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Abstract

In some applications of computing with words, it is necessary to map an interval type-2 fuzzy

set (IT2 FS) into one of several classes, which are also represented by IT2 FSs. This classifier can be

implemented by a subsethood measure. Five existing subsethood measures for IT2 FSs are considered

in this paper. Comparative studies show that Vlachos and Sergiadis’s IT2 FS subsethood measure

gives the most reasonable outputs as a decoder in computing with words when the desired output is a

class. The results in this paper will be useful in constructing a third kind of decoder (i.e., in addition

to similarity measures and ranking methods) for perceptual computing.

Keywords: Computing with words, interval type-2 fuzzy sets, perceptual computing, retransla-

tion, similarity measure, subsethood measure
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Chapter 1

Introduction

Zadeh coined the phrase “computing with words” (CWW) [66, 67], which is [67] “a methodology in

which the objects of computation are words and propositions drawn from a natural language.” Words

in the CWW paradigm may be modeled by type-1 fuzzy sets (T1 FSs) [22, 64] or their extension,

interval type-2 (IT2) FSs [22, 26–28, 65]. So, an inevitable question is: Which FS model should be

used in CWW?

There are at least two types of uncertainties associated with a word [24, 42]: intra-personal

uncertainty and inter-personal uncertainty. Intra-personal uncertainty describes [24] “the uncertainty

a person has about the word.” It is also explicitly pointed out by Wallsten and Budescu [42] as “except

in very special cases, all representations are vague to some degree in the minds of the originators and

in the minds of the receivers,” and they suggest to model it by a T1 FS. Inter-personal uncertainty

describes [24] “the uncertainty that a group of people have about the word.” It is pointed out by

Mendel [22] as “words mean different things to different people” and Wallsten and Budescu [42] as

“different individuals use diverse expressions to describe identical situations and understand the same

phrases differently when hearing or reading them.” Because an IT2 FS has a footprint of uncertainty

(FOU, e.g., Fig. 4.1(a)) which can be viewed as a group of T1 FSs, it can model both types of

uncertainty [24]; hence, we suggest IT2 FSs be used in CWW [21, 22, 24]. Additionally, Mendel [25]

has explained why it is scientifically incorrect to model a word using a T1 FS, i.e., (1) A T1 FS for a

word is well-defined by its membership function (MF) that is totally certain once all of its parameters

are specified; (2) words mean different things to different people, and so are uncertain; and, therefore,

(3) it is a contradiction to say that something certain can model something that is uncertain.

CWW using T1 FSs has been studied by many researchers, e.g. [7, 9, 13, 18, 34, 37, 40, 43–45, 56,

62,67,70]; however, because of the above arguments, in this paper IT2 FSs are used to model words.

A specific architecture, proposed in [23] for making subjective judgments by CWW, is shown in

Fig. 1.1. It is called a Perceptual Computer—Per-C for short. In Fig. 1.1, the encoder1 transforms

linguistic perceptions into IT2 FSs that activate a CWW engine2. The CWW engine performs oper-

1Zadeh calls this constraint explicitation in [66,67]. In [68,69] and some of his recent talks, he calls this precisiation.

Yager [56] and Martin and Klir [19] call this translation.
2Zadeh calls this constraint propagation in [66, 67]. Yager [56] calls this inference/granular computing. Martin and

Klir [19] call this approximate reasoning.
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ations on the IT2 FSs. The decoder3 maps the output of the CWW engine into a recommendation,

which can be a word, rank, or class.
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Fig. 1.1: Conceptual structure of the Perceptual Computer.

To operate the Per-C, one needs to solve the following problems:

1. How to transform words into IT2 FSs, i.e., the encoding problem. This can be done with Liu and

Mendel’s Interval Approach (IA) [15]. First, for each word in an application-dependent encoding

vocabulary, a group of subjects are asked the following question:

On a scale of 0-10, what are the end-points of an interval that you associate with the

word ?

After some pre-processing, during which some intervals (e.g., outliers) are eliminated, each of

the remaining intervals is classified as either an interior, left-shoulder or right-shoulder IT2 FS.

Then, each of the word’s data intervals is individually mapped into its respective T1 interior,

left-shoulder or right-shoulder MF, after which the union of all of these T1 MFs is taken. The

result is an FOU for an IT2 FS model of the word. The words and their FOUs constitute a

codebook.

2. How to construct the CWW engine, which maps IT2 FSs into IT2 FSs. There are different kinds

of CWW engines, e.g.,

(a) The linguistic weighted average [46–48,50], which is defined as

Ỹ =

∑N
i=1 X̃iW̃i
∑N

i=1 W̃i

(1.1)

where X̃i, the sub-criteria (e.g., data, features, decisions, recommendations, judgments,

scores, etc), and W̃i, the weights, are usually words modeled by IT2 FSs; however, they can

also be special cases of IT2 FSs, e.g., numbers, intervals, or T1 FSs. It is shown [46–48,50]

that the UMF of Ỹ is a fuzzy weighted average [14] of the UMFs of X̃i and W̃i, and the

LMF of Ỹ is a fuzzy weighted average of the LMFs of X̃i and W̃i.

3Zadeh calls this linguistic approximation or constraint retranslation in [66,67]. Yager [56] and Martin and Klir [19]

call this retranslation.
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(b) Perceptual reasoning (PR) [29, 46,53,54], which considers the following problem:

Given a rulebase with K rules, each of the form:

Rk : If x1 is F̃ k
1 and . . . and xp is F̃ k

p , Then y is G̃k (1.2)

where F̃ k
j and G̃k are words modeled by IT2 FSs, and a new input X̃′ = (X̃1, . . . , X̃p), where

X̃j (j = 1, . . . , p) are also words modeled by IT2 FSs, then what is the output IT2 FS ỸPR?

In similarity-based PR [46,53,54] one computes

ỸPR =

∑K
k=1 f

k(X̃′)G̃k

∑K
k=1 f

k(X̃′)
(1.3)

where fk(X̃′) is the firing level of Rk, i.e.,

fk(X̃′) =

p
∏

j=1

sm
J
(X̃j , F̃

k
j ) (1.4)

in which sm
J
is the Jaccard similarity for IT2 FSs [51], i.e.,

sm
J
(Ã, B̃) =

∑N
i=1 min(µÃ(xi), µB̃(xi)) +

∑N
i=1 min(µ

Ã
(xi), µB̃

(xi))
∑N

i=1 max(µÃ(xi), µB̃(xi)) +
∑N

i=1 max(µ
Ã
(xi), µB̃

(xi))
. (1.5)

Another approach that uses firing intervals instead of firing levels is described in [29].

