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Abstract

The particle level set method (PLSM) and the lattice Boltzmann method (LBM) have

been two major physics-based liquid simulation techniques used in computer graphics

to generate splendid and dynamic visual effects. The PLSM suffers from a high com-

putational cost which arises from the global pressure correction step whereas the LBM

requires a large memory size to store distribution functions.

In this research, we propose a hybrid lattice Boltzmann method (HLBM), which in-

tegrates the PLSM and the LBM, to visualize realistic liquid motion with emphasis on

the behavior of the liquid-gas interface. The HLBM first runs the LBM solver, computes

macroscopic velocities, and extrapolates the velocity field to the gas region. Subsequently,

the level set function and particles are advected by the extrapolated velocity field, and

advected particles are used to correct errors in the level set function based on the PLSM.

Finally, the density difference between the LBM and the PLSM solvers is added to distri-

bution functions to correct errors of the LBM. Simulation results show that the HLBM

improves the quality of the fluid simulation without increasing the number of grids. As

compared with the simulation using the LBM with 503 grids, the mean of the geomet-

rical distance from the ground truth has been decreased by 21.70% and 13.02% for the

water drop and the broken dam simulations, respectively, using the HLBM with the same

x



number of grids. The simulation results also show that the HLBM offers more splashy

and dynamic visual effects than the LBM without increasing the grid size.

Also we propose a multicomponent-multiphase hybrid lattice Boltzmann method

(MCMP-HLBM) which integrates the PLSM and the MCMP-LBM, to visualize real-

istic bubble motion with emphasis on the behavior of the liquid-bubble interface. The

MCMP-HLBM first runs the MCMP-LBM solver and computes composite macroscopic

velocities. Then, the level set function and particles are advected by the the composite

velocity field, and advected particles are used to correct errors in the level set function

based on the PLSM. Finally, the density difference between the MCMP-LBM and the

PLSM solvers is added to the distribution functions to correct the errors of the MCMP-

LBM. We test the method for the bubble coalescence and rising simulations. The results

show that the MCMP-HLBM improves the quality of the fluid simulation without in-

creasing the number of grids. Compared with the simulation using the MCMP-LBM, the

normalized absolute difference from the ground truth is 61.50% and 36.50% less using the

MCMP-HLBM for two dimensional two- and three-bubble coalescence simulations, re-

spectively, using the MCMP-HLBM with the same number of grids. Also the normalized

absolute difference from the ground truth using the MCMP-LBM has been decreased by

44.93%, 56.02%, and 40.62% for two dimensional single-, two-, and three-bubble rising

simulations, respectively, using the MCMP-HLBM with the same number of grids. For

the case of three dimensional single-, two-, and three-bubble rising simulations using the

MCMP-HLBM, the mean of the geometrical distance from the ground truth has been

decreased by 11.75%, 38.95%, and 26.57% as compared with the simulation using the

xi



MCMP-LBM, respectively. The simulation results also show that the MCMP-HLBM

offers more detailed visual results than the MCMP-LBM without increasing the grid size.
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Chapter 1

Introduction

1.1 Significance of the Research

Computer games and compute-aided special effects in movies have become the main-

stream of the entertainment industry. Realistic fluid simulation plays an important role

in many of these scenes. Examples of fluid simulation include: smoke, cloud, liquid, bub-

ble, fire and so on. In this research, we propose several graphic techniques to enhance

the visual performance of liquid simulation.

Accurate liquid simulation will result in a splendid and dynamic visual effects. It

moves very fast and has a surface that is different from other fluids such as smoke and

fire. The physics-based approach has been commonly used to simulate liquids since it

is more accurate compared that the non-physics-based approach based on texture or

noise synthesis [57,62]. It approximates the law of physics by numerical algorithms, and

creates realistic and plausible motion of animated liquids automatically. Besides, it is

easy to incorporate some control mechanism such as user interaction in the physics-based

approach.
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There are two main fluid simulation methods in the physics-based approach: 1) the

particle level set method (PLSM) and 2) the lattice Boltzmann method (LBM). The

PLSM is efficient in smooth surface representation and numerically stable. However,

it demands a global pressure correction step that involves the solution of the Poisson

equation [18]. Thus, the computational complexity is higher. Besides, it is difficult to

simulate the splashing effect with this method. The LBM is an efficient mass-conserving

algorithm. However, it demands a large amount of memory to store distribution functions

at each lattice. It has a very tight restriction on the time step to guarantee numerical

stability of the computation. As a result, it is difficult to simulate a smooth liquid surface.

Each of the two methods discussed above has its own strength and weakness. It

is desirable to improve and integrate them for more realistic liquid simulation. In this

research, we first propose a hybrid LBM for free surface fluid simulation that integrates

the PLSM and the LBM. Then, we present a hybird LBM for multicomponent-multiphase

fluids.

1.2 Review of Previous Work

The history of fluid simulation goes back to 1700 when Newton formulated a set of basic

equations to describe fluid flow mathematically. After that, quite a few scientists such as

Euler, Navier and Stokes worked on this problem. The Navier-Stokes and the Boltzmann

equations were derived separately to describe the law of fluid flows. The Navier-Stokes

equations provide a macroscopic fluid movement description while the Boltzmann equa-

tion offers a microscopic fluid motion characterization.
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The level set method [47] was used to solve the Navier-Stokes equations numerically

for fluid simulation. Later on, it was improved by adding particles to correct errors, and

the resultant method is called the PLSM. More recently, further improvements of the

level set method have been studied by many researchers. They include: the boundary

handling [19], integration with the multi-grid method using the octree data structure [41],

and simulation of multi-phase fluids [42]. The PLSM is one of the popular fluid simulation

methods because of its realistic representation of liquid. However, it suffers from a high

computational complexity of solving the Poisson equation which is needed in the global

pressure correction step.

LBM was originated from the lattice gas cellular automata [51]. It provides a first-

order explicit discretization of the Boltzmann equation in a discrete phase-space. The

simulation region of the LBM is divided into a Cartesian grid of cells, each of which only

interacts with cells of its direct neighborhood while the PLSM demands interaction of all

cells in the global pressure correction step. Thus, the LBM is simpler and faster than the

PLSM. Furthermore, adaptive time steps and multi-grid methods were proposed on top

of the basic LBM in recent years [71, 83]. However, the LBM demands a larger memory

space to deal with distribution functions. Besides, it does not have a smooth surface

representation.

Multicomponent-multiphase LBM (MCMP-LBM) was introduced by Shan and Chen

[56] by introducing non-local interactions between particles. Swift et al. [66,67] developed

the MCMP-LBM using the free energy approach. For the simulation of bubble with

high density ratios, Inamuro et al. [32] used the projection method together with free-

energy model to deal with immiscible fluids with large density ratios. Inamuro et al. [31]

3



conducted simulations for bubbly flows with large density ratios using the projection

method. More recently, Gupta and Kumar [20] presented multiple bubble dynamics with

respect to Eotvos number, Reynolds number, and Morton number.

1.3 Contributions of the Research

For liquid animation, we first run a fluid solver, e.g., the particle level set solver or the

lattice Boltzmann solver, to find the surface information. Then, we triangulate the surface

information using a marching cube algorithm. Finally, we render the the triangulated

mesh with a ray tracer. The main contributions of this research lie in the improvement of

the solver by integrating the PLSM and the LBM solvers. It will be addressed in detail

in Chapters 4 and 5.

The LBM discretizes and solves the Boltzmann equation with very fast and efficient

algorithm with streaming an collision steps. But it requires large amount of memory to

store float point distribution functions. So the LBM is not suitable for high resolution

fluid simulation. To get a fast and realistic free surface fluid simulation, we improve the

LBM by incorporating the PLSM.

• A new hybrid LBM is proposed to improve the liquid-gas surface simulation.

The LBM can be improved by adding the PLSM. This process consists of the

following steps. First, the distribution functions at each lattice are used to evaluate

the macroscopic velocity field. Then, the macroscopic velocity field is extrapolated

using the fast marching method to calculate velocities in gas lattices. Third, the

4



extrapolated velocity field advects the level set function and particles. Fourth, the

advected particles correct errors in the level set function as done in the PLSM.

Finally, the density difference between the LBM and the PLSM solvers is added

to distribution functions to correct errors of the LBM. The proposed algorithm,

called the hybrid lattice Boltzmann method (HLBM), improves the quality of the

simulation and offers more splashing effect than the LBM without increasing the

number of grids.

Multicomponent-multiphase LBM (MCMP-LBM) is useful for multiple chemical com-

ponents and multiple phases. The interfaces between different components and phases

originate from the specific interactions among fluid molecules. Thus, the macroscopic

Navier-Stokes equations is not suitable for solving such microscopic interactions. To get

a fast and realistic bubble simulation, we improve the MCMP-LBM by incorporating the

PLSM.

• A new MCMP hybrid LBM is proposed to improve the liquid-bubble surface simu-

lation.

The MCMP-LBM can be improved by adding the PLSM. This process consists of

the following steps. First, the distribution functions at each lattice are used to

evaluate the composite macroscopic velocity field. Then, the level set function and

particles are advected by the the composite velocity field, and advected particles are

used to correct errors in the level set function based on the PLSM. Finally, the den-

sity difference between the LBM and the PLSM solvers is added to the distribution

functions to correct the errors of the MCMP-LBM. The proposed algorithm, called

5



the MCMP hybrid lattice Boltzmann method (MCMP-HLBM), improves the qual-

ity of the simulation and offers more detailed visual results than the MCMP-LBM

without increasing the number of grids.

1.4 Organization of the Thesis

The thesis is organized as follows. In Chapter 2, the Navier-Stokes equations for incom-

pressible viscous fluids and some basic numerical techniques to solve them are reviewed.

Discretization methods in the computational domain are described, and related previous

work is reviewed. The basic level set algorithm and the PLSM are explained in Chapter 3.

Next, basic LBM is reviewed and the hybrid LBM is proposed in Chapter 4. The MCMP-

LBM is studied and the MCMP-HLBM is proposed in Chapter 5. Finally, concluding

remarks are given in Chapter 6.
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Chapter 2

Background Review

Some background knowledge needed for this research will be reviewed in this chap-

ter. Navier-Stokes equations (NSEs) for incompressible viscous fluid will be described

in Sec. 2.1, the Eulerian and Lagrangian methods to solve NSEs in two different compu-

tational domains will be studied in Sec. 2.2, and numerical techniques to solve NSEs will

be discussed in Sec. 2.3. Finally, some related previous work will be examined in Sec. 2.4.

2.1 Navier-Stokes Equations (NSEs)

for Incompressible Viscous Fluid

Navier-Stokes equations (NSEs) provide a good mathematical model for fluid flows. Its

origin can be traced back to Newton [77] who formulated a set of basic equations for

theoretical description of fluids about 300 years ago. About half a century later, basic

equations for momentum conservation and pressure were developed by Euler [2]. Navier

[74] worked on the fluid mechanics equations at the end of the 18th century, as did Stokes

[76] several years later. Navier solved the problem for viscous fluid flow analytically. NSEs
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in a general setting could not be practically solved until the middle of the 20th century,

when numerical techniques needed to solve the resulting equations were developed. For

more information on fluid mechanics in general and NSEs in particular can be found

in [35].

Conservation of mass is one of the important properties in fluid mechanics, as the

mass of the fluid has to be constant for a given fluid system. This is ensured by the

following continuity equation:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0, (2.1)

where the partial derivative of the second term is written in Einstein notation. That is,

subscript i appearing twice denotes a sum over all possible coordinates [75]. In this case,

it is a sum over the three spatial dimensions. For a fluid of constant density, Eq. (2.1)

can be simplified as

∂ui
∂xi

= 0, (2.2)

which means that the velocity field is divergence free to conserve mass. In other words,

the in-flux and the out-flux of a fixed volume are the same.

NSEs with the mass-conserving constraint can be written as

ρ

(
∂uj
∂t

+ ui
∂uj
∂xi

)
︸ ︷︷ ︸

advection

+
∂P

∂xj︸︷︷︸
pressure

+
∂τij
∂xi︸︷︷︸

momentum

= ρgj , j = 1, 2, 3. (2.3)

Equation (2.3) consists of three parts. The first part is responsible for the mass force such

as advection. The second part is the partial derivative of pressure P , which represents the

surface force acting on the fluid. The third part, which is also the most complicated part,
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contains tensor τij and introduces the momentum effect due to molecular movement.

Being similar to the friction between fluid layers, it is attributed to the momentum

exchange during the Brownian motion process of molecules.

For Newtonian fluids, i.e., fluids with a viscosity that is independent of the shear rate,

tensor τij can be written as

τij = −ν
(
∂uj
∂xi

+
∂ui
∂xj

)
+

2

3
δijµ

∂uk
∂xk

, (2.4)

where µ denotes the dynamic shear viscosity, a value depending on the physical properties

of the fluid, ν denotes the kinematic viscosity, which is related to the dynamic viscosity

by

ν = µ/ρ,

and the Kronecker symbol denotes a tensor with δij = 1 for i = j and δij = 0, otherwise.

Since τij can be computed by Eq. (2.4), this leaves six unknown variables in Eq. (2.2)

and Eq. (2.3). They are the pressure, the three velocity components, the density and the

viscosity. For the incompressible (ρ = const) and Newtonian (ν = const) fluid, the four

remaining unknowns (i.e., pressure and three velocities) can be solved by the simplified

equations via

∂ui
∂xi

= 0, (2.5)

which is the continuity equation, and

ρ

(
∂uj
∂t

+ ui
∂uj
∂xi

)
+
∂P

∂xj
= µ

∂2uj
∂x2i

+ ρgi, (2.6)
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which is the momentum conservation equations of the velocity field. They can also be

written in conventional notation as

∇ · u = 0, (2.7)

and

∂u

∂t
= −(u · ∇)u+ ν∇2u− 1

ρ
∇P + f , (2.8)

where f is the external force such as the gravitational force.

The continuity equation of the velocity field means that the velocity field should

be divergence free. In other words, the influx and outflux of a region should be the

same. Thus, Eq. (2.7) enables the velocity field to be incompressible. The momentum

conservation equation can be factored into four parts: the advection, the diffusion, the

pressure, and the force terms.

• The advection term, −(u · ∇)u, transports velocity by the velocity field. For ex-

ample, if there is a smoke particle in front of a fan which is rotating with the same

angular speed, the velocity field built by the fan will convey the particle to an-

other position by advection. The particle has the same velocity before and after

the conveyance if there is no external force such as the gravitational force.

• The diffusion term, ν∇2u, explains the spreading effect of fluids. If there is smoke

of higher density as compared to its neighbors, it will spread out to its neighbors

at a rate of the diffusion coefficient, ν.
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• The pressure term accounts for the propagation of the external force in a fluid. If

an external force is applied to a fluid, it is not instantaneously propagated to the

entire volume, but pushes molecules closer to the force. Thus, the pressure plays a

similar role of the force for the area which is farther away.

The momentum conservation equation is non-linear due to the advection term, −(u ·

∇)u. We have to deal with the advection term carefully, which will be studied in Sec. 2.3.2.

Other attributes such as the density and the temperature also have the momentum con-

servation equations in form of

∂a

∂t
= −(u · ∇)a+ νa∇2a− αa + Sa, (2.9)

where νa is a diffusion constant, αa is the dissipation rate, and Sa is the source term.

In fluid mechanics, these equations are usually expressed in dimensionless form. This

is valid as fluids behave similarly at different size and time scales when they have the

same Reynolds number (Re), which is a dimensionless value and can be calculated as

Re =
UL

ν
, (2.10)

where U is the macroscopic flow speed and L is the characteristic length (or the distance)

of the problem. Thus, a fluid with a given velocity and viscosity behaves similarly to

one of a lower velocity and correspondingly smaller viscosity. For the same reason, two

problems are comparable when the flow speed is increased while the characteristic length

is decreased by the same factor. As an application, to measure the flow around an
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aerodynamic body, wind tunnels of a smaller model and an increased flow speed are often

used [69]. More details on NSEs, their derivation and applications can be found in many

textbooks on fluid dynamics, such as [35] and [13]. Numerical techniques to solve NSEs

will be studied in Sec. 2.3.

2.2 Discretization Methods

2.2.1 Eulerian and Lagrangian Methods

There are two typical methods to formulate the computational problem: the Eulerian

method and the Lagrangian method. They are compared below.

• The Lagrangian method handles the computational domain from the fluid view-

point and solves NSEs using the finite element method (FEM) [38,85]. The grid is

attached to the fluid so that it moves with the fluid. It is computationally efficient,

good for irregular geometry, and good for small deformation.

• The Eulerian (grid) method handles the computational domain from the spatial

description and solves NSEs using the finite difference method (FDM) [28,59]. The

grid is fixed in space and time. It is computationally inefficient, difficult to treat

irregular geometries, and good for large deformation.

