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Abstract

Intra prediction has been used in the H.264/AVC video coding standard to improve the

coding efficiency of the intra frame. We present different intra prediction techniques that

outperform the existing ones adopted by H.264/AVC and JPEG-LS in this research:

1. joint block/line-based intra prediction (JBLIP),

2. hierarchical (or multi-resolution) intra prediction (HIP), and

3. context-based hierarchical intra prediction (CHIP).

We consider two image/video coding scenarios: lossy compression and lossless com-

pression. For lossy compression, we conduct a comprhensive study and show that the

existing line-based prediction (LIP) technique adopted by the H.264/AVC standard can

only be effective in smooth and simple edge regions. However, it is not as useful in pre-

dicting complex regions that contain texture patterns. To overcome this difficulty, we

propose a JBLIP scheme with 2D geometrical manipulation to improve coding efficiency.

The complexity of the JBLIP scheme is however quite hight due to the need to search

the best matched block for the prediction purpose. Thus, we propose a fast search al-

gorithm to reduce the coding complexity. The proposed JBLIP scheme outperforms the

LIP scheme in H.264/AVC by up to 1.68dB in the PSNR improvement at the same bit

rate.

x



Next, for lossless compression, we present an advanced intra frame coding using a

hierarchical (or multi-resolution) approach called HIP. The objective is to support loss-

less image/video compression with spatial scalability. We analyze the characteristics of

the underlying input signal characteristics and previously proposed signal modeling al-

gorithms and show that most of the existing signal models cannot capture the dynamic

signal characteristics through one fixed model. Hence, we propose a spatially scalable

intra-prediction scheme that decompose signals according to their characteristics in the

frequency domain. A block-based linear combination with edge detection and training

set optimization is used to improve coding efficiency for complex textured areas in the

EL. It is shown by experimental results the proposed lossless HIP scheme outperforms

the lossless LIP scheme of H.264/AVC and JPEG-LS by a bit rate saving of 10%.

Finally, we analyze the inefficiency of the proposed lossless HIP scheme and present

an enhanced hierarchical intra prediction coding called the context-based hierarchical

intra prediction (CHIP). To save bits for the coding of modes, we propose a mode es-

timation scheme. To improve prediction accuracy, we employ the principal components

analysis (PCA) to extract dominant features from the coarse representation of the base

layer. The extracted features are clustered using a k-means clustering algorithm. Then,

the context-based interlayer prediction (CIP) scheme is used to select the best prediction

candidate without any side information. To enhance coding efficiency furthermore, an

adaptive precoding process is performed by analyzing the characteristics of the predic-

tion residual signal and a more accurate approach is proposed to estimate the context

model. Experimental results show that the proposed lossless CHIP scheme outperforms

the lossless LIP scheme of H.264/AVC and JPEG-LS by 16% in the bit rate saving.
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Chapter 1

Introduction

1.1 Significance of the Research

Modern video coding standards such as H.264/AVC exploit different types of redundancy

in the video content to allow efficient coding such as temporal redundancy and spatial

redundancy. Temporal redundancy refers to the correlation between adjacent frames in

a sequence of frames while spatial redundancy refers to the correlation between pixels of

the same frame. To exploit them, H.264/AVC adopts inter-frame prediction and intra-

frame prediction, respectively. Successive inter frames and intra frames are arranged into

a group of pictures (GOP). A GOP always begins with an intra-frame, which is followed

by a number of inter-frames.

Since the intra frame uses only spatial redundancy in the same frame, it is independent

of other frames in the sequence. The intra frame is located in the beginning of a GOP

to serve as the main reference frame and, as a result, it has a significant performance

impact on the entire GOP. The inter frame exploits both temporal and spatial redundancy

via sophisticated motion compensated prediction (MCP). A number of reference frames
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are searched against the current frame to find the most similar block which is called

the predictive block. The prediction residual is then coded. Generally speaking, inter

frame prediction often offers better coding efficiency than intra frame prediction. On the

other hand, since MCP demands one or multiple reference frames in the memory buffer

for compensation in inter frame coding, its complexity and memory cost is significantly

higher.

In this research, we focus on effective intra frame prediction and coding techniques for

both lossy and lossless coding requirements. These techniques can be applied to image

and video coding applications. In the following, we examine the advantages of intra

prediction and hierarchical intra prediction, and the need for their further improvement.

1.1.1 Intra Prediction

Intra prediction is important due to the following considerations.

• Complexity

Although inter prediction has been studied more extensively than intra prediction

due to its coding efficiency, recent research on high definition (HD) digital cinema

and digital camcorder has brought renewed interest to intra frame coding. For

HD video capturing, the large image size together with a high frame rate places

an enormous burden on the encoder. In such a case, inter frame coding could be

challenging due to its high memory and complexity requirements. All-intra-frame

coding can be adopted as an alternative to meet both coding efficiency and the cost

constraint.

2



• Reliability

Intra frame coding provides greater reliability than inter frame coding since an error

will only impact one frame instead of the entire GOP. A professional camcorder

records at a higher speed than the normal human visual speed (i.e., 60-90 frames

a second vs. 30 frames a second), the loss of one frame is tolerable. On the other

hand, the loss of one entire GOP is far less tolerable.

• Random Access

After the digital content is created, it may have to be edited and post-processed

before it can be released. This defines a complete “work flow” in the movie industry.

Although the inter frame has higher coding efficiency, the display of a single frame

demands the decoding of the entire GOP due to dependency between the current

frame and frames before and after. For the normal display purpose, this is not an

issue since the GOP has to be decoded in order. In the context of post-editing,

frames have to be accessed in an arbitrary order, the need to decode extra frames

becomes a burden. In addition, if a frame within a GOP is modified, the entire

GOP will be affected since the error tends to propagate throughout the GOP.

An all-intra-frame sequence provides an advantage since each frame can be indepen-

dently accessed and edited. Despite its many obvious advantages, the performance of

intra-frame’s coding still have room for further improvement. In addition, the camera of

resolution 2K-by-2K was considered to be of professional quality just a few years ago, a

camera of resolution 3K-by-3K under USD$3000 is available for advanced amateurs. Such

3



a dramatic increase in the image capturing speed demands a more efficient intra-frame

coding algorithm.

1.1.2 Scalabe Intra Prediction

As digital contents become more popular, the need to deliver them in a scalable fashion

becomes an important issue. The need arises from two fronts: 1) content preview and

editing for the on-board camcorder environment and studio enviorment and 2) content

delivery over a a heterogeneous network. They are detailed below.

• Preview and Editing

In the context of on-board preview, the limited LCD size (typically of 3-inch di-

agonally), decoder complexity and power restriction makes the on-board content

preview at the original resolution impractical. Even in the studio setting, the large

size of today’s digital negative of up to 28K resolution per frame cannot be searched

and indexed efficiently. Thus, an efficient and scalable video format is needed.

• Content Delivery

For content delivery over a heterogeneous network, there is a need to tailor its

format to different networking and display requirement, which demands an efficient

scalable solution. Although high quality video is desired, video contents often have

to be searched, indexed and previewed over the network. Performing such a task on

the full resolution video stream encounters some issues such as complexity, power

consumption, processing time and communication delay. In addition, the increased

4



number of end-devices with different hardware and resolutions also imposes the

need of scalable video.

Being similar to the single-layer counterpart, intra prediction in SVC utilities line-

based spatial correlation within each enhancement layer. Sophisticated intra prediction in

H.264/SVC also utilities inter-layer correlation by providing inter-layer prediction for the

enhancement layer. However, even with inter-layer prediction, the performance of intra-

frame coding in H.264/SVC is still substantially worse than its single-layer counterpart.

This drawback has a negative impact on its coding gain. This deficiency shows the need

and an opportunity for a more efficient scalable intra coding algorithm.

1.1.3 Lossless Image/Video Compression

Digital storage capability has increased by more than 1000 folds and the cost of per stor-

age capacity decreased significantly in recent years. Thus, more attention has been shifted

from the low-bit-rate coding to the high-bit-rate coding. To take medical imaging as an

example, it often generates sequences of strongly correlated images as in computerized

axial tomography (CAT), magnetic resonance imaging (MRI) and positron emission to-

mography (PET). These images need to be stored losslessly. For other applications such

as scientific geographic information, and professional digital photography, lossless coding

is also preferred due to the requirement to store and access original contents without

any distortion. The importance of lossless coding has been recognized so that even the

consumer/amateur video processing systems have already have the lossless compression

encoder/decoder unit built on board.

5



1.2 Review of Previous Work

In this section, we will review some of the previous work that is closely related to our

current research.

1.2.1 Pixel-based Intra Prediction (PIP)

The JPEG Committee of the International Standards Organization (ISO) issued a call to

solicit proposals for lossless and near-lossless compression of continuous tone pictures in

1994. This call for proposal resulted in an increased research interest on lossless image

compression schemes, especially in the area of lossless differential pulse code modulation

(DPCM) or lossless predictive coding. The low complexity lossless coder (LOCO-I)[49]

and the context-based adaptive lossless image codec (CALIC) [52] offered the most supe-

rior performance [30]. Both of them are based on the context modeling of image pixels.

Context switching is conducted with an heuristically tuned switching function under a

stationary image model. As most of natural images contain abrupt changes in local statis-

tics, a large prediction error could occur around edges and textures. The linear prediction

with least-squares optimization can adapt to the local statistics well and, hence, deliver

noticeable improvement over JPEG-LS and CALIC.

1.2.2 Line-based Intra Prediction (LIP)

H.264/AVC intra prediction was developed for the coding of intra frame in video cod-

ing. Several latest intra prediction algorithms were compared in [34], which shows that

H.264/AVC intra prediction delivers comparable or, in many cases, better coding perfor-

mance than other solutions using the line-based prediction (LIP). That is, pixel values
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from neighbors of the current block are extrapolated to construct a prediction block and

different directional predictions are defined by modes. The LIP scheme exploits the spa-

tial correlation that may exist between the predicted and actual pixels in a target block.

There has been a large amount of effort on improving the efficiency of H.264/AVC intra

prediction. Conklin [17] proposed to extend the coded pixel line to include more pixel

samples for prediction.

1.2.3 Displacement-based Intra Prediction (DIP)

Yu and Chrysafis [45] extended this idea further by introducing an idea similar to mo-

tion compensation into intra prediction, where a displacement vector that measures the

distance between the reference and the target blocks in the same frame is recorded. This

method is referred to as the displaced intra prediction (DIP) here. As revealed by ex-

perimental results in [45], the DIP is scene/complexity-dependent. As spatial correlation

allows better intra prediction results, Shiodera et al., [48] proposed to change the coding

order of subblocks, i.e., to encode the sub-block on the right bottom position first. A

template matching technique was introduced in [4, 47] to improve coding efficiency of a

textured surface.

1.2.4 Inter-Layer Intra Prediction (ILIP)

Due to the layered structure in the H.264/SVC, its intra prediction is done differently for

the base and the enhancement layers. The LIP in H.264/AVC is still adopted as the base

layer prediction for H.264/SVC. For the enhancement layer, additional modes are used

to improve coding efficiency via inter-layer correlation. The I BL mode, which copies
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the co-located block in the upsampled based layer (using an efficient upsampling filter

[39]) as one of the prediction to the target block in the enhancement layer, is called the

inter-layer intra prediction in H.264/SVC. Park et al. [32] observed a global/local phase

shift between the base and the enhancement layers and claimed that the upsampling filter

could produce an output sample that is situated at a different location as compared to

the input sample. Hence, a frame-based (or a block-based) shift parameter can be used

to improve coding efficiency. Wong et al. [50] proposed to add the right and down pixel

lines in the base layer to improve the prediction performance.

1.2.5 Multi-hypothesis Motion Compensated Prediction (MH-MCP)

Multi-hypothesis motion compensated prediction (MH-MCP) was proposed in [42] to

further exploit the long term prediction and the multiple reference frame structure. The-

oretical investigation conducted for MH-MCP in [18] has shown good potential for further

improvement in inter prediction. MH-MCP uses the temporal correlation between frames

for prediction. However, due to the high complexity in optimizing coefficients and the

prediction signal simultaneously, coefficients are often fixed as a constant (average) in

each prediction [15].

1.3 Contribution of the research

Several contributions have been made in this research. First, we consider an enhancement

of the single-layer intra prediction for high-bit-rate coding in Chapter 3. The specific

contributions of this chapter are summarized below.
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• Borrowing techniques from fractal image coding, we propose a block-based intra

prediction (BIP) scheme with 2D geometrical manipulations. Previous line-based

intra prediction is only effective in homogeneous areas. For frames with complex,

repeating patterns such as architecture and natural life video streams, our algorithm

is highly effective.

• We propose a rate-distortion optimization (RDO) procedure that jointly selects the

best mode among LIP and BIP modes. A block classification method is used to

identify blocks that can be well predicted by LIP alone.

• We develop a zone-based fast search method to reduce complexity, which results in

little rate-distortion loss as compared with the full search. A self-correlation analysis

of the local image region is conducted to identify regions of different properties. A

translational vector prediction scheme is proposed to first establish a near optimal

search position. A candidate block pruning method is further proposed to assist in

fast convergence to the optimal position.

• The proposed joint block/line-based intra prediction (JBLIP) scheme can achieve a

significant coding gain of up to 1.68dB in PSNR with the same bit rate for images

with various resolutions. The proposed fast search scheme can obtain an average

10 times speedup compared to the full search method with very little performance

degradation.

Then, we consider an intra prediction scheme with built-in spatial and quality scala-

bility for lossless coding in Chapter 4. The contributions of this chapter are given below.
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• We conduct an in-depth analysis on previous signal correlation modeling research

and show that most of the models cannot provide a good approximation to the

underlying signal characteristics and, hence, the prediction performance degrades.

• To address the shortcoming of previous signal modeling studies, we adopt a novel

hierarchical structure to achieve scalability with a spatial domain frequency de-

composition scheme. Furthermore, due to different signal statistics existing in the

base and the enhancement layers, different predictors are used to maximize the

decorrelation among layers.

• Due to the existence of high frequency components in the enhancement layer, the

LIP is ineffective in textured areas. Block-based solutions such as the BIP demands

a repetative pattern to be effective. We propose a block-based linear prediction

scheme, which produces a small prediction error in high textured regions while

demanding no side information.

• To optimize prediction and reduce complexity, we propose a layer-based prediction

with edge detection. The proposed frequency decomposition scheme would produce

an enhancement layer that contains a large percentage of flat areas and complex

textured areas in the remaining areas. As a result, a novel edge detection mechanism

is used to identify edges of the enhancement layer and the linear prediction can be

applied selectively.

• To improve the performance of the linear prediction scheme furthermore, we opti-

mize the training set. That is, instead of using a fixed training window or selecting
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predictions with explicitly specified displacement vectors, the training set is op-

timized using the base layer statistics. This training set selection scheme allows

coefficients to be optimized according to the target block features. In addition,

no extra side information is needed. The decoder can obtain the same training

information and calculate the coefficients accordingly.

• The proposed hierarchical intra prediction (HIP) cuts down the overhead infor-

mation significantly and allows a small block size to be employed without a rate

penalty. The proposed solution can acheive a 12-14% bit rate saving as compared

with the H.264 lossless intra prediction and JPEG-LS. At the same time, the pro-

posed solution enables spatial/quality scalability.

Finally, we consider several enhancements to the hierarchical intra prediction (HIP)

scheme for lossless coding in Chapter 5. The contributions of this chapter are given below.

• We first investigate issues associated with the HIP in Chapter 4 and propose a

model-free prediction scheme to eliminate the side information.

• We analyze the HIP prediction residual and show that, for some textured areas, the

linear prediction introduced in Chapter 4 does not offer good results if the training

set is not chosen properly. To address this issue, we extract features from the BL

using the Principal Component Analysis (PCA). A k-means clustering algorithm is

then used to cluster these features to form the context.

• A context-based interlayer prediction (CIP) is proposed based on available predic-

tion samples within the same context. To improve prediction accuracy, their N-th
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casual neighbors on the EL were used to evaluate the best prediction sample. This

CIP method can be integrated with the training set optimization technique so that

no side information is needed for mode selection.

• We conduct an analysis on the probability of DCT coefficients for the traditional

and the HIP coding environments and observe some unique characteristics with the

prediction residual generated by the CIP, which can be exploited to improve its

coding efficiency.

• The context-based hierarchical intra prediction (CHIP) is proposed for lossless im-

age coding without any side information. The proposed CHIP scheme outperforms

the H.264 LS and JPEG-LS with a bit rate saving of 16-24% with built-in spa-

tial/quality scalability.

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. Related research background on

predictive coding for a single layered structure and scalable video is reviewed in Chapter

2. The joint block/ line-based intra prediction (JBLIP) scheme is presented in Chapter

3. The hierarchical intra prediction (HIP) for lossless image/video coding is proposed

in Chapter 4. The context-based hierarchical intra prediction (CHIP) for lossless im-

age/video coding is proposed in Chapter 5. Finally, concluding remarks and future work

are given in Chapter 6.
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Chapter 2

Research Background

Predictive coding is one of the fundamental principles behind existing image and video

coding techniques. It is a statistical estimation procedure where future random variables

are predicted from past and present observable random variables [20]. For an input

signal sample of xi, the prediction is carried out based on a finite set of past samples

x1, x2, ..., xi−1 as x̂i = f(X) = f(x1, x2, ..., xi). The optimal predictor of x̂i is based on

minimizing the error between xi and x̂i as

ε{(xi − x̂i)2} = ε{[xi − f(x1, x2, ..., xi)]2}. (2.1)

As there usually exists a very strong spatial and temporal correlation in an image or video

frames, good predictive coding techniques become extremely powerful in minimizing the

redundancy to achieve efficient coding. Predictive coding can be classified into two broad

categories: prediction without side information and prediction with side information. In

the following sections, we will introduce some of the most influential prediction algorithms

that have been proposed.
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2.1 Pixel-based DPCM

Differential Pulse Code Modulation (DPCM) is one of the most typical predictive coding

schemes that generate prediction x̂i based on neighboring data samples without extra side

information as shown in Fig. 2.1. Most of existing DPCM methods such as JPEG-LS

[49], CALIC [52] and least squares prediction [51] are performed on a pixel-to-pixel level

to maximize the effect of inter-pixel correlation.

