,i + ε2

2,i,

(5.26)

i.e., the sum of the forecast and the miss-prediction errors.

The objective function in Eqn. (5.18) can be derived and re-written as

JPAR/NL =
∑
i∈Io

∑
j∈Io

wi,j ||Xe(vj) θ̂i − X̂L
o (j)||2

=
∑
i∈Io

∑
j∈Io

wi,j ||Xe(vj) θ̂i − (X̂o(j) + ε1,j)||2

≈
∑
i∈Io

∑
j∈Io

wi,j ||Xe(vj) θ̂i − X̂o(j)||2 + E1

=
∑
i∈Io

∑
j∈Io

wi,j ||Xe(vj) (θ̂i − θo
j )||2 + E1,

(5.27)

where E1 is the error term caused by ε1, and it becomes constant on average by its

i.i.d. distribution. Finally, this equation becomes analogous to the conventional NL-

based interpolation algorithm in the sense that it compares the self-similarity between
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parameters. The major distinction is that its difference is projected to the space spanned

by its sample set, which is one of the drawbacks of the least-square (LS) approach. In

this work, it would be useful to compute the projected error, since the error computed in

the pixel domain can be well handled and matched to the general NL-based interpolation

algorithm than the error computed in the parameter domain.

5.3.5 Distortion Measure for Texture

It is important to investigate the distortion measure for random texture since the pixel-

wise distance in the NL algorithm does not hold. In the pixel-wise NL algorithm, the

local neighborhood information is used to measure the similarity for the central pixel

adjustment. In a similar fashion, we define the similarity between two texture blocks by

investigating the parameters of their local neighborhoods as

Dθ(Yu(Ni), Yu(Nj)|X̂L
o )

=
∑

p∈Ni,q∈Nj

||Xe(vp) θ̂L
q − X̂L

o (p)||2 + ||Xe(vq) θ̂L
p − X̂L

o (q)||2

=
∑

p∈Ni,q∈Nj

||Xe(vp) θ̂L
q − Xe(vp) θ̂L

p ||2 + ||Xe(vq) θ̂L
p − Xe(vq) θ̂L

q ||2

=
∑

p∈Ni,q∈Nj

||Xe(vp) (θ̂L
q − θ̂L

p )||2 + ||Xe(vq) (θ̂L
p − θ̂L

q )||2.

(5.28)

In words, it computes the distance in the projected domain of the parameter distance.

It is worthwhile to point out that the pixel distance of the NL algorithm is analogous to

the projected one of the parameter-distance of the proposed PAR/NL algorithm.

105



In the NL image restoration process, selection of the appropriate filtering parameter

h in Eqn. (5.4) also plays an important role since it determines the contribution of the

non-local information by adjusting the decay of weights. Buades et al. [8] proposed to set

h according to its noise variance in the image denoising application. Here, we also use the

noise variance to determine the filter coefficient. Since the PAR/NL model is applied to

the intermediate upsampled image with the locally adaptive model parameters, θL, the

miss-prediction error of model parameters as represented by δ in Eqn. (5.26) indicates the

noise level in our framework conceptually. However, none of the error in Eqn. (5.26) is

practically observable since both ground-truth Xo and θo are unknown. This situation is

similar to the conventional NL-based algorithm without prior knowledge of noise variance.

In the blind case, noise energy has to be estimated for further processing. In this work,

we assume that the minimum value of the objective function in Eqn. (5.19) is equal to

noise energy. Thus, we can compute h as

h =
√

1
|I|
∑
i∈I

∑
j∈Ni

wG
i,j ||Xe(vj)(θ̂L

i − θ̂L
j )||2 . (5.29)

This approach is reasonable since the model parameter difference is caused by the non-

stationarity of given texture.

5.3.6 Summary of Proposed PAR/NL Algorithm

The proposed PAR/NL algorithm can be summarized as follows, and graphically illus-

trated in Fig. 5.2
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A1) Initialize high-resolution image Yu from a given low-resolution image, Y , with an

arbitrary interpolation scheme.

A2) For each grid point i ∈ Io, estimate the local model parameters, θ̂L
i , with its local

neighborhood information only as given in Eqn. (5.24).

A3) Update Yu with the estimated parameters θ̂L as given in Eqn. (5.23).

A4) Repeat Steps A2)-A3) until the change of Yu is small enough.

A5) Compute all unknown pixels of the Y L
u with θ̂L

i obtained from Step A4).

A6) Compute filter coefficient h with Eqn. (5.29)

A7) For each grid point i ∈ Io, estimate non-local model parameters, θ̂NL
i , with all

available non-local information as given in Eqn. (5.16).

A8) Compute all unknown pixels of the Y NL
u with θ̂NL

i obtained from Step A7).

Figure 5.2: The overall structure of the proposed PAR/NL algorithm.