If the cyan region inside a triangle as shown in Fig. 2.1 (a) is the material (such

as a fluid) which deforms by a vector field, the Lagrangian description represents the

triangle with lots of particles (red dots) and trace particle positions and attributes as

time proceeds as shown in Fig. 2.1 (b). In contrast, the Eulerian description partitions
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the entire domain with cells uniformly as shown in Fig. 2.1 (c), where each cell contains

the velocity and attributes as time goes on. Some cells will have both white (air) and

cyan (liquid) materials at the same time.

We need a way to represent the material of interest. The material field was considered

in [30] while the level set (LS) function was proposed in [47]. The LS function will be

described in Sec. 3.2. Also, the Lattice-Boltzmann method was considered in [70], which

will be reviewed in Sec. 4.2.

2.2.2 Cell-centered and Staggered Grids

Variables such as velocity, pressure, and temperature are stored in each cell using the

Euler method. There exist two grid structures: the cell-centered grid and the staggered

grid. They will be studied in this subsection.

Fig. 2.2 shows the cell-centered and the staggered grid methods to form the grid

structure. The cell-centered grid assumes that there is only one particle at the center

of each cell as shown in Fig. 2.2(a), and the particle has attributes such as the velocity,

pressure, and temperature. In contrast, the staggered grid assumes that there are one

(a) The computational domain (b) The Lagrangian method (c) The Eulerian method

Figure 2.1: Comparison of the Eulerian and the Lagrangian descriptions.
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particle at the center and 4 particles (for 2D case) on faces of each cell. The center particle

only has scalar attributes such as pressure, temperature, and the LS function while face

particles only have vector attributes such as the velocity. Red dots as shown in Fig. 2.2(b)

represent particles that contain scalar quantities such as pressure and temperature. Green

and blue dots contains the x- and y- component of vector quantities such as the horizontal

and the vertical velocities, respectively.

(a) The cell-centered grid (b) The staggered grid

Figure 2.2: Illustration of the cell-centered and the staggered grids.

The staggered grid has some advantages as compared to the cell-centered grid since

vector quantities on the face can be calculated more naturally by the finite difference

discretization of scalar quantities at the center of cells.
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2.3 Numerical Techniques to Solve NSEs

NSEs, i.e., Eq. (2.8), can be rewritten as three equations in three coordinates as

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
+
∂uw

∂z
= −1

ρ

∂P

∂x
+ fx + ν(

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
),

∂v

∂t
+
∂vu

∂x
+
∂v2

∂y
+
∂vw

∂z
= −1

ρ

∂P

∂y
+ fy + ν(

∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2
),

∂w

∂t
+
∂wu

∂x
+
∂wv

∂y
+
∂w2

∂z
= −1

ρ

∂P

∂z
+ fz + ν(

∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2
),

(2.11)

where u = (u, v, w) and f = (fx, fy, fz). To solve Eq. (2.11) numerically, we must

discretize them first. The simplest method to discretize the time derivative is to use

the first-order accurate forward Euler method. The midpoint method is commonly used

because it is of second-order accuracy. For the spatial discretization using the stagger

grid system, Eq. (2.11) can be discretized using explicit finite difference approximation

as [15]

ũi+1/2,j,k = ui+1/2,j,k + δt{(1/δx)[(ui,j,k)2 − (ui+1,j,k)
2]

+(1/δy)[(uv)i+1/2,j−1/2,k − (uv)i+1/2,j+1/2,k]

+(1/δz)[(uv)i+1/2,j,k−1/2 − (uv)i+1/2,j,k+1/2] + fx

+(1/ρδx)[Pi,j,k − Pi+1,j,k]

+(ν/δx2)(ui+3/2,j,k − 2ui+1/2,j,k + ui−1/2,j,k)

+(ν/δy2)(ui+1/2,j+1,k − 2ui+1/2,j,k + ui+1/2,j−1,k)

+(ν/δz2)(ui+1/2,j,k+1 − 2ui+1/2,j,k + ui+1/2,j,k−1)},

(2.12)

for each velocity component u, v, and w of cell (i, j, k). In Eq. (2.12), δx, δy, and

δz represent the x-, y-, and z-directional grid spacings, respectively, δt means the time
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difference for time discretization, and ũ is the velocity component of the x-direction at

the next time step.

The implementation of Eq. (2.12) is straightforward. However, there is a stability

constraint on the spatial spacing and the time step in numerical integration:

max

[
u
δt

δx
, v
δt

δy
, w

δt

δz

]
< 1, (2.13)

which is called the CFL condition [13].

Some velocities do not lie on cell faces and should be approximated by averaging over

the nearest available values, e.g.,

ui,j,k =
1

2
(ui+1/2,j,k + ui−1/2,j,k).

However, updated velocities, (ũ, ṽ, w̃), do not satisfy Eq. (2.7) since they are not diver-

gence free. Thus, as explained in [15], one can calculate the divergence of each cell and
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set it proportional to the pressure difference, δp. After that, the pressure difference was

used to update velocities as

ui+1/2,j,k = ui+1/2,j,k + (δt/δx)δP

ui−1/2,j,k = ui−1/2,j,k − (δt/δx)δP

vi,j+1/2,k = ui,j+1/2,k + (δt/δy)δP

vi,j−1/2,k = ui,j−1/2,k − (δt/δy)δP

wi,j,k+1/2 = ui,j,k+1/2 + (δt/δz)δP

wi,j,k−1/2 = ui,j,k−1/2 − (δt/δz)δP

(2.14)

and the cell pressure is updated according to

P̃i,j,k = Pi,j,k + δP. (2.15)

After updating one cell by the other, the velocity field is still not divergence free.

To address this issue, one perform the iteration until the divergence of all cells is less

than a certain threshold. Stam [60] introduced the Helmholtz-Hodge decomposition to

the computer graph (CG) community to maintain the divergence free condition in the

momentum conservation equation. By the Helmholtz-Hodge decomposition, any vector

field can be decomposed into the sum of a divergence-free vector field and the gradient

of a scalar field as

w = u+∇P, (2.16)
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where ∇ · u = 0. By applying the divergence to Eq. 2.16, we get the well known Poisson

equation as

∇ ·w = ∇ · u+∇2P = ∇2P. (2.17)

This decomposition is called the projection step, P, and Eq. (2.16) can be written as

u = P(w) = w −∇P. (2.18)

Finally, Eq. (2.7) and Eq. (2.8) can be merged into one equation as

∂u

∂t
= P(−(u · ∇)u+ ν∇2u+ f), (2.19)

which is called the modified Navier-Stokes equation. The Poisson equation can be solved

using multigrid methods [21].

A general method to solve Eq. (2.19) is to split it into 4 parts: force application,

diffusion, advection, and projection [60]. Fig. 2.3 shows the pipeline to solve Eq. (2.19).

For the advection term, −(u · ∇)u, Stam [60] used the semi-Lagrangian advection which

is unconditionally stable. This method traces backward the point according to the ve-

locity field. The implementation of the diffusion, advection, and projection steps will be

discussed in the coming subsections.
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Figure 2.3: The basic structure to solve the modified NSE.

2.3.1 Diffusion

The diffusion equation can be written as

∂u

∂t
= ν∇2u, (2.20)

where ν is the diffusion coefficient. For a smaller diffusion coefficient, we can discretize

the diffusion term using the finite-difference method (FDM) as

ũi+1/2,j,k = ui+1/2,j,k + δt{(ν/δx2)(ui+3/2,j,k − 2ui+1/2,j,k + ui−1/2,j,k)

+(ν/δy2)(ui+1/2,j+1,k − 2ui+1/2,j,k + ui+1/2,j−1,k)

+(ν/δz2)(ui+1/2,j,k+1 − 2ui+1/2,j,k + ui+1/2,j,k−1)}.

(2.21)

However, the above discretization scheme cannot be applied to the case with a large

diffusion coefficient since the resultant scheme is not stable and the velocity oscillates

for a larger diffusion coefficient. To overcome this problem, Stam [61] adopted an im-

plicit method and solved the system by an iterative method known as the Gauss-Seidel
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relaxation method [78]. The final discretization scheme using an implicit method can be

written as

ũi+1/2,j,k = ui+1/2,j,k + δt{(ν/δx2)(ũi+3/2,j,k − 2ũi+1/2,j,k + ũi−1/2,j,k)

+(ν/δy2)(ũi+1/2,j+1,k − 2ũi+1/2,j,k + ũi+1/2,j−1,k)

+(ν/δz2)(ũi+1/2,j,k+1 − 2ũi+1/2,j,k + ũi+1/2,j,k−1)}.

(2.22)

Stam [61] used twenty iterations of the Gauss-Seidel relaxation to solve Eq. (2.22). The

implicit method is stable regardless of δt and the grid size.

2.3.2 Advection

The advection equation can be written as

∂u

∂t
= −(u · ∇)u. (2.23)

As mentioned in Sec. 2.1, the advection equation is non-linear. It can be discretized using

FDM as

ũi+1/2,j,k = ui+1/2,j,k + δt{(1/δx)[(ui,j,k)2 − (ui+1,j,k)
2]

+(1/δy)[(uv)i+1/2,j−1/2,k − (uv)i+1/2,j+1/2,k]

+(1/δz)[(uv)i+1/2,j,k−1/2 − (uv)i+1/2,j,k+1/2]}.

(2.24)

Eq. (2.24) has a tight stability condition, known as the CFL condition [13]. Therefore,

both δt and the grid size have to be very small for the solution to be stable.

Stam [60] proposed a semi-Lagrangian method to find an unconditionally stable solu-

tion of the advection equation. As mentioned in Sec. 2.1, the advection term transports
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the material by the velocity field. This process is called the forward advection. If there is

a particle at the center of each cell, the particle will move to another location by following

the velocity to the corresponding location.

Consider the velocity field at time t0 as shown in Fig. 2.4(a). In one time step, the

particle moves along the direction of the velocity and the distance between the original

and new location is equal to uδt by the forward advection method. The particle at the

red dot position will move to the blue dot position as shown in Fig. 2.4(b). The particle at

red and blue dots have the same attributes (e.g., velocity, density, and pressure) since all

attributes are transported from the red dot to the blue dot. Again, the forward advection

method is stable only when the time step is sufficiently small such that △t < ∆τ/|u|,

where ∆τ is the grid spacing [60]. It is also difficult to estimate the velocity field from

particles that are located at irregular positions.

(a) The original velocity field (b) The forward advection

Figure 2.4: Illustration of the forward advection method.
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To overcome the difficulty of the forward advection method, Stam [60] proposed a

backward advection method, which is also called the semi-Largrangian advection method.

The backward advection method traces particles backward in time. The same red particle

can be traced backward in time as shown in Fig. 2.5(a). The direction of tracing is the

opposite of the velocity and the distance of tracing is the same as the forward advection

case, i.e., uδt. As a result, the blue dot denotes the new location of the particle, which

was in the red dot position at the previous time step. In other words, a particle moves

from the blue dot position to the red one in one time step. The particle at the red dot

position has the same attributes as that at the blue dot position. To find attributes of

the blue dot, we can use a simple bi-linear interpolation scheme (for the two dimensional

case) of the nearest 4 particles as shown in Fig. 2.5(b).

(a) Red particles goes backward in time (b) Bi-linear interpolation

Figure 2.5: Illustration of the backward advection method.

The backward advection method is unconditionally stable and easy to implement. It

is also much faster than the direct discretization method using FDM.
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2.3.3 Projection

The projection step is to conserve the divergence free property of the velocity field. To

do that, we have to solve the Poisson equation with the Neumann boundary condition.

The Poisson equation become a sparse linear system when spatially discretized and can

be solved using the preconditioned conjugate gradient method. After finding the pressure

value at each cell center, the velocity update can be done by Eq. (2.14).

2.3.4 Spatial Discretization

Numerical solutions of NSEs include many time and spatial discretizations. Also, the

level set (LS) equation that comes from the evolution of the LS function needs time and

spatial discretizations. For spatial discretization, we use upwinding schemes because they

approximate derivatives by biasing the finite difference stencil in the direction where the

characteristic information comes from [47]. The LS equation describes the evolution of

the LS function in time and space, which can be written as

ϕt + u · ∇ϕ = 0. (2.25)

Its one-dimensional version, discretized by the forward Euler mehtod, is given by

ϕn+1 − ϕn

∆t
+ unϕnx = 0. (2.26)
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The upwind discretization checks whether the current grid has positive or negative ui. If

ui > 0, we define ϕx as ϕ−x . If ui < 0, we define ϕx as ϕ+x where

(ϕ+x )i = D+ϕi =
ϕi+1 − ϕi

δx
,

(ϕ−x )i = D−ϕi =
ϕi − ϕi−1

δx
.

(2.27)

When ui = 0, ui(ϕx)i vanishes so that we do not have to approximate ϕx at that grid

position.

Eq. (2.27) provides the first-order approximation to Eq. (2.26) since D+ϕ and D−ϕ

are of the first-order accuracy. The Hamilton-Jacobi ENO (HJ ENO) [25] is a higher

order upwinding scheme, which is more accurate than the simple first-order upwinding

scheme. It uses the idea of essentially nonoscillatory (ENO) polynomial interpolation

for the numerical solution of the conservation laws. The HJ weighted ENO (WENO)

scheme [34] takes a convex combination of ENO approximations to remove the overkill

in smooth regions where the data are well behaved. In this work, we use the 5th order

HJ WENO scheme for the spatial discretization of the LS equation.

2.3.5 Time Discretization

Although we use the 5th order accurate HJ WENO scheme for the spatial discretization

of Eq. (2.25), the forward Euler time discretization is only of first-order accuracy in time.

Thus, we examine higher order time discretization schemes in this subsection.

The total variation diminishing (TVD) Runge-Kutta (RK) method is a higher order

time discretization scheme which enables us to obtain accurate numerical solutions. The

first-order TVD RK scheme is the same as the forward Euler method. The second-order
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TVD RK scheme is known as the midpoint rule or the modified Euler method. For

Eq. (2.25), we first take an Euler step to advance the solution to time tn + δt as

ϕn+1 − ϕn

∆t
+ unϕnx = 0, (2.28)

which is followed by the second Euler step to advance the solution to time tn + 2δt as

ϕn+2 − ϕn+1

∆t
+ un+1ϕn+1

x = 0. (2.29)

By taking the average of ϕn and ϕn+2, which is calculated in the second Euler step, ϕn+1

can be found by

ϕn+1 =
1

2
ϕn +

1

2
ϕn+2. (2.30)

The third-order accurate TVD RK scheme takes the first and the second Euler steps as

given in Eq. (2.28) and Eq. (2.29) with an averaging step:

ϕn+
1
2 =

3

4
ϕn +

1

4
ϕn+2. (2.31)

Then, another Euler step is taken to advance the solution to time tn + 3
2δt as

ϕn+
3
2 − ϕn+

1
2

∆t
+ un+ 1

2ϕ
n+ 1

2
x = 0, (2.32)

which is followed by the second averaging step

ϕn+1 =
1

3
ϕn +

2

3
ϕn+

3
2 . (2.33)

25



In our work, we use the midpoint or the third-order TVD RK methods for time discretiza-

tion of NSEs and the LS equation by their applications.

2.4 Numerical Fluid Simulation: A Brief Literature Survey

2.4.1 Finite Differencing and the Particle Level Set Method

Incompressible NSEs were solved using the finite difference discretization by Harlow and

Welch in [23], where they proposed a marker-and-cell (MAC) method to track the surface

position. They also presented boundary conditions at the rigid wall and the free surface.

Upon the basis of [23], Foster and Metaxas [15] performed realistic liquid animation

in the three dimensional (3D) space. They discretized 3D NSEs using the finite difference

discretization on the staggered grid structure. They also introduced a height field to

characterize the change in local surface elevation at each time step using the local fluid

velocity (i.e., by examining the vertical component of the fluid motion and the horizontal

convection of the surface elevation from adjacent cell columns). However, their method

demands a small time step imposed by the CFL condition [13].

Stam [60] divided the solution to NSEs into 4 parts (i.e., force application, advection,

diffusion, and projection) and intoduced the simi-Lagrangian advection scheme to make

the advection step stable even with a large time step. He also used the relaxation method

to solve the Poisson equation in the projection step. More details of the implementation

in [60] was described in [61].

Fedkiw et al. [12] proposed the ghost fluid method (GFM) that removed nonphysical

oscillations near material interfaces, especially in a multi-material problem associated
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with deformable solids. An Eulerian scheme which treats the interface in the Lagrangian

way was introduced in [12].

Forster and Fedkiw [14] and Enright et al. Enright02b introduced a hybrid particle

level set method (PLSM) for liquid animation. A thickened front tracking technique and

a velocity extrapolation method were proposed in [11] to improve the particle level set

method (PLSM). More recently, Enright et al. [9] proposed a fast and accurate semi-

Lagrangian PLSM, which enabled fast calculation of NSEs by a semi-Lagrangian advec-

tion scheme, which was coupled with a first order accurate fast marching method to evolve

the LS function.