2.1.1 JPEG-LS Prediction

Weinberger et al. [49] proposed a pixel-based lossless compression algorithm for continuous-

tone images, which is known as the low complexity lossless compression for Images

(LOCO-I). It was later accepted by ISO/ITU as a standard for lossless and near-lossless

compression as JPEG-LS. The prediction/modeling scheme used in JPEG-LS is simple

yet effective. As shown in Fig. 2.1, the input data sample to be predicted is labeled by

x. The prediction is conducted based on the casual set {a, b, c, d}.

Figure 2.1: Neighboring pixel samples used in JPEG-LS and CALIC prediction schemes.
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The prediction is done by adaptively learning a model conditioned on the local edge

condition. To limit the complexity, a simplified edge detector called the median edge de-

tector (MED) was adopted, which was developed based on the median adaptive predictor

(MAP) [37]. The MED attempts to detect a vertical or horizontal edge given the casual

set data. If an edge is not detected, the prediction uses a+ b− c as the prediction result

for x if the current pixel belongs to the plane defined by three neighboring pixels with

values a, b and c. This process tries to capture the expected smoothness of the region in

the absence of an edge. The prediction rule can be written mathematically as

x̂ =



min(a, b) if c ≥ max(a, b),

max(a, b) if c ≤ min(a, b),

a+ b− c otherwise.

(2.2)

In the context determination stage, the context that conditions the encoding of the

current prediction error ε = x− x̂ is derived based on the local activities from the pre-set

casual template as g1 = d− a, g2 = a− c, g3 = c− b, and g4 = b− e. These gradient

estimators are used to describe the local smoothness or edginess around the current pixel

to be encoded.

2.1.2 CALIC

The context-based, adaptive, lossless image codec (CALIC) [52] was proposed in response

to the call-for-proposals by ISO/IEC JTC 1/SC 29/WG 1 (JPEG) in an attempt to

establish a new international standard for lossless compression of continuous-tone image.
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CALIC was actually a competing proposal to JPEG-LS. It operates in two modes: binary

and continuous tones. Here, we consider the continuous-tone mode only. The codec

consists of four major stages: gradient-adjusted prediction (GAP), context-selection and

quantization, context modeling of prediction errors, and entropy coding.

As compared with JPEG-LS, GAP utilizes more neighbor pixel samples to form its

prediction and the scheme adapts to the intensity gradients around the pixel to be coded.

It is a non-linear prediction scheme in the sense that it assigns weights to neighboring

pixels according to the estimated gradient of the area in horizontal and vertical directions,

respectively. The horizontal and vertical gradients of the intensity function at pixel x can

be estimated as

dh = |a− e|+ |b− c|+ |b− d|, (2.3)

dv = |a− c|+ |b− f |+ |b− g|, (2.4)

respectively. The values of dh and dv are used to detect the magnitude and orientation

of edges in the area, and they allow necessary adjustments in the prediction to improve

the prediction error in the presence of local activities.

To model the correlation between the prediction error and the local activity, an error

estimator is defined as

∆ = a · dh + b · dv + c · |ew|, (2.5)

where dh and dv are given above and ew = xi−1 − x̂i−1 is the previous prediction error.

The ew value is included in Eq. (2.5) since it is observed that large prediction errors tend

to occur consecutively. By conditioning the prediction error distribution based on ∆,
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prediction errors can be classified into different classes. Then, the entropy coder in the

following stage will estimate conditional probability p(ε|∆) to improve coding efficiency

over using p(ε) alone.

2.1.3 Least Squares Prediction

The idea of least-squares (LS) prediction dates back to [7]. By adaptively optimizing

prediction coefficients based on local statistics, LS prediction offers improved performance

over JPEG-LS or CALIC [51, 53, 28, 46]. Lossless LS prediction was proposed using the

linear combination of a small number N of casual neighbor pixels xi of the current pixel

(so-called “context”) to form its prediction. An example is shown in Fig. 2.2 (b) with

N = 10.

p =
N∑
i=1

cixi, (2.6)

where ci are coefficients to form the linear combination of the prediction. A training

window, usually takes the form of a double rectangular window, is built from its previously

coded pixels to derive optimal coefficients as shown in Fig. 2.2(b). LS methods have been

proven to be the most robust prediction method used in lossless coding due to its efficient

adaptation to the spatially changing features in an image.

2.2 Block-based Predictive Coding

As it is found that the prediction error requires more bits while side information re-

quires much less, later developed prediction algorithms for lossy coding used in image
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Figure 2.2: Least squares (LS) prediction using (a) 10 nearest casual neighbors and (b)
the training window used to optimize prediction coefficients.

and video compression mainly fall in the category of prediction with side information. It

improves the overall rate-distortion (RD0 performance by trading residual bits with side

information bits.

2.2.1 H.264/AVC Intra Prediction

In contrast to previous video coding standards such as H.263 and MPEG-4, intra predic-

tion in H.264/AVC is conducted in the spatial domain by referring to neighboring sam-

ples of previously coded blocks which are to the left and/or above the block. H.264/AVC

offers a rich set of prediction patterns for Intra prediction to reduce the spatial redun-

dancy of target video data. Comparison of various image coding methods reported that

H.264/AVC intra prediction provides the best coding performance in most test images.

In H.264/AVC, a line-based intra prediction (LIP) is used. Pixel values from the

neighbors of the current block are extrapolated to construct a prediction block. Different

directional predictions are defined by modes and used to exploit the spatial correlation

that may exist between the predicted and actual pixels in a target block. H.264/AVC
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intra prediction is carried out independently for both Luminance (green component) and

Chrominance (red and blue) channels. The neighboring pixel samples from the coded

blocks are used to form prediction blocks and a total of nine different prediction directions

are specified as in Fig. 2.3.

(a) (b)

Figure 2.3: H.264/AVC intra prediction samples and directions.

Each 16x16 marcoblock can be further divided into sub-marcoblocks of 4x4 parti-

tions and predict separately as Intra 16x16 and Intra 4x4. Each partition is predicted

separately and a mode parameter is sent with the prediction residual to the decoder for

reconstruction. In the latest fidelity range extension (FRExt) [43], Intra 8x8 block predic-

tion modes have been added. Therefore, for the luma components, a marcoblock can use

16x16, 8x8 and 4x4 block prediction modes. For chroma components, a marcoblock can

use either 8x8 or 4x4 prediction modes. There are four prediction modes in Intra 16x16

and nine prediction modes in Intra 8x8 and Intra 4x4 modes respectively. 16x16, 8x8 and
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4x4 modes. Using the horizontal prediction mode as an example, the prediction can be

expressed as

r0 = p0 − q0, (2.7)

r1 = p1 − q0, (2.8)

r2 = p2 − q0, (2.9)

r3 = p3 − q0. (2.10)

It can be seen that the residual difference of r0 through r3 are predicted from the previous

block line boundary samples, and the residual difference are sent to the decoder together

with the mode information for correct reconstruction of the block.

2.2.2 Other Improvements on H.264/AVC Intra Prediction

To further improve the efficiency of H.264 intra prediction, different schemes are proposed.

Due to the limited prediction samples available from the neighboring coded blocks, Con-

klin [17] proposed to extend the coded pixel line to include more pixel samples for pre-

diction. Yu and Chrysafis [45] extended this idea further by introducing a displacement

vector (DIP) which measures the distance between the reference and the target blocks in

the same frame. As revealed by experimental results in [45, 25], DIP is scene/complexity-

dependent.

As spatial correlation allows better intra prediction results, Shiodera et al. [48] pro-

posed to change the coding order of subblocks, i.e., to encode the sub-block on the right
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(a) (b)

Figure 2.4: Sub-marcoblock partitions and coding order: (a) the original and (b) the one
proposed by Shiodera et al. [48].

bottom position first. By doing so, the other three sub-blocks can utilize the spatial corre-

lation from the right bottom sub-block and, thus, improve coding efficiency. As shown in

Fig. 2.4, by coding the D blocks first, C blocks and B block would have more coded block

prediction samples from D. Experimental results show that this approach can achieve

around 0.2 dB PSNR improvement. A template matching technique was introduced in

[4, 47] to improve coding efficiency of a textured surface.

2.2.3 H.264/SVC Intra Prediction

H.264/SVC is an extension of the current H.264/AVC. It offers spatial and quality scal-

ability through a layered coding structure. Hence, the intra prediction for SVC is done

differently for the base and the enhancement layers. Due to the compatibility requirement,

the base layer intra coding remains the same as in H.264/AVC. The H.264 standard ex-

ploits the spatial correlation between adjacent macroblocks or blocks for intra prediction

as described in Sec. 2.2.1.

For the coding of the enhancement layer, it introduces additional prediction method.

Because of the layered structure, its corresponding frame in the base layer has already

been coded and reconstructed, the information available from the base layer frame can
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Figure 2.5: Inter-layer intra prediction in H.264/SVC.

be used for prediction in enhancement layer coding. Hence, H.264/SVC intra prediction

introduced a I BL mode, which copies the co-located block in the upsampled based layer

(using an efficient upsampling filter [39]) as one of the prediction to the target block in

the enhancement layer as shown in Fig. 2.5.

This I BL mode offers good performance improvement to the coding of the enhance-

ment layer. There have been many additional improvement schemes proposed for intra

prediction in SVC to further explore the correlation between the base and the enhance-

ment layer. For example, Park et al. [32] considered a global/local phase shift between

the base and the enhancement layers. They observed that the upsampling filter could

produce an output sample that is situated at a different location compared to the input

sample and, therefore, proposed a frame-based (or block-based) shift parameter to im-

prove coding efficiency. Wong et al. in [50] proposed to add the right and down pixel

lines in the base layer to improve prediction.
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2.2.4 JPEG-XR Intra Prediction

As compared with existing intra prediction schemes, JPEG-XR [2] (formerly known as

HD Photo) has a different take on the prediction problem. Instead of predicting based

on spatial correlation in intra blocks, intra prediction in JPEG-XR uses a LIP-based

prediction in the frequency domain that predict frequency coefficients directly.

Figure 2.6: JPEG-XR prediction modes: (a) DC values to the left (L), top-left (D) and
top (T) of the current DC value (X); (b) prediction from top for AC values and (c)
prediction from left for AC values.

The DC and AC coefficients are predicted separately. There are four modes for DC

prediction: prediction from left (p = DC[L]), from top (p = DC[T ]), from left and

top (p = 1/2(DC[L] + DC[L])) and no prediction. The left, top neighboring blocks are

indicated in Fig. 2.6(a). The pseudo coding to perform the DC prediction is given in

Fig. 2.7(a). The prediction of AC coefficients is determined by a lowpass AC mode, and

a highpass AC mode. The lowpass AC mode is similar to the DC mode except that the

prediction direction from left and top (p = 1/2(DC[L] + DC[L])) is not available. The

highpass AC mode is shown in Fig. 2.6(b) and the pseudo code is shown in Fig. 2.7(b).

In summary, most recent intra prediction schemes adopt LIP in the pixel or the

frequency domain from neighboring coded blocks. One advantage with LIP is that it is

relatively simple to compute while providing good prediction for blocks in a homogeneous
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Figure 2.7: The pseudo code for (a) DC prediction and (b) AC high pass prediction in
JPEG-XR.

region. However, for blocks with gradient changes, such as edges and textures, LIP may

not have the ability to provide good prediction.

2.2.5 Multi-hypothesis Prediction

Sullivan [42] proposed a “multi-hypothesis motion compensation” (MH-MCP). Although

it is an inter-frame prediction algorithm, we included it here since it is based on the same

principle of previously mentioned least squares (LS) prediction.

MH-MCP extends the idea of pixel-based LS prediction to the block level. A total

number of n blocks of h1, h2, ..., hn from previous reference frames were used to form a

single prediction to the target block s in the current frame. These blocks hv are termed as
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hypothesis. The prediction block ŝ is determined by a linear combination of the available

hypothesis hv as

ŝ =
N∑
v=1

cvhv, (2.11)

where ci are coefficients that determine the weight of each components for the prediction

block. The prediction difference of s− ŝ is coded together with the displacement vector

of each hypothesis hv and their coefficients hv.

In order to find hi, an exhaustive search combined with the rate-distortion optimiza-

tion (RDO) is used. Theoretical investigation conducted by Girod [18] shows that a linear

combination of multiple predictors can improve the motion compensation performance.

However, there are a few drawbacks with the MH-MCP. Most of all, the search method

used in finding the optimal set of hi is computationally prohibitive. In the practical ap-

plication, a compromise can be achieved by assigning the same coefficients to each of the

hypotheses instead of finding the optimal coefficients individually [15]:

ŝ =
1
N

N∑
v=1

hi. (2.12)

Second, although coefficients are constant for each hypothesis, the MH-MCP still has to

send out the spatio-temporal displacement vectors for each optimal hypothesis (∆x,∆y,∆t)

as side information to the decoder. The increase in the amount of side information could

potentially mask the efficiency provided by the MH-MCP.
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2.3 Conclusion

In this chapter, we reviewed some of key developments in the area of predictive coding.

The challenges and requirements for efficient intra prediction in both classic single layered

coding environment and in scalable coding environment were discussed. In Chapter 3, we

will present an advanced intra prediction scheme that can deliver higher coding efficiency

and better image quality. In Chapter 4, we will propose a scalable intra prediction with an

alternative hierarchical structure and a more efficient prediction scheme that can deliver

improved coding performance as compared to the existing SVC intra prediction.
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Chapter 3

Joint Block/Line-based Intra Prediction

3.1 Introduction

Current video coding standards such as H.264/AVC utilizes both temporal and spatial

redundancy to improve coding performance. Temporal redundancy refers to correlations

between adjacent frames within a sequence of a video along the timeline while spatial

redundancy refers to the correlation between pixels within the same frame. Inter frame

and intra frame are developed to exploit these correlations. In actual coding algorithms

such as MPEG-2, MPEG-4 and H.264/AVC, inter frame and intra frame are arranged into

a group of pictures (GOP). A GOP typically contains one intra-frame in the beginning of

a GOP, serving as the key frame for the sequence followed by multiple inter-frame. The

Intra frame exploits only spatial redundancy while the inter frame exploits both spatial

and temporal redundancies. Due to the strong correlation in the temporal domain, inter

frame prediction is typically more efficient than intra frame prediction. However, the

inter frame is difficult to access in a random fashion for the editing purpose due to its

dependence on other frames within the same GOP. As digital video production becomes
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popular in the movie industry as well as the consumer electronics market, an easily

accessible and editable coding format is desirable. H.264/AVC intra prediction is one of

the leading choices due to its random accessibility and overall excellent coding efficiency

as compared with other image-based compression algorithms such as JPEG, JPEG-2000

and JPEG XR.

The JPEG standard offers one of the most influential image compression algorithms.

It revolutionized image compression with the use of the block-based Discrete Cosine

Transform (DCT), which allows good frequency decomposition. JPEG-2000 was stan-

dardized by the JPEG committee in 2000 and later incorporated in the digital cinema

initiative (DCI) as a way to achieve improved coding efficiency and individual frame ac-

cessibility. JPEG XR, formerly known as HD photo and developed by Microsoft, is the

latest attempt in still image coding. Comparison of various image coding methods was

recently conducted in [34], which reported that H.264/AVC intra prediction provides the

best coding performance in most test images.

Intra prediction in H.264/AVC is a line-based approach, where pixel values from

neighbors of the target block are extrapolated to construct a prediction block. Different

directional predictions are defined by modes and used to exploit the spatial correlation

that may exist between the predicted and the actual pixels in a target block. For the

luminance component, three types of intra prediction are available, Intra16x16, Intra8x8

and Intra4x4. Different directional predictions are defined by modes and used to exploit

the spatial correlation that may exist between the predicted and the actual pixels in a

target block. For example, nine prediction modes are adopted for Intra4x4. Similarly,

nine and four prediction modes are used for Intra8x8 and Intra16x16, respectively. In
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this work, this prediction method used in H.264/AVC intra prediction is referred to as

line-based intra prediction (LIP).

One advantage associated with the LIP is that it is simple to compute and efficient

to predict blocks in a homogeneous region. However, the LIP has some performance

limitation in the coding of textured blocks and images with high PSNR requirements.

For blocks with gradient change or edges, the LIP may not be able to capture details,

which often results in a clear contour of the residual image after prediction. An example

is shown in Fig. 3.1. Fig. 3.1 (a) shows a frame taken from Pedestrian sequence of

resolution 1920x1080 and a highlighted region in the upper-right corner of the original

image. Fig. 3.1 (b) gives the H.264/AVC intra prediction error frame and the prediction

residual in the highlighted region. Fig. 3.1 (c) shows the reconstructed frame and the

highlighted region. We see a clear contour of prediction errors in Fig. 3.1 (b). This would

result in a higher bit rate since high frequency components are not completely removed

and, therefore, coding efficiency is negatively affected. Hence, for latest high definition

image coding with high PSNR requirements, there is an urgent need to develop an intra

coding algorithm that can deliver a high compression ratio while maintaining a desired

PSNR level.