3. How to map the output of the CWW engine into a recommendation, i.e., the decoding problem.

This is the focus of this paper, and a method using subsethood is proposed.

The rest of this paper is organized as follows: Section 2 describes different decoding problems

in detail. Section 3 introduces five existing subsethood measures of IT2 FSs and their properties.

Section 4 compares the performance of the five subsethood measures, as well as the Jaccard similarity

measure, as a decoder when the desired output is a class. Finally, Section 5 draws conclusions.
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Chapter 2

The Decoding Problem

The decoding problem is challenging because there can be different forms of recommendations, and

hence different kinds of decoders are needed. Three different forms of recommendations and their

corresponding decoders are introduced next.

2.1 Rank

In some decision-making situations several alternatives are compared at the same time so that the

best one can be chosen.

Example 1 In [46,52] a contractor has to decide which of three companies (A, B or C) is going to get

the final mass production contract for a missile system. In the CWW engine, after aggregation across

different criteria and different levels, the overall performance of each missile system is represented by

an IT2 FS. The decoder needs to rank them to find the best system. �

The centroid-based ranking method for IT2 FSs [51] can be used when the recommendation is a

rank.

When ranking alternatives, it may not be necessary to map each IT2 FS that is output by the

CWW engine into a word for understanding; however, if this mapping is needed, then the following

word decoder should also be used in addition to the rank decoder.

2.2 Word

This is the most typical and also most frequently studied case [19,56,66,67], where the IT2 FS output

by the CWW engine has to be mapped into a word in the same vocabulary as the one used by the

CWW engine so that the IT2 FS can be understood.
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Example 2 In the journal publication judgment advisor [30, 46], the overall quality of a paper is

evaluated using two major criteria (Technical Merit and Presentation), and each major criterion

also has some sub-criteria (Technical Merit has sub-criteria Importance, Contents and Depth, and

Presentation has sub-criteria Style, Organization, Clarity and References). Each reviewer scores the

sub-criteria using a five-word vocabulary (Poor, Marginal, Adequate, Good and Excellent). After

aggregation, the overall quality of the paper is represented as an IT2 FS. It can then be mapped into

a word in the same five-word vocabulary for easy understanding. �

Example 3 For the social judgment advisor introduced in [?, 46, 53], the CWW engine uses PR

to infer an FOU representing the level of flirtation given the levels of touching and eye contact. The

flirtation levels used in the consequents of the rules are from the 32-word vocabulary constructed in [15]

[shown also in Fig. 4.1(a)]. To understand the CWW engine output, it is mapped into a word in the

same 32-word vocabulary. �

Two previous approaches on the Word decoder are introduced next. Both of them focus on T1

FSs, but the ideas should also apply to IT2 FSs.

Yager [56] calls the Word decoder Retranslation, i.e., “selecting a term from our prescribed vo-

cabulary to express information represented using fuzzy sets,” and he suggests four requirements that

are involved in an objective1 retranslation process:

1. Validity (or Truth), which is “perhaps the most important requirement” and is computed by an

inclusion (subsethood) measure. Subsethood of FSs was first introduced by Zadeh [64] and then

extended by Kosko [12], who defined the subsethood of a T1 FS A in another T1 FS B as

ss
K
(A,B) =

∫

x∈X min(µA(x), µB(x))dx
∫

x∈X µA(x)dx
(2.1)

or

ss
K
(A,B) =

∑N
i=1 min(µA(xi), µB(xi))

∑N
i=1 µA(xi)

(2.2)

for the discrete case. Observe that ss
K
(A,B) 6= ss

K
(B,A), and ss

K
(A,B) = 1 if and only if

µA(xi) 6 µB(xi) for ∀xi.

2. Closeness [10], which is related to the distance between the CWW engine output and its mapped

word, because validity [56] “does not necessarily imply closeness of fuzzy sets.”

3. Fuzziness [5, 49, 58, 59], which is [56] “essentially related to the type of boundary distinguishing

membership from nonmembership.”

4. Specificity [11, 60], which is [56] “related to the quantity of information of certainty associated

with a linguistic value.” Specificity is different from fuzziness because [56] “whereas fuzziness is

1Yager [56] also introduces a translation process that gives particular perceptions, e.g., “a company trying to sell a

financial product will try to express the information about the risk involved in the most favorable light;” however, this

kind of retranslation is out of the scope of this paper.
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related to the type of boundary, the concept of specificity is related more closely to the cardinality

or width of the set.” For a normal T1 FS A, its specificity can be computed as [56]

Sp(A) = 1−
1

|X|

∫

X

µA(x)dx (2.3)

i.e., Sp(A) is [56] “the difference between the largest membership grade and the average of the

remaining membership grades.”

Yager then proposes that an aggregation function, like the ordered weighted averages (OWAs) [55,57],

can be used to aggregate these requirements in the retranslation process. No matter which aggregation

function is used, the central idea here is that subsethood alone is not enough as a decoder when the

desired recommendation is a word.

Martin and Klir [19] consider two criteria in the retranslation process:

1. Validity, which is again computed by Kosko’s subsethood measure.

2. Informativeness, which is essentially the same as Yager’s specificity requirement, except that it

is computed by a different formula.

Martin and Klir [19] suggest a weighted average be used to combine these two criteria. No matter

how the weights are determined, again, the central idea here is that subsethood alone is not enough

as a decoder.

From the above discussion it seems that validity and specificity (informativeness) are the two

most important criteria for a Word decoder. Interestingly, the Jaccard similarity measure for T1

FSs [8, 51],

sm
J
(A,B) =

∑N
i=1min(µA(xi), µB(xi))

∑N
i=1max(µA(xi), µB(xi))

; (2.4)

combines these two criteria naturally: it closely resembles Kosko’s subsethood measure [see (2.2)],

but the denominator is changed from
∑N

i=1 µA(xi) to
∑N

i=1 max(µA(xi), µB(xi)), i.e., it also takes the

width of A into consideration; so, it considers the specificity of A simultaneously, as illustrated by the

following example. Note that this example uses T1 FSs; however, the arguments also hold for IT2

FSs.