Losasso et al. [41] used the octree data structure by discretizing the Poisson equation

on that grid. The rigid fluid method, a technique for animating the interplay between rigid

bodies and a viscous incompressible fluid with a free surface was presented by Carlson

et al. [6]. They treated rigid bodies as fluids with different rigidity. Losasso et al. [42]

proposed a multiple LS method for multiple interacting liquids. Overlaps and vacuums

of these LS functions were removed by a projection algorithm.

The Lagrangian scheme based on smoothed particle hydrodynamics (SPH) was also

developed in [8, 45].

2.4.2 Lattice Boltzman Method (LBM)

The Boltzmann equation is part of the classical statistical physics that describes the

behavior of a gas on the microscopic scale. The lattice Boltzmann method (LBM) follows

the cellular automata to model a complex system with a set of simple and local rules

at each cell [80]. It divides the simulation region into a Cartesian grid of cells, each
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of which only interacts with cells in its direct neighborhood. While the conventional

physics-based fluid solvers directly discretize NSEs, the LBM is essentially a first-order

explicit discretization of the Boltzmann equation in a discrete phase-space. It was shown

in [64, 79] that the LBM approximates NSEs with good accuracy. The derivation of

the LBM will be given in Sec. 4.2.4. For a more detailed review of the LBM, we refer

to [64,79].

Historically, the LBM evolved from methods in the gas simulation that computes the

motion of each molecule in the gas purely with integer operations. Hardy et al. [22]

made the first attempt to perform fluid simulation with this approach. It took about ten

years to discover that the isotropy of lattice vectors is crucial to a correct approximation

of NSEs, which was reported in [16]. Motivated by this observation, McNamara and

Zanetti [44] developed the first algorithm that was actually called LBM by performing

simulations with averaged floating point values instead of single fluid molecules. The

basic LBM was further improved by a simplified collision operator with a single time

relaxation parameter in [7]. This collision operator, known as the Bhatnagar-Gross-

Krook (BGK) approximation [3], was derived independently by Chen et al. in [7]. Since

then, the LBM has been applied to the solution of many fluid mechanics problems such as

the direct numerical simulation of turbulence [82] and the Eulerian-Lagrangian simulation

[43], among many others. Moreover, the LBM is available in commercial fluid solvers [39],

which are in production use in aerospace and car companies.

Since the LBM can handle problems with a wide range of Knudsen numbers, it can be

applied to problems where NSEs are no longer applicable. For example, it can be applied

to hypersonic or rarefied gas flows [63].
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Chapter 3

Particle Level Set Method for Fluid Simulation

3.1 Introduction

Fluids are represented by smoke and liquid. While both of them follow the rules of NSEs,

they are different in the existence of the fluid surface. For a glass of water, the interfaces

exist among water, air and glass. The movement of water can be visualized by the move-

ment of surfaces between water and air. To characterize these boundaries numerically,

Tryggvason et al. [72] discretized the front with particles. The marker particles were

used in [23, 50]. The volume of fluid (VOF) method and the level set (LS) method were

also used to track interfaces [29, 33, 46]. Among these different numerical methods, the

LS method is the most popular one to track interfaces in the Eulerian liquid simulation

for several reasons. First, it is easy to extract the geometric information. Second, it is

easy to handle merging and breaking interfaces. Third, it is easy to implement in three

dimensions. More details of the LS method will be studied in Sec. 3.2.

However, the LS method has some limitations. The LS method cannot preserve the

mass and the volume as the simulation goes on. For example, if we pour water into a cup,
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the volume of water decreases with time using the LS method. To correct the volume

loss, marker particles were used along with the LS method, which results in the particle

level set (PLS) method. The PLS method improves the volume loss dramatically. More

details of the PLS method will be presented in Sec. 3.3.

3.2 Level Set Method (LSM)

The level set (LS) is an implicit function to construct the surface between fluids. It was

introduced to the computer graphics community by Osher and Fedkiw [47] in 2002, and

has played a key role in liquid simulation since then.

Figure 3.1: The basic structure to the solution of the modified NSE.

Fig. 3.1 shows an example of a liquid (inside of the ellipse) surrounded by the air

(outside of the ellipse). The LS function, ϕ, is a scalar function in R3 defined by

ϕ(x, t) > 0 for x ∈ Ω,

ϕ(x, t) ≤ 0 for x ∈ Ωc,

(3.1)
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where Ω ⊂ R3. In fluid simulation, the LS function is defined at the center of each cell

since it is a scalar function. Although the interface exists between x ∈ Ω and x = Ω, we

use x = Ω to denote the surface. The LS function evolves by an externally given velocity

field, u, which is obtained by the numerical solution to NSEs. The evolution equation of

the LS function is called the level set equation [48], which can be written as

ϕt + u · ∇ϕ = 0. (3.2)

Eq. (3.2) can be spatially discretized using the 5th order accurate HJ WENO scheme and

temporally discretized using the 3rd order TVD RK scheme as done in [10]. More recently,

Enright, Losasso and Fedkiw [9] proposed a fast first-order accurate semi-Lagrangian

advection scheme which was coupled with a first-order accurate fast marching method to

characterize the evolution of the LS function since higher order schemes do not visually

improve the quality of the simulation.

By nature, the LS function is a signed distance function since it means the distance

to the interface. Its gradient should have an unit absolute value at all grid points, i.e.,

|∇ϕ = 1|. Due to this property, the LS function is a smoothly varying function well suited

for higher order accurate numerical methods. However, the LS function loses its signed

distance property under extreme topological changes. Several reinitialization algorithms

had been proposed to maintain the LS function as a signed distance function for all cases.

Sussman, Smereka and Osher [65] proposed a method that finds the steady state solution

of the following equation:

ϕτ + sgn(ϕ0)(|∇ϕ| − 1) = 0, (3.3)
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where τ is a fictitious time that can go to infinity, and sgn(ϕ0) is a one-dimensional

smeared out signum function approximated as [65]

sgn(ϕ0) =
ϕ0√

ϕ20 + (△x)2
, (3.4)

where △x is the grid spacing for the equidistant Eulerian grid system.

Although Eq. (3.3) can be solved by an iterative numerical solver, it is more efficient

to use a fast marching method as proposed in [53, 55]. Also, Eq. (3.3) only has to be

solved locally near the interface for computational efficiency. The resulting scheme is

called the narrow-band LS method [1]. Geometric quantities can also be easily calculated

from the LS function via

n =
∇ϕ
|∇ϕ|

,

κ = ∇ · ( ∇ϕ
|∇ϕ|

),

(3.5)

where n is the unit normal and κ is the curvature.

Although the reinitialization process keeps the LS function a signed distance function

at the end of each time step, it cannot prevent the volume loss caused by smoothly varying

property of the LS function.

3.3 Particle Level Set Method (PLSM)

The particle level set method (PLSM) was proposed by Enright et al. [10] to overcome

the volume loss of LSM. PLSM is a thickened front tracking algorithm that uses massless

marker particles to assist LSM in tracking flow characteristics in under-resolved regions

around the interface. Particles are labeled by the corresponding LS values with the
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positive or the negative sign. Positive particles are located in the band near the interface

which has positive LS function values. Negative particles are located in the band near

the interface which has negative LS function values. The band, in general, has a width of

3△x. The number of particles in each cell is usually chosen to be 16 for the 2D grid and

64 for the 3D grid [15]. Each particle has its own LS value and radius. The minimum

and maximum radii are 0.1△x and 0.5△x, respectively. The radius of a particle is set

according to

rp =



rmax if spϕ(xp) > rmax,

spϕ(xp) if rmin 6 spϕ(xp) 6 rmax,

rmin if spϕ(xp) < rmin,

(3.6)

where sp is the sign of the particle.

3.3.1 Advection of Level Set Equation

Eq. (3.2) is the same as the traditional advection equation except that the LS function is

advected instead of the velocity. Thus, Eq. (3.2) can be solved using the semi-Lagrangian

advection scheme as described in Sec. 2.3.2.

For a given grid, xi,j = (i∆x, j∆y), and temporal discretization, tn = n∆t, Eq. (3.2)

can be discretized by the semi-Lagrangian method as

ϕn+1
i,j = αβϕnr+1,s+1 + (1− α)βϕnr,s+1 + α(1− β)ϕnr+1,s + (1− α)(1− β)ϕnr,s, (3.7)
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where

r = i− ⌈ui,j
∆t

∆x
⌉, α =

(
(i− r)∆x− ui,j∆t

∆x

)
,

s = j − ⌈vi,j
∆t

∆y
⌉, β =

(
(j − s)∆y − vi,j∆t

∆y

)
,

(3.8)

and u(xi,j) = (ui,j , vi,j). As mentioned in Sec. 2.3.2, this method is unconditionally

stable. For the time integration of particles, we need the second order accurate TVD RK

midpoint rule as proposed in [9].

3.3.2 Error Correction

After the LS function, ϕ, and particles are advected in time, errors in the LS function

should be corrected by particles to improve the surface precision. This process consists

of three steps as described below.

1. Error Identification

Particles on the wrong side of the interface by more than their radii are called

escaped particles, which indicate the existence of errors in the LS representation of

the interface. There are positive and negative escaped particles as shown Fig. 3.2,

where red dots denote escaped positive particles, blue dots denote escaped negative

particles, cyan and yellow regions represent liquid and air, repectively.

2. Error Quantification

A spherical LS function, ϕp, with each particle p whose size is determined by the

particle radius can be written as

ϕp(x) = sp(rp − |x− xp|). (3.9)
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Figure 3.2: Illustration of escaped positive (blue) and negative (red) particles.

The particle-defined LS function is computed locally on the eight corners of the cell

containing the particle. The local values of ϕp are the particle preconditions of the

values of the overall LS function, ϕ, on the corners of the cell. Any variation of ϕ

from ϕp indicates the magnitude of potential errors in the LS solution.

3. Error Correction

Escaped positive particles are used to rebuild the region of ϕ > 0 while escaped

negative particles are used to rebuild the region of ϕ ≤ 0. The ϕp values of eight

grid points on the boundary of the cell containing escaped particles are calculated

using Eq. (3.9). Next, each ϕp is compared with the local value of ϕ, and the

maximum of these two defines ϕ+. This is done for all escaped positive particles.

35



Given LS ϕ and a set of escaped positive particles E+, we initialize ϕ+ with ϕ and

then calculate

ϕ+ = max
∀p∈E+

(ϕp, ϕ
+). (3.10)

Similarly, to calculate a reduced error representation of the ϕ ≤ 0 region, ϕ− is

initialized with ϕ and then calculated as

ϕ− = min
∀p∈E−

(ϕp, ϕ
−). (3.11)

Note that ϕ+ and ϕ− may not agree due to errors in particles, the LS method,

and interpolation errors, etc. ϕ+ and ϕ− are merged back into a single level set by

setting ϕ equal to the value of ϕ+ or ϕ− which is smaller in the magnitude at each

grid point, i.e.,

ϕ =


ϕ+ if |ϕ+| ≤ |ϕ−|,

ϕ− if |ϕ+| > |ϕ−|.

(3.12)

The minimum magnitude is used to reconstruct the interface since the error correc-

tion process gives the priority to values that are closer to the interface.

In Fig. 3.3, blue and red circle represents negative and positive escaped particles, respec-

tively. And the radii of the positive and negative escaped particles are 0.32 and 0.11,

respectively. (We assure the grid spacing is 1 for this example.) Green circles represent
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Figure 3.3: Illustration of two escaped particle and their radii to explain error correction
process.

the 4 neighboring cells’ center. Yellow and cyan mean liquid and gas regions, respectively.

Let’s assume

ϕ(xA) = −0.30

ϕ(xB) = −0.42

ϕ(xC) = +0.55

ϕ(xD) = +0.70 .

Then we can calculate spherical LS functions of the positive escaped particle for A, B, C,

and D using Eq. (3.9) as

ϕp(xA) = +(0.11− 0.24) = −0.13

ϕp(xB) = +(0.11− 0.87) = −0.76

ϕp(xC) = +(0.11− 1.18) = −1.07

ϕp(xD) = +(0.11− 0.85) = −0.74 .
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Sphrical LS functions of the negative escaped particle for A, B, C, and D using Eq. (3.9)

as

ϕp(xA) = −(0.32− 0.83) = +0.51

ϕp(xB) = −(0.32− 1.10) = +0.78

ϕp(xC) = −(0.32− 0.80) = +0.48

ϕp(xD) = −(0.32− 0.30) = −0.02 .

From Eq. (3.10), ϕ+ can be calculated as

ϕ+(xA) = max(−0.13,−0.30) = −0.13

ϕ+(xB) = max(−0.76,−0.42) = −0.42

ϕ+(xC) = max(−1.07,+0.55) = +0.55

ϕ+(xD) = max(−0.74,+0.70) = +0.70 .

From Eq. (3.11), ϕ− can be calculated as

ϕ−(xA) = min(+0.51,−0.30) = −0.30

ϕ−(xB) = min(+0.78,−0.42) = −0.42

ϕ−(xC) = min(+0.48,+0.55) = +0.48

ϕ−(xD) = min(−0.02,+0.70) = −0.02 .
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Finally from Eq. (3.12), ϕ can be updated as

ϕ(xA) = −0.13

ϕ(xB) = −0.42

ϕ(xC) = +0.48

ϕ(xD) = −0.02 .

As a result, ϕ(xA) has been changed from −0.30 to −0.13 because the positive escaped

particle increased it. ϕ(xB) has not been changed because B is far from both escaped

particles. ϕ(xC) has been slightly changed from 0.55 to 0.48 because the negative escaped

particle decreased it. ϕ(xD) has been changed from 0.70 to −0.02 because the negative

escaped particle decreased and changed the sign of it.

3.3.3 Reinitialization and Radii Adjustment

The LS function, ϕ, is maintained as a signed distance function by solving Eq. (3.3)

with a fast marching technique. For the sake of efficiency, ϕ is reinitialized within a band

of the interface. The integration of the narrow band optimization scheme and the fast

marching method provides a fast reinitilazation procedure. To ensure proper ϕ values

for the semi-Lagrangian update, ϕ is reinitialized within a band of ±5max(∆x,∆y) of

the interface. This procedure is performed after each combined process of the semi-

Lagrangian update and error correction. Reinitialization may cause the zero level set to

shift, which is not desirable. To overcome this problem, particles are also used to correct

these errors. Finally, particles resample their position relative to the zero LS, ϕ = 0, and
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adjust their radii accordingly. Any particles which remain escaped have their radii set to

the minimum particle radius value.

3.4 Fast Marching Method (FMM)

The fast marching method (FMM) computes the solution of the Eikonal equation [55] of

the following form

|∇u| = F (x, y). (3.13)

The main task is to build an approximation to the gradient term which correctly deals

with the development of corners and cusps in the evolving solution. It is well known that

the Eikonal equation becomes non-differentiable so that an appropriate weak solution

must be developed. This is related to the entropy condition for interface propagation as

introduced in [55]. Eq. (3.13) can be discretized as

[max(D−x
ij u,−D

+x
ij u)

2 +max(D−y
ij u,−D

+y
ij u)

2]1/2 = Fij (3.14)

FMM is a method that systematically advances the front in an upwind fashion to

produce the solution, u. The upwind difference structure in Eq. (3.14) means that infor-

mation propagates along one way; namely, from smaller values of u to larger values. In

other words, FMM solves Eq. (3.14) by building the solution outward from the smallest

u value. The algorithm is made fast by confining the building zone to a narrow band

around the front.

40



To achieve this, one can sweep the front ahead in an upwind fashion by considering

a set of points in a narrow band around the existing front and march this narrow band

forward, freezing the values of existing points and bringing new ones into the narrow

band structure. The key is in the selection of the proper grid point in the narrow band

to update. The algorithm first classifies points into three sets: Far, Close and Accepted.

We tag points as Accepted initially, then all points one grid point away as Close, and,

finally, all other grid points as Far. Then, one sweep of the upwind computation can be

stated as follows.

1. Initializaton: Let Trial be the point in Close with the smallest value for u.

2. Move all neighbors of Trial that are in Far into Close.

3. Recompute the values of u at all neighbors of Trial that are in Close according to

Eq. (3.14) by solving the quadratic equation, treating all points in Close and Far

as if they had the value of ∞.

4. Move point Trial to Accepted.

This algorithm works well since the process of recomputing the values of u at downwind

neighboring points cannot yield a value smaller than any of accepted points. Conse-

quently, we can march the solution outward, always selecting the narrow band grid point

with the minimum trial value for u, and readjusting neighbors.

Another way to look at this is that each minimum trial value begins with an applica-

tion of Huyghen’s principle, and the expanding wavefront touches and updates all points.

The speed of the algorithm depends on a heapsort technique to locate the smallest el-

ement in the set Trial efficiently. We can perform an operation count of FMM below.
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Given N computational points in a domain, we would like to solve the Eikonal equation

away from an initial curve (or surface) Γ lying in this domain. By using the heapsort,

the smallest such point can be located in O(logN). Furthermore, since each point in the

domain is touched only once during the update, the total operation count to solve the

Eikonal equation is O(NlogN).