Due to the limited prediction samples available from the neighboring coded blocks

in the LIP, Conklin [17] proposed to extend the coded pixel line to include more pixel

samples for prediction. Yu and Chrysafis [45] extended this idea further by introducing

a displacement vector (DIP) which measures the distance between the reference and the

target blocks in the same frame. As revealed by experimental results in [45], the DIP is

scene/complexity-dependent. As spatial correlation allows better intra prediction results,
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(a)

(b)

(c)

Figure 3.1: Visual comparison for full and partially enlarged Pedestrian (a) original frame;
(b) residual after H.264/AVC intra prediction; and (c) reconstructed frame.
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Shiodera et al. [48] proposed to change the coding order of subblocks, i.e., to encode the

sub-block in the right bottom position first. By doing so, the other three sub-blocks

can utilize the spatial correlation from the right bottom sub-block and, thus, improve

coding efficiency. Experimental results show that this approach can achieve around 0.2

dB PSNR improvement. A template matching technique was introduced in [47], [4] to

improve coding efficiency of a textured surface.

The rest of the chapter is organized as follows. A novel block-based intra prediction

(BIP) coding technique is proposed to improve DIP in Sec. 3.2 by applying 2D geo-

metrical manipulations to the reference block. An advanced joint BIP and LIP scheme

(JBLIP) with Rate-Distortion optimization is proposed in Sec. 3.3. A fast mode selection

scheme for JBLIP is described in Sec. 3.4. Experiment results are provided to show the

effectiveness of the proposed intra prediction scheme in Sec. 3.5. Finally, concluding

remarks are given in Sec. 3.6.

3.2 Block-based Intra Prediction (BIP)

The idea of the DIP can be illustrated in Fig. 3.2, where blocks B and P are the target

and the reference blocks, respectively. For target block B to encode, there could exist

another coded block P that exhibits visual similarity to B. To explore this similarity, a

displacement based intra prediction method is adopted in the DIP. This idea is similar to

motion prediction in inter-frame coding except that blocks P and B belong to the same

frame (rather two different frames) now. However, the pool of reference blocks is relatively

small, which affects the coding efficiency of the DIP. Being motivated by fractal image
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coding, one way to enrich the pool of the predictive blocks is to apply 2D geometrical

manipulations to all reference blocks, such as scaling, rotation and reflection [11]. They

will be examined in this section in detail. This block-based intra prediction scheme with

2D geometrical manipulations is denoted by the BIP for the rest of this chapter.

3.2.1 Translation

2D Translation enables the search for a reference block with the strongest similarity

within a specified space. As shown in Fig. 3.2, block B is the target block, shaded region

Rc is the previously coded region, and region Rf is the region to be coded. Clearly, the

position vector (x′, y′) of reference block P is limited to region Rc. The prediction block

P is obtained through 2D translation via

P (x′, y′) = B(x+ δx, y + δy), (3.1)

where (δx, δy) is the translational vector (or the displacement). 2D Translation allows the

encoder to search for a similar copy within the coded region by a spatial displacement.

Once a good prediction block is found via 2D translation, additional transformation on the

prediction block would introduce more matching options, which could allow exploitation

of further reduce the prediction residual. Therefore, we would like to consider a larger pool

of candidate blocks obtained by 2D geometrical manipulations such as scaling, rotation

and reflection as explained in the next subsections.
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Figure 3.2: Block-based intra prediction with 2D translation.

3.2.2 Scaling

To achieve the 2D scaling of a prediction block, a upsampling interpolation scheme can be

applied. As shown in Fig. 3.3, pixels A, B, C and D are existing input pixels in the coded

region. If we intend to get a scaling of 1:2 along both vertical and horizontal directions,

we need to interpolate values of half-pixels denoted by shaded circles; namely, e, f, g, h,

i. A straighforward bilinear interpolation scheme can be applied to obtain the half-pixel

position as:

e = [A+B + 1] >> 1, (3.2)

f = [A+ C + 1] >> 1, (3.3)

g = [B + C + 1] >> 1, (3.4)

h = [C +D + 1] >> 1, (3.5)

i = [A+B + C +D + 2] >> 2. (3.6)
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Figure 3.3: 2D scaling using bilinear interpolation.

Similarly, for 1:4 scaling, the pixel samples as indicated by the crosses on Fig. 3.3 can

be obtained using the same formula as shown in Eq. (3.6). In this work, the 1:4 horizontal

and vertical interpolations are implemented by the cascade of two 1:2 simple horizontal

and vertical bilinear interpolations. A more sophisticated interpolation scheme such as

the six-tap filter employed for subpixel interpolation in H.264/AVC, can also be used

to provide better scaling results. After the prediction block is scaled, current block will

perform a search similar to the process described in subsection 3.2.1. Thus, the position

of the prediction block can be obtained as

P (x′, y′) = S(Sx, Sy). (3.7)

It is important to point out the difference between the search of 2D scaled blocks as

presented here and the subpixel search scheme used in H.264/AVC motion compensation.

In H.264/AVC motion search, sub-pixel search is commonly viewed as a local refinement

technique. That is, we refine the motion vector to allow it takes the half- or quarter-pixel

positions as shown in Fig. 3.4(a). Basically, the size of the region covered by the reference

and target blocks remains the same.

34



Figure 3.4: (a) H.264/AVC subpel motion search scheme v.s. (b) 2D scaling search
scheme.

In contrast, with the proposed 2D scaling method, we can increase the size of the

reference blocks 4 or 16 times and there is no definitive correlation between the best

matched integer position and the best matched sub-pixel position in our current context.

An example is given in Fig. 3.4 4(b), where we show the best matched positions under

the integer-, half- and quarter-pixel interpolation results. Hence, each position bares the

same weight and needs to be treated equally.

3.2.3 Rotation

Besides translation and scaling, the rotation of reference blocks in coded region Rc is also

included to enhance prediction results. The rotation angle, θ, is chosen to be 90, 180,

and 270 in our work. The use of only 90-degree interval rotation avoids the problem of

block cropping, and efficient implementation of 90-degree rotation is widely available in

both software and hardware. The rotation operation can create more prediction blocks
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with different orientations. This allows blocks with lines and edges to be better aligned.

The prediction block from 2D rotation is thus obtained as

P (x′, y′) = P (x′, y′)×R(θ), (3.8)

where

R(θ) =

 cos θ − sin θ

sin θ cos θ

 .

3.2.4 Reflection

The last 2D geometrical manipulation is block reflection with respect to central horizontal

and vertical lines and diagonal lines. However, since the reflection with respect to the

diagonal line does not provide significant performance enhancement in our experiments,

we only include the reflection with respect to the x- or the y-axis. The prediction block

can be obtained as

P (x′, y′) = P (x′, y′)× F (2θ), (3.9)

where

F (2θ) =

 cos 2θ sin 2θ

sin 2θ − cos 2θ

 .
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3.2.5 BIP with Enhanced Mode

In most cases, the BIP provides much lower prediction error compared to the LIP scheme.

However, for some highly complexed textured area, the performance gain from the pre-

viously proposed 4x4 is still limited. To further improve the prediction error of these

textured area, we incorporate a 2x2 block decomposition in the existing BIP based on

4x4 blocks. For complex blocks that do not have a good prediction result in the 4x4 BIP,

we allow them to be further partitioned into 2x2 blocks and perform 2x2 block transla-

tion. This is considered an enhancement mode for the BIP. As 2x2 enhancement mode

is designed to target the texture prediction, the 1:2 scaling in the previous geometrical

manipulations are eliminated as 1:2 scaling to the prediction blocks to reduce the block

variance and hence would not fit the search requirements in the 2x2 enhancement mode.

Figure 3.5: Valid search candidate blocks for target 2x2 block x.

One design concern is that, to avoid unaccounted quantization errors, all predictions

much be kept in-loop. That is, for a 2x2 block to perform the BIP, all the search can-

didates much be based on reconstructed and decoded copies rather than original blocks.

Since the minimal transform size used here is 4x4 DCT, sub-blocks s1, s2, and s3 cannot
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be reconstructed until target block x finishes its prediction as shown in Fig. 3.5. Hence,

subblocks s1, s2, and s3 cannot be used as the prediction candidate blocks for sub-block

x. The same principle applies to subblocks s1, s2, and s3 as well. In other words, only

the shaded region in Fig. 3.5 can be used for prediction for sub-block x.

3.3 Joint Block/Line-based Intra Prediction with Rate and

Distortion Optimization

The BIP with an enhancement mode has shown to have the ability to effectively reduce

prediction errors for textured blocks using 2D geometrical manipulations including trans-

lation, rotation, scaling and reflection. However, common images or video sequences are

usually a mixture of homogeneous regions and textured regions. As it pointed out earlier

that when coding homogeneous regions, the LIP has the advantage of low mode overhead

and simpler computation. Furthermore, if either LIP or BIP cannot produce a good

prediction error, the LIP still has the advantage of lower overheads. Therefore, for these

blocks, it is sometimes desirable to use the LIP modes in place of the BIP modes for an

improved performance gain.

The prediction error in terms of the rate obtained from the LIP and the BIP are

plotted in Fig. 3.6. The center dotted line of y = x indicates the prediction error in

terms of rate produced by both the LIP and the BIP are the same. It is obvious that

although the BIP provides much lower prediction errors in most blocks, there still exist

some blocks that have a lower prediction error from the LIP. Hence, in this section, we

propose a joint block/line-based intra prediction scheme (JBLIP). In JBLIP, the LIP and
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BIP modes are jointly selected via a rate-distortion optimization (RDO)-based scheme.

The mode that delivers the best RD performance will be used as the final coding mode.

Figure 3.6: The rate-distortion cost comparison between LIP and BIP.

We describe the process of selecting the best intra prediction mode among all these

modes. Being similar to the mode decision process in H.264/AVC, we adopt the La-

grangian Rate-Distortion optimization (RDO) procedure for the optimal mode decision.

The RDO process evaluates all available modes simultaneously and chooses the one that

minimizes the Lagrangian cost function. Mathematically, this can be written as

min{J(blki|QP,m)},

J(blki|QP,m) = D(blki|QP,m) + λm ·R(blki|QP,m), (3.10)
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where D(blki|QP,m) and R(blki|QP,m) are the distortion and the bit rate of target block

blki for a given coding mode of m and quantization parameter (QP), respectively. The

minimization of the RD cost function in Eq. (3.10) implies that the RDO process decided

the best mode which minimizes the distortion D(blki|QP,m) and also satisfies the rate

constraint Rst,i, i.e. R(blki|QP,m) ≤ Rst,i. the Lagrangian multiplier λm in (3.10) is

used to balance the distortion and bit rate. It is usually set as λm = c · 2(QP−12)/3 as

in H.264/AVC. Therefore by selecting a larger Lagrangian multiplier λm, the Lagrangian

cost function will be more biased towards the mode that produces a smaller rate. The

Lagrangian multiplier λm can be obtained by the formula as suggested by [44].

The rate model for R(blki|QP,m) is primarily consisted of the rate produced by head-

ers Rhdr and the rate produced by the prediction error/residual Rres, R(blki|QP,m) =

Rhdr + Rres. The rate model for header bits Rhdr will be different from LIP modes and

BIP modes. As the translational vectors (TV) used in the BIP is similar that of the

motion vectors (MV) in inter frames we could adopt the rate model in [9]. Thus Rhdr can

be modeled as a function of number of TVs Ntv and number of non-zero TV elements

NnzTV e which is written as

Rhdr,BIP = γ · (NnzTV e +Ntv), (3.11)
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where γ is a model parameter andω is a weighting factor depending on the number of

reference frames used in an inter frame. As the BIP does not use multiple reference

frames, ω will be set as 0.3. For all LIP modes, the header bits can be modeled as

Rhdr,LIP = NLIP · bLIP , (3.12)

where NLIP is the number of LIP modes and bLIP is the average number of mode bits

used for LIP. The rate model for prediction residual bit can be modeled as a function of

quantization parameter (QP) as

Rres = α · SATD
QP τr

, (3.13)

where α is a model parameter and τr is set as 0.8. A Hadamard Transform (HT) is used

to find the sum of absolute transformed difference (SATD).

Distortion D(blki|QP,m) can be modeled as

D = β · SATD ·QP τd , (3.14)

where β is a model parameter and τd is 1.2 for LIP modes and 1.0 for BIP modes. Note

that a 4x4 Hadamard transform is used in the RDO process for LIP and BIP modes

except the BIP enhancement modes. Thus, to facilitate the 2x2 block matching process,

the SATD used in both rate and distortion models used in Eqs. (3.11)-(3.14) is replaced

by the sum of absolute difference (SAD) for simpler computation.
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Typically, the BIP and the LIP are applied simultaneously, and we can choose the best

mode among all possible BIP and LIP modes to be the ultimate intra prediction mode. It

was shown in [10] that JBLIP scheme achieves a significantly improved performance gain

than the application of the LIP alone. However, due to the exhaustive search method used

to obtain the best prediction block, the computation complexity of JBLIP is very high.

Hence, it is important to reduce the complexity of the BIP mode search while maintaining

its good RD gain. In the next subsection, we will introduce a block classification method

that could pre-filter those blocks that could be well predicted by the LIP alone.

3.4 Fast JBLIP Mode Selection Scheme

Being inspired by fractal coding, a block-based advanced intra prediction scheme that

utilizes both the simplicity of LIP and the good prediction quality from prediction with 2D

geometrical manipulations that includes block translation, scaling, rotation and reflection

was introduced in Sec. 3.3. The purpose of geometrical manipulations is to increase the

number of match candidates so as to provide a better rate-distortion (R-D) tradeoff.

However, the overall computational complexity of JBLIP is extremely high when the

RDO scheme evaluate all the LIP and BIP modes simultaneously to select the best

mode. Therefore, it is desirable to develop a fast model selection scheme to speed up the

prediction process while maintaining the good R-D performance.

3.4.1 Block Classification

The BIP was designed to provide better prediction to blocks with medium to high surface

textures where the LIP fails. Hence, if the target block does not contain much surface

42



(a) (b)

Figure 3.7: JBLIP rate reduction histogram for a total number of 10 frames from (a)
Mobile and (b) Foreman sequences.

variation, the JBLIP scheme would select LIP mode as its best prediction mode due

to the RDO process employed in Sec. 3.3. Fig. 3.7 provides two histograms of the

rate reduction using the BIP for frames with different complexity. It shows that the

performance gain only comes from 50 to 60 percent of blocks that benefit from the BIP

significantly. For those blocks clustered around the origin, there is no performance gain,

and we can use the simple LIP method. Consequently, by properly categorizing the target

block, the overall computational complexity can be reduced dramatically. Therefore, for

homogenous blocks, we classify them as ”L” blocks and others ”D” blocks.

Intuitively speaking, block classification can be done based on its surface property.

For example, if the block is relatively homogeneous, it could be well predicted by the LIP

only. This idea can be illustrated in Fig. 3.8, where highlighted blocks indicate those

benefit from the BIP substantially. All blocks in flat regions are unhighlighted, as the

BIP has no clear advantage there. On the other hand, the effectiveness of the BIP is not

simply proportional to the complexity of surface texture. Actually, the block that benefit
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(a) (b)

(c) (d)

Figure 3.8: Highlighted blocks in frames (a)Foreman and (b)Flower garden are those that
have joint RD gain from BIP; (c) and (d) are the partial enlarged areas for Foreman and
Flower garden respectively.

the most from the BIP are those that are relatively homogeneous but with slight texture

variations as shown in Fig. 3.8(c) and (d).

We employ a parameter to capture the surface complexity of a block. If it is too

small, the RDO process will evaluate LIP modes only and would not consider BIP modes.
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Figure 3.9: Histograms for normalized η and variance σ2 with x-axis in Logarithmic scale.
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Because this is a pre-processing step for every block, the simpler, the better. Hence, we

compute the following feature

η = max(X)− X̄, (3.15)

where X̄ is the average intensity level of the target block. We normalize the variance and

η of the target block within [0, 1] and plot them in Fig. 3.9 (a) and (b), respectively, for

visual comparison. We see that they follow a similar trend while Eq. (3.15) has a lower

complexity as compared to the variance computation. If η is greater than a predefined

threshold, we classify these blocks as ”L” blocks and they will be predicted with LIP

modes only. For all other ”D” blocks, the RDO in AIP will evaluate all LIP and BIP

modes.

3.4.2 JBLIP Search Window

The block classification method introduced in Sec. 3.4.1 can effectively identify those

”L” blocks that can be well predicted by LIP alone. It reduces the overall computation

complexity as the RDO process will no longer evaluate BIP modes for those blocks that

are classified as ”D” blocks. However, for those ”D” block, the complexity is still very

high as shown in Fig. 3.2, when using the BIP modes, the area allowed for coded region

Rc becomes larger as block B moves towards to the lower-right corner. It is desirable

to decide a proper size of the search range within coded region Rc to avoid the growing

number of computations. To meet this goal, some statistically data were collected from
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different test images and plotted in Fig. 3.10, where we show the histogram of the

horizontal and vertical displacements of the optimal translational vectors.

(a) (b)

Figure 3.10: Translational vector histogram for a combination of HD frames.

As shown in the figure, the optimal horizontal translational vectors are bounded about

by +40 and -40 pixels while the vertical translational vectors are bounded by 0 and -35

pixels. Therefore, we could set the translational vector search window to be a stride of

w pixels upwards, left-wards and rightwards of the current block as shown in Fig. 3.11.

This limited search window can reduce the complexity of the spatial domain search for

each block greatly while providing good performance.