Example 4 Let A be the output of a CWW engine, and B and C be words in a pre-specified vocabu-

lary, as shown in Fig. 2.1. It follows from Kosko’s subsethood measure that ss
K
(A,B) = ss

K
(A,C) =

1, i.e., B and C are equally good; however, intuitively, since C is wider (less specific) than B, B should

be chosen as the output. When the Jaccard similarity is used, we have sm
J
(A,B) > sm

J
(A,C), which

suggests that B is preferred over C. �

In conclusion, the Jaccard similarity measure can be viewed as a combination of a subsethood mea-

sure and a specificity measure, and hence it can be used in the word decoder where the recommendation

is a word from the same vocabulary used by the CWW engine.

6
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Fig. 2.1: A (solid curve), B (dashed curve) and C (dotted curve) used in Example 4.

2.3 Class

In some decision-making applications the output of the CWW engine needs to be mapped into a class

or decision, whose FOU is stored in a new vocabulary which is different from the one used by the

CWW engine.

Example 2 (Continued) As pointed out in Example 2, the overall quality of a paper is aggregated as

an IT2 FS, and it can be mapped into a word in the 5-word vocabulary (used by the CWW engine) for

understanding. However, the usual goal is to classify this paper into one of three decision categories:

Reject, Rewrite, or Accept. These categories represent a higher level of decision-making process than

determining the quality of the paper, which is handled by the word decoder. �

Example 3 (Continued) As pointed out in Example 3, the CWW engine outputs an FOU representing

the level of flirtation given the levels of touching and eye contact, which can be mapped into a word

in the same 32-word vocabulary used by the CWW engine for understanding. Suppose that the user

also wants to take some actions based on the level of flirtation he/she receives, e.g., Consider it as

harassment and report it to his/her supervisor, or do not consider it as harassment and ignore it.

These two actions can also be represented as IT2 FSs, but their spans would be wider than any other

word FOUs in the 32-word codebook because each of these two decision categories may include many

words in the 32-word vocabulary. Note that these two categories represent a higher level of decision-

making process than determining the level of flirtation. �

From the above two examples we see that for the Class decoder, we need to determine the degree

of containment of one set in another, which is the idea of subsethood. So, we propose that subsethood

should be used as a decoder when the output recommendation is a class.
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Chapter 3

Subsethood Measures for IT2 FSs

Three desirable properties for IT2 FS subsethood measure as a decoder and five existing IT2 FS

subsethood measures are introduced in this section.

3.1 Desirable Properties for Subsethood Measure as a Decoder

Subsethood measures for FSs have been studied by many authors [3,6,16,32,35,38,41,61,63], and many

different desirable properties or axioms have been proposed for them. In this paper we are interested in

subsethood measures for IT2 FSs, particularly, their role as a decoder in the Per-C. Because the Jaccard

similarity measure for T1 FSs and Kosko’s subsethood measure for T1 FSs bare a strong resemblance,

and the former is the basis for the Jaccard similarity measure for IT2 FSs [51] and the latter is the

basis for almost all subsethood measures for IT2 FSs [3, 16,32,35,41,61], desirable properties for IT2

FS subsethood measures should be analogous to those for IT2 FS similarity measures [51]. Three

desirable properties for IT2 FS subsethood measures are proposed in this subsection. But first, three

definitions that are used in these desirable properties are introduced. These definitions have also been

used in comparing IT2 FS similarity measures [31,46,51].

Definition 1 Ã 6 B̃ if µÃ(x) 6 µB̃(x) and µ
Ã
(x) 6 µ

B̃
(x) for ∀x ∈ X. �

Examples of Ã 6 C̃ 6 D̃ and B̃ 6 C̃ 6 D̃ are shown in Fig. 3.1.

Remarks: Note that our definition of Ã 6 B̃ is the same as the definition of Ã ⊆ B̃ in [3, 41],

although we use 6 instead of ⊆. We avoid using ⊆ because it is confusing, as some researchers [61]

require Ã ⊆ B̃ to mean µÃ(x) 6 µB̃(x) and µ
Ã
(x) > µ

B̃
(x) for ∀x ∈ X, i.e., the FOU of Ã is contained

completely within the FOU of B̃. One such example is Ã and B̃ in Fig. 3.1. Whether or not in this

case Ã should be considered completely as a subset of B̃ is an open problem.

Definition 2 Ã and B̃ overlap, i.e., Ã ∩ B̃ 6= ∅, if and only if ∃x such that min(µÃ(x), µB̃(x)) > 0.

�
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Fig. 3.1: Ã (solid curves), B̃ (dashed curves), C̃ (dotted curve) and D̃ (dash-dotted curve) used in

Example 6.

All IT2 FSs in Fig. 3.1 overlap with each other. Since only normal IT2 FSs are considered in the

Per-C, overlapping Ã and B̃ must intersect with each other at at least one point.

Definition 3 Ã and B̃ do not overlap, i.e., Ã∩B̃ = ∅, if and only if min(µÃ(x), µB̃(x)) = min(µ
Ã
(x), µ

B̃
(x)) =

0 for ∀x. �

Non-overlapping Ã and B̃ have no parts of their FOUs that overlap, e.g., None to very little and

Maximum amount in Fig. 4.1(a) do not overlap.

Definition 4 Let ss(Ã, B̃) be a subsethood measure for IT2 FSs. Then, ss(Ã, B̃) should have the

following desirable properties when it is used as a decoder in the Per-C1:

1. Reflexivity : ss(Ã, B̃) = 1 ⇔ Ã 6 B̃.

2. Transitivity: If C̃ 6 Ã 6 B̃, then ss(Ã, C̃) > ss(B̃, C̃), and (more strongly) if Ã 6 B̃, then

ss(C̃, Ã) 6 ss(C̃, B̃) for any C̃.