If one would like to produce a solution this is close to the front (one or two points

away), one might attempt to iterate the solution as done in [84]. However, except for

a small range around the boundary, this approach is less efficient than FMM. Since we

will use the algorithm to extend velocities at any distance from the interface, FMM is

preferred. For more details, we refer to [54].

3.5 Signed Distance and Velocity Extrapolation

Given a LS function ϕn, our goal is to build an extension velocity Fext such that, if

|∇ϕ| = 1, the extension velocity maintains the unit gradient. To achieve this, we need to

solve the following equation:

∇ϕtemp · ∇Fext = 0, (3.15)

where ϕtemp is the signed distance function which has the same zero level set as the LS

function, ϕn. It is worthwhile to emphasize that we do not use this computed signed

distance to re-initialize the LS function, but use it only in the construction of Fext.
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3.5.1 Signed Distance

We use ϕn to denote a LS function where superscript n indicates the time step. It does

not correspond to the signed distance function. Instead, FMM can be used to compute

signed distance ϕtemp by solving the Eikonal equation:

|∇T | = 1, (3.16)

at either side of the interface with boundary condition T = 0 in the zero level set of ϕ.

Then, T will be the temporary signed distance function ϕtemp.

FMM is run separately for grid points outside and inside the front. The only difficulty

lies in the initialization stage of FMM. That is, the computation of approximate distances

of points in the set of Close to initiate FMM. Values of grid points in the initial set of

Close lying outside of a 2D front can be determined as follows. First, we label those grid

points where one of the neighbors lies inside the front as Close. Values at these points

must be assigned to approximate the distances to the front. While this can be computed

exactly for a smooth front, a faster method that uses the intersection of the front with

grid lines only can be designed. This is particularly useful when the front is given as

the zero level set of a function defined at grid points and a smooth representation is not

available. There are five possible cases to be considered as shown in Fig. 3.4.

• In Fig. 3.4(a), only one of the neighboring points is at the other side of the front.

The distance to the intersection point from the line connecting the two grid points

is denoted by s. This value is larger than the real distance to the front, but most
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Figure 3.4: Illustration of five cases of a point’s neighborhood from Adalsteinsson et.
al. [1].

likely the value at the grid point at the other side is the distance to the same point,

so that the zero level set will not have moved after reinitialization.

• In Fig. 3.4(b), two of the neighbors are at the other side of the front. In this

case the value is defined as the exact distance to the line segment between the two

intersection points. If s and t are distances to intersection points, the exact distance

d satisfies (
d

s

)2

+

(
d

t

)2

= 1.

The left-hand side is an upwind approximation to the gradient of the distance

function, since the distance is zero at the intersection points. This suggests what

the solution should be for the remaining three cases and how it should be computed

in 3D.
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• In Fig. 3.4(c), the distance is the positive solution to

(
d

min(s1, s2)

)2

+

(
d

t

)2

= 1.

• In Fig. 3.4(d), the distance is

d = min(s1, s2).

• In Fig. 3.4(e), the distance is the positive solution to

(
d

min(s1, s2)

)2

+

(
d

min(t1, t2)

)2

= 1.

3.5.2 Velocity Extrapolation

For advection, the velocity field should be extended along an interface to grid points

around the front. This should extend the velocity in a continuous manner and avoid

the introduction of any discontinuity in the speed close to the front as much as possible.

Mathematically, we want to construct a speed function, Fext, which satisfies the following

equation:

∇Fext · ∇ϕtemp = 0. (3.17)

This problem can be solved by marching outwards via FMM systematically and simulta-

neously by attaching two values to each grid point, i.e., the distance from the front and

the extended speed value. The signed distance, ϕtemp, to the front is computed using

FMM as described in the previous section. As FMM constructs the signed distance at
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each grid point, the value of Fext is updated simultaneously by Eq. (3.17). In the gradient

stencil, neighboring points closer to the front are used to maintain the upwind ordering

of the point construction. To be more specific, being similar to the construction of signed

distances, we have to find the speed values for points in the initial set of Close to initiate

the process. Then, the extension value is updated whenever the distance value is updated

according to Eq. (3.17).

One technique to build extension velocities near the front would be to copy the value

of the closest grid point. Here, we take a weighted average of values at points used in

computing the distance instead, where the weight is proportional to one over the square

of the distance. This is equivalent to solving Eq. (3.17).

As an example, consider the five cases in Fig. 3.4. For simplicity, we compute the

extension value at point (i, j) in the center only.

• For Fig. 3.4(a), the extension speed is f = f(i, j − s).

• For Fig. 3.4(b), the gradient is given by

(
−d
t
,
d

s

)
.

The discretized equation ∇Fext · ∇ϕtemp = 0 becomes

0 =
(
−f−f(i+t,j)

t , f−f(i,j−s)
s

)
·
(
−d

t ,
d
s

)
= d

[
f−f(i+t,j)

t2
+ f−f(i,j−s)

s2

]
,
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where

f =
(1/t2)f(i+ t, j) + (1/s2)f(i, j − s)

1/t2 + 1/s2
.

This gives the solution for the remaining cases and in the 3D space. The above

expression assumes that the speed of the interface is given at intersection points of

the interface with the grid lines. If it is given at other points, one can either use

the interpolation to get the desired values or modify the above algorithm.

• For Fig. 3.4(c), we have

f =
(1/t2)f(i+ t, j) + (1/s2)f(i, j + s)

1/t2 + 1/s2
,

where s = s1, if |s1| < |s2|, and s = s2, otherwise.

• For Fig. 3.4(d), we have

f = f(i, j + s),

where s is chosen as given before.

• For Fig. 3.4(e), we have

f =
(1/t2)f(i+ t, j) + (1/s2)f(i, j + s)

1/t2 + 1/s2
,

where s and t are chosen, respectively, from entries in (s1, s2) and (t1, t2) with a

smaller absolute value.

Once values for both the signed distance and the extension function are established

at Close points, we need to update extension values. As the distance value is updated
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using FMM, a new extension value is chosen such that ∇Fext · ∇ϕtemp = 0, where the

gradient of Fext and ϕ
temp are calculated using points that contributed in the update of ϕ.

If no points from a grid direction are used, the corresponding component of the gradient

is zero.

As an example, consider the case in Fig. 3.4(b), where the new distance value at (i, j)

is found by solving Eq. (3.14). Let (i+1, j) and (i, j − 1) be points used in updating the

distance. If v is the new extension value, it has to satisfy the upwind version of Eq. (3.17),

namely

(
ϕtemp
i+1,j − ϕtemp

i,j

h
,
ϕtemp
i,j − ϕtemp

i,j−1

h

)
·

(
F temp
i+1,j − v

h
,
v − Fi,j−1

h

)
= 0.

Since (i + 1, j) and (i, j − 1) have been accepted, F is defined at those points, and this

equation can be solved for v as

v =
Fi+1,j(ϕ

temp
i,j − ϕtemp

i+1,j) + Fi,j−1(ϕ
temp
i,j − ϕtemp

i,j−1)

(ϕtemp
i,j − ϕtemp

i+1,j) + (ϕtemp
i,j − ϕtemp

i,j−1)
.

This means that ∇Fext · ∇ϕtemp = 0 is satisfied for all points on the grid, except

the points along the front itself, at the end. At those points, the previous construction

will make the equation satisfied when the gradient approximation is computed using

points on the front as mentioned before. Finally, FMM allows one to extend either the

normal speed function F or an advective component velocity field (u, v) by extending

each component separately. In other words, Eq. (3.17) should be solved for x-, y-, and
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z-directional velocity component separately for the velocity extrapolation of the three

dimensional space.

3.6 Conclusion

The PLSM provides one important family of numerical methods for fluid simulation in

computational fluid dynamics (CFD). The PLSM is good for the smooth surface repre-

sentation but bad for the global pressure correction step to solve Poisson equation. The

PLSM will be combined to the lattice Boltzmann method in Chapter 4 for free surface

fluids and Chapter 5 for multicomponent-multiphase fluids.
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Chapter 4

Hybrid Lattice Boltzmann Method for Free Surface Fluid

Simulation

4.1 Introduction

The lattice Boltzmann (LB) solvers and the conventional NS solvers are two primary

tools in simulating fluid flow. These state-of-the-art solvers were compared in [17]. It

was concluded that there is no clear winner. For a special class of problems, each type

of solver has its advantages and disadvantages. However, the computational complexity

of the LB solver is comparable to that of discretizing the corresponding NS problem.

We will describe the basic algorithm of the lattice Boltzmann method (LBM) and then

present a novel hybrid lattice Boltzmann method (HLBM) for efficient liquid simulation

in this chapter.

Generally speaking, a simple LB implementation performs well for complex geome-

tries, since each cell contains information about fluid velocity and pressure as well as

spatial derivatives. It even allows an accurate representation of obstacles in coarse grids.

The free surface of a fluid usually results in complex and time-dependent topologies. This
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motivates the use of the LBM in simulating free surface flows, and the resultant model is

simple since the LBM can model complex boundary conditions. The main contribution of

this chapter is the proposal of a hybrid lattice Boltzmann method (HLBM), which com-

bines the advantages of the particle level set method (PLSM) and the lattice Boltzmann

method (LBM).

The rest of this chapter is organized as follows. The LBM will be introduced in

Sec. 4.2. The LBM with a free surface will be examined in Sec. 4.3. Then, the hybrid

LBM algorithm that integrates the PLSM with the LBM will be presented in Sec. 4.4.

Computer simulation results will be shown in Sec. 4.5. Finally, concluding remarks are

given in Sec. 4.6.

4.2 Lattice Boltzmann Method (LBM)

4.2.1 Basic Algorithm

The basic algorithm of the LBM consists of two steps: the streaming step and the collision

step. These are usually applied in association with no-slip boundary conditions in domain

boundaries or obstacles. The free surface condition is adopted in the simulation of the

free surface flow. The simplicity of the basic algorithm is evident. The LBM restricts the

particle movement to a limited number of directions. A three dimensional model with 19

velocities (commonly denoted as D3Q19) will be used in this chapter. Alternatives are

models with 15 or 27 velocities. However, the latter one has no apparent advantages over

the model with 19 velocities while the model with 15 velocities has decreased stability.

The D3Q19 model is thus preferable since it demands less memory than the model with
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27 velocities. For the 2D case, the model with nine velocities, denoted by D2Q9, is the

most common model. The D2Q9 model and the D3Q19 model with its lattice velocity

vectors are shown in Fig. 4.1.

Figure 4.1: The commonly used LB models in two and three dimensions.

The D3Q19 model with its lattice vector e1..19 is examined in detail below. The

velocity vectors take the following values: e1 = (0, 0, 0)T , e2,3 = (±1, 0, 0)T , e4,5 =

(0,±1, 0)T , e6,7 = (0, 0,±1)T , e8..11 = (±1,±1, 0)T , e12..15 = (0,±1,±1)T , and e16..19 =

(±1, 0,±1)T . For each velocity, a floating point number f1..19, representing the fraction

of particles moving with this velocity, needs to be stored. Thus, in the D3Q19 model,

there are particles not moving at all (f1), moving with speed 1 (f2..7), and moving with

speed
√
2 (f8..19).

In the following, all formulas of the LBM will be expressed in terms of the particle

distribution functions (DFs). The subscript of ĩ denotes the value for the inverse direction

of a value with subscript i. In other words, fi and fĩ are opposite DFs with inverse velocity
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vectors, eĩ = −ei. During the streaming step, all DFs are advected with their respective

velocities so that it is similar to the advection step in the PLSM except that velocities

in the LBM are discrete samples in the space. This results in a movement of the floating

point value to the neighboring cells as shown in Fig. 4.2.

Figure 4.2: Illustration of the streaming step and the collision step for a fluid cell.

Being formulated in terms of DFs, the streaming step can be written as

fi
∗(x, t+△t) = fi(x+△xeĩ, t), (4.1)

where △x is the size of a cell and △t is the time step-size. They are normalized by

△t/△x = 1, which makes it possible to handle the advection by a simple copying opera-

tion as described above. The streaming step alone is not enough to simulate the behavior

of an incompressible fluid, which is governed by the on-going collision of particles with
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each other. The collision step accounts for this by weighting DFs of a cell with the so-

called equilibrium distribution functions, denoted by fi
eq, which depend on the density

and the velocity of the fluid.

In this work, the incompressible model from [26] is used, which alleviates the com-

pressibility effect of the standard model using a modified equilibrium DF and velocity

calculation. The density and the velocity can be computed by the summation of all DFs

in one cell; namely,

ρ =
∑

fi, and u =
∑

eifi. (4.2)

For direction i, the equilibrium DF feqi can be computed by

feqi = wi

[
ρ+ 3ei · u− 3

2
u2 +

9

2
(ei · u)2

]
, (4.3)

where

wi = 1/3 for i = 1,

wi = 1/18 for i = 2, · · · , 7,

wi = 1/36 for i = 8, · · · , 19.

The equilibrium DFs represent a stationary state of the fluid, which however does not

mean that the fluid is still. The values of DFs would not change if the whole fluid was

in an equilibrium state. For viscous flows, the equilibrium state (which is equivalent to

a Stokes flow) can be globally reached. In this case, DFs will converge towards constant

values. The collision of molecules in a real fluid is approximated by linearly relaxing
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the DFs of a cell towards their equilibrium state. Thus, each fi is weighted with the

corresponding feqi as

fi(x, t+△t) = (1− w)f∗(x, t+△t) + wfeqi , (4.4)

where w is a parameter that controls the viscosity of the fluid. Sometimes, τ = 1/w

is also used to denote the lattice viscosity. Parameter w is in the range of (0, 2], where

values close to 0 result in very viscous fluids while values near 2 result in more turbulent

flows. Usually, they are more visually interesting. However, when w is close to 2, the

method may become unstable. A method to stabilize the computation with a turbulence

model will be explained in Sec. 4.2.2. Parameter w is given by the kinematic viscosity of

a fluid. Details of the parametrization will be explained in Sec. 4.2.3.

Values computed by Eq. (4.4) are stored as DFs for time t + △t. Since each cell

needs the DFs of its adjacent cells from the previous time step, two arrays for DFs (i.e.,

the current and the last time steps) are usually used. The easiest way to implement

the no-slip boundary conditions is to apply the link bounce back rule that results in a

placement of the boundary halfway between fluid and obstacle cells. If the neighboring

cell at (x+△tei) is an obstacle cell during streaming, the DF from the inverse direction

of the current cell is used. That is, we change Eq. (4.1) to

f∗i (x, t+△t) = fĩ(x, t). (4.5)

The basic steps for a cell next to an obstacle cell are illustrated in Fig. 4.3.
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Figure 4.3: The streaming and collision steps for a fluid cell next to an obstacle.

The implementation of the algorithm includes a flag field to distinguish fluid and

obstacle cells, and two arrays of single-precision floating point variables, with 19 values

for each cell in the grid. During a loop over all cells in the current grid, each cell collects

the neighboring DFs according to Eq. (4.1) and Eq. (4.5) for adjacent fluid cells and

obstacle cells, respectively. The density and the velocity are computed and used to

calculate the equilibrium DFs. These are weighted with the streamed DFs and written

into the other grid, continuing with the next cell in the grid. Subsequent time steps

alternate in streaming and colliding DFs from one grid array to the other.

In contrast with the standard finite-difference NS solver, the implementation of Eq. (4.5)

for DFs of cells is much simpler but it demands more memory. A typical NS solver usually

requires 7 floating point values at each grid point (pressure, three velocity components,

and three temporary variables). It might need higher resolutions to resolve obstacles

with the same accuracy in some cases. The implementation of a more sophisticated LB
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implementation with grid compression [49], the memory requirement can be reduced to

almost one half of usual requirements. Furthermore, the use of an adaptive time step

size is common for a NS solver while the time step size of LBM is, by default, fixed to 1.

Since the maximum lattice velocity may not exceed 1/3 for the LBM to remain stable, it

might need several time steps to advance to the same degree as a NS solver would reach in

one single step. However, each of these time steps usually requires a significantly smaller

amount of work, as the LBM can be computed very efficiently on modern CPUs. More-

over, it does not require additional global computation such as the pressure correction

step as done in the PLSM.

4.2.2 Stability

To simulate turbulent flows with the LBM, the basic algorithm has to be extended since its

stability is limited once the relaxation parameter, τ , approaches 1/2 (which is equivalent

to the case where w is close to 2). Here, the Smagorinsky sub-grid model as used in [37,73]

will be applied. Its primary use is to stabilize the simulation, instead of relying on its

ability to accurately model subgrid scale vortices in the simulation. As compared with the

small slowdown due to the increased complexity of the collision step, this usually results

in a large improvement on efficiency, as simulations would otherwise require considerably

finer grid resolutions. The sub-grid turbulence model calculates the local stress tensor in

the LBM [58]. This tensor computation is relatively easy for the LBM, since each cell

already contains the information about derivatives of hydrodynamic variables in each DF.