Since the PAR/NL algorithm exploits the information of distant as well as local pixels,

it provides more flexibility than increasing the model order. In our implementation, we
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fix model order |K| = 36, i.e., 6× 6 neighborhood pixels to estimate the value of a target

pixel. For robust estimation, we use 49 samples to estimate θL and θNL, i.e., |N | = 49.

5.4 Experimental Results

To evaluate the performance of the proposed PAR/NL interpolation algorithm, we se-

lected several random texture images from the VisTex texture database [76] and the

Brodatz album [7] as the test set. All test images were 8-bit gray images. They were

chosen to allow a wide range of diversity. The selected textures are shown in Fig. 5.3

for visual inspection. Note that ’D16’ has a fine but visible direction, while ’D57’ and

’Metal #4’ have more obvious directional patterns with fine random texture. ’Food #5’

has no visible directional pattern with detail texture. ’D19’ is composed by texture with

varying background. ’D17’ has some structure in the texture patten, which is included

to test the limitation of the proposed PAR/NL algorithm.

For performance evaluation, we rely only on the subjective quality test for two rea-

sons. First, there is no ground truth available. Second, it is generally agreed that the

conventionally used quantitative measure, such as the mean-squared-error (MSE) or the

peak-signal-to-noise-ratio (PSNR), cannot reflect the visual quality of textured images

well, since the pixel-by-pixel accuracy in stochastic texture is not meaningful. For exam-

ple, by shifting a texture image by 1 pixel horizontally or vertically, it is still the same

texture image to human eyes but their MSE could be large.

For visual comparison, we show interpolated images in Figs. 5.4 ∼ 5.9 using (a) the

bilinear, (b) the bicubic, (c) the NL-interpolation, (d) the edge-directed interpolation [38],
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(a) D16 (b) Food #5 (c) Metal #4

(d) D19 (e) D57 (f) D17

Figure 5.3: Selected texture images for performance comparison.

(e) the optimized edge-directed interpolation [89], and (f) the proposed PAR/NL inter-

polation scheme. In these figures, the first two rows consist of the 2x2 upsampled images,

and the bottom two rows consist of the 4x4 upsampled images. Due to the space limit and

visual convenience, we only show the center part of upsampled images. We see that the

bilinear and the bicubic algorithms lose many texture detail and blur interpolated images.

The edge-directed algorithm is good in sharpening edges, but it tends to generate some

directional patterns. Besides, it can generate spurious points caused by the mismatch

between low- and high-resolution textures easily. The optimized edge-directed algorithm

is developed to overcome this drawback by the soft-estimation method, but the results

are still not satisfactory, and sometimes even worse as shown. The NL-interpolation ap-

pears to mislead the general outlook of the interpolated texture. The proposed PAR/NL

scheme preserves texture detail well, and yields a better stochastic texture behavior than
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other algorithms. It is also interesting to point out that the performance of the proposed

PAR/NL is varying according to the randomness and stationarity of given texture. For

example, the result for ’D17’ is not as good as those for ’D16’ and ’Food #5’, since ’D17’

is more structured.

We also evaluated the quality of interpolated images by a subjective test procedure.

Each algorithm is evaluated by 10 subjects, and scored on a scale of 1 ∼ 10 with the

bilinear interpolated image as the reference, whose score is set to 5. The subjective test

results for three representative textures are shown in Fig. 5.10, where the shaded bar

and its middle dotted line represent the 95% confidence interval and its mean value,

respectively. We see that the bicubic, the edge-directed and the proposed PAR/NL

method all outperform the bilinear interpolation scheme substantially. The proposed

PAR/NL interpolation has the best performance among all schemes consistently.

5.5 Conclusion and Discussion

A new approach for texture interpolation, called the PAR/NL interpolation method, was

proposed in this work. It uses the PAR model whose parameters are determined by

the NL algorithm. It was shown that parameters of the PAR model can be efficiently

obtained from the image itself, and the resultant PAR/NL interpolation scheme outper-

forms several benchmarking methods. Since the PAR/NL algorithm is an adaptation

of the conventional NL-interpolation algorithm, we also provide the complete analogy