3. Overlapping: If Ã ∩ B̃ 6= ∅, then ss(Ã, B̃) > 0; otherwise, ss(Ã, B̃) = 0. �

Note that:

1. Reflexivity is a direct generalization of Zadeh’s definition of containment [64] for T1 FSs, i.e., B

contains A if µA(x) 6 µB(x) for ∀x ∈ X. This property is also considered necessary for T1 FSs

by Sinha and Dougherty [38], Young [63], Fan and Xie [6], and Zeng and Li [71], for intuitionistic

FSs by Liu and Xiong [17] and Cornelis and Kerre [3], for general interval-valued intuitionistic

FSs by Liu et al. [16], and for interval-valued FSs by Vlachos and Sergiadis [41]. As remarked

under Definition 1, whether or not the subsethood of C̃ in B̃ in Fig. 3.1 should be 1 is an open

problem. In this paper we require ss(C̃, B̃) < 1, as done by all authors [3,16,17,41] except Yang

and Lin [61].

2. Transitivity is a direct generalization of Axiom (S3) for T1 FS subsethood measure proposed by

Young [63], i.e., if C 6 A 6 B, then ss(A,C) > ss(B,C), and if A 6 B, then ss(C,A) 6 ss(C,B)

1Some authors [3,32,36] define IT2 FS subsethood measures as intervals. For such cases, reflexivity becomes ss(Ã, B̃) =

[1, 1] ⇔ Ã 6 B̃, and overlapping becomes: If Ã ∩ B̃ 6= ∅, then ss(Ã, B̃) > [0, 0]; otherwise, ss(Ã, B̃) = [0, 0].
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for any C. It has already been used for interval-valued FSs by Vlachos and Sergiadis [41]. The

stronger transitivity for T1 FSs, i.e., if A 6 B then ss(A,C) 6 ss(B,C) and ss(C,A) 6 ss(C,B)

for any C, was proposed by Sinha and Dougherty [38]. The weaker transitivity, i.e., if C 6 A 6 B

then ss(A,C) 6 ss(B,C) and ss(C,A) 6 ss(C,B), was proposed by Fan et al. [6] and Zeng

and Li [71] for T1 FSs, Liu and Xiong [17] for intuitionistic FSs, and Liu et al. [16] for general

interval-valued intuitionistic FSs.

3. Overlapping is a direct generalization of Fan et al.’s [6] overlapping property for T1 FS subset-

hood measures, i.e., if2 A 6= 0 and A ∩ B = 0, then ss(A,B) = 0. We do not require Ã 6= ∅ in

overlapping between Ã and B̃ because this never happens in our applications.

4. For IT2 FS similarity measures there is another desirable property called symmetry, e.g., sm
J
(Ã,

B̃) = sm
J
(B̃, Ã); however, generally IT2 FS subsethood measures are asymmetrical, i.e., ss(Ã, B̃)

6= ss(B̃, Ã). There are special conditions under which ss(Ã, B̃) = ss(B̃, Ã); however, usually

these conditions are different for different subsethood measures, and it may be impossible to

find an intuitive condition under which ss(Ã, B̃) = ss(B̃, Ã) should hold. So, symmetry is not

considered in this paper.

Five existing IT2 FS subsethood measures are introduced next. They are compared in Section 4.

3.2 Liu and Xiong’s Subsethood Measure for IT2 FSs

Liu and Xiong [17] proposed a subsethood measure for intuitionistic FSs [1]. Though intuitionistic

FSs are generally different from IT2 FSs, Atanassov and Gargov [2] showed that every intuitionistic

FS can be mapped into an interval valued FS [39], and is an IT2 FS under a different name. Using

Atanassov and Gargov’s mapping, Liu and Xiong’s subsethood measure for IT2 FS is

ss
LX

(Ã, B̃) =

∑N
i=1 min

(

1, 1 +
(

µ
B̃
(xi) + µB̃(xi)− µ

Ã
(xi)− µÃ(xi)

)

/2
)

N
(3.1)

ss
LX

(Ã, B̃) satisfies only transitivity but not reflexivity and overlapping. Counter-examples are shown

in Section 4.

3.3 Cornelis and Kerre’s Subsethood Measure for IT2 FSs

Cornelis and Kerre [3] introduced an interval inclusion (subsethood) measure for intuitionistic FSs.

Using Atanassov and Gargov’s mapping [2] from intuitionistic FSs into IT2 FSs, Cornelis and Kerre’s

2A 6= 0 and A ∩ B = 0 in [6] actually mean A 6= ∅ and A ∩B = ∅.
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subsethood measure for IT2 FSs is

ss
CK

(Ã, B̃) =





∑N
i=1min

(

1, 1 − µ
Ã
(xi) + µ

B̃
(xi), 1 − µÃ(xi) + µB̃(xi)

)

N
,

∑N
i=1min

(

1, 1 − µ
Ã
(xi) + µB̃(xi)

)

N



 (3.2)

ss
CK

(Ã, B̃) satisfies transitivity and reflexivity but not overlapping. Counter-examples are shown in

Section 4.

3.4 Vlachos and Sergiadis’s Subsethood Measure for IT2 FSs

Vlachos and Sergiadis [41] proposed a subsethood measure for interval-valued FSs, which are the same

as IT2 FSs. It is

ss
V S

(Ã, B̃) = 1−

∑N
i=1 max(0, µ

Ã
(xi)− µ

B̃
(xi)) +

∑N
i=1 max(0, µ

Ã
(xi)− µ

B̃
(xi))

∑N
i=1 µÃ

(xi) + µÃ(xi)
(3.3)

It will be shown in Section 4 that ss
V S

(Ã, B̃) is the best IT2 FS subsethood measure to use as a

decoder in the Per-C; hence, more details about it are presented next.

When µ
Ã
(xi) > µ

B̃
(xi), it follows that

µ
Ã
(xi)−max(0, µ

Ã
(xi)− µ

B̃
(xi)) = µ

Ã
(xi)− µ

Ã
(xi) + µ

B̃
(xi)

= µ
B̃
(xi) = min(µ

Ã
(xi), µB̃

(xi)) (3.4)

and when µ
Ã
(xi) < µ

B̃
(xi), it follows that

µ
Ã
(xi)−max(0, µ

Ã
(xi)− µ

B̃
(xi)) = µ

Ã
(xi) = min(µ

Ã
(xi), µB̃

(xi)); (3.5)

hence,

µ
Ã
(xi)−max(0, µ

Ã
(xi)− µ

B̃
(xi)) = min(µ

Ã
(xi), µB̃

(xi)) (3.6)

Similarly,

µÃ(xi)−max(0, µÃ(xi)− µB̃(xi)) = min(µÃ(xi), µB̃(xi)) (3.7)