The magnitude of the stress tensor is then used in each cell to modify the relaxation

time according to the eddy viscosity. To calculate the modified relaxation time, the
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Smagorinsky constant C is used. In our simulations, C is set to 0.03. Values in this range

are commonly used in LB simulation, and were shown to yield good modeling of sub-grid

vortices [81]. The turbulence model is integrated into the basic algorithm as described in

Sec. 4.2.1 by adding the calculation of the modified relaxation time after the streaming

step, and using this value in the normal collision step.

The modified relaxation time τs can be calculated by the following steps. First, the

non-equilibrium stress tensor at each cell is computed as

∏
α,β

=

19∑
i=1

eiαeiβ (fi − feqi ),

where α and β run over the three spatial dimensions, while i is the index of the respective

velocity vector for the D3Q19 model. The intensity of the local stress tensor S is then

computed as

S =
1

6C2

√√√√ν2 + 18C2

√∏
α,β

∏
α,β

− ν

 , (4.6)

and the modified relaxation time is given by

τs = 3(ν + C2S) +
1

2
. (4.7)

We see from Eq. (4.6) that S always has a positive value so that local viscosity increases

depending on the size of the stress tensor calculated from the non-equilibrium part of the

DFs of the cell to be relaxed. This effectively removes instability due to a small value of

τ .
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4.2.3 Parametrization

The conversion of dimensional quantities, denoted by primed symbols, into dimensionless

quantities used in the LBM will be described in this subsection. Let S′ be the length

of one side of the domain that is quantized into r cells. The cell size used in the LBM

can then be computed as △x′ = S′/r. Then, the actual value of kinematic viscosity is

ν ′[m
2

s ], domain size S′[m], a desired grid resolution r, and a gravitational force g′[m
s2
], the

corresponding lattice quantities will be computed as described below.

The dimensional timestep △t′ is computed by limiting the compressibility due to the

gravitational force. Here, we use gc = 0.005 to keep the compressibility below half a

percent. Thus,

△t′ =

√
gc · △x′
|g′|

(4.8)

yields a time step ensuring that the force exerted on each cell due to gravitational ac-

celeration has an effect less than the factor of compression, gc. Given △x′ and △t′, the

dimensionless lattice viscosity ν and relaxation time w are computed as

ν = ν ′
△t′

△x′2
, (4.9)

τ = 3ν + 1/2, w =
1

τ
. (4.10)

Likewise, the lattice acceleration due to gravity, g, is calculated as

g = g′
△t′2

△x′
.
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In conclusion, a valid parametrization for the LBM-based fluid simulation is given by

the physical scale, the desired kinematic viscosity and the compressibility factor. For a

given grid resolution, the values of τ and △t can be calculated accordingly. Note that,

when the grid resolution is small in combination with a low viscosity, the resulting value

of τ will be close to 1/2. With the turbulence model in Sec. 4.2.2, the simulation will

remain stable, but effectively increase the viscosity to a value that can be handled by the

chosen grid resolution.

4.2.4 Derivation

The Boltzmann equation will be studied, and the relationship between NSEs, the Boltz-

mann equation, and LBM will be investigated.

4.2.4.1 The Boltzmann Equation

With external force G, the Boltzmann equation can be written as

∂f

∂t
+ ξ · ∂f

∂x
+G · ∂f

∂ξ
= Ω(f), (4.11)

where function f gives the amount of particles traveling with a given speed, volume, time

and position. The left-hand-side of Eq. 4.11 describes the overall motion of molecules

with microscopic velocity ξ through the force field that is given by G at x, while the

right-hand-side models the interaction of molecules with the collision operator Ω. It is

an integral equation that includes the differential collision cross section for two particles
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which can be calculated geometrically by approximating molecules with rigid spheres for

the collision.

Due to the complicated nature of collision operator Ω, it is often replaced by a sim-

pler expression that preserves the collision invariant. The standard model is the BGK

approximation [3], which can be represented by

ΩBGK(f) =
fe − f

τ
, (4.12)

where fe is of the Maxwellian distribution representing the local equilibrium that is

parameterized by the conserved quantities such as density ρ, speed ξ and temperature T .

Each collision changes the distribution function, f , proportional to the departure from

the local equilibrium fe, where the amount of correction is modified by relaxation time τ .

In general, the collision time is dependent on properties of the gas and its current state.

However, for the BGK approximation, it is simplified and represented as a single value.

The local equilibrium is reached when Ω(fe, fe) vanishes. With this property, it

can be shown that f is collision invariant, and it does not change under the effect of a

collision. The density ρ, momentum ξa, and energy E are the Lagrangian parameters.

For a normalized particle of unit mass, these quantities can be computed as

∫
fdξ = ρ,

∫
fuadξ = ρξa, and

∫
f
u2

2
dξ = ρE. (4.13)
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The macroscopic flow speed ξa, density ρ, and fluid temperature T parameterize the

Maxwell distribution. In the 3D space, it can be written as

fM = ρ

(
m2

2πRT

)3/2

e
−(ε−u)2m2

2RT , (4.14)

where R is the Boltzmann constant and m is the mass of a particle.

4.2.4.2 Chapman-Enskog Expansion

NSEs can be derived from the Boltzmann equation by a multi-scale analysis called the

Chapman-Enskog expansion. It relies on the Knudsen number, Kn = λ/LC , which is

the ratio between the mean free path length, λ, and the characteristic shortest scale,

LC , of the macroscopic system of consideration. The Knudsen number should be much

smaller than one for the fluid to be treated as a continuous system. To derive NSEs from

the Boltzmann equation, the latter is split according to a hierarchy of different scales

of space and time variables. It is based on the expansion parameter, ε, for which the

Knudsen number Kn will be used. Usually, the expansion is truncated after terms of the

second order. In the following, the derivation of Euler equations will be shown, which

also illustrates subsequent steps necessary to derive full NSEs.

The representation t = εt1+ε
2t2 is chosen for the time variable. Variable t represents

the scale of the fast local relaxation in a fluid by collision. Sound waves are of scale t1,

which is considerably slower than local relaxations. But they are faster than diffusion

processes which take place in time scale t2. On the other hand, only one spatial expansion

is considered, giving the following expansion of the first order, x = εx1 . This is due to
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the fact that advection and diffusion are both considered in similar spatial scales x1. The

differential operators are represented in the same way as

∂

∂xa
= ε

∂

∂xa
, and

∂

∂t
= ε

∂

∂t
+ ε2

∂

∂t
. (4.15)

For consistent expansion, the second order terms in space are needed. The moment

equations of f are directly expanded to the following form:

f =

∞∑
n=0

εnfn. (4.16)

It is assumed that the time dependence of f is only caused by variables ρ, u and T .

The expansion of Eq. (4.11) in both space and time up to the second order yields

ε
∂f

∂t1
+ ε2

∂f

∂t2
+ εua ·

∂f

∂xa
+

1

2
ε2uaub

∂2f

∂xa∂xb
= Ω(f0) + ε

∂Ω(f1)

∂f
. (4.17)

Note that f0 is of the Maxwell distribution and Ωf(f0) is zero due to the definition of

the BGK collision approximation in Eq. (4.12). The three scales from O(ε0) to O(ε2) can

be distinguished in Eq. (4.17) and handled separately.

In the following, subsequent expansions of conservation equations will be performed.

Using the second-order Knudsen number expansion of the mass m, the first order terms

of Eq. (4.17) yields

∂ρ

∂t1
+
ρ∂ua
∂x1a

= 0, (4.18)
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and

ρ∂ua
∂t1

+
∂
∫
uaubf

0du

∂x1b
= 0. (4.19)

When the integral of the second equation is evaluated analytically, it can be replaced by

ρuaub + ρTδab which leads to

ρ∂ua
∂t1

+
∂ρuaub
∂x1b

+
∂ρTδab
∂x1b

= 0, (4.20)

which is the Euler equation for inviscid flows without dissipation.

Finally, to derive NSEs, the second-order equations have to be considered. For these,

both equilibrium and non-equilibrium levels have to be handled in the expansion. Still,

by setting the first order conservation terms to zero and restoring the continuous form of

these equations, NSEs as shown in Eq. (2.3) can be derived. This is possible since the

higher-order term of order (e.g., O(u3)) can be neglected under the assumption of small

Mach numbers in the expansion. The full derivation with these additional steps that are

similar to the expansion step as shown above, is given in, e.g., [24, 79].

4.2.4.3 Derivation of Lattice Boltzmann Equation

In this subsection, we will derive the lattice Boltzmann equation from the continuous

Boltzmann equation [27]. Although the lattice Boltzmann equation was historically de-

rived from the lattice gas cellular automata, the method described here allows the deriva-

tion of the lattice Boltzmann equation from an arbitrary kinetic equation. The following

abbreviations will be used:

f(x, ξ, t) = f(t),
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f(x+ ξa, ξ, t+ a) = f(t+ a).

The same abbreviations hold for g, which denotes an equilibrium distribution function as

explained in Sec. 4.2.1. As a starting point, the Boltzmann equation with BGK collision

approximation will be used as

∂f(t)

∂t
+ ξ

∂f(t)

∂x
= − 1

λ
[f(t)− g(t)] , (4.21)

where f is the particle distribution function at time t and position x with microscopic

velocity ξ. Parameter 1/λ = An is the relaxation time for collision, which is calculated

from the number of particles n and the proportional coefficient A. Here, the collision

term is linearized according to Eq. (4.12) for simplicity yet without losing generality.

Furthermore, g is of the Maxwell distribution fM from Eq. (4.14).

The hydrodynamic properties of the fluid, such as density ρ, velocity u, and the

temperature T , can be calculated with the moments of function f . Besides, energy γ

from the energy density ργ can be used to determine the temperature of the fluid. They

are given below:

ρ =

∫
f(x, ξ, t)dξ, (4.22)

ρu =

∫
ξf(x, ξ, t)dξ, (4.23)

ργ =

∫
1

2
(ξ − u)f(x, ξ, t)dξ. (4.24)
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Although the equilibrium distribution function, g, is written as a function of time and

velocity, it is calculated by these hydrodynamic moments. Hence, these values have to

be correctly approximated after discretization.

Time discretization

Eq. (4.21) can be formulated as an ordinary differential equation (ODE) as

Df

Dt
+

1

λ
f =

1

λ
g, (4.25)

where

D

Dt
=

∂

∂t
+ ξ

∂

∂x

is the time derivative along the microscopic velocity. If δt is small and g is a smooth

function, then Eq. (4.25) can be simplified as

f(t+ δt)− f(t) = −δt
λ
(f(t)− g(t)), (4.26)

where relaxation time δt
λ is usually written as 1

τ . This formula is already similar to

Eq. (4.4) above.

Approximation of equilibrium distribution
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The Maxwell distribution used as the equilibrium distribution function g is given by

Eq. (4.14). For a particle with mass 1 and D dimensions, it is represented as

g(u) =
ρ

(2πRT )D/2
e−

(ε−u)2

2RT . (4.27)

Function g(u) will be expanded in u up to the second order, which is a valid approximation

for small velocities and low Mach numbers. The local equilibrium distribution found is

feq =
ρ

(2πRT )D/2
e−

ε2

2RT

(
1 +

ξ · u
RT

+
(ξ · u)2

2(RT )2
− u2

2RT

)
. (4.28)

It is derived by expanding the quadratic form in the exponent of e from Eq. (4.27) and

expanding the resulting equation using Taylor’s series.

Discretization of velocities

For simplicity, the D2Q9 model will be considered here. As given in Eq. (4.22), the

moment integrals over the whole velocity space should be evaluated. As the velocity is

not yet discretized, these run from −∞ to +∞ in both x and y directions for a 2D model.

The moments of particle distribution functions are important for consistency with NSEs.

Another important property to be retained by discretization is isotropy which is probably

the most important properties of Navier-Stokes symmetries. Thus, the lattice should be

invariant to rotations, which can be checked by examining isotropy tensors in [79]. For

the LBM derivation, the moments are directly used as a constraint for the numerical

integration method. For models that include temperature, the integration of moments
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up to the second order should also be included. An isothermal model will be used here

where only the first moment of the velocity is required. The moments of Eq. (4.28) in 2D

can be written as

I =

∫
ψ(ξ)f (0)dξ with ψ(ξ) = ξmx ξ

n
y , (4.29)

where ψ is the moment function that contains powers of the velocity components. After

restructuring the equation, moments of up to the third order will occur in the equation -

one from the velocity moment, and two from the (ξ · u)2 term. For numerical treatment,

Eq. (4.29) can be written as

I =
ρ

(2πRT )D/2

∫
ψ(ξ)e−

ξ2

2RT

(
1 +

ξ · u
RT

+
(ξ · u)2

2(RT )2
− u2

2RT

)
dξ. (4.30)

The next step for the derivation of the LBM is to numerically integrate these moments

with ∫
f(x)W (x)dx =

N∑
j=1

wjf(xj),

where W (x) is the weighting function (e−x2
, in our case), and f(x) is a polynomial

in x (e.g., f(ζx) = ζmx ). To numerically integrate functions such as e−ζ2 , the commonly

used Gauss-Hermite quadrature can be applied, which is correct for polynomials in W

up to the order of 2N − 1. The order of the quadrature has to be chosen according to

the order of the moment polynomial ψ. Although the model is isothermal, the energy

due to the temperature should be kept constant. Hence, there is no additional level of
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freedom for the temperature. However, it has to be taken into account for the moment

integration. The Gauss-Hermite quadrature of the third order (N = 3) is thus required

Imi =

3∑
j=1

wjζj
m. (4.31)

The values of ζ and w are given by the Gauss-Hermite quadrature as ζ1 = −
√

3/2,

ζ2 = 0, ζ3 = +
√

3/2, w1 =
√
π/6, w2 = 2

√
π/3 and w3 =

√
π/6. The moment function

can be shortened as

I =
ρ

π

3∑
i=1

3∑
j=1

wiwjψ(ζi,j)

(
1 +

ξ · u
RT

+
(ξ · u)2

2(RT )2
− u2

2RT

)
, (4.32)

where ζi,j is the vector given by the quadrature as ζi,j =
√
2RT (ζi, ζj)

T . As the two sums

run over three values for i and j each, there are a total of nine possible values for ζi,j

and wiwj . For these, a new single index will be introduced. Furthermore, a number of

substitutions can be made. Since an isothermal model is used, temperature T can be

replaced by a constant c =
√
2RT

√
3/2 =

√
3RT . The speed of sound cs = 1/

√
3 in the

model yields c2s = c2/3 = RT . The weights w, divided by π are

w0 = w2w2 = 4/9

w1..4 = w1w2, w2w1, w3w2, w2w3 = 1/9

w5..8 = w1w3, w3w1, w1w1, w3w3 = 1/36

(4.33)
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Each component of vectors ζi,j is either 0 or
√
2RT

√
3/2 =

√
3RT = c:

e0 = ζ1,1 = (0, 0)T

e1..4 = ζ1,2, ζ2,1, ζ3,2, ζ2,3 = (1, 0)T c, (0, 1)T c

e5..8 = ζ1,3, ζ3,1, ζ1,1, ζ3,3 = (1, 1)T c

(4.34)

With these discrete velocities, Eq. (4.32) can be written as:

I =

9∑
α=1

Wαψ(eα)f
eq
α , (4.35)

where Wα = 2πRTe
ξ2

2RT . This yields the equilibrium distribution function as given in

Eq. (4.3) for each of the nine velocities:

feqα = wαρ

(
1 +

3e · u
c2

+
9(e · u)2

2c4
− 3u2

2c2

)
. (4.36)

Note that the lattice velocity vectors were given by the chosen Gauss-Hermite quadra-

ture. The configuration of the lattice is likewise obtained from these velocities. It is pos-

sible to discretize velocities and lattice configuration differently, as shown in [27], and [5].

Other LBM, such as the D3Q27 model, can be derived in the same way. For the more

often used 3D model such as D3Q19, it is difficult to apply this method directly. Prob-

lems arise from the more irregular arrangement of velocity vectors that cannot be easily

formulated as a quadrature term. For these models, the ansatz method can be used [79].

For a given kinetic equation, such as the one in Eq. (4.21) with an equilibrium distri-

bution or the one in Eq. (4.28), velocity weights for a specific lattice can be calculated.
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Multi-scale analysis yields constraints for moments of f that can be used to compute the

desired coefficients.

4.3 Lattice Boltzmann Simulations with a Free Surface

Simulation of free surfaces demands a distinction between regions that contain fluid and

regions that contain only gas. This is done by marking cells that contain no fluid as empty

in the flag field. As with obstacle cells, the DFs of these cells are completely ignored in

the simulation. However, in contrast to boundary cells, the fluid might move into this

empty area at some point in the simulation. To track the fluid motion, another cell type

is introduced, which is called the interface cell. These cells form a closed layer, as shown

in Fig. 4.4 between fluid and empty cells.

Figure 4.4: Different cell types required for visible free surface.