Although the specified search window helps to limit the search complexity, the full

search (FS) method used in this window still constitutes a great percentage of the com-

putation time and a different treatment is proposed in the next subsections to further

reduce the overall complexity.
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Figure 3.11: Search window setup for the BIP.

3.4.3 Self-Correlation Analysis of Local Image Region

Fast search of similar blocks has been extensively studied in the context of inter-frame

prediction, known as the fast motion vector (MV) search. It consists of two major steps

[21]: 1) find a good initial MV position and 2) local MV refinement. For Step 1, the

temporal and spatial correlation of the MV field can be exploited. For Step 2, there exist

several well known techniques in the literature, including the diamond search (DS) and

the hexagonal search (HS) [8], etc.

Both DS and HS adopt two search patterns, i.e., a large one and a small one as shown

in Fig. 3.12. The large pattern is used first for faster convergence. Once the optimum

is found at the center, it switches to the small pattern to allow finer refinement. As

compared with DS, HS allows a better approximation of the circular shape yet with a

small number of search points to speed up the search. However, DS and HS work under

the assumption that the distortion function near the global minimum is an unimodal

function. The closer to the global minimum, the smaller the distortion.
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(a) (b)

Figure 3.12: Search patterns for circular zonal search (CZS) with each zone specified by
the same intensity. The position marked by ”x” is target block position.

In contrast, CZS is more relaxed on this assumption. It only demands a center-biased

property [36]. The zone is constructed so that each point within the same zone has the

same distance from center as shown in Fig. 3.12. Each zone can be described by

round
(√

MV 2
x +MV 2

y

)
= d− 1, (3.16)

where d is the zone index and (MVx,MVy) is the displacement vector of a search block

from the center (i.e. the position of the target block). When evaluating the best search

position, CZS considers both distortion and rate. As compared to FS, CZS offers a good

speed-up factor yet with very little R-D degradation.

The local MV refinement schemes all work under one assumption; namely, the inter-

prediction error surface is unimodal within a small neighborhood of the global minimum,

where the prediction error decreases monotonically as the search moves closer to the

global minimum [8]. For the BIP, temporal correlation cannot be exploited, and we need
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to study the spatial correlation between neighboring blocks. To achieve this, we perform

the self-correlation analysis in the spatial domain, which will reveal the error surface

structure around the global miminum. A stronger correlation implies a smaller error.

Figure 3.13: A frame from Stefan CIF sequence with two sample blocks using the BIP.

Since the BIP is more efficient in predicting textured blocks, the spatial correlation is

conducted for textured block only. Two blocks from a frame of the Stefan CIF sequence

are chosen as test blocks as shown in Fig. 3.13. Block (a) is a texture block taken from

the background audience. It has many similar texture blocks in its neighborhood. Block

(b) is another block taken from the advertisement board whose neighboring blocks have

different surface properties.

The self-correlation of the target block (marked with black dot) with its spatial neigh-

bor region is shown in Fig. 3.14 with the 3D and the 2D contour plots. The position

with the highest correlation is marked with ”x”. The correlation surfaces are depicted in

different colors in 2D contour plots. The warmer the color, the higher the correlation is.

Since a causality constraint is required by the BIP search, we only show the correlation
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surfaces in the coded region. As shown in Fig. 3.14, there are too many local maxima in

these correlation surfaces. Consequently, we are not able to apply the DS or the HS di-

rectly for local prediction refinement since they may miss local (or global) minima easily.

The circular zonal search (CZS) [3] appears to be a more suitable choice. However, for

the case of block (b), the CZS will exhaust almost the entire search window to reach the

global maxima, if the search starts from the origin.

We can draw a simple conclusion from the above discussion. That is, the error surface

of BIP is more irregular than that of the MV search in inter prediction. The correlation

surface may have many local minima in the neighborhood of the best match. If the

DS/HS is applied, the search could be trapped to a local minimum easily and the overall

RD performance can be degraded significantly as compared with that of the FS. On the

other hand, if the CZS is applied, its complexity could be close to that of the FS. Thus,

the speed-up of the BIP search is a more challenging problem than the fast MV search

problem in inter prediction.

In the next section, we propose a fast BIP search scheme that can maintain good RD

performance as provided by the CZS yet with much reduced computational complexity.

First, a translational vector prediction scheme is introduced in Sec. 3.4.4 to establish

a close approximation to the global minimum. A zone-based fast search algorithm is

proposed in Sec. 3.4.5. In addition, a candidate block pruning method is presented to

limit the search complexity by eliminating those reference blocks that do not provide a

good match in advance in Sec. 3.4.6.
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(a) (b)

(c) (d)

Figure 3.14: Self-correlation surfaces for blocks within the same frame: (a) the 3D plot
and (b) the 2D contour plot of a correlation surface obtained for block (a) in Fig. 3.13;
and (c) the 3D plot and (b) the 2D contour plot of a self-correlation surface for block (b)
in Fig. 3.13.
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Figure 3.15: The BIP displace map for (a) a full frame in the CIF Foreman sequence, (b)
and (c) contain partially cropped close-up maps from (a), and (d) displacement prediction.

3.4.4 Search Initialization via Prediction

One important component of a fast search algorithm is to have a good initial search

position which is close to the optimal one. This not only speeds up the search process but

also reduces the possibility of being trapped to a local minimum. Classic MV prediction

is conducted based on the MV correlation in the spatial or the temporal domain. For

the BIP, we observe that the neighboring translational vectors exhibit some degree of

correlation spatially. Fig. 3.15 gives an example of a translational vector map for a

typical frame. Two close-up views are provided in Figs. 3.15 (b) and (c).
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As shown in these figures, many translational vectors exhibit some degree of similarity.

Thus, by borrowing the concept of MV prediction in the spatial domain, we can predict

an initial translational vector via

x̂ = median{a, b, c}, (3.17)

where x̂ is the estimated translational vector of the current block while a, b and c are the

translational vectors of its neighboring blocks as shown in Fig. 3.15 (d).

Median prediction is simple and effective at predicting translational vectors that are

highly correlated, thus it is very powerful in predicting MVs that has a very strong

correlation in temporal domain. However, a closer examination of the translational vector

map in Fig. 3.15 shows that the translational vectors form a map that roughly represents

the actual frame content, which is the head of foreman in this frame. Therefore, the

correlation between translational vectors are not as high as that of the MV in inter

frames. In the translational vector map, the edges of the contour are less correlated

compared to the flat regions of the frame. Hence, it is less effective to use median

predictor for translational vector prediction. On the other hand, it inspired us to treat

this translational vector map as a content frame and predict accordingly. A median edge

detector (MED) as given in Eq. (3.18) is proven to provide a good edge prediction and

thus can be adopted in our translational vector prediction without incurring additional

mode overhead.
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x̂ =



min(a, b) if c ≥ max(a, b),

max(a, b) if c ≤ min(a, b),

a+ b− c otherwise.

(3.18)

Fig. 3.16 shows the prediction results using both median predictor and median edge

detector. It can be seen that median edge detector provides a better prediction results

than median predictor.

3.4.5 Zone-based Fast Search

The fast search algorithm starts from the predicted displacement position as given in Eq.

(3.18) and a zone called Zone 1 with search window of w1 is constructed around this

initial search position, where the CZS is performed. Zone 1 is set to be relatively small

since translational vectors are spatially correlated and the prediction is expected to be

close to the actual global minimum. If the search in Zone 1 yields a sufficiently good

result (e.g., less than a pre-set threshold γ), the search will terminate immediately.

However, if the search in Zone 1 does not yield a satisfying result, it is most likely that

the global minimum is not close to the position pointed by the predicted translational

vector. Hence, we need to re-initialize the start position and prepare the second round

of search. In a local texture region, the global minimum is often close to the target block

itself. Thus, the block immediately to the left of the target block is selected as the center

of Zone 2 with search window of w2 at this new location and the CZS is performed.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Translational vector histograms for x- and y-axis respectively: (a)and(b)
without prediction; (c) and (d) with MAP predictor; (e) and (f) with MED predictor.
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Figure 3.17: The proposed adaptive search zones and patterns, where non-searchable
areas in Zones 2 and 3 are marked out for ease of visualization.

Again, w2 is set to a small value since the likelihood to have a good displacement around

this position is high.

However, if results from Zone 1 or Zone 2 are poor, the global maxima could be

outside of these zones and we need to enlarge the search window. That is, we adopt

the same center of Zone 2 but extend the search window to w3. The above process is

illustrated in Fig. 3.17.

3.4.6 Candidate Block Pruning

When the CZS is applied, the search complexity will be close to that of the FS if the

optimal point is located in the boundary of a zone as the example shown in Fig. 3.14(d).

Thus, we need some mechanism to trim unlikely positions to save the computational cost.

A block pruning method based on the difference of the variances between target block t

and candidate block c is often adopted in the context of fractal image coding:
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|σ2
t − σ2

c | > T, (3.19)

where T can be adaptively selected as T = θ · σ2
t and where θ is another parameter.

However, the variance computation is still costly, and we would like to look for a simpler

way for block pruning.

In the CZS scenario, candidate blocks are often offset by one pixel either horizontally

or vertically. Hence, we for a block of size n × n, could compute average line-based

variances µv and µh horizontally or vertically as:

µv =
1
n

n∑
i=1

σ2
v(x = i), (3.20)

µh =
1
n

n∑
i=1

σ2
h(y = i), (3.21)

where σ2
v(x = i) and σ2

h(y = i) are horizontal or vertical line-variances for line segments

with index i. Thus, instead of re-computing the variance of the entire block at each now

position, we only need to compute the new line variance as the search windows moves

by one pixel. Then, we can perform the average of line-based variances µv and µh and

obtain

µv,h = 0.5(µv + µh). (3.22)
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for each block. Then, we can use µv,h in Eq. (3.22) to replace σ2 in Eq. (3.19).

To further reduce complexity, we can further replace variances in Eqs. (3.20) and

(3.21) by sums of absolute mean differences as:

µ′v =
1
n

n∑
i=1

diffv(x = i), (3.23)

µ′h =
1
n

n∑
i=1

diffh(y = i), (3.24)

where diffv(x = i) and diffh(y = i) are sums of absolute mean differences for line

segments with index i horizontally or vertically. Eqs. (3.23) and (3.24) are implemented

in the experimental section for the block pruning test:

|µ′(v,h)t
− µ′(v,h)c

| > T ′, (3.25)

where T ′ is an adaptively selected threshold. If the test is met, the candidate block is

pruned so that we can move to the next candidate block. This simplification allows the

CZS to move faster towards the true global minimum. The search performed in Zone 3

may also terminate early if a search result meets the predefined threshold.

In the full BIP search, 2D geometrical manipulations such as rotation and reflection

will be performed for every translation vector. This can be implemented by applying the

rotation and reflection to the target block to generate 8 blocks. Then, we will perform the

matching between these 8 target blocks and a candidate block. Therefore, as the target
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block is being encoded one at a time, it can first go through the 2D manipulation and

each manipulation can be saved without incurring much overhead. As a result, the mode

selection process will happen between the unaltered reference blocks and the manipulated

target blocks. A global flag must be set for the entire sequence to indicate that the mode

information must be interpreted on the decoder side as the manipulation on the target

block rather than on the reference block. 2D scaling is disabled in this paper since the

target block size will change under the fast search approach.

3.5 Experimental Results

Experiments were conducted with the H.264/AVC reference codec JM12.1 [1] on a PC

with Intel core 2 duo@1.8GHz. The search window of the BIP full search was w = 16. A

total of twelve YUV 4:2:0 sequences with three different resolutions were tested. For CIF

resolution, we used Flowergarden, Foreman, Mobile and Coastguard. For HD sequences

at 1280 x 720 resolution, we tested Night, City corridor, Harbor and Sheriff. For HD

sequences at 1920x1080 resolution, we tested Vintage car, Pedestrian, Rush hour and

Sunflower.

We first compare the average coding efficiency between 1) H.264/AVC using LIP only,

and 2) proposed joint block/line-based intra prediction with full BIP search. The average

PSNR gain and bit rate reduction results are obtained based on [16] and collectively

shown in Table. 3.1. The decoded images from each scheme are shown in Fig. 3.18.

The second set of experiments are conducted between the following three schemes:

1) H.264/AVC using LIP only, and 2) proposed JBLIP with joint LIP/BIP with full
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LIP decoded JBLIP decoded

(a)

(b)

(c)

Figure 3.18: Decoded partially enlarged image for (a) Foreman (b) Night, and (c) Rush
hour.
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(a) (b)

(c) (d)

Figure 3.19: Rate-Distortion curves for (a) Flowergarden, (b) Foreman, (c) Mobile and
(d) Stefan.

search BIP; and 3) joint LIP/BIP with the proposed fast BIP search. for each resolution

in Figs.3.19, 3.20, and 3.21,: The proposed fast search algorithm was set up with the

following parameters: w1 = w2 = 8, w3 = 16, and γ = 32. We define a speed-up factor as

fs = 1−
Cfast
Cfull

, (3.26)
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(a) (b)

(c) (d)

Figure 3.20: Rate-Distortion curves for (a) Harbor, (b) City Corridor, (c) Night and (d)
Sheriff.
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(a) (b)

(c) (d)

Figure 3.21: Rate-Distortion curves for (a) Vintage car, (b) Pedestrian, (c) Rush Hour
and (d) Sunflower.
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Table 3.1: Coding Efficiency Comparison between JBLIP and LIP.

CIF Sequences
Sequence ∆Bitrate(%) ∆PSNR(dB)

Flowergarden -6.75 0.46
Foreman -10.34 0.69
Mobile -3.53 0.34

Coastguard -10.73 0.76
HD Sequences @ 1080x720

Sequence ∆Bitrate(%) ∆PSNR(dB)
Night -11.02 0.76

City corridor -11.01 0.69
Harbor -12.67 0.78
Sheriff -15.37 0.82

HD Sequences @ 1920x1080
Sequence ∆Bitrate(%) ∆PSNR(dB)

Vintage car -10.29 0.88
Pedestrian -30.11 1.36
Rush Hour -28.45 1.43
Sunflower -36.04 1.68

where Cfull is the computational time demaned by the full BIP search and Cfast is the

computational time using the proposed fast BIP search. The speedup factors are shown

in Table. 3.2.

We see that the performance of the proposed fast search method lies between the full

BIP search and the LIP-based H.264/AVC. The proposed fast BIP search reduces the

BIP FS complexity by an average of 67 to 72% at the cost of small RD degradation.

3.6 Conclusion

In this work we proposed a novel BIP scheme for efficient image (or intra-frame) coding,

where we apply various 2D geometrical manipulations to reference image blocks to enrich

the pool of prediction blocks for a given target block. This BIP is further enhanced and
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Table 3.2: The speed-up of the proposed fast search with respect to the full search BIP.

CIF Sequences
QP Flowergarden Foreman Mobile Coastguard
20 0.673 0.702 0.556 0.743
22 0.722 0.722 0.560 0.746
24 0.738 0.715 0.568 0.751
26 0.731 0.737 0.586 0.758
28 0.745 0.750 0.571 0.753
30 0.750 0.758 0.612 0.766

HD Sequences @ 1080x720
QP Night City corridor Harbor Sheriff
20 0.745 0.683 0.766 0.803
22 0.771 0.695 0.768 0.833
24 0.779 0.722 0.810 0.850
26 0.792 0.738 0.784 0.858
28 0.790 0.759 0.801 0.850
30 0.811 0.770 0.819 0.887

HD Sequences @ 1920x1080
QP Vintage car Pedestrian Rush Hour Sunflower
20 0.775 0.770 0.776 0.754
22 0.782 0.748 0.754 0.756
24 0.789 0.812 0.769 0.783
26 0.775 0.837 0.828 0.788
28 0.782 0.835 0.851 0.805
30 0.786 0.856 0.826 0.829

a joint block/line-based intra prediction scheme (JBLIP) is proposed to jointly evaluate

LIP and BIP based on a rate-distortion optimization method. As compared with the

traditional line-based intra prediction in H.264/AVC, the new JBLIP scheme offers a

significant coding gain (about 0.68-1.68dB in the PSNR value with the same bit rate).

Furthermore, a fast JBLIP mode decision scheme is proposed to reduce encoder com-

plexity. A block classification method is used to identify those blocks that can be well

predicted with LIP only. In addition, self correlation analysis is provided to address the

weakness with existing fast search algorithms due to the unique characteristics in BIP.
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Translational vector prediction is used for near optimal search initialization and candidate

block pruning is adopted to assist in faster convergence. Results show that the average

speedup is around 10 times faster compared to the full search employed in JBLIP and

the average PSNR degradation is 0.14dB.
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Chapter 4

Hierarchical Intra Prediction for Lossless Image Coding

4.1 Introduction

Earlier image/video coding algorithms focused on low bit rate coding due to the limited

storage space and transmission bandwidth. However, due to the increased popularity

of high definition video and the availability of the broadband networking infrastructure,

recent research interests have gradually shifted from low-bit-rate to high-bit-rate (or high

fidelity) video coding. For applications in medical imaging, scientific geographic infor-

mation, professional digital photography, and digital videography, lossless coding is often

preferred due to the requirement to store and access original contents without any dis-

tortion.

More digital contents are delivered over the Internet nowadays, and there is another

urgent need to be addressed. That is, these contents are delivered in a scalable fashion.

This need arises from two fronts: 1) content preview and editing for on-board playback

of a camcorder and 2) content delivery over a a heterogeneous network. For on-board

preview, the limited LCD size (typically of 3-inch diagonally), decoder complexity and
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power restriction make the preview at the original resolution impractical. For content

delivery over networks, there is a need to tailor its format to different networking and

display requirements. Both of them demand an efficient scalable solution. H.264/SVC

offers a powerful scalable video solution. Being similar to its single-layer counterpart in

H.264/AVC, intra prediction in H.264/SVC adopts line-based spatial correlation within

each enhancement layer. Besides, H.264/SVC has sophisticated intra prediction that

exploits inter-layer correlation to perform inter-layer prediction for the enhancement layer.

