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ABSTRACT  
 

Fuzzy Set Qualitative Comparative Analysis (fsQCA) is a methodology for obtaining linguistic 
summarizations from data that are associated with cases. It was developed by the eminent 
sociologist Prof. Charles C. Ragin, but has, as of this date, not been applied by engineers or 
computer scientists. Unlike more quantitative methods that are based on correlation, fsQCA 
seeks to establish logical connections between combinations of causal conditions (conjunctural 

causation) and an outcome, the result being rules that summarize (describe) the sufficiency 
between subsets of all of the possible combinations of the causal conditions (or their 
complements) and the outcome. The rules are connected by the word OR to the output. Each rule 
is a possible path from the causal conditions to the outcome and represents equifinal causation. 

This report, for the first time, explains fsQCA in a very quantitative way, something that is 
needed if engineers and computer scientists are to use fsQCA. 

There can be multiple results from fsQCA, i.e. collections of combinations of causal conditions 
each of which can be interpreted as a linguistic summary, ranging from the most “complex” 
summary to “intermediate” summaries to the most “parsimonious” summary. The method that is 
used to obtain the intermediate linguistic summaries is called counterfactual analysis; it is very 
important to fsQCA and is also described in this report.  

This report also provides examples that illustrate every step of fsQCA, guidelines for the 
number of causal conditions that can be used as a function of the number of cases that are 
available, comparisons of fsQCA with two existing approaches to linguistic summarization that 
also use fuzzy sets, and descriptions of a method for obtaining the membership functions that are 
needed in order to implement fsQCA. 
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I. INTRODUCTION 
 

A linguistic summarization is a sentence or a group of sentences that describes a pattern in a 
database. There are different kinds of linguistic summarizations, ranging from a library of pre-
chosen sentences (summarizers), from which the most representative one (or group) is chosen 
and is then declared to be the linguistic summarization, to a collection of if-then rules, some or 
all of which are chosen to be the linguistic summarization. Each of the different kinds of 
linguistic summarizations has its useful place; however, in this report we are interested only in 
linguistic summarizations that are in the form of if-then rules.  

According to Kacprzyk and Zadro ny (2010) linguistic data (base) summaries using type-1 
fuzzy sets were introduced by Yager [(1982), (1991), (1995), (1996)], advanced by Kacprzyk 
and Yager (2001), Kacprzyk, et al. (2000) and Zadro ny and Kacprzyk (1995), implemented in 
Kacprzyk and Zadro ny [(2000a-2000c), (2001a-2001f), (2002), (2003)], and extended to type-2 
fuzzy sets by Niewiadomski (2008a,b). Linguistic summarizations of time series that use type-1 
fuzzy sets has been studied by Kacprzyk and Wilbik, e.g. [2010 (see, also, 13 other references by 
these authors, including Zadro ny, that are in this article]. Because all of these summarizations 
are for a library of pre-defined summarizers, and are not in the form of if-then rules, they are not 
elaborated upon in this report; however, detailed comparisons of three different summarization 
methods are given in Section VI. 

Linguistic summarization using if-then rules and type-1 fuzzy sets had its origins in Zadeh’s  
classical 1973 paper. Although these if-then rules are the foundation for the developments of 
many kinds of quantitative rule-based systems, such as fuzzy logic control, rule-based 
classification, etc., until recently very few people, other than perhaps Zadeh [e.g., (1996), (1999), 
(2001), (2008)], thought of them any longer as linguistic summarizations. This is because it is the 
mathematical implementations of the set of rules that has become important in such applications, 
rather than the rules themselves. In essence, the rules have become the means to the end, where 
the end is a mathematical formula that produces a numerical output. Only since Zadeh’s 
pioneering works on computing with words has there been a return to the understanding that a 
collection of if-then rules, by themselves, is indeed a linguistic summarization.  

Wang and Mendel (1991) developed the first method to extract if-then rules from time-series 
data (the WM method). Many improvements to the WM method have been published since the 
original method. All of these works use the if-then rules as a predictive model, which according 

to Hand, et al. (2001) “… has the specific objective of allowing us to predict the value of some 

target characteristic of an object on the basis of observed values of other characteristics of the 

object.” 

Recently, Wu and Mendel [(2010), (2011)] developed a different way to extract rules from data 

in which the rules use interval type-2 fuzzy sets to model the words in both their antecedents 

and consequents. Their rules construct a descriptive model, which according to Hand, et al. 

(2001) “… presents, in convenient form, the main features of the data. It is essentially a summary 

of the data, permitting us to study the most important aspects of the data without them being 

obscured by the sheer size of the data set1.  
The linguistic summarization method that is described in this report also leads to a descriptive 

                                                
1 The linguistic summarizations mentioned above, due to Yager, Kacprzyk, Zadro ny, Niewiadomski and Wilbik 

also fall into the class of descriptive models. 
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model, and is called Qualitative Comparative Analysis (QCA). It is not a method originated by 
the authors of this report, but is a method discovered by the first author that has been used 
mainly in the fields of social and political sciences and that does not seem to have been used 
(prior to our works) in engineering or computer science. Consequently, this report should be 
viewed as a conduit of fsQCA from the less mathematically oriented social and political sciences 
literatures into the more mathematically oriented engineering and computer science literatures. 
This report also includes new results. 