Here, the main simulation task is to track the free surface. It consists of three steps: 1)

computation of the interface movement; 2) the boundary conditions at the fluid interface,

and 3) re-initialization of cell types. In this section, these three steps are executed for an

interface cell (instead of the standard streaming and collision step.) An overview of the

procedure is given in Fig. 4.5.
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Figure 4.5: Illustration of steps to be executed for an interface cell.

4.3.1 Interface Movement

The movement of the fluid interface is tracked by the calculation of the mass contained

in each cell. This requires two additional values to be stored at each cell, mass m and

fluid fraction ϵ. The fluid fraction is computed by the cell mass and density as

ϵ = m/ρ. (4.37)
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Being similar to the volume-of-fluid (VOF) method, interface motion is tracked by com-

puting fluxes between cells. However, as DFs correspond to a certain number of particles,

the change of mass is directly computed from values that are streamed between two ad-

jacent cells for each of the directions in the model. For an interface cell and a fluid cell

at (x+△tei) is given by

△mi(x, t+△t) = fĩ(x+△tei)− fi(x, t). (4.38)

The first DF is the amount of fluid that enters a cell in the current time step, the

second one is the amount that leaves the cell. The mass exchange for two interface cells

should consider the area of the fluid interface between two cells. It is approximated by

averaging the fluid fraction values of two cells. Thus, Eq. (4.38) becomes

△mi(x, t+△t) = se
ϵ(x+△tei, t) + ϵ(x, t)

2
,

with se = fĩ(x+△tei)− fi(x, t)

(4.39)

Both equations are completely symmetric, as the amount of fluid leaving one cell has to

enter the other one, and vice versa. Thus, we have

△mi(x) = −△mĩ(x+△tei).

For interface cells with neighboring fluid cells, the mass change has to conform to DF’s

exchange during streaming, as fluid cells do not require additional computations. Their

fluid fraction is always equal to one and their mass equals their current density. The mass
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change values for all directions are added to the current mass for interface cells, resulting

in mass in the next time step as

m(x, t+△t) = m(x, t) +

19∑
i=1

△mi(x, t+△t). (4.40)

4.3.2 Free Surface Boundary Conditions

As described above, DFs of empty cells are never accessed. However, interface cells

always have empty cell neighbors. Thus, during the streaming step, only DFs from fluid

cells or other interface cells are streamed normally while DFs that would be read from

empty cells need to be reconstructed with corresponding boundary conditions at the free

surface. These boundary conditions do not require additional constructs such as ghost

layers around the interface. Thus, they can be treated locally at each cell. An atmospheric

pressure of ρA = 1 is used, which is also the reference density and pressure of the fluid.

Moreover, it is assumed that the viscosity of the fluid is significantly lower than that of

the gas phase while having a higher density. Hence, the gas follows the fluid motion at

the interface. In terms of DFs this means that, if there is an empty cell at (x +△tei),

then we have

fi(x, t+△t) = feqi (ρA,u) + feq
ĩ
(ρA,u)− fi(x, t), (4.41)

where u is the velocity of the cell at position x and time t according to Eq. (4.2).

The pressure of the atmosphere onto the fluid interface is introduced by ρA for the

density of the equilibrium DFs. Applying Eq. (4.41) to all directions with empty neighbor

cells would result in a full set of DFs for interface cells. However, to balance forces on
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each side of the interface, DFs coming from the direction of the interface normal are also

reconstructed. Thus, if DF fi would be streamed from an empty cell, or if

n · eĩ > 0 with n =
1

2


ϵ(xj−1,k,l)− ϵ(xj+1,k,l)

ϵ(xj,k−1,l)− ϵ(xj,k+1,l)

ϵ(xj,k,l−1)− ϵ(xj,k,l+1)

 (4.42)

holds, fi can be reconstructed using Eq. (4.41). Here xj,k,l simply denotes the position of

the cell at plane l, row k and column j in the array. Hence, the normal is approximated

with central differences of the fluid fraction in each spatial direction. Now, all DFs for the

interface cell are valid so that the standard collision is performed using Eq. (4.36). The

density that was calculated during collision is now used to check whether the interface

cell filled or emptied during this time step as

m(x, t+△t) > (1 + κ)ρ(x, t+△t) → cell filled,

m(x, t+△t) < (0− κ)ρ(x, t+△t) → cell emptied.

(4.43)

An additional offset, κ = 10−3, is used (instead of 0 or 1) for emptying and filling

thresholds to prevent the new surrounding interface cells from being re-converted in the

following LB step. Instead of immediately converting emptied or filled cells themselves,

their positions are stored in a list (one for emptying, and the other for filling cells), and

the conversion is done when the main loop over all cells has been completed.
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4.3.3 Flag Re-initialization

This step takes place when all cells have been updated to ensure two properties. First,

once the filled and emptied interface cells have been converted into their respective types,

the layer of interface cells has to be closed again. Next, the conservation of mass has

to be maintained during the conversion. While empty and fluid cells have a mass of

exactly zero and one, respectively, interface cells that have filled or emptied according to

Eq. (4.43) usually have an excess mass on conversion. This excess mass, which can be

positive or negative, needs to be distributed to neighboring interface cells.

All neighboring empty cells are converted to interface cells. For each of them, the

average density ρavg and velocity vavg of the surrounding fluid and interface cells are com-

puted. The DFs of empty cells are then initialized with the equilibrium feqi (ρavg,vavg).

Here, it is necessary to remove any interface cells that are needed as boundary for a filled

cell from the list of emptied interface cells. During the same pass, the flag of the filled

cells is changed to fluid. Likewise, for all emptied cells, the surrounding fluid cells are con-

verted to interface cells, simply taking the former fluid cell’s DFs at each corresponding

new interface cell. Furthermore, emptied interface cells are now marked as being empty.

In a second pass, the excess mass mex is distributed among the surrounding interface cells

for each emptied and filled cell. mex is equal to the mass m of the emptied cell (according

to Eq. (4.43) this value is negative), and calculated as (m− ρ) for filled cells.

Like the mass values larger than the density in filled ones, negative mass values in

emptied interface cells mean that the fluid interface moved beyond the current cell during

the last time step. To compensate this, the mass is not distributed evenly among the
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surrounding interface cells, but weighted according to the direction of the interface normal

n (which is computed as in Eq. (4.42)):

m(x+△tei) = m(x+△tei) +mex(η/ηtotal), (4.44)

where ηtotal is the sum of all weights ηi, and each of which is computed as

ηi =


n · ei if n · ei > 0

0 otherwise

for filled cells, and

ηi =


−n · ei if n · ei < 0

0 otherwise

for emptied cells.

(4.45)

As the mass of adjacent interface cells changes, the fluid fraction also changes accordingly.

For the computational steps described so far, it is important that they yield the same

results independent of the order in which the filled and emptied cells are converted.

Thus, interpolation for empty cells may only interpolate values from cells that are not

new interface cells themselves. Once the cell conversion is complete, the current grid is

valid, and is advanced by starting the main loop over all cells again.
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Figure 4.6: Multi-resolution density calculation up to 3rd level, where the left figure
shows the original profile of cells and the right figure shows the multi-resolution density
calculation. Symbols F, IF, and G denote fluid, interface, and gas cells, respectively.

4.4 Hybrid Lattice Boltzmann Method (HLBM) for Free

Surface Fluid Simulation

As explained in Sec. 3.2, liquid simulation using the LSM enables smooth surface rep-

resentation but it suffers from a huge computational cost because of the global pressure

correction step to solve the Poisson equation for the entire computational domain. On

step 1 If current cell is F, ρ = 1
Else if current cell is G, ρ = 0
Else if current cell is IF, split the cell into 43 sub-cells

and check whether the sub-cell is F, G, or, IF

step 2 If current sub-cell is F, ρ = 1/43

Else if current sub-cell is G, ρ = 0
Else if current sub-cell is IF, split the sub-cell into 43 sub-sub-cells

and check whether the sub-sub-cell is F, G, or, IF

step 3 If current sub-sub-cell is F, ρ = 1/46

Else if current sub-sub-cell is G, ρ = 0
Else if current sub-sub-cell is IF, ρ = 1/2× 1/46

step 4 Find the sum of ρ for entire cell

Table 4.1: Multi-resolution density calculation up to 3rd level for the PLSM part. Here,
we use F, IF, and G to denote fluid, interface, and gas cells, respectively, and ρ is density
of the current (sub)cell.
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the other hand, liquid simulation using the LBM has an efficient basic algorithm and pre-

serves mass as discussed in Sec. 4.2. However, it suffers from a small time step restriction

and a high memory requirement [69]. In this section, we propose a hybrid algorithm that

integrates the LBM with the PLSM for more realistic and faster liquid simulation.

To combine the LBM with the PLSM, we first need to find the macroscopic velocity

field to advect the level set function and particles. The macroscopic velocity of each

cell can be calculated using Eq. (4.2) and the distance from the center of each cell to

the fluid interface can be calculated using the marching cube algorithm [40]. Thus,

the level set function can be advected using the macroscopic velocity field. And the

semi-Lagrangian advection scheme [60] is used for the advection method. However, the

macroscopic velocities of a lattice cell can be calculated only for fluid and interface cells.

In other words, the velocities of a gas cell are always zero using Eq. (4.2) because the

distribution functions at x, fi(x), are all zero. As the level set functions have to be

Figure 4.7: Overview of the hybrid lattice Boltzmann method, where the dotted box
(green) represents the overview of the LBM only.
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defined in both the gas and fluid regions, velocities from the fluid have to be extrapolated

into the gas region with the fast marching method as described in Sec. 3.4.

The hybrid lattice Boltzmann method (HLBM) is described below.

• Step 1: We run the LBM solver, where the streaming and the collision steps are

performed. The obstacle and free surface boundary conditions are also applied, and

the distribution functions of the next time step, fi(x, t + ∆t), for each lattice are

calculated.

• Step 2: Macroscopic velocities for the current time step, u(x, t), are calculated using

Eq. (4.2).

• Step 3: The velocity field, u(x, t), is extrapolated to the gas region because the

LBM does not have velocities for the gas region. This extrapolated velocity field,

uext(x, t), is required for the advection of the PLSM because the semi-Lagrangian

advection scheme needs velocities of the gas region along with velocities of the liquid

region.

• Step 4: The level set function, ϕ(x, t), and particles, pk(t), are advected by the

extrapolated velocity field, which is calculated in the previous step. The level set

function are advected using the semi-Lagrangian advection scheme and particles

are advected using the 3rd order TVD-RK method.

• Step 5: Advected particles correct errors in the level set function in the PLSM.

• Step 6: Now, we have two different density fields obtained from the LBM and the

PLSM solvers. For the LBM part, we can calculate the density of each cell, ρLB, by
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the sum of distribution functions using Eq. (4.2). For the PLSM part, the density

of each cell, ρPLS , is calculated using multi-resolution density calculation scheme

up to 3rd level as described in Table 4.1. Fig. 4.6 also shows 2D example of the

density calculation method.

• Step 7: The density difference is between the LBM and the the PLSM solvers is

added to distribution functions to correct errors of the LBM as

fHLBM
i (x, t+∆t) = fi(x, t+∆t) +

ρPLS(x, t+∆t)− ρLB(x, t+∆t)

M
, (4.46)

where fi and f
HLBM
i represent distribution functions from the LBM and HLBM,

respectively. In Eq. (5.10), ρLB and ρPLS are densities calculated from the LBM

and the PLSM, respectively. Note that M is equal to 19 for the D3Q19 model.

Fig. 4.7 shows a schematic overview of the HBLM algorithm, where pk(t) represents

the particle with id k at time t.

4.5 Experimental Results

For fluid animation, we first need to solve the Boltzmann equation numerically and this

system is called the fluid solver. We use El’Beem, a free surface fluid solver using the

LBM, for this purpose [68]. For the hybrid LBM (HLBM) solver, we added the PLSM

modules such as level set functions, particles, velocity extrapolation, error correction, and

so on. After running the HLBM, we get bobj (binary obj) files which can be imported to

Blender [4], a free open source 3D content creation suite. Then, Blender can modify the
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Figure 4.8: The broken dam simulation using the LBM (the top row) and HLBM ( the
bottom row) with 503 grids. The columns from the left to the right represent the 1st, the
6th, the 11th, and the 16th frames, respectively.

material property such as color and render the scene using its internal rendering engine.

Simulation results in this chapter were obtained using a PC with 2.2GHz CPU and 4GB

RAM.

Fig. 4.8 shows every 5 frames from the broken dam simulation using the LBM (the

top row) and the HLBM (the bottom row). Both methods were run with 503 grids of

size 0.1 m, 50 frames/sec, and the no-slip boundary condition. For each frame using the

LBM, it took about 20 seconds for the fluid solver and surface generation and 80 seconds

of rendering time with 600 × 600 image. For the simulation of the HLBM, we used 64

particles for each cell with |ϕ| < 6△x as an initial condition. It took about 24 seconds for

the fluid solver and surface generation and the rendering time took about 85 seconds for

each frame using the internal raytracing renderer in Blender. Thus, the simulation time

using the HLBM was about 20 % more than the LBM.

Fig. 4.9 shows every 5 frames from the water drop simulation using the LBM (the

top row) and the HLBM (the bottom row). Both cases were run with 503 grids of size
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Figure 4.9: The water drop simulation using the LBM (the top row) and the HLBM (the
bottom row) with 503 grids. The columns from the right to the left represent the 1st, the
6th, the 11th, and the 16th frames, respectively.

0.1 m, 50 frames/sec, and under the no-slip boundary condition. The LBM took about

22 seconds for the fluid solver and surface generation and 91 seconds for the rendering

time for each frame. The HBLM took about 25 seconds for the fluid solver and surface

generation and the rendering took about 95 seconds for each frame. The simulation time

of the HLBM is 13.6 % higher than the LBM. As we see from Figs. 4.8 and 4.9, the visual

quality of simulation results is improved using the HLBM. Especially, the HLBM enables

a more splashy effect because the resolution of the fluid simulation is increased by adding

particles.

Fig. 4.10 shows the 11th frame of the broken dam simulation using the LBM (the

upper left) and the HLBM (the upper right), and the 17th frame of the water drop

simulation using the LBM (the lower left) and HLBM (the lower right). For the broken

dam simulation, we see a more splashy effect of the HLBM at the right wall of the domain.

This splashy effect is also present at the water drop simulation, especially at the center
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Figure 4.10: The 11th frame of the broken dam simulation using the LBM (the upper
left) and the HLBM (the upper right) and the 17th frame of the water drop simulation
using the LBM (the lower left) and the HLBM (the lower right).

of the image. Also, the liquid surface has finer detail with the HLBM than that with the

LBM.

To quantify the visual improvement of the HLBM over the LBM, we first obtained

the ground truth for the broken dam and the water drop examples using the LBM with

the a very high resolution grid (i.e., 1503) and the same initial and boundary conditions.

Then, we got simulation results using the LBM and the HLBM with grids of a lower

resolution. They include: the LBM with the 503 grid, LBM with the 603 grid, the LBM

with the 643 grid, and the HLBM with the 503 grid. Finally, we use MeshDev [52] to

compare the geometric distances between the computed results and their ground truth

values.
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frame number 1 6 11 16 21 26 31 36 41
broken dam LBM 503 1.3905 1.3983 1.3958 1.3853 1.8460 1.8010 1.8129 1.5937 1.3257
broken dam LBM 603 0.8951 0.9615 1.3301 1.2225 1.5318 1.5781 1.8747 1.4580 1.3989
broken dam LBM 643 0.8075 0.8977 1.1926 1.0811 1.4502 1.5414 1.6588 1.5370 1.2923
broken dam HLBM 503 1.0595 1.0957 1.1883 1.1699 1.5155 1.5584 1.7826 1.5315 1.2318
water drop LBM 503 1.9095 1.9687 1.8346 2.0708 1.8280 1.9787 1.9620 1.9264 1.9271
water drop LBM 603 1.2617 1.4168 1.3258 1.7971 1.4298 1.4253 1.3824 1.3462 1.3581
water drop LBM 643 1.1299 1.1837 1.0890 1.3264 1.3137 1.2559 1.2067 1.1423 1.1450
water drop HLBM 503 1.4388 1.5026 1.3983 1.9262 1.4577 1.4862 1.4888 1.4507 1.4789

Table 4.2: The mean of the geometrical distance to the ground truth, where results were
obtained using the LBM with the 503 grid, the LBM with the 603 grid, the LBM with
the 643 grid, and the HLBM with the 503 grid and geometrical distances were calculated
for every fifth frame.

frame number 1 6 11 16 21 26 31 36 41
broken dam LBM 503 0.8071 1.0939 0.9880 1.0442 1.8604 1.9892 2.3704 1.9391 1.0136
broken dam LBM 603 0.3840 0.5090 1.0040 0.8678 1.3458 1.8347 3.6313 1.6073 1.2040
broken dam LBM 643 0.2716 0.4542 1.2410 0.6734 1.4046 1.8883 2.9675 2.2410 1.1349
broken dam HLBM 503 0.4892 0.6729 0.9241 0.8014 1.4740 1.6775 3.2785 1.9424 0.9815
water drop LBM 503 1.5986 1.7722 1.6713 2.7791 1.4224 1.8309 1.8254 1.8262 1.8622
water drop LBM 603 0.8145 0.8276 0.9576 8.4270 1.3640 1.1492 0.9811 1.0047 1.0170
water drop LBM 643 0.5123 0.5578 0.5955 1.9227 2.8787 1.4572 0.9623 0.7333 0.7101
water drop HLBM 503 0.9064 1.0187 0.9350 9.0859 1.9982 1.0485 1.0499 1.0188 1.0830

Table 4.3: The variance of the geometrical distance to the ground truth, where results
were obtained using the LBM with the 503 grid, the LBM with the 603 grid, the LBM with
the 643 grid, and the HLBM with the 503 grid, and geometrical distances are calculated
for every fifth frame.