However, even with inter-layer prediction, the coding performance of intra-frame coding

in H.264/SVC is still substantially worse than its single-layer counterpart H.264/AVC.

This deficiency motivates us to develop a more efficient scalable intra coding algorithm.

Since lossless coding and scalable coding are presented as solutions targeting at dif-

ferent market requirements, their codec designs are generally proposed in parallel and

developed independently by different standard committees. As a result, the existing scal-

able coding techniques put major emphasis on quality and spatial flexibility for low bit

rate streaming environments, while all lossless compression schemes are designed with

coding efficiency as its main design goal. Therefore, current scalable solutions not only

have no capability to deliver contents in a lossless fashion, the coding efficiency will also

suffer a substantial degradation in order to accommodate the added scalability. Ex-

perimental results in actual coding environments reported in [38, 31] have shown that

even the current leading scalable coding solutions, such as H.264 scalable video coding

(H.264/SVC) suffers a bit rate increase of 50 - 100% compared to the single-layered ap-

proach. This is mainly due to the repeated encoding of redundant information amongst

different layers and the inefficiency to fully explore these correlation between layers. On
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the other hand, current state-of-the-art lossless compression solutions, such as H.264 in-

tra lossless (H.264-LS) [27] and JPEG-LS [49], do not have any scalability built into the

codec. More importantly, the compression performance delivered by these codec are quite

limited. For images with medium complexity, the average compression ratio for lossless

codec is around 50%. That means the compressed file size is only reduced to about half

of that of its original copy.

In summary, it has been a major research challenge to support scalability while deliv-

ering acceptable compression performance. Consequently, none of these aforementioned

coding solutions can provide such compression architecture with built-in scalability rang-

ing from lossy to lossless quality requirements while at the same time delivers better

compression performance compared to the single layered approach. Thus, in this paper,

we propose a novel lossless hierarchical intra prediction scheme to try to address these

new requirements and provide an unified solution that can give a cohesive and efficient

treatment to these issues.

The rest of the chapter is organized as follows. we will first examine existing issues

with current codec, in Sec. 4.2 we propose an new coding architecture with a pyramidal

image decomposition scheme to establish a novel hierarchical coding structure that is

different from the existing scalable codec by separating signals of different correlation

characteristics. Based on this decomposition method, a hierarchical coding system with

multiple predictors is proposed in Sec. 4.3. To further improve prediction accuracy,

a joint inter-layer prediction with training set optimization is proposed by using the

gradient measured on the BL blocks to adaptively select the best suited training sets

without sending the displacement vectors to the decoder explicitly. Experimental results
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for the proposed lossless HIP scheme are given in Sec. 4.4 to demonstrate the effectiveness

of the proposed scheme. Finally, concluding remarks are given in Sec. 4.5.

4.2 Lossless Hierarchical Intra Prediction

Predictive coding is one of the fundamental principles behind existing image and video

coding techniques. It is a statistical estimation procedure where future random variables

are predicted from past and present observable random variables [20]. For an input

signal sample of xi, the prediction is carried out based on a finite set of past samples

x1, x2, ..., xi−1 as x̂i = f(X) = f(x1, x2, ..., xi). The optimal predictor of x̂i is based on

minimizing the error between xi and x̂i as

ε{(xi − x̂i)2} = ε{[xi − f(x1, x2, ..., xi)]2}. (4.1)

As there usually exists a very strong spatial and temporal correlation in an image or video

frames, good predictive coding techniques become extremely powerful in minimizing the

redundancy to achieve efficient coding. Next, we will examine the issues with existtng

signal modeling and decorrelation methods.

4.2.1 Signal Modeling and Decorrelation

Signal modeling is one of the main building blocks in signal compression since it is highly

related to entropy coding. In previous research, the Gaussian distribution is often used

to describe the distribution of AC coefficients [33]. However, it was soon found that

the Laplacian distribution is more suitable to describe the signal statistics when the
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Kologorov-Smirnov goodness-of-fit test is used [35]. Many other distributions of DCT

coefficients have been proposed in the past, including the generalized Gaussian, Cauchy,

etc. [26, 35, 41, 54].

In the actual coding system, natural images generally consist of nonstationary signals,

which cannot be well represented by a single distribution. A complex mixed Gaussian

distribution was proposed in [14] to allow better approximation. Although there has been

some debate on which model offers the best approximation, it is generally agreed that

there exists some discrepancy between the actual input signal and its model due to the

non-stationary property. Besides, researchers in the field of texture synthesis found that

natural images can be modeled as two-dimensional random fields (RF), which consiste

of both long- and short-range correlations. The long-range correlation generally refers to

the textures with most low frequency components and little variation in pixel intensity

while the short-range correlation usually refers to the areas with more complex textures

and variations.

For texture synthesis (or sometimes image compression), some random field models

are used to represent a wide variety of textures with a small number of parameters and

estimate the image activity based on spatial interaction of pixels in a local neighbor-

hood. For these natural texture with long-range dependency is generally known as the

Hurst phenomenon [19]. Therefore, earlier work on long correlation (LC) models [22] was

based on fractional differencing of low-order autoregressive processes. However, these

LC models lack the capability to represent short correlation (SC) characteristics. Thus,

another LC model [5] was introduced as fractionally differenced short correlation models.

Unfortunately, the two LC models mentioned above are not efficient in modeling long
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correlation structures in typical natural images since the autocorrelation model decays

too rapidly to model the long correlation within the image accurately. To address this

problem, generalized long correlation (GLC) models were proposed to explore these cor-

relations. It turns out that the difference between the three models are small. They are

not well suited for images with structured elements and, therefore, cannot be directly

used for efficient prediction.

Figure 4.1: The prediction system based on the divide-and-conquer (D&C) strategy.

In summary, natural images are non-stationary and they contain both long and short

correlations that cannot be well represented with a single model. However, to explore

long- and short-range correlation within an image serves as a fundamental building block

in our image decomposition scheme. In other words, we want to design a system that ex-

tracts the short-range correlation to one layer while simultaneously shorten the long-range

correlation to a well defined span within the neighbor set. This would allow both long-

and short-range correlations to be addressed independently. Therefore, in the proposed

image decomposition scheme, we introduce an additional frequency decomposition phase

before the prediction phase. This phase allows the system to identify signal components

of different correlation so as to perform a different prediction scheme based on signal’s

characteristics.
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To achieve this design goal, we adopt a divide-and-conquer (D&C) strategy by dividing

a problem into two or more smaller subproblems. Each of them is solved independently,

and their solutions are integrated to yield the final solution to the original complex

problem. For practical image compression application, one intuitive D&C algorithm

is to perform signal separation. By separating a signal into components of different

characteristics, we divide a complex problem into multiple subproblems as shown in Fig.

4.1.

In the next section, we present a spatial-domain signal decomposition scheme that

decomposes signals into subsignals according to their signal correlation characteristics.

4.2.2 Pyramidal Image Decomposition

A common image decomposition scheme can be achieved by performing a spatial-to-

frequency domain transform on the input image. The Discrete Cosine Transform (DCT)

is widely adopted in image and video coding standards such as JPEG, MPEG-1, MPEG-2,

MPEG-4, H.261 and H.264/AVC codec. It allows good energy compaction with relatively

simple computation as compared with the optimal Karhunen-Loeve Transform (KLT).

However, the coding system is set up in such a way that DCT usually works in the sec-

ond phase of decorrelating the prediction error after the prediction phase has removed

majority of the signal redundancy in the spatial domain. This scheme has one prob-

lem. That is, if the prediction phase cannot provide good prediction for high frequency

components of the image in high bit rate coding, high frequency components will exist

after image decomposition, which will affect the overall coding efficiency. To achieve sig-

nal decorrelation in the spatial domain, we propose an pyramidal image decomposition
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(PID) method to separate signals with LC and SC, where the down-sampling process

is used as a low-pass filter. After the decorrelation process, low and medium frequency

components in the form of LC signal components will reside in the downsampled upper

layers, leaving a small amount of residuals of SC signal components in the form of high

frequency components on the lower layer.

€ 

f

€ 

f
~

- 

€ 

fl

€ 

fu

Figure 4.2: Pyramidal image decomposition using a downsampling lowpass filter.

A pyramidal image decomposition scheme is shown in Fig. 4.2. The input sample, f ,

is first downsampled into an image of lower resolution denoted by fu. This low resolution

image is up-sampled back into f̃ of the original resolution. The difference image between

the upsampled fu and the original input f is denoted by fl. The image consisting of the

low to medium frequency components is extracted to the upper layer of fu while that

of higher frequency components such as sharp edges and fine textures are filtered into
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the lower layer of fl. Although the dynamic range of input pixel values does not change

much in f̃ , f̃ is however a blurred version of the original input, f , with most of its high

frequencies removed. These high frequency components are well preserved in lower layer

fl.

One important design aspect with the pyramidal image decomposition system is clean

signal decorrelation. We need to find a method that retains as much low and medium

frequency components in the lower layer as possible while keeping most high frequency

components in the upper layer. Because this PID scheme has the similar scalable char-

acteristics as SVC, we will retain the conventional phrasing of base layer (BL) and en-

hancement layer (EL) in our proposed system as well.

As the image of medium and low frequency components are now extracted into the

BL with its long correlation captured within the span, they can be well predicted using

the highly effective scheme proposed in [11] and coded by a small number of bits. In the

next subsection, we will examine the impact of different interpolation schemes.

4.2.3 Interpolation Scheme

Image interpolation techniques have been well studied in the past. For bilinear interpola-

tion, the resampled pixel value is obtained by the weighted average of 4 closest pixels. It

tends to yield a blurred version of the original image since pixel values are altered during

the process. Bicubic interpolation determines the output using the weighted average of 16

closest pixels. Its result is slightly sharper than that produced by bilinear interpolation.

The influence of two interpolation schemes on the EL statistics is compared in Fig.

4.3, where the image in display is a subimage taken from from the Pedestrian sequence of
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(a) Bilinear Interpolation

(b) Bicubic Interpolation

Figure 4.3: The impact of interpolation schemes on the low-layer image: (a) bilinear
interpolation and (b) bicubic interpolation, where the left-hand-side is the lower-layer
difference image while the right-hand side is its histogram.
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resolution 1920 by 1080. Since the test image contains both homogeneous and textured

regions, it serves as a good test case. The left-hand-side image in Fig. 4.3 is the lower-

layer difference image while the right-hand side figure is the corresponding histogram.

The bicubic interpolation scheme provides a smaller dynamic range for the EL, which

implies a better prediction result. Hence, it is used in our work.

4.2.4 Proposed Hierarchical Intra Prediction (HIP)

This pyramidal image decomposition serves as a good platform for hierarchical intra

prediction (HIP) for the following reasons. First, the low and medium frequencies can

be efficiently compacted into the BL which is smaller than the original size. Second,

although the EL is of the original size, most of low frequency components are removed.

This allows us to focus on high frequency components only. Third, as the BL is predicted

independently from the EL, the decoder can decode the BL individually without waiting

for the arrival of the EL. Even if part of the EL is lost or damaged during the transmission,

the decoder can still decode the BL to produce a coarser representation of the block

instead of an entirely corrupted block. This offers robustness to the decoding as the

impact of corrupted blocks will not affect the decoding of other blocks in the upper layer.

This last feature is even more important in video coding. Since P or B frames in an

image sequence rely on the availability of blocks of the I frame. If some blocks of the

I frame are lost or corrupted, those blocks in P and B frames will not be reconstructed

properly. However, this can be remedied by the HIP. As long as the BL is received

properly, even if the EL is lost, the P or B frames can still reconstruct based on the
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coarser representation in the BL. In general, this decomposition-based HIP can achieve

the same benefit offered by the traditional scalable structure with added features.
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Figure 4.4: The block diagram of the hierarchical intra prediction (HIP) scheme.

The block diagram of the hierarchical intra prediction (HIP) scheme is shown in Fig.

4.4. For an input image/frame, f , a pyramidal decomposition scheme with the bicubic

interpolation is used to downsample the original frame into a BL denoted by fu, one

predictor (called Predictor 1) is applied to fu to yield the prediction error of the BL,

denoted by εu. The BL prediction residual goes through a lossless entropy coder to

produce the final bit rate for fu. For correction block reconstruction, the prediction must

be kept within the coding loop. That is, the prediction must be performed based on the

reconstructed block instead of the original block. The module, Predictor1(D), indicates

the decoding process to reconstruct f
′
u. The same principle must be applied to the process
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of obtaining the EL, fl. In this figure, f̃ is an upsampled frame based on reconstructed

f
′
u instead of original fu.

The EL fl is further fed to a different prediction scheme called Predictor 2 to allow

the high frequency components to be compensated. The proposed HIP scheme produces

two layers of residuals with different resolutions, upper layer residual εu and lower layer

residual εl. Both of them need to be entropy coded. However, the decoder does not need

to receive both layers to decode the image. As the BL can be independently predicted

from the EL, the decoder can decode the BL first without waiting for the EL to arrive.

The decoded EL is added back to the BL at a later time for visual enhancement or

discarded if the time stamp expires in the case of video compression.
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Figure 4.5: The block diagram of the hierarchical intra prediction in the decoder.

Once the HIP decoder receives the BL prediction residual, εu, it can decode εu.

However, in order to properly decode εl, the decoder must possess the correctly decoded

εu to reconstruct f
′
u. As the decoder relies on the information in f

′
u to correctly reconstruct

fl. Fig. 4.5 shows the block diagram of the hierarchical intra prediction in the decoder.
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The reconstructed and upsampled BL, f̃ , can be added back to the decoded EL, fl, to

obtain the final reconstructed copy of f ′.

In our scheme, the EL has the same resolution as the original input and consists of

high frequency components, which poses a serious challenge on the existing prediction

scheme. To address this problem, we propose a block-based joint linear prediction method

that is designed to provide efficient prediction to the complex edge textures presented in

the EL. Since the lossless line-based prediction (LIP-LS) in H.264/AVC is designed for

homogeneous blocks with little texture variations, the prediction error is high in textured

regions as the LIP cannot deal with complex texture efficiently. In the next section, we

consider a different type of predictor that is designed to predict edge efficiently.

4.3 Predictive Coding with Linear Combinations

Differential Pulse Code Modulation (DPCM) is a typical predictive coding scheme that

generates prediction x̂i based on the past data samples without side information. Most

existing DPCM methods, such as JPEG-LS [49] and CALIC [52], are pixel-based to max-

imize inter-pixel correlation. However, for nontrivially oriented edges, DPCM performs

poorly. Lossless least squares prediction was proposed in form of [28, 46, 51, 53].

p =
N∑
i=1

cixi, (4.2)

where ci are coefficients to form the linear combination of the prediction. A training

window, usually in form of a double rectangular window, is built from its previously

coded pixels to derive the optimal coefficients. Least squares methods are proven to be
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effective in adaptation to spatially changing features in an image. However, it is limited

to lossless image compression as the spatial correlation between the target block and

blocks in the training window is too low to derive good prediction.

Recent prediction algorithms used in image and video compression mainly fall in the

category of prediction with side information. As it is observed that prediction error

requires more bits while the side information demands less. Hence, it actually improves

the overall rate-distortion (RD) performance by trading the side information bits for the

residual bits. H.264/AVC provides an example that uses a large percentage of the side

information to indicate the best mode to minimize the prediction error. Study in [9]

shows that H.264’s side information could occupy from 20-60% of the overall coding bits.

This prediction with the side information was pushed to another level by Sullivan [42]

in the so-called “multi-hypothesis motion compensation” (MH-MCP). It is based on the

similar concept of linear prediction, n blocks of c1, c2, ..., cn from previous frames were

used to predict a block s in the current frame. Each of these predictive blocks is called a

hypothesis. Block ŝ is determined by a linear combination of multiple hypotheses:

ŝ =
N∑
v=1

cihi, (4.3)

where ci is a weight. To find ci and hi, an exhaustive search combined with the rate-

distortion optimization (RDO) method is used. Theoretical investigation conducted in

[18] shows that a linear combination of multiple predictors can improve the motion com-

pensation performance. However, there is one severe drawback with this MH-MCP

scheme; namely, the complexity of finding the optimal set of ci and hi is very high.
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In actual coding, a compromise was achieved in [15] by assigning the same coefficient to

all hypotheses as

ŝ =
1
N

N∑
v=1

hi. (4.4)

Even if coefficients are constant for all hypotheses, MH-MCP still has to determine

the hypothesis displacement vector (∆x,∆y,∆t) as the side information. The increase

of the side information could potentially mask the efficiency provided by the MH-MCP.

If we can obtain superior quality by exploiting the prediction with the side information

while inferring the side information based on available samples, this will enhance the

coding performance. Such a scheme will be presented in the next subsection.

It is important to choose a predictor that is most suited to image characteristics

in different layers in the pyramidal image decomposition. The EL consists of mainly

high frequency components and its features are presented as contours of objects in the

lower layer. Here, we propose a linear prediction scheme. Being different from the MH-

MCP, the prediction demands no side information such as the displacement vectors. The

decoder can follow the exact optimization process to obtain coefficients and reconstruct

the predicted block.
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Figure 4.6: Linear prediction with an N -th order casual neighborhood where N = 8.