between two algorithms with the theoretic analysis and derivation.
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Figure 5.4: Upsampled image results for ’D16’ for I. 2x2 zooming, II. 4x4 zooming with
(a) bilinear, (b) bicubic, (c) NL-interpolation, (d) edge-directed [38], (e) optimized edge-
directed [89], and (f) proposed PAR/NL schemes.
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Figure 5.5: Upsampled image results for ’Food #5’ for I. 2x2 zooming, II. 4x4 zooming
with (a) bilinear, (b) bicubic, (c) NL-interpolation, (d) edge-directed [38], (e) optimized
edge-directed [89], and (f) proposed PAR/NL schemes.
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Figure 5.6: Upsampled image results for ’Metal #4’ for I. 2x2 zooming, II. 4x4 zooming
with (a) bilinear, (b) bicubic, (c) NL-interpolation, (d) edge-directed [38], (e) optimized
edge-directed [89], and (f) proposed PAR/NL schemes.
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Figure 5.7: Upsampled image results for ’D19’ for I. 2x2 zooming, II. 4x4 zooming with
(a) bilinear, (b) bicubic, (c) NL-interpolation, (d) edge-directed [38], (e) optimized edge-
directed [89], and (f) proposed PAR/NL schemes.
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Figure 5.8: Upsampled image results for ’D57’ for I. 2x2 zooming, II. 4x4 zooming with
(a) bilinear, (b) bicubic, (c) NL-interpolation, (d) edge-directed [38], (e) optimized edge-
directed [89], and (f) proposed PAR/NL schemes.
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Figure 5.9: Upsampled image results for ’D17’ for I. 2x2 zooming, II. 4x4 zooming with
(a) bilinear, (b) bicubic, (c) NL-interpolation, (d) edge-directed [38], (e) optimized edge-
directed [89], and (f) proposed PAR/NL schemes.
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Figure 5.10: Comparison of subjective test results, where A : bicubic, B: edge-directed
[38] and C: the proposed method.
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Chapter 6

Conclusion and Future Work

6.1 Summary of the Research

Two main research topics have been examined in this dissertation. First, we studied

texture processing techniques to improve the efficiency of state-of-the-art video coding

standards, where the main idea was built upon synthesis-based texture coding. Sec-

ond, we investigated the super-resolution method for textured image interpolation, which

improves the prediction accuracy of the linear model.

A new framework to control the synthesized texture by sending the additional side

information was proposed in Chapter 3. There are several important contributions in our

proposed scheme. First, a novel framework to control the synthesized texture by sending

additional side information was proposed, and it was shown that only a small amount of

side information can efficiently guide the overall texture structure. The side information

can be easily obtained by a standard encoder operating at a low bit-rate, and no addi-

tional coding tools for the side information are necessary. Second, we can further increase
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the synthesis efficiency by adaptively selecting the side information based on the rate-

distortion (R-D) optimization method. As a result, the locally adaptive side information

improves the similarity and naturalness compared to using uniform side information for

a given bit budget. Third, a texture decomposition algorithm was developed for the pro-

posed texture synthesis algorithm to address the problem of illumination-variant texture,

and its effectiveness was presented by experimental results.

Film grain noise modeling method was developed based on its unique properties in

Chapter 4. The model can be used for two purposes: 1) film grain noise extracting in

the encoder and 2) film grain noise rendering in the decoder. To encode high definition

video with film grain noise, we proposed a video coding system as follows. In the en-

coder end, film grain noise was extracted as a pre-processing step, which consisted of

two phases: smooth-region detection and film grain denoising. Since the pre-processing

algorithm should cause little distortion to the original content, we extracted film grain

noise from the smooth area only. Then, a non-linear denoising scheme based on total

variation minimization was proposed. We exploited various film grain noise properties

for noise estimation, which was proved to be more efficient than the conventional 2D

Gaussian filtering and the simple TV method. In the decoder end, we propose a noise

rendering (or synthesis) method using the spatial and spectral AR model. The AR model

is selected due to its low decoding complexity and good rendering capability. It was

shown by experimental results that the rendered film grain noise is similar to the original

in terms of the noise power spectrum density, distribution, cross-color correlation and

signal dependency.
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Finally, a new approach for texture interpolation, called the PAR/NL interpolation

method, was proposed in Chapter 5. It adopted a PAR model whose parameters are

determined by the NL algorithm. We provided an analysis on the conventional NL algo-

rithm and the proposed PAR/NL approach and compared the performance of these two

schemes. It was shown that parameters of the PAR model can be efficiently obtained

from the image itself, and the resultant PAR/NL interpolation scheme outperforms sev-

eral benchmarking methods.

6.2 Future Research Topics

To make our current research more complete, we would like to investigate the following

research topics in the near future.

• Complexity reduction for texture synthesis

The complexity of synthesis-based video texture coding is very high, which could

be a major bottleneck for its wide acceptance. This problem is even worse by con-

sidering the fact that computational power of the decoder is usually lower than the

encoder. For these reasons, we need to develop a faster texture synthesis algorithm.

• Non-causal film grain noise rendering

The proposed film grain noise rendering method uses the raster scanning order,

which is a causal rendering method. Since causal rendering may result in an artificial

directional pattern, it could be perceptually different than the original isotropic

film grain noise. It is desirable to develop a non-causal rendering scheme without
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increased complexity. One possible direction is the multi-resolution-based rendering

method.

• More applications with PAR/NL texture model

The proposed PAR/NL method has a potential to offer a good solution to challeng-

ing image processing problems such as texture classification, restoration, learning

method, etc. Most today’s image processing algorithms heavily depend on the lo-

cality assumption. In addition to the linear model, it is possible to integrate other

models such as the higher-order model or the support vector machine (SVM) with

the non-local strategy. It is interesting to find a more generic framework for textured

image/video processing.
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