The mean and the variance of the geometrical distances are given in Table 4.2 and

Table 4.3, respectively. Based on the data in Table 4.2, we plot the mean of the geomet-

rical error as a function of the frame number in Figs. 4.11 for the broken dam and water

drop cases, respectively. We have the following observations.

• For the water drop case, the geometrical distance is significantly larger at the 16th

frame since this is a very splashy frame. Similarly, for the broken dam case, the

31st frame is a splashy frame and it also has a larger geometrical distance. Thus,

we conclude that the error becomes larger for splashier frames.

• For the broken dam case, the mean error of the HLBM with the 503 grid is 13.02%

lower than that of the LBM with the 503 grid, and 0.96% lower than that of the
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(b) Water Drop

Figure 4.11: The mean of the geometrical error as a function of the frame number for the
LBM with the 503 grid (the red line), the LBM with the 603 grid (the green line), the
LBM with the 643 grid (the blue line), and the HLBM with the 503 grid (the black line).

LBM with the 603 grid. The HLBM with the 503 grid performs almost the same as

the LBM with the 603 grid.

• For the water drop case, the mean error of the HLBM with the 503 grid is 21.70%

lower than that of the LBM with the 503 grid, but 6.95% higher than that of the

LBM with the 603 grid.

One reason for the performance difference between the broken dam and the water drop

cases could be that the water drop case has a splashier effect, which lowers the accuracy

of the HLBM when the grid resolution is low.

As to the computational complexity, the simulation time of the LBM with the 603

grid demands 1.7 times more simulation time than the LBM with the 503 grid. On the

other hand, the HLBM with the 503 grid takes about 1.2 times more simulation time

than the LBM with the 503 grid. Thus, the proposed HLBM improves the quality of the

simulation without increasing the computational cost much.
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4.6 Conclusion

The PLSM requires a high computational cost to solve the Poisson equation which comes

from the global pressure correction step. Although the LBM is simpler and faster than the

PLSM, it demands a larger amount of memory. In this work, we integrated the LBM and

the PLSM and derived a new method, called the HLBM, to overcome these difficulties.

It was shown by experimental results that the HLBM can offer a splashy and dynamic

visual effect with the aid of the PLSM. Furthermore, it can improve the quality of the

fluid simulation of the LBM without increasing the grid size.
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Chapter 5

Hybrid Lattice Boltzmann Method for MCMP Fluid

Simulation

5.1 Introduction

The multicomponent-multiphase LBM (MCMP-LBM) method is useful for multiple chem-

ical components such as oil and water and multiple phases such as liquid and vapor. The

interfaces between different components and phases originate from specific interactions

among fluid molecules. Thus, the macroscopic Navier-Stokes equations are not suitable

for solving such microscopic interaction. Instead, the LBM is suitable for the description

of the microscopic interaction by modifying the collision operator. The MCMP-LBM

method was introduced by Shan and Chen [56] using non-local interactions between par-

ticles. Swift et al. [66, 67] using the free energy approach to develop the MCMP-LBM

method. The LBM method provides a first-order explicit discretization of the Boltzmann

equation in a discrete phase-space. The simulation region of the LBM is divided into a

Cartesian grid of cells, each of which only interacts with cells of its direct neighborhood.

In contrast, the PLSM demands interaction of all cells in the global pressure correction
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step. Generally speaking, the LBM is simpler and faster than the PLSM at the cost of two

shortcomings. First, it demands more memory to store distribution functions. Second, it

has tight time step restrictions.

In this Chapter, we propose an MCMP hybrid lattice Boltzmann method (MCMP-

HLBM) that integrates the multicomponent-multiphase LBM and the PLSM to simulate

bubble dynamics. The rest of this chapter is organized as follows. The MCMP-LBM

method will be introduced in Sec. 5.2. Then, the MCMP hybrid LBM algorithm that

integrates the PLSM with the LBM will be presented in Sec. 5.3. Computer simulation

results will be shown in Sec. 5.4. Finally, concluding remarks are given in Sec. 5.5.

5.2 Multicomponent-Multiphase Lattice BoltzmannMethod

In Shan-Chen’s (S-C) model, multiple phases were simulated by introducing non-local

interactions between particles at each lattice site [56]. The lattice Boltzmann equation

of Shen-Chen’s MCMP model can be written as

fσ,i(x+ ei△x, t+△t) = fσ,i(x, t)−
fσ,i(x, t)− feqσ,i(x, t)

τσ
, (5.1)

where △t and △x represent the time and the spatial step sizes, respectively, feqσ,i(x, t) is

the equilibrium distribution function of component σ used to represent a stationary state

of the fluid, and where i is the directional phase space of a lattice. The rate of change

toward the equilibrium of component σ is 1/τσ, the inverse of the relaxation time, and it

is chosen to produce the desired value of fluid viscosity.

89



A composite macroscopic velocity represents the flow of the bulk fluid as

u′ =

∑
σ

1
τσ

∑
i
fσ,iea∑

σ

1
τσ
ρσ

, (5.2)

where τσ and ρσ represent the relaxation time and the density of component σ, respec-

tively. The equilibrium distribution function of a component, σ, is computed from the

composite macroscopic velocity as

feqσ,i = ωiρσ(x, t)

[
1 + 3

ei · u′

c2
+

9

2

(ei · u′)2

c4
− 3

2

u′2

c2

]
, (5.3)

where weights ωi are 4/9 for i = 1, 1/9 for i = 2, · · · , 5, and 1/36 for i = 6, · · · , 9 for the

2D simulation and 1/3 for i = 1, 1/18 for i = 2, · · · , 7, and 1/36 for i = 8, · · · , 19 for the

3D simulation, respectively, and c is the basic speed on the lattice (1 lu · ts−1 in general).

The composite macroscopic velocity, u′, differs from the macroscopic uncoupled velocities

which is defined as

uσ =
1

ρ

∑
i

fσ,iei (5.4)

of the individual fluid. The density for each component is

ρσ =
∑
i

fσ,i. (5.5)

The force on fluid component σ is

Fσ(x) = −Gψσ(x, t)
∑
i

ωiψσ̄(x+ ei∆t, t)ei, (5.6)
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where σ̄ indicates the other fluid component, ψσ is the effective mass function of fluid

component σ and commonly taken as the density, ψσ = ρσ, ψσ̄ = ρσ̄ and G is the Green

function. If only the nearest neighbor interactions were considered, we have

Gσσ̄ =


0, |x− x′| > c

gσσ̄, |x− x′| = c .

(5.7)

The interaction force term τσFσ is added to the momentum ρσu
′ to obtain the velocity

for use in the computation of feqσ as

ueq
σ = u′ +

τσFσ

ρσ
. (5.8)

Finally, Eq. (5.3) can be simplified as

feqσ,i = ωiρσ(x, t)

[
1 + 3

ei · ueq
σ

c2
+

9

2

(ei · ueq
σ )2

c4
− 3

2

(ueq
σ )2

c2

]
. (5.9)

5.3 Hybrid Lattice BoltzmannMethod for Bubble Simulation

5.3.1 Hybrid Lattice Boltzmann Method for Bubble Simulation

As explained in Chapter 3.3, liquid simulation using the LSM enables smooth surface

representation but demands a huge computational cost because of the global pressure

correction step to solve the Poisson equation. On the other hand, liquid simulation using

the LBM has an efficient basic algorithm that preserves mass as discussed in Sec. 4.2.

However, it suffers from a small time step restriction and a high memory requirement [69].
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Figure 5.1: The multi-resolution density calculation up to 3rd level, where the left figure
shows the original profile of cells and the right figure shows the multi-resolution density
calculation. Symbols IF denotes the interface cell between two fluids, and the blue and
yellow regions represent lattices of fluid types 1 and 2, respectively.

In this section, we propose a hybrid algorithm that integrates the LBM with the PLSM

for more realistic and faster bubble simulation.

To combine the MCMP-LBM with the PLSM, we first find the macroscopic velocity

field to advect the level set function and particles. The composite macroscopic velocity

of each cell can be calculated using Eq. (5.2) and the distance from the center of each cell

to the fluid interface can be calculated using the marching cube algorithm [40]. Thus,

the level set function can be advected using the macroscopic velocity field, and the semi-

Lagrangian advection scheme [60] is used for the advection method.

The multicomponent-multiphase hybrid lattice Boltzmann method (MCMP-HLBM)

is described below.

• Step 1: Run the MCMP-LBM solver, where the streaming and the collision steps

are performed using Eq. (5.1). The distribution function of fluid component σ in

the next time step, fσ,i(x, t+∆t), for each lattice is calculated.

• Step 2: Calculate composite macroscopic velocities in the current time step, u′(x, t),

using Eq. (5.2).
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• Step 3: Advect the level set function, ϕ(x, t), and particles, pk(t), by the composite

macroscopic velocity field, which is calculated in the previous step. The level set

function is advected using the semi-Lagrangian advection scheme and particles are

advected using the 3rd order TVD-RK method.

• Step 4: Correct errors of the level set function using advected particles in the PLSM

method.

• Step 5: Calculate two different density fields obtained from the MCMP-LBM and

the PLSM solvers. For the MCMP-LBM part, the density of each cell, ρLBσ , can

be calculated by the sum of distribution functions using Eq. (5.5). For the PLSM

part, the density of each cell, ρPLS
σ , is calculated using the multi-resolution density

calculation scheme up to the 3rd level as described in [36]. Fig. 5.1 also shows the

2D example of the density calculation method.

• Step 6: Add the density difference between the MCMP-LBM and the PLSM solvers

to distribution functions to correct errors of the MCMP-LBM as

fHLBM
σ,i (x, t+∆t) = fσ,i(x, t+∆t)+ωi

{
ρPLS
σ (x, t+∆t)− ρLBσ (x, t+∆t)

}
, (5.10)

where fσ,i and f
HLBM
σ,i represent distribution functions from the MCMP-LBM and

the HLBM of component σ, respectively. In Eq. (5.10), ρLBσ and ρPLS
σ are densities

calculated from the MCMP-LBM and the PLSM for component σ, respectively.

Note that ωi is the weight for each directional phase used in Eq. (5.3).
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Figure 5.2: An overview of the MCMP hybrid lattice Boltzmann method for bubble
simulation, where the dotted box (green) represents the overview of the MCMP-LBM
only. In the next time step, fHLBM

σ,i (x, t +∆t) is used as an input distribution function
instead of fσ,i(x, t+∆t).

Fig. 5.2 shows a schematic overview of the MCMP-HBLM algorithm, where pk(t)

represents the particle with id k at time t. In the next time step, fHLBM
σ,i (x, t + ∆t) is

used as an input distribution function instead of fσ,i(x, t+∆t).

5.3.2 Parameterization of MCMP-HLBM

To check the validity of the MCMP-HLBM’s simulation, we compare simulation results

obtained by the MCMP-LBM and the MCMP-HLBM with the ground truth. In this

chapter, all ground truth data are generated using the MCMP-LBM which has a much

higher resolution than other methods. For the simulation of bubbles, there are four main

physical values to be considered:
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ν ′ [m2/s] - kinematic viscosity of fluid

L′ [m] - characteristic length of real fluid field

U ′ [m/s] - characteristic velocity

g′ [m/s2] - strength of external force (e.g., gravity)

The above physical values are converted to dimensionless lattice values via

ν - lattice viscosity

L - lattice characteristic length of real fluid

U - lattice characteristic velocity

g - lattice force

Reynolds number Re is a dimensionless number that gives a measure of the ratio of the

inertial force to the viscous force and consequently quantifies the relative importance of

these two types of forces for given flow conditions [13]. In order for the two flows to be

similar, they must have the same geometry. Thus, they have the same Reynolds number.

For all simulations used in this chapter, the Reynolds number can be written as

Re =
U′L′

ν ′
. (5.11)

Given, L′, L, U , ν ′1 and ν ′2, the spatial discrimination ∆x can be written as

∆x =
L′

L
, (5.12)

where ν ′1 and ν ′2 represent kinematic viscosity of fluid components 1 and 2, respectively.

Then, U ′ can be calculated as

U =
Re1 × ν1

L′ , (5.13)
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where Re1 and Re2 are the Reynolds numbers of fluid components 1 and 2, respectively.

The time step size ∆t is calculated as

∆t =
L′ × U

L× U ′ . (5.14)

Then, ν and g can be parameterized using ∆x and ∆t as

ν1 = ν ′1
∆t

∆x2
, (5.15)

g = g′
∆t2

∆x
. (5.16)

Re2 can be fixed as

Re2 =
U ′ × L′

ν ′2
, (5.17)

because U ′ and L′ are identical for both components. Also, ν2 can be calculated as

ν2 = ν ′2
∆t

∆x2
. (5.18)

Finally, the relaxation time of component 1 and component 2 can be calculated as

τ1 = 0.5 + 3ν1, (5.19)

τ2 = 0.5 + 3ν2. (5.20)

Using the above parameterization technique, the ground truth simulation is physically

similar to low resolution simulation.
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5.4 Experimental Results

For fluid animation, the Boltzmann equation needs to be solved numerically using a

system called the fluid solver. We use the MCMP-LBM solver based on the S-C model

for this purpose [56]. For the hybrid MCMP-LBM (MCMP-HLBM) solver, we added the

PLSM modules such as level set functions, particles, and error correction to the MCMP-

LBM solver. After that, we scaled the resulting density matrix ρσ, which came from the

MCMP-HLBM solver, using 2D data interpolation for 2D simulations. Finally, the scaled

density matrix can be visualized using the marching cube algorithm [40] which visualizes

density data. For 3D simulations, the interpolation part was skipped because scaling is

possible with a 3D obj file which comes from the marching cube algorithm. Simulation

results in this chapter were obtained using a PC with a 2.2GHz CPU and 4GB RAM.

5.4.1 2D Case

To show the validity of the 2D MCMP-HLBM solver, we tested two and three bubbles

coalescence simulation. Fig. 5.3 shows 4 frames from two bubbles coalescence simulation

using the MCMP-LBM (the top row) and the MCMP-HLBM (the bottom row) with

a grid resolution of 45 × 45. Fig. 5.4 shows 4 frames from three bubbles coalescence

simulations using the MCMP-LBM (the top row) and the MCMP-HLBM (the bottom

row) with a grid resolution of 60× 60.

We show 4 frames from 2D single-bubble rising simulation using the MCMP-LBM

(the top row) and the MCMP-HLBM (the bottom row) in Fig. 5.5. Both results were run

at a resolution of 40×80. Then, we show 4 frames from 2D two-bubble rising simulation
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Figure 5.3: The 2D two bubbles coalescence simulation using the MCMP-LBM (the top
row) and the MCMP-HLBM (the bottom row) with a resolution of 45× 45. White and
gray regions represent bubble and liquid, respectively. The characteristic length of the
fluid is 1 cm, and the density ratio is 2.66 in all simulations. The columns from the left to
the right represent the 1st, the 100th, the 200th, and the 500th frames, respectively. The
time interval of the simulation is 0.0111 sec.

using the MCMP-LBM (the top row) and the MCMP-HLBM (the bottom row) in Fig. 5.6.

Both the MCMP-LBM and the MCMP-HLBM were run at a resolution of 40×80. Finally,

we show 4 frames from 2D three-bubble rising simulation using the MCMP-LBM (the

top row) and the MCMP-HLBM (the bottom row) in Fig. 5.7. Both the MCMP-LBM

and the MCMP-HLBM were run at a resolution of 60×120.

To quantify the visual improvement of the MCMP-HLBM over the MCMP-LBM,

we first obtained the ground truth results for the two/three bubbles coalescence and

single/two/three-bubble rising examples using the LBM with a very high resolution grid

(i.e., four times larger for each axis) and the same initial and boundary conditions. Then,

we got simulation results using the MCMP-LBM and the MCMP-HLBM with grids of

lower and middle resolutions and scale their densities, ρσ, to match the ground truth

simulations using the 2D data interpolation. Finally, we used the normalized absolute
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Figure 5.4: The 2D three bubbles coalescence simulation using the MCMP-LBM (the top
row) and the MCMP-HLBM (the bottom row) with a resolution of 60× 60. White and
gray regions represent bubble and liquid, respectively. The columns from the left to the
right represent the 1st, the 100th, the 200th, and the 500th frames, respectively. The time
interval of the simulation is 0.0082 sec.