4.3.1 Linear Predictive Coding for Image Pixel

Under the assumption of the N -th order Markov propery, we can construct an N -th order

linear prediction based on its N nearest neighbors as shown in Fig. 4.6:

x̂(i) =
N∑
k=1

θ(k)x(i− k), (4.5)

where θ(k) are predictive coefficients. The prediction error can be written as

ê(i) = x(i)−
N∑
k=1

θ(k)x(i− k)

=
N∑
k=1

θ(k)
[
x(i)− x(i− k)

]
=

N∑
k=1

θ(k)e(i− k). (4.6)

To determine coefficients, we use the previously coded block to construct a training

window of M casual neighbors of x(n) as shown in Fig. 4.7. For simplicity, the training

window is fixed here. The optimization of the training set will be discussed later.
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fu 

x(m,n) 

Figure 4.7: Linear predictive coding with a fixed training window.

Each sample is denoted by x(L), x(L+ 2), · · · , x(L+M). This training window can

be expressed as a M × 1 column vector in form of −→y = [x(L+ 1), x(L+ 2), ...x(L+M)]T .

Then, the prediction neighbors of −→y can be arranged in into an M ×N matrix as

C =


x(L) · · · x(L−N)

...
...

x(L−M) · · · x(L−M −N)

 , (4.7)

where x(L − j − k) is the kth prediction neighbor of x(L − j). To solve for optimal

coefficients θ(k) is to minimize the sum of squared differences in the training window:

min
M∑
j=1

[−→y − CΘ
]2

(4.8)

The least squares optimization has a close form solution; namely,

Θ̂ = (CTC)−1CT−→y , (4.9)
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where

Θ̂ =
[
θ(1), θ(2), ..., θ(N)

]T
. (4.10)

The above optimization process allows prediction coefficients to be adaptive to edge

neighbors without explicitly detecting the edge orientation as it is done in JPEG-LS or

CALIC.

4.3.2 Joint Inter-layer Linear Prediction

In the HIP, the pyramidal image decomposition extracts high frequency components to

the EL while leaving low and medium frequency components to the BL. As a result,

the EL consists of flat regions or highly complex regions. One problem with the linear

prediction is that matrix C may not be of full rank in flat regions. This could produce a

prediction value that is worse than an intuitive prediction as the linear prediction may not

produce an unique value. Besides, as the resolution of the image/intra frame increases,

the computational complexity to calculate the covariance matrix CTC increases signifi-

cantly. Different blending algorithms based on the context of previously coded samples

were employed in [23]. However, the context switching method could be heuristic and

inaccurate without the exact knowledge of the current sample to be predicted. Here,

we propose a different edge detection mechanism to apply linear prediction for complex

regions with strong edges and patterns adaptively, while leaving flat regions to be pre-

dicted by the LIP. This avoids the potential large prediction error arising from linear

prediction and reduces the overall complexity. In addition, we would like to perform a
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predictor switch scheme without incurring the overhead bits for each block to indicate

which predictor is used for the target block. To achieve the predictor selection adaptively,

we utilize the information present in the BL.

In the proposed lossless HIP scheme as depicted in Fig. 4.4, the BL, f
′
u, is available

to the EL, fl. Thus, if there exists a correlation between f
′
u and fl, the block statistics

obtained in f
′
u can be utilized for the EL to determine which prediction method is more

suited for that block without searching all possible prediction schemes. To show this, we

conduct a correlation study on the block texture between BL f
′
u and EL fl. To get the

one-to-one correspondence, the BL is first re-upsampled to the same resolution as the

EL. Block texture is measured using the gradient method along vertical and horizontal

direction as

gv =
1
M

M∑
j=1

M∑
i=1

|x(i, j)− x(i+ 1, j)|, (4.11)

gh =
1
M

M∑
j=1

M∑
i=1

|x(i, j)− x(i, j + 1)|, (4.12)

with

g =
1
2

(gv + gh) (4.13)

is used as an average gradient for each block. The relationship between the gradient

values of the BL and the EL is plotted in the left column of Fig. 4.8 while the gradient

histogram in the EL is plotted in the right column of Fig. 4.8.
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(a)

(b)

(c)

Figure 4.8: The relationship between the gradient values of the BL and the EL and the
histogram is texture histogram for EL for (a) Mobile (CIF), (b) City corridor (1280x720),
and (c) Vintage car (1920x1080).
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We see from Fig. 4.8 that the relationship between the texture of co-located blocks

in the BL and the EL are highly correlated. Besides, this linear relationship is consistent

from frame to frame with different block characteristics, distributions and different reso-

lutions. Thus, an edge detection mechanism based on the gradient measure of co-located

blocks on the BL can be derived to identify the type of target blocks. We apply the linear

prediction for target block kEL in the EL, if its co-located counterpart kBL in the BL

contains high frequency components

g(k)BL ≥ γ1, (4.14)

where γ1 is a threshold value.

There are a few advantages with the proposed scheme exploiting the inter-layer cor-

relation. First, the co-located block in the BL is available to the decoder and hence can

be used to perform accurate edge detection before starting to decode the target block.

Second, the switch between the LIP and linear prediction does not demand any side

information except for the value of γ1. Basically, the decoder can use γ1 to identify a

switch in the predictor type. Finally, the gradient measure is done on the BL of smaller

resolution, which can reduce the computational complexity on edge detection.

4.3.3 Training Set Optimization

For a linear prediction scheme, the prediction accuracy is highly dependent on the corre-

lation between samples in the training window and the sample to be predicted because

the algorithm assumes the N -th order Markovian property. The question is the choice
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of the window size N . If the samples in the training window are highly uncorrelated

from the target sample, coefficients obtained from this training set would produce a large

prediction error. Our correlation analysis has shown that the co-located blocks can be

a reliable indicator to identify the texture of the target block in the EL. Here, we can

resort to the BL block gradient to eliminate those blocks from the training set that have

different characteristics from the target block.

We define a training window as specified in Fig. 4.7 in the upsampled BL. Beginning

from the position of the co-located block in BL, we use the gradient of the co-located

block as our target g(k)BL and adopt the circular search and remove those blocks that

do not qualify:

g(k)BL − g(k − i)BL ≤ γ2. (4.15)

Based on the size of the training set, we record the positions of the first M blocks that

satisfy Eq. (4.15). The EL layer will then use the blocks with these marked positions

in the EL as the desired training set. This will allow us to select the best training set

adaptively without extra side information.

4.4 Experimental Results

In this section, experiments were conducted to compare the performance of the following

coding schemes: lossless H.264/AVC intra prediction (H.264 LS) [1], JPEG-LS, and the

proposed lossless hierarchical intra prediction (HIP-LS). For the HIP-LS, we adopted the

two-layered setup with the BL of a quarter size of the EL, and quantization parameter as
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QP=20. The enhancement layer is coded losslessly to achieve the final goal of a lossless

coding system with the added spatial/quality scalability. In addition, the joint block and

line-based intra prediction proposed in [11] is chosen as Predictor 1 for the BL prediction.

However, we disabled the 2D geometrical manipulations and the 2x2 block enhancement

to reduce the coding complexity. For predictor 2 in the EL, we choose among the H.264-

LS and the linear prediction based on the detected edge mechanism. We consider a casual

neighbor of size N = 3 and a training set of size M = 6.

Table 4.1: Coding efficiency comparison between H.264-LS, JPEG-LS and HIP-LS.

Resolution @ 1280x720
Sequence Method Compression Ratio Bit rate saving

(%) w.r.t H.264-LS(%)

Sheriff
H.264-LS 50.64 0
JPEG-LS 47.75 5.69
HIP-LS 45.81 9.54

Sailorman
H.264-LS 63.31 0
JPEG-LS 60.64 4.22
HIP-LS 55.17 12.85

Harbor
H.264-LS 59.85 0
JPEG-LS 55.97 6.49
HIP-LS 52.76 11.84

Preakness
H.264-LS 84.03 0
JPEG-LS 80.32 4.42
HIP-LS 76.19 9.33

Average
H.264-LS 64.46 0
JPEG-LS 61.17 5.20
HIP-LS 57.48 10.89

Eight HD YUV sequences of two different resolutions were used in the experiments.

They were: Sheriff (@1280x720), Night (@1280x720), Harbor (@1280x720), City corridor

(@1280x720), Station2 (@1920x1080), Blue sky (@1920x1080), Riverbed (@1920x1080)

and Vintage car (@1920x1080). The entropy coding method was CAVLC. All values were
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Table 4.2: Coding efficiency comparison between H.264-LS, JPEG-LS and HIP-LS.

Resolution @ 1920x1080
Sequence Method Compression Ratio Bit rate saving

(%) w.r.t H.264-LS(%)

Rush Hour
H.264-LS 43.37 0
JPEG-LS 42.42 2.20
HIP-LS 38.91 10.28

Blue Sky
H.264-LS 46.37 0
JPEG-LS 43.65 3.88
HIP-LS 41.89 9.65

Sunflower
H.264-LS 39.95 0
JPEG-LS 38.01 4.86
HIP-LS 35.67 10.72

Vintage Car
H.264-LS 71.26 0
JPEG-LS 67.14 5.78
HIP-LS 63.32 11.14

Average
H.264-LS 50.24 0
JPEG-LS 47.78 4.18
HIP-LS 44.95 10.45

averaged over 20 pictures of equi-spaced frame indices from respective sequences. The

compression ratio is defined as

R =
output file size
original file size

.

The results are presented in Table 4.1 and Table 4.2. We see that the proposed lossless

HIP can achieve a consistent improvement of an average of 14% in coding efficiency

compared to the single layered H.264-LS and JPEG-LS. The proposed HIP is especially

effective for contents with complex textures in all resolutions such as Sailorman and

Vintage car. For better visual comparison, we also draw the prediction error maps from

all three methods as shown in Fig. 4.9 and 4.10. We can see that the proposed lossless

HIP scheme generates the smallest prediction errors for both sample frames.
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(a) (b)

(c) (d)

Figure 4.9: (a) Original Harbor frame and its prediction error maps using (b) JPEG-LS,
(c) H.264 LS intra prediction and (d) proposed lossless HIP scheme.
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(a) (b)

(c) (d)

Figure 4.10: (a) Original City Corridor frame and its prediction error maps using (b)
JPEG-LS, (c) H.264 lossless intra prediction and (d) proposed lossless HIP scheme.
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4.5 Conclusion

In this paper, we proposed a novel lossless hierarchical intra prediction scheme that de-

livers much improved coding efficiency for lossless coding with added spatial/quality scal-

ability based on the proposed image pyramidal decomposition scheme in spatial domain.

A novel linear prediction scheme with edge detection was designed specifically for the EL

coding. A training set optimization using the gradient measured on the BL blocks was

used to select the best suited training sets adaptively without overhead. Experimental

results were given to demonstrate that the proposed lossless HIP scheme can deliver an

average of 14% improvement on compression efficiency while deliver the added flexibility

of an additional spatial/quality scalable layer.
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Chapter 5

Context-based Hierarchical Intra Prediction for Lossless

Image Coding

5.1 Introduction

The importance of efficient lossless image coding has been widely recognized over years

due to its application to many professional fields such as medical imaging, professional

digital photography, scientific geographic information systems and etc. Furthermore, as

the image size become increasingly larger, the importance of a scalable lossless solution

become more evident, especially with the steadily growing popularity of delivering digital

contents over a heterogeneous network. Scalable coding standards use a layered approach

by decomposing the content into one low resolution fundamental presentation, known

as the base layer (BL), and other higher resolution enhancement layers (EL). When the

content is to be previewed, indexed or searched on the camera, in the studio or over

the network, BL can be used to allow speedy access at lower hardware cost and network

bandwidth requirement. When the content is to be edited or viewed at its full resolution,
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additional enhancement layers can be further decoded to recover the content at the full

resolution.

Generally speaking, the entire process of digital content production, post-production

and on-line delivery can benefit since the scalable image/video format will reduce the

hardware cost, improve production efficency and facilitate content delivery. However,

today’s image/video codecs typically sacrifice the coding performance to offer additional

flexibility. Since they result in overall coding efficiency degradation, scalable image/video

coding formats are not widely used. A coding solution that offers additional flexibility

such as spatial scalability and improve the overall coding performance at the same time

is highly desirable.

Figure 5.1: The proposed lossless HIP scheme.

A lossless hierarchical intra prediction (HIP) scheme was proposed in the previous

chapter for lossless image/video coding. As shown in Fig. 5.1, the HIP scheme was
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designed to provide a unified scalable solution to the tradition lossless image/video coding

while allows more efficient compression. Being different from the traditional scalable

solutions, the proposed HIP employs a pyramidal image decomposition scheme to obtain

the BL and ELs. The hierarchical structure serves as an image decorrelation scheme in the

spatial domain, where the down-sampling operation is used to extract long correlation

to the self-contained BL. Based on this decomposition method, a hierarchical coding

system with multiple predictors was proposed by exploiting the correlation characteristics

of each layer. Despite its excellent coding performance, there is still room for further

improvement, which is the main focus of this chapter.

The rest of this chapter is organized as follows. We study the construction of the

H.264/AVC LIP modes and propose an approximation scheme to estimate the best LIP

mode that is mostly likely to be used for the target block in Sec. 5.2. This scheme

eliminates the need of the side information. To further improve prediction accuracy,

we use the Singular Value Decomposition (SVD) method to extract dominant features

from the coarse representation of BL in Sec. 5.3. The extracted features are clustered

using the k-means algorithm, and the context-based interlayer prediction (CIP) scheme

is adopted to select the best prediction candidate. To achieve more efficient coding, an

adaptive CABAC entropy coder is developed in Sec. 5.4 by analyzing the characteristics

of prediction residuals. Context modeling is also enhanced in the CABAC coding pro-

cess. Experimental results are give in Sec. 5.5 to demonstrate the effects of proposed

improvements. Finally concluding remarks are given in Sec. 5.6.
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Figure 5.2: The co-located blocks in the upsampled BL and its EL.

5.2 Modeless Prediction

For the lossless HIP scheme proposed in Chapter 4, we studied the correlation between

the co-located blocks in the BL and the EL and showed that the complexity of a block

in the EL is linearly proportional to its upsampled co-located blocks in the BL. Thus,

we proposed a modeless method that performs edge detection to capture the complexity

of the upsampled co-located block in the BL. Then, we apply the linear combination

prediction (LCP) to target block kEL in the EL, if the high frequency components of its

co-located counterpart kBL in the BL are higher than a certain threshold. Otherwise,

other blocks will be handled by regular LIP methods. In Fig. 5.2, we show the visual

appearance of a block that can be handled with the regular LIP. Although the above

scheme eliminates the need of bits to differentiate the LIP and the LCP modes, it still

needs bits to encode the suitable LIP mode for that block. For example, we have to

encode the LIP mode information such as Intra4x4 vertical (mode 0), horizontal (mode

1), DC mode (mode 2), etc. Consequently, it is still not a modeless scheme.
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Figure 5.3: The percentages of blocks coded using HIP and LIP modes for six test vide
sequences.

The percentages of blocks encoded using HIP and LIP modes for six test vide se-

quences are shown in Fig.5.3. We see that all sequences except Mobile have more than

50% LIP modes. This is because that the EL often contains a large amount of regions

that are relatively flat and can be well encoded using the LIP. The number of bits required

to encode the mode information can go up to 5% or more of the overall bits needed to

encode the entire frame. If we can find an scheme to estimate which one of the nine LIP

modes would be chosen as the LIP mode, the overhead bits of mode coding can be saved.

In H.264/AVC, LIP modes are constructed by extrapolating the decoded pixel values

from the neighbors of the current block to form a prediction block. Different directional

predictions are defined by modes and used to exploit the spatial correlation that may

exist between the predicted and actual pixels in a target block. A total of nine different
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Figure 5.4: Nine prediction modes for 4× 4 blocks in H.264/AVC intra prediction.

prediction directions for target block S of size 4 × 4 are shown in Fig. 5.4. Pixel sam-

ples A, B, C, · · · , H in Fig. 5.4 are denoted by p(0,−1), p(1,−1), · · · , p(7,−1) while

pixel samples I, J , K and L are denoted by q(−1, 0), q(−1, 1), q(−1, 2) and q(−1, 3),

respectively.

We use mode 0 (vertical prediction) and mode 1 (horizontal prediction) as examples,

whose prediction residuals can be expressed as

rm0(i, j) = s(i, j)− p(i,−1), (5.1)

rm1(i, j) = s(i, j)− q(−1, j), (5.2)

where i, j are the relative position of pixels in the target block. The formation of the

LIP prediction blocks indicates that the prediction attempts to capture the intensity
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continuity from neighboring blocks to the current target block along different directions.

If this intensity continuity can be revealed by some existing information in the coded bit

stream, the bits required for mode coding can be saved.

Recall that we adopted the gradient based edge detection scheme to identify which

blocks should use LIP modes (rather than the HIP mode) in the HIP scheme. The

gradient values used in the mode selection process is an average of the gradient values

computed in both horizontal and vertical directions of that block as shown in Eqs. (4.12)

and (4.12).

In the following, we will generalize the edge detection mechanism by including the

decoded neighboring block pixel lines in the gradient computation. Being similar to the

previous edge detection scheme, the new mode estimation mechanism is derived based on

the information available from the BL. For example, to estimate the prediction accuracy

of mode 0 and mode 1 in the LIP, we modify the gradient measurements in Eqs. (4.12)

and (4.12) by taking neighboring pixels into account as

gm0 =
M−1∑
i,j=−1

∣∣∣s(i, j)− s(i, j + 1)
∣∣∣, (5.3)

gm1 =
M−1∑
i,j=−1

∣∣∣s(i, j)− s(i+ 1, j)
∣∣∣, (5.4)

where decoded pixel lines p(i,−1) and q(−1, j) in Eqs. (5.1) and (5.2) are re-written as

s(i,−1) and s(−1, j) for convenience in the mathematical formulation to be shown later.