Consequently, (3.3) can be re-written as

ss
V S

(Ã, B̃) =

∑N
i=1[µÃ

(xi)−max(0, µ
Ã
(xi)− µ

B̃
(xi))] +

∑N
i=1[µÃ(xi)−max(0, µÃ(xi)− µB̃(xi))]

∑N
i=1 µÃ

(xi) +
∑N

i=1 µÃ(xi)

=

∑N
i=1min(µ

Ã
(xi), µB̃

(xi)) +
∑N

i=1min(µÃ(xi), µB̃(xi))
∑N

i=1 µÃ
(xi) +

∑N
i=1 µÃ(xi)

(3.8)
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Observe the analogy of (3.8) to the Jaccard similarity measure in (1.5). In fact, we can further

re-express (3.8) as

ss
V S

(Ã, B̃) =

|X|
2N [

∑N
i=1 min(µ

Ã
(xi), µB̃

(xi)) +
∑N

i=1 min(µÃ(xi), µB̃(xi))]

|X|
2N [

∑N
i=1 µÃ

(xi) +
∑N

i=1 µÃ(xi)]
(3.9)

Observe that the numerator of (3.10) is the average cardinality [46,49] of Ã∩ B̃, and the denominator

of (3.10) is the average cardinality of Ã. This is similar to the way the Jaccard similarity measure for

IT2 FSs was developed in [51], i.e., the numerator of (1.5) is the average cardinality of Ã∩ B̃, and the

denominator of (1.5) is the average cardinality of Ã ∪ B̃.

Since (3.8) is easier to understand and to compute than (3.3), it is used in the rest of the paper

instead of (3.3).

The continuous version of Vlachos and Sergiadis’s IT2 FS subsethood measure can be expressed

as

ss
V S

(Ã, B̃) =

∫

X
min(µ

Ã
(x), µ

B̃
(x))dx+

∫

X
min(µÃ(x), µB̃(x))dx

∫

µ
Ã
(x)dx+

∫

µÃ(x)dx
(3.10)

The following theorem describes three properties of ss
V S

(Ã, B̃); its proof is given in Appendix A.

Illustrative examples are given in Section 4.

Theorem 1 ss
V S

(Ã, B̃) satisfies transitivity, reflexivity and overlapping. �

3.5 Rickard et al.’s Subsethood Measure for IT2 FSs

Rickard et al. [35, 36] and Nguyen and Kreinovich [32] independently extended Kosko’s subsethood

measure to IT2 FSs based on the Representation Theorem [28], which states that an IT2 FS Ã is the

union of all of its embedded T1 FSs. Because Rickard et al.’s results were published a little earlier than

Nguyen and Kreinovich’s, in this paper we call this subsethood measure Rickard et al.’s subsethood

measure, which is

ss
R
(Ã, B̃) ≡ [ssl(Ã, B̃), ssr(Ã, B̃)] (3.11)

where

ssl(Ã, B̃) = min
µAl

(xi) in (3.14)





∑N
i=1 min

(

µAl
(xi), µB̃

(xi)
)

∑N
i=1 µAl

(xi)



 (3.12)

ssr(Ã, B̃) =

∑N
i=1 min

(

µAr(xi), µB̃(xi)
)

∑N
i=1 µAr(xi)

(3.13)
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in which

µAl
(xi) =











µÃ(xi), µ
B̃
(xi) 6 µ

Ã
(xi)

µ
Ã
(xi), µ

B̃
(xi) > µÃ(xi)

µ
Ã
(xi) or µÃ(xi), xi ∈ Il

(3.14)

µAr(xi) =











µ
Ã
(xi), µB̃(xi) 6 µ

Ã
(xi)

µÃ(xi), µB̃(xi) > µÃ(xi)

µB̃(xi), µ
Ã
(xi) < µB̃(xi) < µÃ(xi)

(3.15)

and

Il ≡ {xi|µÃ
(xi) < µ

B̃
(xi) < µÃ(xi)} (3.16)

Note that ssr(Ã, B̃) has a closed-form solution; however, because for each xi ∈ Il, µAl
(xi) can

have two possible values, to compute ssl(Ã, B̃), 2L evaluations of the bracketed term in (3.12) have

to be performed, where L is the number of elements in Il, and this can be a rather large number

depending upon L. An efficient algorithm for computing ssl(Ã, B̃) is proposed in [32].

ss
R
(Ã, B̃) satisfies transitivity and overlapping but not reflexivity. Counter-examples are shown

in Section 4.

3.6 Yang and Lin’s Subsethood Measure for T2 FSs

Yang and Lin [61] defined an inclusion (subsethood) measure for general T2 FSs [22, 27]. When

specialized to IT2 FSs, it becomes

ss
Y L

(Ã, B̃) =
1

N

N
∑

i=1

∑

uj∈θi

uj

∑

uj∈ϕi

uj
(3.17)

where

θi = [max(µ
Ã
(xi), µB̃

(xi)),min(µÃ(xi), µB̃(xi))] (3.18)

ϕi = [µ
Ã
(xi), µÃ(xi)] (3.19)

ss
Y L

(Ã, B̃) satisfies none of reflexivity3, transitivity and overlapping. Counter-examples are shown in

Section 4.

3Yang and Lin [61] proved that Ã ⊆ B̃ ⇔ ss
Y L

(Ã, B̃) = 1 (Property 1 in [61]), but their definition of Ã ⊆ B̃

for IT2 FSs is µ
Ã
(x) > µ

B̃
(x) and µÃ(x) 6 µB̃(x) for ∀x ∈ X, which is different from the definition of Ã 6 B̃ in

Definition 1 of this paper. Yang and Lin also proved some nice properties of ss
Y L

(Ã, B̃) (Property 5 in [61]), e.g.,

ss
Y L

(Ã ∪ B̃, C̃) = min{ss
Y L

(Ã, C̃), ss
Y L

(B̃, C̃)}, ss
Y L

(Ã ∩ B̃, C̃) = max{ss
Y L

(Ã, C̃), ss
Y L

(B̃, C̃)}, etc; however, their

proofs were incomplete because they only considered the cases that Ã, B̃ and C̃ are included in each other, e.g.,

Ã ⊆ B̃ ⊆ C̃, B̃ ⊆ Ã ⊆ C̃, etc. Cases like Ã, B̃ and C̃ shown in Fig. 3.1, where Ã * B̃, Ã * C̃, B̃ * Ã and B̃ * C̃, were

not considered. In general, these properties of ss
Y L

(Ã, B̃) are not true.
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Chapter 4

Comparative Studies

In this section several examples are used to compare the five subsethood measures.