Figure 5.5: The 2D single-bubble rising simulation using the MCMP-LBM (the top row)
and the MCMP-HLBM (the bottom row) with a resolution of 40 × 80. White and gray
regions represent bubble and liquid, respectively. The columns from the left to the right
represent the 1st, the 100th, the 200th, and the 300th frames, respectively. The time
interval of the simulation is 0.0125 sec.

difference to compare the geometric distances between the computed results and their

ground truth values; namely,

1

M ×N

∑
m,n

∣∣am,n − a′m,n

∣∣, (5.21)
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Figure 5.6: The 2D two-bubble rising simulation using the MCMP-LBM (the top row)
and the MCMP-HLBM (the bottom row) with a resolution of 40 × 80. White and gray
regions represent bubble and liquid, respectively. The columns from the left to the right
represent the 1st, the 100th, the 200th, and the 300th frames, respectively. The time
interval of the simulation is 0.0125 sec.

Figure 5.7: The 2D three-bubble rising simulation using the MCMP-LBM (the top row)
and the MCMP-HLBM (the bottom row) with a resolution of 60× 120. White and gray
regions represent bubble and liquid, respectively. The columns from the left to the right
represent the 1st, the 150th, the 300th, and the 450th frames, respectively. The time
interval of the simulation is 0.0083 sec.
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frame number 1 50 100 150 200 250 300
2 Bub. Coal. LBM 45×45 0.0011 0.0039 0.0158 0.0231 0.0426 0.0605 0.0768

HLBM 45×45 0.0011 0.0025 0.0032 0.0081 0.0157 0.0258 0.0355
LBM 90×90 0.0012 0.0023 0.0021 0.0036 0.0071 0.0118 0.0169

3 Bub. Coal. LBM 60×60 0.0015 0.0079 0.0071 0.0067 0.0091 0.0132 0.0213
HLBM 60×60 0.0015 0.0063 0.0043 0.0049 0.0075 0.0064 0.0076
LBM 120×120 0.0015 0.0046 0.0030 0.0032 0.0040 0.0034 0.0034

1 Bub. Rising LBM 40×80 0.0063 0.0061 0.0076 0.0104 0.0149 0.0223 0.0294
HLBM 40×80 0.0033 0.0031 0.0039 0.0057 0.0085 0.0130 0.0187
LBM 80×160 0.0018 0.0016 0.0021 0.0032 0.0046 0.0074 0.0111

2 Bub. Rising LBM 40×80 0.0130 0.0128 0.0180 0.0254 0.0420 0.0585 0.0735
HLBM 40×80 0.0065 0.0061 0.0077 0.0106 0.0176 0.0259 0.0373
LBM 80×160 0.0032 0.0035 0.0038 0.0048 0.0076 0.0115 0.0176

3 Bub. Rising LBM 60×120 0.0086 0.0097 0.0103 0.0136 0.0139 0.0167 0.0213
HLBM 60×120 0.0044 0.0060 0.0056 0.0081 0.0088 0.0101 0.0126
LBM 120×240 0.0023 0.0039 0.0033 0.0044 0.0049 0.0056 0.0068

Table 5.1: The normalized absolute difference to the ground truth, where results were
obtained using the MCMP-LBM with a grid resolution of M × N , the MCMP-HLBM
with a grid resolution ofM×N , and the MCMP-LBM with a grid resolution of 2M×2N ,
and normalized absolute differences were calculated for every fifty frame.

where am,n and a′m,n are the (m,n) component of the low resolution simulation and the

ground truth, respectively, andM and N are numbers of lattices for the x-axis and the y-

axis, respectively. am,n and a′m,n are binary images with the water and the bubble regions

set to one and zero, respectively. The normalized absolute differences of the two/three

bubbles coalescence and single/two/three-bubble rising simulations are given in Table 5.1.

Based on the data in Table 5.1, we plot the normalized absolute difference as a function

of the frame number in Figs. 5.8 and Figs. 5.9 for the 2D bubble coalescence and the

2D bubble rising cases, respectively. As shown in Figs. 5.8, the normalized absolute

differences of 2D two- and three-bubble coalescence simulations using the MCMP-HLBM

are 61.50% and 36.50% lower than that of the MCMP-LBM with same grid resolution,

respectively. Figs. 5.9 show that the normalized absolute differences of 2D single-, two-

and three-bubble rising simulations using the MCMP-HLBM are 44.93%, 56.02%, and

40.62% lower than that of the MCMP-LBM with the same grid resolution, respectively.
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(a) Two-bubble coalescence
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(b) Three-bubble coalescence

Figure 5.8: The normalized absolute difference as a function of the frame number for
(a) two-bubble and (b) three-bubble coalescence simulations, where the MCMP-LBM
simulation with a grid resolution 60×60 (the blue circle), the MCMP-HLBM simulation
with a grid resolution 60×60 (the red square), and the MCMP-LBM simulation with a grid
resolution 120×120 (the black triangle) are compared with the ground truth simulation
with a grid resolution 240×240.
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(a) Single-bubble rising
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(b) Two-bubble rising
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(c) Three-bubble rising

Figure 5.9: The normalized absolute difference as a function of the frame number for
(a) the single-bubble, (b) the two-bubble, and (c) the three-bubble rising simulations.
In (a), we compare the MCMP-LBM simulation with a grid resolution 40×80 (the blue
circle), the MCMP-HLBM simulation with a grid resolution 40×80 (the red square),
and the MCMP-LBM simulation with a grid resolution 80×160 (the black triangle) with
the ground truth simulation with a grid resolution 160×320. In (b), we compare the
MCMP-LBM simulation with a grid resolution 40×80 (the blue circle), the MCMP-HLBM
simulation with a grid resolution 40×80 (the red square), and the MCMP-LBM simulation
with a grid resolution 80×160 (the black triangle) with the ground truth simulation with
a grid resolution 160×320. In (c), we compare the MCMP-LBM simulation with a grid
resolution 60×120 (the blue circle), the MCMP-HLBM simulation with a grid resolution
60×120 (the red square), and the MCMP-LBM simulation with a grid resolution 120×240
(the black triangle) with the ground truth simulation with a grid resolution 240×480.

The mean simulation time of the 2D bubble coalescence and rising simulations is

given in Table 5.2. For 2D bubble coalescence cases, the mean simulation time of the

MCMP-HLBM is 36.25% larger than that of the MCMP-LBM. For 2D bubble rising
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resolution LBM(sec) HLBM(sec) ratio(%)

2 Bub. Coal. 45×45 0.0165 0.0223 35.21
3 Bub. Coal. 60×60 0.0272 0.0373 37.28
1 Bub. Rising 40×80 0.0250 0.0340 36.19
2 Bub. Rising 40×80 0.0253 0.0343 35.54
3 Bub. Rising 60×120 0.0511 0.0741 44.94

Table 5.2: The mean simulation time using the 2D LBM and the 2D HLBM with the
same grid resolution.

cases, the mean simulation time of the MCMP-HLBM is 38.89% larger than that of

the MCMP-LBM. From Table 5.1 and Table 5.2, we can observe that the MCMP-HLBM

bubble simulation improves the quality of the output by reducing the normalized absolute

difference than the MCMP-LBM bubble simulation. On the other hand, the MCMP-

HLBM bubble simulation requires more simulation time than the MCMP-LBM bubble

simulation.

5.4.2 3D Case

Bubble rising simulations are also performed in the 3D space using the 3D MCMP-

HLBM solver. We first show 5 frames from the 3D single-bubble rising simulation using

the MCMP-LBM (the top row) and the MCMP-HLBM (the bottom row) in Fig. 5.10.

Both the MCMP-LBM and the MCMP-HLBM were run with a resolution of 20×20×40.

Then, we show 5 frames from 3D two-bubble rising simulation using the MCMP-LBM

(the top row) and the MCMP-HLBM (the bottom row) in Fig. 5.11. Both the MCMP-

LBM and the MCMP-HLBM were run with a resolution of 20×20×40. Finally, we show

4 frames from 3D three-bubble rising simulation using the MCMP-LBM (the top row)

and the MCMP-HLBM (the bottom row) in Fig. 5.12. Both the MCMP-LBM and the

MCMP-HLBM were run with a resolution of 20×20×40.
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Figure 5.10: The 3D single-bubble rising simulation using the MCMP-LBM (the top row)
and the MCMP-HLBM (the bottom row) with a resolution of 20× 20× 40. The columns
from the left to the right represent the 1000th, the 6000th, the 11000th, the 16000th, and
the 21000th frames, respectively. The time interval of the simulation is 0.025 sec.

Figure 5.11: The 3D two-bubble rising simulation using the MCMP-LBM (the top row)
and the MCMP-HLBM (the bottom row) with a resolution of 20× 20× 40. The columns
from the left to the right represent the 1000th, the 3000th, the 5000th, the 7000th, and
the 9000th frames, respectively. The time interval of the simulation is 0.025 sec.

To quantify the visual improvement of the MCMP-HLBM over the MCMP-LBM, we

first obtained the ground truth for bubble rising examples using the MCMP-LBM with a

very high resolution grid (i.e., 80×80×160) and the same initial and boundary conditions.

Then, we get simulation results using the MCMP-LBM and the MCMP-HLBM with

grids of lower resolution. They include: the MCMP-LBM with the 20×20×40 grid, the
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Figure 5.12: The 3D three-bubble rising simulation using the MCMP-LBM (the top row)
and the MCMP-HLBM (the bottom row) with a resolution of 20× 20× 40. The columns
from the left to the right represent the 1000th, the 3000th, the 5000th, the 7000th, and
the 9000th frames, respectively. The time interval of the simulation is 0.025 sec.

MCMP-LBM with the 25×25×50 grid, the MCMP-LBM with the 30×30×60 grid, and

the MCMP-HLBM with the 20×20×40 grid. Finally, we use the MeshDev [52] to compare

the geometric distances between the computed results and their ground truth values.

The means of the geometrical distances are given in Table 5.3. Based on the data in

Table 5.3, we plot the mean of the geometrical error as a function of the frame number in

Figs. 5.13 for 3D single-, two-, and three-bubble rising cases, respectively. For all bubble

frame number 1000 6000 11000 16000 21000
1 Bub. Rising LBM 20×20×40 0.3261 0.3002 0.6277 1.0584 1.8198

HLBM 20×20×40 0.2240 0.3449 0.4592 0.9450 1.7334
LBM 25×25×50 0.1185 0.1607 0.4283 0.9340 1.6291
LBM 30×30×60 0.0712 0.1977 0.3870 0.7932 1.2925

frame number 1000 3000 5000 7000 9000
2 Bub. Rising LBM 20×20×40 0.5656 0.6034 2.9652 7.1229 8.7807

HLBM 20×20×40 0.1459 0.2773 1.7533 5.5581 8.4566
LBM 25×25×50 0.2927 0.3622 1.9398 5.7156 8.5382
LBM 30×30×60 0.1171 0.2671 0.7676 2.6610 7.3293

3 Bub. Rising LBM 20×20×40 0.3267 0.6413 1.5727 3.4407 6.1982
HLBM 20×20×40 0.2174 0.5319 1.1710 2.3263 4.6874
LBM 25×25×50 0.3110 0.6029 1.1734 2.3400 4.7860
LBM 30×30×60 0.1564 0.4531 0.9817 1.6571 2.2302

Table 5.3: The mean of the geometrical distance to the ground truth, where results were
obtained using the MCMP-LBM with a grid of resolution 20×20×40, the MCMP-HLBM
with a grid of resolution 20×20×40, the MCMP-LBM with a grid of resolution 25×25×50,
and the MCMP-LBM with a grid of resolution 30×30×60.
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(a) 3D single-bubble rising
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(b) 3D two-bubble rising
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(c) 3D three-bubble rising

Figure 5.13: The mean of the geometrical error as a function of the frame number for (a)
single-, (b) two-, and (c) three-bubble rising three dimensional simulations. We compare
the MCMP-LBM simulation with a grid of resolution 20×20×40 (the red circle dashed
line), the MCMP-HLBM simulation with a grid of resolution 20×20×40 (the black tri-
angle solid line), the MCMP-LBM simulation with a grid of resolution 25×25×50 (the
green square dash-dot line), and the MCMP-LBM simulation with a grid of resolution
30×30×60 (the blue cross dotted line) with the ground truth obtained from a grid of
resolution 80×80×160.

rising simulations, the mean of the geometrical error using the MCMP-HLBM with a

grid of resolution 20×20×40 is lower than the mean error using the MCMP-LBM with

a grid of resolution 20×20×40 but higher than the mean error using the MCMP-LBM

with a grid of resolution 30×30×60 except for the 6000th frame of the single-bubble rising

simulation. For the case of the MCMP-LBM with a grid of resolution 25×25×50, the

mean error is almost same as the MCMP-HLBM with a grid of resolution 20×20×40

except for the early part of single-bubble rising simulation. AS shown in Figs. 5.13, the

mean of the geometrical error of 3D single-, two-, and three-bubble rising simulations

using the MCMP-HLBM are 11.75%, 38.95%, and 26.57% lower than that of the MCMP-

LBM with same grid resolution, respectively. Also the mean of the geometrical error of

3D two- and three-bubble rising simulations using the MCMP-HLBM with a resolution of

20× 20× 40 are 11.38% and 8.94% lower than that of the MCMP-LBM with a resolution

of 25× 25× 50, respectively. But the mean of the geometrical error of 3D single-bubble
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rising simulation using the MCMP-HLBM with a resolution of 20 × 20 × 40 is 43.69%

higher than that of the MCMP-LBM with a resolution of 25× 25× 50.

We observe from other experiments that the performance of the MCMP-HLBM is

better than the MCMP-LBM when the geometry of the simulation is complex. Note that

the geometry of the single-bubble rising simulation is very simple and does not have any

coalescence. Also, the mean error is much more smaller than two- or three-bubble rising

cases. Thus, the MCMP-HLBM does not have significant performance advantage over

the MCMP-LBM in the single-bubble rising simulation. However, the MCMP-HLBM

improved the quality of the simulation with complex geometry without increasing the

number of grid points. For example, the MCMP-HLBM bubble rising simulation with a

grid of resolution 20×20×40 has a similar mean error to the MCMP-LBM bubble rising

simulations with a grid of resolution 25×25×50.

As to computational complexity, the simulation time of the MCMP-LBM with a grid

of size 25×25×50 demands 1.95 times more simulation time than the MCMP-LBM with

a grid of size 20×20×40. On the other hand, the MCMP-HLBM with a grid of size

20×20×40 takes about 1.42 times more simulation time than the MCMP-LBM with a

grid of size 20×20×40. As a result, the proposed MCMP-HLBM improves the quality of

the simulation without increasing the computational cost much. Finally, as mentioned

in Sec. 5.2, the MCMP-LBM is not suitable for high resolution fluid simulation because

of its high memory requirement. In contrast, the MCMP-HLBM enables high resolution

fluid simulation with the aid of the MCMP-PLSM.
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5.5 Conclusion

In this chapter, we developed a new MCMP-HLBM method for bubble simulation. The

MCMP-LBM method offers a simple and fast algorithm. However, it demands a huge

memory to store distribution functions for bubble and liquid. On the other hand, the

PLSM requires a high computational cost to solve the Poisson equation in the global

pressure correction step. In this work, we integrated the MCMP-LBM method and the

PLSM method and derived a new method, called the MCMP-HLBM, to overcome these

difficulties. It was shown by experimental results that the MCMP-HLBM can offer a finer

resolution simulation with the aid of the PLSM. Furthermore, it can improve the quality

of fluid simulation based on the MCMP-LBM without increasing the grid size.
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Chapter 6

Conclusion

The particle level set method (PLSM) and the lattice Boltzmann method (LBM) are

two state-of-the-art fluid simulation methods. In this research, we proposed two more

sophisticated methods; namely, hybrid LBM (HLBM) and multicomponent-multiphase

hybrid LBM (MCMP-HLBM), to enhance their performance.

The LBM solves the lattice Boltzmann equation numerically by dividing it into 2

steps: the streaming step and the collision step. Furthermore, the free surface and the

obstacle boundary conditions are applied for realistic fluid simulation. The computation

of the LBM is more efficient than that of the PLSM. However, the LBM demands a lot

of memory to store discrete velocities at each lattice. Besides, the surface of fluids looks

scattered and sometimes flickering since the LBM generates surfaces locally using each

lattice and its neighboring cells. To address this problem, we proposed a hybrid LBM

(HLBM), in which the level set function and particles are used together for fast and

realistic surface calculation and reconstruction of free surface fluid.

Multicomponent-multiphase HLBM (MCMP-HLBM) enables bubble simulation. Al-

though the MCMP-LBM is simpler and faster than the PLSM, it demands a larger amount
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of memory. To address this problem, we proposed the MCMP-HLBM, in which the level

set function and particles are used together for fast and realistic surface calculation and

reconstruction of liquid-bubble interface.
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