For mode 2, which is the DC mode, we can update the average gradient computation in

Eq. (4.13) as

gm2 =
1
2
(
gm0 + gm1

)
. (5.5)

102



By following the same idea, we can generalize the gradient method for other modes.

For example, the prediction residuals for mode 3 (diagonal down-left) and mode 4 (diag-

onal down-right) can be written as

gm3 =
M−1∑
i,j=−1

∣∣∣s(i, j)− s(i− 1, j + 1)
∣∣∣, (5.6)

gm4 =
M−1∑
i,j=−1

∣∣∣s(i, j)− s(i+ 1, j + 1)
∣∣∣, (5.7)

To avoid redundant computation and unify the proposed mode estimation scheme, we

replace (4.12) and (4.12) with (5.3) and (5.4), respectively.

One advantage of this LIP mode estimation mechanism is that we can have all LIP

modes tested on the BL first without the knowledge of the target block statistics of the

EL. Then, we can select the one with the minimum gradient values as the best mode for

the colocated block in the EL. That is,

mopt = min
{
gm1, gm2, gm3, gm4, ..., gm8

}
. (5.8)

This LIP mode estimation mechanism allows mode selection done in BL blocks only. The

prediction residual of EL blocks can be coded without the mode information since the

decoder can follow the same estimation rules and derive the correct LIP mode.
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5.3 Context-based Hierarchical Intra Prediction (CHIP)

5.3.1 Research Motivation

In Chapter 4, we mentioned that the performance of the LCP scheme is influenced by the

similarity between the training set and the target sample since the algorithm assumes the

N -th order Markovian property. If the samples in the training window and the target

sample are uncorrelated, coefficients obtained from the training set would yield a large

prediction error. Hence, to address this problem, a training set optimization technique

was proposed to select the best suited training set for the coefficient training in the

LCP scheme. However, after a fixed number of iterations, the technique has to re-use a

limited number of choices to control the computation complexity. Alternative methods

such as template matching [47] method proposed by T.K.Tan et al., or texture synthesis

inspired solution[4] propsed by Balle and Wien would not be able to sufficiently solve

this problem as they are fundamentally still based on the valid assumption of the Nth

order Markovian property. As a result, the performance improvement could be limited

for images that consist of many heterogeneous subregions.

In Fig. 5.11, we show an example where the LCP scheme cannot produce a good

prediction since the training set samples are very different from the target samples. We

see that the numbers on the calendar in Fig. 5.11(a) are separated by flat regions which

will not serve as good training sets. Furthermore, the training set optimization tech-

nique would not be effective since it would demand a large memormy for training set

optimization. As a result, although the prediction scheme in the HIP scheme has predic-

tion errors smaller than those of H.264/AVC as shown in Fig. 5.11(c), the tips of these
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(a)

(b) (c)

Figure 5.5: (a) One frame of the Mobile sequence with a resolution of 352x288; (b) the
enlarged prediction residual using the LIP prediction and (c) the enlarged prediction
residual using the HIP prediction.

numbers still contain large prediction errors. This means that a more effective prediction

scheme is in need. One intuitive way to achieve this is to incorporate the JBLIP scheme

as proposed in Chapter 3. However, in the hierarchical architecture, the frequent use of

translational vectors might impact the coding performance negatively due to the coding

cost of translational vectors. Hence, it is desirable to have a prediction scheme that has a

good prediction result that can target these isolated textured areas but without the use

of large translational vectors.
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5.3.2 Block Classification via Feature Extraction and Clustering

To address this problem described above, we propose a method that identifies similarities

between target samples and samples within the prediction frame that might not fall

within the range of the training window. Simply speaking, similar training samples

define a context by utilizing the information available from the decoded and upsampled

BL. Then, we develop a context-based HIP prediction scheme, which allows us to identify

the best fit prediction samples based on the context.

The Principal Component Analysis (PCA) [6] is widely used to reduce a complex data

set to a lower dimension feature set that captures its underlying characteristics. The PCA

is obtained by performing the singular value decomposition (SVD) on the data matrix

[12]. In the current context, we compute the gradient of image f at pixel i as

∇f(i) =
[

∂f(i)
∂x

∂f(i)
∂y

]T
. (5.9)

To estimate the local orientation of a block of size m ×m = M centered at the target

sample, we group their gradient values into an M × 2 as

G =



∇f(1)T

∇f(2)T

...

∇f(M)T


, (5.10)
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The SVD of matrix G can be expressed as

G = USV T , (5.11)

where U and V are orthogonal matrices of dimension M ×M and 2×2, respectively, and

matrix S of dimension M × 2 contains two singular values that described the energy in

the dominant orientation of the gradient field at pixel i.

Given the dominant SVD feature of each sample, we partition them into k clusters

using the k-means algorithm [29]. An example is given in Fig.5.6. We show the magnitude

of the singular value S[0, 0] for the Mobile frame in Fig. 5.6 (a) and the clustered result

in Fig. 5.6 (b), where the cluster number is equal to k = 64.

(a) (b)

Figure 5.6: (a) The plot of the magnitude of the 2-D singular value vector for a frame in
the Mobile sequence and (b) its corresponding k clustered regions with k = 64.
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5.3.3 Context-based Inter-layer Prediction (CIP)

After applying the SVD computation and clustering to the upsampled BL, we obtain

f clusters denoted by kf as shown in Fig. 5.8(a). Typically, we have multiple samples

associated with each cluster, where each sample has its own prediction rule. To illustrate

the above idea, we give an example in Fig.5.8. Samples xi and xj belong to the same

context as shown in Fig. 5.7.

Figure 5.7: Graphical illustration of multiple clusters after the k-means clustering method,
where the bigger dots indicate the centroid of that cluster.

If the prediction and selection is directly performed between xi and xj , additional side

information must be recorded and sent to the decoder for correct reconstruction as the

decoder has no knowledge of xi. However, we want to avoid the use of side information.

Therefore, we define the term of “context”. Each context consists of the Nthe causal

neighbors of the sample. Therefore, the prediction is processed between the context Ci

of the target sample xi and those Cj of the prediction samples xj as shown in Fig. 5.8.

The highlighted blue regions are the contexts.
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This SSD computation will be conducted for all samples within the same context kf

and the one that yields the smallest dj will be used as the final prediction rule for the

target sample.

min{dj},

dj
(
xj |kf

)
=

∑[
ci
(
xi|kf

)
− cj

(
xj |kf

)]2
. (5.12)

In case of a tie, an Euclidean distance criterion can be used as a tie-breaker.

Hence, the best prediction can be obtained as

x̂i = xj , withmin
j
{dj |ck}. (5.13)

Figure 5.8: Graphical illustration of contexts of the target sample and that of the pre-
diction samples.

As the clustering is applied to the entire frame, it is possible that some samples within

the same context fall in the range of future samples Rc as shown in Fig. 3.2. Those
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samples should be eliminated from the SSD evaluation to allow accurate reconstruction

of the target sample. Only the samples within the rectangular shaded region as shown in

Fig.5.8(a) can be used for prediction.

Figure 5.9: System architecture of proposed lossless context based HIP scheme.

To incorporate the context-based inter-layer prediction (CIP) scheme in the HIP

scheme, we could use the classic rate-distortion optimization (RDO) technique to de-

termine if the sample should use the LCP mode or the CILP mode. However, this would

need header bits to indicate which mode is selected. Besides, a large amount of compu-

tation is needed for the RDO optimization. For the simplification purpose, we adopt the

CIP only if the previously proposed training set optimization scheme cannot converge

after a fixed number of iterations. The failure to converge is an indication that samples

in the training set are too different from the target sample and, hence, cannot provide

a good prediction. As a result, the prediction mode will switch to the CIP. The entire
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context-based hierachical intra prediction (CHIP) coding system is illustrated in Fig. 5.9.

In the next section, we will examine the last building block in the compression system;

namely, entropy coding.

5.4 Enhanced Context-based Adaptive Binary Arithematic

Coding

Earlier coding standards such as MPEG-2, H.263 and MPEG-4 used the variable length

coders (VLCs) as their entropy coders. The context adaptive binary arithmetic coder

(CABAC) was adopted by H.264/AVC [13], which provides a bit-rate saving of 10-20%

as compared with the context based VLCs [24]. The design of CABAC consists of four

key elements: 1) binarization, 2) context modeling, 3) binary arithmetic coding and 4)

probability estimation as shown in Fig. 5.10. It achieves good performance by selecting

probability models according to the context. In addition, it allows probability estima-

tion to be adaptive to the local statistics. However, CABAC was initially designed for

DCT transformed coefficients after quantization in a lossy low-bit-rate video coding en-

vironment. In the current context of lossless coding, the prediction residuals have a very

different characteristics since the DCT and quantization process are bypassed. In this sec-

tion, we examine the unique characteristics of residual signals produced by the proposed

CHIP system and propose several enhancements for further bit rate saving.
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Figure 5.10: The flow chart of the CABAC.

5.4.1 Pre-processing of DCT Coefficients

The CABAC adopts several optimization techniques to facilitate the coding of a binary

symbol set with a highly skewed probability distribution. After the quantization of DCT

coefficients, for each block that has at least one nonzero coefficient, a sequence of binary

maps were introduced; namely, the Sign map, the Significance flag map and the last

flag map. The Sign map extracts the negative sign from each coefficient and leave only

the absolute levels of coefficients. This is designed to further explore the redundancy

between coefficients if their levels are the same. The Significance flag is used to indicate

the position of each nonzero coefficient on the scanning path. If the Significance flag for

that coefficient location is equal to 1, an additional last flag map is generated to signal to

the decoder that if it is the position of the last nonzero coefficient in the scanning path.

If the last flag indicates that the current residual sample value is indeed the last one in a

block, the Significance flag coding will be terminated. The detailed process is shown in

Table 5.1 for an DCT transformed and quantized coefficients block.
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Table 5.1: Statistics of a DCT transformed and quantization block with QP = 24.

(a)
Scanning Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Coefficient 8 -2 0 1 -2 1 1 0 0 0 0 0 0 0 0 0

(b)
Scanning Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Abs level 8 2 0 1 2 1 1 0 0 0 0 0 0 0 0 0
Sign map 0 1 0 0 1 0 0
Significance flag 1 1 0 1 1 1 1
Last flag 0 0 0 0 0 1

As mentioned before, this pre-processing works well if the block contains very few

nonzero coefficients such as the case in Table. 5.1. In Fig. 5.11 (a), we show an example

of the normalized probability distribution of nonzero coefficients in each scanning position

[55]. Note that the probability of the scanning position having a nonzero coefficient

decreases significantly when the scanning position is higher than 5 for the low-bit-rate

coding case (say, QP = 32). That means for a large percentage of residual blocks,

only 5 or less nonzero coefficients need to be encoded. However, as the quantization

step-size becomes smaller, (say QP < 12), we notice that the probability distribution of

nonzero coefficients is close to the uniform distribution. Consequently, the efficiency of

the CABAC degrades for the high-bit-rate or lossless coding applications.

Similarly, we can analyze the prediction residual of the lossless CHIP scheme by

plotting the probability distribution of nonzero coefficients for the LIP modes (for the

BL) and the LCP/CIP modes (for the EL) in Fig. 5.11(b). The distribution of the BL

blocks has a more skewered distribution since the BL is encoded with a lossy scheme in

the CHIP. The LIP blocks in the EL has more zero coefficients than the LCP/CIP blocks
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in the EL since only homogeneous blocks are selected for the LIP and their residuals are

usually small.

(a)

(b)

Figure 5.11: The probability of a zero coefficient along the scanning path for a frame of
the Mobile sequence with resolution of 352x288: (a) quantized DCT coefficients and (b)
the prediction residual of the CHIP scheme.

By examining an individual residual block after the LCP/CIP prediction as given in

Table 5.2(a), we see that almost all scanning positions have nonzero coefficients, which is

very different from the statistics in Table 5.1(a). The direct result of this type of blocks
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is shown in Table 5.2(b). Note that many 1’s appear in the significance map to indicate

the nonzero coefficient position and the Last flag map is filled almost to the end with the

last nonzero coefficient being located at position 14.

Table 5.2: Statistics of a residual block after lossless LCP/CIP prediction

(a)
Scanning Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Coefficient 9 -5 1 4 -3 7 2 0 -5 0 3 -2 1 0 -2 0

(b)
Scanning Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Abs level 9 5 1 4 3 7 2 0 5 0 3 2 1 0 2 0
Sign map 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0
Significance flag 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0
Last flag 0 0 0 0 0 0 0 0 0 0 1

In the proposed lossless CHIP scheme, LIP modes are most effective for relatively

homogeneous blocks in the EL. Thus, the prediction residual of these blocks will be

relatively low. In other words, the residual block after transform and quantization is

likely to have a much skewered zero probability distribution and, therefore, the use of

the Significance flag map and last flag map is helpful for further data compression for

this type of blocks. However, if the LCP/CIP prediction is invoked for the target block,

this block may have heterogeneous properties and the prediction might generate larger

residuals. Hence, the addition of the Significance flag map and Last flag map may incur

code expansion [40].
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This observation motivates us to use the pre-processing step selectively based on the

inferred block characteristics. Thus, we have the following rule:

Last Flag Map, Significance Flag Map =


null if LCP=1 or CIP=1,

inuse otherwise.

(5.14)

As the mode information for each block can be determined based on the statistic of the

BL block, no additional bits are needed to signal the selection result.

5.4.2 Enhanced Context Modeling

Context modeling is one of the key elements in CABAC. It identifies a probability model

for the syntax of binary sequences to be coded. As the accuracy of the model impacts

the final coding efficiency, it is of critical importance that the model is adaptive and the

actual data statistics can be well captured. In CABAC, the context index is expressed in

form of

γ = Γs + ∆s(ctx cat) + χs, (5.15)

where Γs is the context index offset defined as the initialized value (lower bound) of the

context range of a syntax element S, ∆s refers to the context category and χs is the

context index increment for a given syntax element S. The context index offset and the

context category offset are determined by the corresponding syntax element, the block

type, etc. Context indices are pre-computed and mapped to a state. Intuitively, the

larger the context index, the lower the probability of the least probable symbol (LPS).
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Since CABAC was initially designed for low bit rate coding, the context index incre-

ment method reflects the statistics of the corresponding residual data as well. Therefore,

the coding engine considers that the probability of having a nonzero coefficient reduces

as the the scanning position SP increases. Hence, the context index increment is imple-

mented by setting χs = SP . For the Coefficient Level, the level of significant coefficients

also depends on the scanning position and the reverse scanning of the level information is

adopted. As the reverse scanning path approaches the end, the occurrence of successive

significant coefficients is likely to be observed. In addition, the absolute level will become

larger as the scanning position decreases. Consequently, the context index increment for

the Coefficient Level can be determined using the accumulated encoded trailing 1 and

the accumulated encoded levels with absolute values greater than one.

In the CHIP system, we proposed several techniques to save the bits for the EL mode

coding. Therefore, we only have to focus on the residual coding for the EL. However, the

statistics of the residual sample values obtained from LCP/CIP prediction in lossless cod-

ing are different from the statistics of the transformed and quantized coefficients obtained

in lossy coding. Actually, the probability of prediction residual from LCP/CIP is close

to the uniform distribution in all scanning positions. To accommodate the difference, we

have made some adjustment to the context index:

γ =


Γs + ∆s(ctx cat) if LCP=1 or CIP=1,

Γs + ∆s(ctx cat) + SP otherwise.

(5.16)
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We no longer consider the impact of the scanning position on the context index increment,

which offers a more accurate probability model for the residual data in the CHIP system.

5.5 Experimental Results

In this section, experiments were conducted to compare the performance of the following

coding schemes: lossless H.264/AVC intra prediction (H.264 LS) [1], JPEG-LS, the loss-

less hierarchical intra prediction (HIP-LS) presented in Chapter 4 and the lossless context

based hierarchical intra prediction (CHIP-LS) proposed in this chapter.

For the HIP-LS and the CHIP-LS, we adopted the two-layered structure with the

BL of a quarter size of the EL with quantization parameter QP=20. The enhancement

layer is coded losslessly to achieve the ultimate lossless coding goal with spatial/quality

scalability. The joint block and line-based intra prediction proposed in [11] was chosen as

Predictor 1 for the BL prediction, where the options of 2D geometrical manipulations and

2x2 block enhancement were turned off to reduce the coding complexity. For predictor

2 in the EL, we choose between H.264-LS and the linear prediction with the detected

edge information. We consider a casual neighbor of size N = 3 and a training set of size

M = 6. For the CHIP-LS, the k-means clustering process adopts k = 512 contexts. The

iteration in the training set optimization is set to 6. The CABAC is used for the BL

coding while the enhanced CABAC presented in the last section is adopted for the EL

coding.

Eight HD YUV sequences of two different resolutions were used in the experiments.

They were: Sheriff (@1280x720), Sailman (@1280x720), Harbor (@1280x720), Preakness
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Table 5.3: Coding efficiency comparison between H.264-LS, JPEG-LS, HIP-LS and CHIP-
LS.