Example 6 In this example, Ã, B̃, C̃ and D̃ shown in Fig. 3.1 are used to compare the five subsethood

measures. Results are given in Table 4.1. Some highlights of Table 4.1 are explained in the following:

1. According to reflexivity, we should have ss(Ã, Ã) = 1, or ss(Ã, Ã) = [1, 1] if ss(Ã, Ã) is an

interval subsethood measure; however, Table 4.1 shows that ss
R
(Ã, Ã) 6= [1, 1], i.e., ss

R
does not

satisfy reflexivity.

2. Since B̃ � Ã and Ã � B̃, it follows from reflexivity that ss(B̃, Ã) 6= 1; however, observe from

Table 4.1 that ss
LX

(B̃, Ã) = 1, i.e., ss
LX

does not satisfy reflexivity.

3. Since C̃ 6 D̃, from reflexivity it follows that ss(C̃, D̃) = 1; however, Table 4.1 shows that

ss
Y L

(C̃, D̃) < 1, i.e., ss
Y L

does not satisfy reflexivity.

4. Since C̃ 6 D̃, from transitivity it follows that ss(C̃, D̃) > ss(C̃, C̃) = 1, i.e., ss(C̃, D̃) =

1; however, Table 4.1 shows that ss
Y L

(C̃, D̃) < ss
Y L

(C̃, C̃) < 1, i.e., ss
Y L

does not satisfy

transitivity.

5. Only ss
CK

and ss
V S

give results that, in all cases, satisfy reflexivity and transitivity. �

The following example illustrates the overlapping property, and also explains why the Jaccard

similarity measure should not be used as a classifier in decoding.

Example 7 In this example, the 32 word FOUs obtained using the IA of [15] [see Fig. 4.1(a)] are used

to compare the differences among the five subsethood measures and the Jaccard similarity measure. For

simplicity, we define two classes in the [0, 10] interval [see Fig. 4.1(b)]:

B̃ = Smaller than or equal to 5 (4.1)

C̃ = Larger than 5 (4.2)
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Table 4.1: Comparison of the five subsethood measures for Ã, B̃, C̃ and D̃ in Fig. 3.1. Results that

are not consistent with the desirable results derived from the three desirable subsethood properties

are marked in bold.
Desirable results ss

LX
ss

CK
ss

V S
ss

R
ss

Y L

Ã Ã ss(Ã, Ã) = 1 1 [1, 1] 1 [0.87, 1] 1

Ã B̃ ss(Ã, B̃) < 1 0.84 [0.59,1] 0.68 [0.27, 1] 1

Ã C̃ ss(Ã, C̃) = 1 1 [1, 1] 1 [1, 1] 0.18

Ã D̃ ss(Ã, D̃) = 1 1 [1, 1] 1 [1, 1] 0.18

B̃ Ã ss(B̃, Ã) < 1 1 [.91, 1] 0.90 [0.72, 1] 0.20

B̃ B̃ ss(B̃, B̃) = 1 1 [1, 1] 1 [0.24, 1] 1

B̃ C̃ ss(B̃, C̃) = 1 1 [1, 1] 1 [1, 1] 0.01

B̃ D̃ ss(B̃, D̃) = 1 1 [1, 1] 1 [1, 1] 0.01

C̃ Ã ss(C̃, Ã) < 1 0.64 [0.54, 0.75] 0.55 [0.46, 0.65] 0.26

C̃ B̃ ss(C̃, B̃) < 1 0.53 [0.26, 0.81] 0.41 [0.14, 0.74] 0.39

C̃ C̃ ss(C̃, C̃) = 1 1 [1, 1] 1 [0.82, 1] 1

C̃ D̃ ss(C̃, D̃) = 1; ss(C̃, D̃) > ss(C̃, C̃) 1 [1, 1] 1 [1, 1] 0.63

D̃ Ã ss(D̃, Ã) 6 ss(D̃, C̃) 0.50 [0.45, 0.55] 0.43 [0.39, 0.47] 0.23

D̃ B̃ ss(D̃, B̃) 6 ss(D̃, C̃) 0.40 [0.21, 0.60] 0.32 [0.12, 0.53] 0.34

D̃ C̃ ss(D̃, C̃) > ss(D̃, Ã) 0.81 [0.73, 0.90] 0.78 [0.69, 0.88] 0.66

D̃ D̃ ss(D̃, D̃) = 1 1 [1, 1] 1 [0.95, 1] 1

Observe that B̃ and C̃ are actually crisp sets; however, they can be viewed as special IT2 FSs, e.g.,

B̃ has a normal trapezoidal UMF [0, 0, 5, 5] and a normal trapezoidal LMF [0, 0, 5, 5]. By viewing the

FOUs in Fig. 4.1(a) in relation to the dashed line drawn at x = 5, it is clear that Words 1-10 are

definitely in B̃ and Words 11-32 are definitely in C̃. The five subsethood measures of these 32 words

in B̃ and C̃, as well as their Jaccard similarities with B̃ and C̃, are summarized in Table 4.2.
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1.  None to very little     2.  Teeny−weeny         3.  A smidgen            4.  Tiny        

    5.  Very small         6.  Very little           7.  A bit            8.  Low amount    

       9.  Small          10. Somewhat small         11. Little             12. Some        

  13. Some to moderate   14. Moderate amount      15. Fair amount           16. Medium      

   17. Modest amount       18. Good amount        19. Quite a bit          20. Sizeable     

21. Considerable amount    22. Very sizeable    23. Substantial amount        24. A lot       

    25. High amount          26. Large            27. Very large      28. Humongous amount  

    29. Huge amount     30. Very high amount     31. Extreme amount     32. Maximum amount  

(a)

0 1 2 3 4 5 6 7 8 9 10
0

1
B̃ C̃

(b)

Fig. 4.1: Words and their FOUs used in Example 7. (a) The 32 words ranked by the centroid-based

ranking method [51]. The dashed line is x = 5. (b) B̃ = Smaller than or equal to 5 (solid curve) and

C̃ = Larger than 5 (dashed curve).
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Observe from Fig. 4.1(a) and Table 4.2 that:

1. According to reflexivity, Words 1-10 should have ss(Ã, B̃) = 1 since each of them is completely

under or on B̃, and Words 11-32 should have ss(Ã, B̃) < 1 since none of them is completely

under or on B̃. ss
LX

, ss
CK

, ss
V S

and ss
R
satisfy this requirement, but ss

Y L
does not. Similarly,

Words 1-21 should have ss(Ã, C̃) < 1 and Words 22-32 should have ss(Ã, C̃) = 1. Again, ss
LX

,

ss
CK

, ss
V S

and ss
R
satisfy this requirement, but ss

Y L
does not.

2. According to overlapping, Words 1-21 should have ss(Ã, B̃) > 0 since they overlap with B̃,

and Words 22-32 should have ss(Ã, B̃) = 0 since they do not overlap with B̃. ss
V S

and ss
R

satisfy this requirement, but ss
LX

, ss
CK

and ss
Y L

do not. Similarly, Words 1-10 should have

ss(Ã, C̃) = 0 and Words 11-32 should have ss(Ã, C̃) > 0. Again, ss
V S

and ss
R

satisfy this

requirement, but ss
LX

, ss
CK

and ss
Y L

do not.

3. As the word Ã gets larger-sounding, generally ss
V S

(Ã, B̃) and ss
R
(Ã, B̃) decrease whereas ss

V S
(Ã,

C̃) and ss
R
(Ã, C̃) increase, both of which are reasonable.

4. As shown in Table 4.2, for all words1 Ã,

ss
V S

(Ã, B̃) + ss
V S

(Ã, C̃) = 1 (4.3)

This relationship is always true for complementary crisp sets, e.g., B̃ and C̃ in Fig. 4.1(b),

because

ss
V S

(Ã, B̃) + ss
V S

(Ã, C̃) =

∑

xi65 min(µÃ(xi), µB̃(xi)) +
∑

xi65 min(µ
Ã
(xi), µB̃

(xi))
∑N

i=1 µÃ(xi) +
∑N

i=1 µÃ
(xi)

+

∑

xi>5min(µÃ(xi), µC̃(xi)) +
∑

xi>5 min(µ
Ã
(xi), µC̃

(xi))
∑N

i=1 µÃ(xi) +
∑N

i=1 µÃ
(xi)

=

∑

xi65 min(µÃ(xi), 1) +
∑

xi65min(µ
Ã
(xi), 1)

∑N
i=1 µÃ(xi) +

∑N
i=1 µÃ

(xi)

+

∑

xi>5min(µÃ(xi), 1) +
∑

xi>5min(µ
Ã
(xi), 1)

∑N
i=1 µÃ(xi) +

∑N
i=1 µÃ

(xi)

=

∑

xi65 µÃ(xi) +
∑

xi65 µÃ
(xi)

∑N
i=1 µÃ(xi) +

∑N
i=1 µÃ

(xi)
+

∑

xi>5 µÃ(xi) +
∑

xi>5 µÃ
(xi)

∑N
i=1 µÃ(xi) +

∑N
i=1 µÃ

(xi)

=

∑N
i=1 µÃ(xi) +

∑N
i=1 µÃ

(xi)
∑N

i=1 µÃ(xi) +
∑N

i=1 µÃ
(xi)

=1. (4.4)

5. The Jaccard similarity measure cannot be used as a classifier because it gives counter-intuitive

results, e.g., None to very little should belong to the class Smaller than or equal to 5 completely,

but its Jaccard similarity is only 0.14. Furthermore, as mentioned in Section 2.3, a classifier is

needed when the output of the CWW engine, Ã, is mapped into a decision category B̃. Subsethood

1In Table 4.2 sometimes (4.3) does not hold exactly because of discretization and roundoff errors.
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is conceptually more appropriate for a classifier, because it defines the degree that Ã is contained

in B̃. On the other hand, it is not reasonable to compare the similarity between Ã and B̃ because

they belong to different domains (vocabularies), e.g., in Example 2 Ã represents the overall quality

of a paper, whereas B̃ is a publication decision. �

Remarks: Note that our argument that similarity should not be used as a classifier in decoding

for the Per-C does not mean that similarity should never be used for classification [33]. In some

classification problems [4, 20], each training example has its associated class label, but the unique

features of each class (i.e., the counterparts of the class-FOUs in decoding) are unknown. In this case,

a similarity-based classifier can be constructed as follows: for each new input, the training example

most similar to it is found, and the new input is then assigned to that training example’s class.

Subsethood-based classifier is preferred in the Per-C because the decoding problem considered in the

Per-C is different, i.e., the class-FOUs (B̃) are known ahead of time and are not in the same domain

as Ã.

Since T1 FSs are special cases of IT2 FSs, the five subsethood measures should also be applicable

to T1 FSs. The following example illustrates this.

Example 8 This example is used to compare the performances of the five subsethood measures when

IT2 FSs degrade to T1 FSs, as shown in Fig. 4.2. The results are given in Table 4.3, where the last

column of Table 4.3 shows the results obtained from Kosko’s subsethood measure for T1 FSs, which

is the de facto subsethood measure for T1 FSs. Observe that only ss
V S

and ss
R
are consistent with

Kosko’s subsethood measure. �

Table 4.3: Comparison of the five subsethood measures for A, B and C in Fig. 4.2.

ss
LX

ss
CK

ss
V S

ss
R

ss
Y L

ss
K

A A 1 [1, 1] 1 [1, 1] 1 1

A B 0.47 [0.47, 0.47] 0.32 [0.32, 0.32] 0.01 0.32

A C 0.64 [0.64, 0.64] 0.55 [0.55, 0.55] 0.15 0.55

B A 1 [1, 1] 1 [1, 1] 0 1

B B 1 [1, 1] 1 [1, 1] 1 1

B C 0.89 [0.89, 0.89] 0.64 [0.64, 0.64] 0.01 0.64

C A 1 [1, 1] 1 [1, 1] 0.20 1

C B 0.66 [0.66, 0.66] 0.38 [0.38, 0.38] 0.01 0.38

C C 1 [1, 1] 1 [1, 1] 1 1

Table 4.4: Summarization of the properties of the five IT2 FS subsethood measures.