Resolution @ 1280x720
Sequence Method Compression Ratio Bit rate saving

(%) w.r.t H.264-LS(%)

Sheriff

H.264-LS 50.64 0
JPEG-LS 47.75 5.69
HIP-LS 45.81 9.54
CHIP-LS 42.98 15.12

Sailorman

H.264-LS 63.31 0
JPEG-LS 60.64 4.22
HIP-LS 55.17 12.85
CHIP-LS 51.64 18.43

Harbor

H.264-LS 59.85 0
JPEG-LS 55.97 6.49
HIP-LS 52.76 11.84
CHIP-LS 49.73 16.91

Preakness

H.264-LS 84.03 0
JPEG-LS 80.32 4.42
HIP-LS 76.19 9.33
CHIP-LS 70.57 16.02

Average
H.264-LS 64.46 0
JPEG-LS 61.17 5.20
HIP-LS 57.48 10.89
CHIP-LS 53.73 16.62

(@1280x720), Rush Hour (@1920x1080), Blue sky (@1920x1080), Sunflower (@1920x1080)

and Vintage car (@1920x1080). All values were averaged over 15 pictures of equi-spaced

frame indices of respective sequences. The compression ratio is defined as

R =
output file size
original file size

.

The results are shown in Table 5.3 and Table 5.4. We see that the CHIP-LS achieves

a bit rate saving of 18-22% with respect to H.264-LS and JPEG-LS, which are based on
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Table 5.4: Coding efficiency comparison between H.264-LS, JPEG-LS, HIP-LS and CHIP-
LS.

Resolution @ 1920x1080
Sequence Method Compression Ratio Bit rate saving

(%) w.r.t H.264-LS(%)

Rush Hour

H.264-LS 43.37 0
JPEG-LS 42.42 2.20
HIP-LS 38.91 10.28
CHIP-LS 36.15 16.63

Blue Sky

H.264-LS 46.37 0
JPEG-LS 44.57 3.88
HIP-LS 41.92 9.65
CHIP-LS 38.88 16.15

Sunflower

H.264-LS 39.95 0
JPEG-LS 38.01 4.86
HIP-LS 35.67 10.72
CHIP-LS 33.55 16.02

Vintage Car

H.264-LS 71.26 0
JPEG-LS 67.14 5.78
HIP-LS 63.32 11.14
CHIP-LS 58.55 17.83

Average

H.264-LS 50.24 0
JPEG-LS 47.78 4.18
HIP-LS 44.95 10.45
CHIP-LS 41.78 16.66
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the single layer prediction. The CHIP-LS also outperforms the HIP-LS by 11-14% in the

bit rate saving.

(a) (b)

(c) (d)

Figure 5.12: (a) One frame of the Sheriff sequence and the enlarged prediction residuals
using prediction schemes in (b) the H.264-LS, (c) the HIP-LS and (d) the CHIP-LS.

It is worthwhile to point out that the CHIP-LS scheme offers smaller prediction resid-

uals for contents with complex textures; e.g., the Preakness and Vintage Car sequences.

In Figs. 5.12 and 5.13, we show the side-by-side comparison of prediction residuals gen-

erated by each prediction scheme. It is apparent that the proposed CHIP scheme has

the lowest prediction error for each input frame consistently. In general, the proposed
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(a) (b)

(c) (d)

Figure 5.13: (a) One frame of the Preakness sequence and the enlarged prediction resid-
uals using prediction schemes in (b) the H.264-LS, (c) the HIP-LS and (d) the CHIP-LS.
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CHIP-LS scheme provide the best coding performance with respect to the other three

benchmarking schemes.

5.6 Conclusion

A novel lossless context-based hierarchical intra prediction scheme based on the image

pyramidal decomposition was proposed and called the CHIP-LS scheme. The context of

the BL is used to improve the prediction and coding for the EL in the CHIP-LS with

spatial/quality scalability. It was demonstrated by experimental results that the proposed

CHIP-LS scheme outperforms other three state-of-the-art lossless image coding schemes

(i.e. JPEG-LS, H.264-LS and HIP-LS) by a significant margin in terms of bit rate saving.
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Chapter 6

Conclusion and Future Work

6.1 Summary of the Research

In this research, we studied advanced intra prediction techniques for more effective In-

tra frame coding in the contexts of high-bit-rate and lossless image/video coding. The

proposed schemes include: the joint block/line-based intra prediction (JBLIP) scheme,

the hierarchical intra prediction (HIP) scheme and the context-based hierarchical intra

prediction (CHIP) scheme. These techniques can be applied to the high definition digital

cinema and digital camcording. For high definition digital camcording, the large image

size together with a high frame rate puts an enormous burden on the encoder. In such a

case, inter-frame prediction may not be desirable due to its high memory and complexity

requirements, and an effective all-intra-frame coding scheme can offer a good alternative.

The JBLIP scheme was proposed in Chapter 3 for high-bit-rate coding. First, we

conducted an in-depth analysis on the line-based intra prediction (LIP) schemes to reveal

their inefficiency in prediction surfaces with complex textures. Then, we presented the

BIP scheme with 2D geometrical manipulation to address this issue. Furthermore, we
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proposed additional enhancement to the BIP scheme and developed a rate-distortion

optimization scheme (JBLIP) that jointly selects the best mode among the LIP and the

BIP modes. A block classification method was proposed to identify blocks that can be

well predicted by the LIP alone. To reduce the coding complexity, a zone-based fast search

method was proposed. A translational vector prediction scheme was used to first establish

a near optimal search position. A candidate block pruning method was further employed

to achieve fast convergence to the optimal position. The proposed JBLIP scheme can

achieve a significant coding gain of up to 1.68dB in PSNR with the same bit rate for

images with various resolutions. The fast search scheme can obtain an average 10 times

speed-up as compared to the full search with very little performance degradation.

The HIP scheme was presented in Chapter 4 for lossless compression. We analyzed

the problem associated with intra prediction in H.264/SVC and then proposed a differ-

ent approach to achieve the same scalability with frequency decomposition in the spatial

domain. Specifically, we applied different predictors to different layers. For the en-

hancement layer, we proposed a block-based linear combination prediction to effectively

estimate edges, which yields a small prediction error in high textured regions without

sending the side/mode information to the decoder. The proposed HIP scheme cuts down

the overhead cost significantly. The proposed lossless HIP scheme can achieve a 10% bet-

ter compression efficiency as compared with the intra prediction schemes in H.264/AVC

LS and JPEG-LS.

The CHIP scheme was presented in Chapter 5 to improve the coding performance of

the HIP scheme furthermore. We analyzed the coding inefficiency associated with the

HIP scheme. A mode estimation scheme was derived based on the block statistics of the
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BL to achieve the modeless prediction. A PCA-based feature extraction method with

the k-means clustering algorithm was first applied. Then, the context-based interlayer

prediction scheme (CIP) was proposed to select the best prediction from the sample

context. The CIP scheme determined the predicted value without the help of any side

information. To improve the coding efficiency of the entropy coder, an enhanced precoding

process for CABAC was introduced by exploiting the characteristics of the LCP/CIP

prediction residuals. A enhanced context model was proposed to estimate the context

more accurately. The proposed lossless CHIP scheme outperforms the H.264/AVC LS

and the JPEG-LS schemes by a bit rate saving of 16%.

6.2 Future Work

Several possible extensions of the current research are stated below.

• Advanced interpolation scheme

In both the HIP and the CHIP schemes, the best prediction mode is obtained from

the statistics gathered from the BL so that the side information can be saved. A

simple interpolation scheme was adopted to relate the BL and the EL in the current

work. An advanced interpolation scheme may reduce the prediction error and result

in a better mode selection scheme for better coding performance.

• Advanced feature extraction and clustering algorithm

In the CIP scheme, the efficiency and adaptivity of feature extraction and clustering

play an important role in finding a good prediction sample. It is desirable to identify
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the best features to be extracted and study whether the clustering algorithm can

be further improved.

• Enhanced entropy coding scheme

Since CABAC was initially designed for low-bit-rate coding, this technique has been

finetuned for the coding of DCT coefficients after coarse quantization. However, as

the need for image/video compression is moving towards high-bit-rate and even

lossless coding, we may explore other entropy coders to meet the new requirements.

127



Bibliography

[1] “H.264/AVC Reference software JM12.1,” in [Online] Available:
http://iphome.hhi.de/suehring/tml/, July 2005.

[2] “HD Photo Specification V1.0,” in [Online] Available:
www.microsoft.com whdc xps wmphoto.mspx, November 2006.

[3] A.M.Tourapis, O.C.Au, and M.L.Liu, “Fast motion estimation using modified cir-
cular zonal search,” IEEE Intl. Symposium on Circuits and Systems, vol. 4, pp.
231–234, July 1999.

[4] J. Balle and M.Wien, “Extended texture prediction for H.264 intra coding,”
in Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 SG16 Q.6) VCEG-AE11.doc, January 2007.

[5] J. Bennett and A. Khotanzad, “Modeling textured images using generalized long-
correlation models,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. PAMI-6, pp. 800–809, 1998.

[6] J. Bigun, G. H. Granlund, and J. Wiklund, “Multidimensional orientation estimation
with applications to texture analysis and optical flow,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 15, pp. 775–791, August 1991.

[7] Y.-S. Chung and M. Kanefsky, “On 2-D recursive LMS algorithms using ARMA pre-
diction for ADPCM encoding of images,” IEEE Transactions on Image Processing,
vol. 1, pp. 416–422, 1992.

[8] C.Zhu, X.Lin, and L.Chau, “Hexagon-base search pattern for fast block motion
estimation,” IEEE Trans. on Circuits and Video Technologies, vol. 12, January 2007.

[9] D.-K.Kwon, M.-Y. Shen, and C.-C. J. Kuo, “Rate control for h.264 video with en-
hanced rate and distortion models,” IEEE Trans. on Circuits and Systems for Video
Technology, vol. 17, pp. 517–529, May 2007.

[10] Y. Dai, Q. Zhang, and C.Kuo, “2d enhanced intra prediction (2DEIP) for high
definition image/video coding,” IEEE Intl Symposium on Circuits and Systems, May
2009.

[11] Y. Dai, Q. Zhang, A. Tourapis, and C.-C.J.Kuo, “Efficient block-based intra pre-
diction for image coding with 2D geometrical manipulations,” IEEE Intl Conf on
Image Processing, October 2008.

128



[12] E. F. Deprettere, “SVD and signal processing: algorithms, applications and archi-
tectures,” in Elsevier Science Publishing Co., 1988.

[13] D.Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arithmetic
coding in the H.264/AVC video compression,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 13, pp. 620–636, July 2003.

[14] T. Eude, R. Grisel, H. Cherifi, and R. Debrie, “On the distribution of the DCT
coefficients,” Proc. 1994 IEEE Int. Conf. Acoustics, Speech, Signal Processing, vol. 5,
pp. 365–368, April 1994.

[15] M. Flierl and T. Wiegand, “A video codec incorporating block-based multi-
hypothesis motion compensated prediction,” Proc. of SPIE Conf. on Visual Com-
munications and Image Processing, June 2000.

[16] G.Bjontegaard, “Calculation of average PSNR difference between RD-curves,”
in Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 SG16 Q.6) VCEG-M33.doc, April 2001.

[17] G.Conklin, “New intra prediction modes,” in Joint Video Team (JVT) of ISO/IEC
MPEG & ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 SG16 Q.6)
VCEG-N54.doc, September 2001.

[18] B. Girod, “Efficiency analysis of multihypothesis motion-compensated prediction for
video coding,” IEEE Trans. on Image Processing, vol. 9, pp. 173–183, February 2000.

[19] H. Hurst, “Long-term storage capacity of reservoirs,” Trans. Amer. Soc. Civil Eng.,
vol. 116, pp. 770–799, 1951.

[20] N. S. Jayant and P. Noll, “Digital coding of waveforms principles and applications
to speech and video,” pp. 16–17, 1984.

[21] J.Chalidabhongse and C.-C. J. Kuo, “Fast motion vector estimation using
multiresolution-spatio-temporal correlations,” IEEE Trans. on Circuits and Systems
for Video Technology, vol. 7, pp. 477–488, 1997.

[22] R. Kashyap and A. Khotanzad, “Synthesis and estimation of random fields using
long-correlation models,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. PAMI-6, pp. 800–809, July 1984.

[23] L.-J. Kau and Y.-P. Lin, “Adaptive lossless image coding using least squares opti-
mization with edge-look-ahead,” IEEE Trans. on Circuits and Systems-II: Express
briefs, vol. 52, pp. 751–755, November 2005.

[24] S.-H. Kim and Y.-S. Ho, “Improved CABAC for H.264 lossless intra coding,” IEEE
Trans. on Image Processing, 2009.

[25] S. Kondo, H. Sasai, and S. Kadono, “Tree structured hybrid intra prediction,” Oc-
tober 2004, pp. 473–476.

129



[26] E. Y. Lam and J. W. Goodman, “A mathematical analysis of the DCT coefficient
distributions for images,” IEEE Trans. on Image Processing, vol. 9, pp. 1661–1666,
October 2000.

[27] Y.-L. Lee, K. H. Han, and G. J. Sullivan, “Improved lossless intra prediction for
H.264/MPEG-4 AVC,” IEEE Trans. on Image Processing, vol. 15, pp. 2610–2615,
September 2006.

[28] X. Li and M. T. Orchard, “Edge-directed prediction for lossless compression of natual
images,” IEEE Trans. on Image Processing, vol. 10, pp. 813–817, June 2001.

[29] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. on Information
Theory, vol. 28, pp. 129–137, 1982.

[30] N. Memon and X. Wu, “Recent developments in context-based predictive techniques
for lossless image compression,” The Computer Journal, vol. 40, pp. 127–135, 1997.

[31] J.-R. Ohm, “Advances in scalable video coding,” IEEE Proceedings, vol. 93, pp.
42–56, January 2005.

[32] S.-W. Park, D. H. Yoon, J.-H. Park, and B.-M. Jeon, “Intra-bl prediction considering
phase shift,” in Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG JVT-
o023.doc, April 2005.

[33] W. K. Pratt, “Digital image processing,” 1978.

[34] P.Topiwala, “Comparative study of JPEG2000 and H.264/AVC FRExt I-frame cod-
ing on high definition video sequences,” Proceedings of SPIE, Optical Information
Systems III, September 2005.

[35] R. Reininger and J. Gibson, “Distributions of the two-dimensional DCT coefficients
for images,” IEEE Trans. on Communication, vol. COM-31, pp. 835–839, June 1983.

[36] R.Li, B.Zeng, and M.L.Liou, “A new three-step search algorithm for block motion
estimation,” IEEE Trans. on Circuits and Video Technologies, vol. 4, August 1994.

[37] S.A.Martucci, “Reversible compression of HDTV images using median adaptive pre-
diction and arithmetic coding,” vol. 2, pp. 1310–1313, April 1990.

[38] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding ex-
tension of the H.264/AVC standard,” IEEE Trans. on Circuits and Systems, vol. 17,
pp. 1103–1120, September 2007.

[39] A. Segall and S. Lei, “Adaptive upsampling for spatially scalable coding,” in Joint
Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG JVT-o010.doc, April 2005.

[40] S.H.Kim and Y.-S. Ho., “Improved CABAC for H.264 lossless intra coding,” IEEE
Trans. on Image Processing.

[41] S. R. Smoot and L. A. Rowe, “Study of DCT coefficient distributions,” Proc. SPIE,
pp. 403–411, January 1996.

130



[42] G. J. Sullivan, “Multi-hypothesis motion compensation for low bit-rate video cod-
ing,” Proc. of IEEE Intl. Conf. on Acoustics, Speech and Signal Processing, vol. 5,
pp. 437–440, April 2000.

[43] G. J. Sullivan, P. Topiwala, and A. Luthra, “The H.264/AVC advanced video coding
standard: overview and introduction to the fidelity range extensions,” vol. 5558, pp.
454–474, August 2004.

[44] G. J. Sullivan and T. Wiegand, “Rate-distortion optimization for video compression,”
IEEE Signal Processing Magazine, vol. 15, pp. 74–90, November 1998.

[45] S.Yu and C.Chrysafis, “New intra prediction using intra-macroblock motion compen-
sation,” in Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 SG16 Q.6) JVT-c151r1.doc, April 2004.

[46] S. Takamura and M. Takagi, “A hybrid lossless compression of still images using
Markov model and linear prediction,” vol. 974, pp. 203–208, 19.

[47] T.K.Tan, C.S.Boon, and Y.Suzuki, “Intra prediction by template matching,” IEEE
Intl Conf on Image Processing, October 2006.

[48] T.Shiodera, A.Tanizawa, and T.Chujoh, “Bidirectional intra prediction,” in
Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG (ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 SG16 Q.6) VCEG-AE14.doc, January 2007.

[49] M. Weinberger, G. Seroussi, and G.Sapiro, “The LOCO-I lossless image compression
algorithm: priniciples and standarization into JPEG-LS,” IEEE Trans. on Image
Processing, May 2000.

[50] Z. Wong, J. Liu, Y. Tan, and J. Tian, “Inter layer intra prediction using lower layer
information for spatial scalability,” vol. 345/2006, pp. 303–311, October 2006.

[51] X. .Wu and K. Barthel, “Piesewise 2D autoregression for predictive image coding,”
Proc. Int. Conf. Image Processing, vol. 3, pp. 901–905, October 1998.

[52] X. Wu and N. Memon, “Context-based, adaptive, lossless image coding,” IEEE
Trans. on Communications, Apirl 1997.

[53] H. Ye, G. Deng, and J. C. Devlin, “Least squares approach for lossless image coding,”
Fifth Intl. Symposium on Signal Processing and its Applications, pp. 63–67, August
1999.

[54] G. S. Yovanof and S. Liu, “Statistical analysis of the DCT coefficients and their
quantization error,” Conf. Rec. 30th Asilomar Conf. Signals, Systems, Computers,
vol. 1, pp. 601–605, 1997.

[55] Q. Zhang, S.H.Kim, Y. Dai, and C.-C. J. Kuo, “Multi-order-residual (MOR) video
coding: framework, analysis and performance,” SPIE Visual Communications and
Image Processing, July 2010.

131