Property ss
LX

ss
CK

ss
V S

ss
R

ss
Y L

Reflexivity × X X × ×

Transitivity X X X X ×

Overlapping × × X X ×

Consistency with ss
K

× × X X ×
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Fig. 4.2: A (solid curves), B (dashed curves) and C (dotted curves) used in Example 8.

Finally, Table 4.4 summarizes the properties of the five IT2 FS subsethood measures. It is clear

that ss
V S

is the best IT2 FS subsethood measure for the Per-C, because it satisfies all three desirable

properties and is consistent with ss
K

for T1 FSs. ss
R
is the second best, and its only drawback is

that usually ss
R
(Ã, B̃) 6= [1, 1] when Ã = B̃.
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Chapter 5

Conclusions

This paper has explained the need for subsethood measures as a decoder in the Per-C, introduced three

desirable properties for IT2 FS subsethood measures, and compared five existing IT2 FS subsethood

measures against these properties. Examples have shown that when the desired recommendation is

a class, Vlachos and Sergiadis’s IT2 FS subsethood measure gives the most reasonable results. The

results in this paper will be useful in constructing a third kind of decoder (i.e., in addition to similarity

measures and ranking methods) for perceptual computing.
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Appendix A

Proof of Theorem 1

Our proof of Theorem 1 is for the discrete case (3.8). The proof for the continuous case (3.10) is very

similar, and is left to the reader.

1. Reflexivity: When ss
V S

(Ã, B̃) = 1, it follows from (3.8) that,

min(µ
Ã
(xi), µB̃

(xi)) = µ
Ã
(xi) ∀xi (A.0-1)

min(µÃ(xi), µB̃(xi)) = µÃ(xi) ∀xi (A.0-2)

i.e., µB̃(xi) > µÃ(xi) and µ
B̃
(xi) > µ

Ã
(xi); hence, Ã 6 B̃ according to Definition 1. The

sufficiency is hence proved.

The necessity can be shown by reversing the above reasoning, and is left to the reader as an

exercise.

2. Transitivity: It follows from (3.8) that

ss
V S

(Ã, C̃) =

∑N
i=1min(µÃ(xi), µC̃(xi)) +

∑N
i=1 min(µ

Ã
(xi), µC̃

(xi))
∑N

i=1 µÃ(xi) +
∑N

i=1 µÃ
(xi)

(A.0-3)

ss
V S

(B̃, C̃) =

∑N
i=1 min(µB̃(xi), µC̃(xi)) +

∑N
i=1min(µ

B̃
(xi), µC̃

(xi))
∑N

i=1 µB̃(xi) +
∑N

i=1 µB̃
(xi)

(A.0-4)

When C̃ 6 Ã 6 B̃, it follows from Definition 1 that µ
C̃
(xi) 6 µ

Ã
(xi) 6 µ

B̃
(xi) and µC̃(xi) 6

µÃ(xi) 6 µB̃(xi) for ∀xi, and hence

N
∑

i=1

min(µÃ(xi), µC̃(xi)) +
N
∑

i=1

min(µ
Ã
(xi), µC̃

(xi)) =
N
∑

i=1

µC̃(xi) +
N
∑

i=1

µ
C̃
(xi) (A.0-5)

N
∑

i=1

min(µB̃(xi), µC̃(xi)) +

N
∑

i=1

min(µ
B̃
(xi), µC̃

(xi)) =

N
∑

i=1

µC̃(xi) +

N
∑

i=1

µ
C̃
(xi) (A.0-6)

N
∑

i=1

µÃ(xi) +
N
∑

i=1

µ
Ã
(xi) 6

N
∑

i=1

µB̃(xi) +
N
∑

i=1

µ
B̃
(xi) (A.0-7)
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Consequently, ss
V S

(Ã, C̃) > ss
V S

(B̃, C̃) for any C̃.

Similarly, it follows from (3.8) that

ss
V S

(C̃, Ã) =

∑N
i=1min(µC̃(xi), µÃ(xi)) +

∑N
i=1 min(µ

C̃
(xi), µÃ

(xi))
∑N

i=1 µC̃(xi) +
∑N

i=1 µC̃
(xi)

(A.0-8)

ss
V S

(C̃, B̃) =

∑N
i=1 min(µC̃(xi), µB̃(xi)) +

∑N
i=1min(µ

C̃
(xi), µB̃

(xi))
∑N

i=1 µC̃(xi) +
∑N

i=1 µC̃
(xi)

(A.0-9)

When Ã 6 B̃, it follows from Definition 1 that µ
Ã
(xi) 6 µ

B̃
(xi) and µÃ(xi) 6 µB̃(xi) for ∀xi;

hence,

min(µC̃(xi), µÃ(xi)) 6 min(µC̃(xi), µB̃(xi))

min(µ
C̃
(xi), µÃ

(xi)) 6 min(µ
C̃
(xi), µB̃

(xi)) (A.0-10)

so that

N
∑

i=1

min(µC̃(xi), µÃ(xi)) +
N
∑

i=1

min(µ
C̃
(xi), µÃ

(xi))

6

N
∑

i=1

min(µC̃(xi), µB̃(xi)) +

N
∑

i=1

min(µ
C̃
(xi), µB̃

(xi)) (A.0-11)

Consequently, ss
V S

(C̃, Ã) 6 ss
V S

(C̃, B̃) for any C̃.

3. Overlapping: According to Definition 2, Ã and B̃ overlap if min(µÃ(xi), µB̃(xi)) > 0 for at least

one xi; hence, if Ã ∩ B̃ 6= ∅, then

ss
V S

(Ã, B̃) =

∑N
i=1min(µÃ(xi), µB̃(xi)) +

∑N
i=1min(µ

Ã
(xi), µB̃

(xi))
∑N

i=1 µÃ(xi) +
∑N

i=1 µÃ
(xi)

>

∑N
i=1min(µÃ(xi), µB̃(xi))

∑N
i=1 µÃ(xi) +

∑N
i=1 µÃ

(xi)
> 0 (A.0-12)

On the other hand, according to Definition 2, when Ã∩ B̃ = ∅,
∑N

i=1 min(µÃ(xi), µB̃(xi)) = 0

and
∑N

i=1 min(µ
Ã
(xi), µB̃

(xi)) = 0; consequently, ss
V S

(Ã, B̃) = 0.
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