According to Ragin (2008, p. 183): “The goal of QCA is to derive a logically simplified 
statement describing the different combinations of conditions linked to an outcome.” Each 
combination of conditions and same outcome is sometimes referred to as a type or a typological 

configuration [Fiss (2010)]. According to Rihoux and Ragin (2009, p. 33 and p. 66):  
Crisp set Qualitative Comparative Analysis (csQCA) was the first QCA technique, developed in the late 

1980s, by Professor Charles Ragin2 and programmer Kriss Drass. Ragin’s research in the field of historical 

sociology led him to search for tools for the treatment of complex sets of binary data that did not exist in 

the mainstream statistics literature3. He adapted for his own research, with the help of Drass, Boolean 

algorithms that had been developed in the 1950s by electrical engineers to simplify switching circuits, most 

notably Quine4 (1952) and McCluskey (1966). In these so-called minimization algorithms, he had found an 

instrument for identifying patterns of5 multiple-conjunctural causation and a tool to “simplify complex data 

structures in a logical and holistic manner [Ragin (1987), p. viii]. … csQCA is based on Boolean algebra, 

which uses only binary data (0 or 1), and is based on a few simple logical operations6 [union, intersection 

and complement]. … [In csQCA,] it is important to follow a sequence of steps, from the construction of a 

binary data table to the final ‘minimal formulas.’ … Two key challenges in this sequence, before running 
the minimization procedure, are: (1) implementing a useful and meaningful dichotomization of each 

variable, and (2) obtaining a ‘truth table’ (table of configuration) that is free of ‘contradictory 

configurations.’ … The key csQCA procedure is ‘Boolean minimization.’  
csQCA was extended by Ragin to fuzzy sets, because he realized that categorizing social 

science causes and effects as black or white was not realistic. Fuzzy sets let him get around this. 
According to [Rihoux and Ragin (2009), p. 120]:  

fsQCA retains key aspects of the general QCA approach, while allowing the analysis of phenomena that 

vary by level or degree. … The fsQCA procedure … provides a bridge between fuzzy sets and 

conventional truth table analysis by constructing a Boolean truth table summarizing the results of multiple 
fuzzy-set analyses. … Fuzzy membership scores (i.e., the varying degree to which cases belong to sets) 

combine qualitative and quantitative assessments. … The key set theoretic relation in the study of causal 

complexity is the subset relation; cases can be precisely assessed in terms of their degree of consistency 

[subsethood] with the subset relation, usually with the goal of establishing that a combination of conditions 

is sufficient for a given outcome. 

Both csQCA and fsQCA are set-theoretic methods. They differ from conventional quantitative 
variable-based methods (e.g., correlation and regression) in that they [Fiss (2010)] “… do not 
disaggregate cases into independent, analytically separate aspects but instead treat configurations 
as different types of cases.” Additionally, [Fiss (2010)] “The basic intuition underlying QCA7 is 
that cases are best understood as configurations of attributes resembling overall types and that a 

                                                
2 He is now a professor of sociology and political science at the University of Arizona. In the 1980’s he was a 

professor of sociology and political science at Northwestern University. 
3 See, also, Appendix B. 
4 Quine was not an electrical engineer; he was a famous American philosopher and logician. 
5 The Glossary, in Appendix A of this report, explains many terms that either may be new to the reader or are used 
in a context that may be different from the ones they are used to. 
6 Bracketed phrases, inserted by the present authors, are meant to clarify quoted materials. 
7 It is quite common to refer to both csQCA and fsQCA as “QCA” letting the context determine which QCA it is. 

More recently, the phrase Configurational Comparative Methods is used to cover all QCA methods, e.g., Rihoux 

and Ragin (2009). 
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comparison across cases can allow the researcher to strip away attributes that are unrelated to the 
outcome in question.” 

According to Ragin (2008, p. 183), “… QCA summarizes the truth table in a logically 
shorthand manner.” This is linguistic summarization. 

Kacprzyk and Zadro ny (2010, Table I) classify linguistic summaries into five forms, type 5 
being the most general form, about which they state:  

Type 5 summaries represent the most general form … fuzzy rules describing the dependencies between 

specific values of particular attributes. … Two approaches to Type 5 summaries have been proposed. First, 

a subset of such summaries may be obtained by analogy with association rules concept and employing their 

efficient algorithms. Second, genetic algorithms may be used to search the summaries’ space.  

fsQCA provides a type 5 summary and is a new approach for engineers and computer scientists 
to obtain such a summary. 

Although there are two kinds of fsQCA, one for establishing sufficient conditions and one for 
establishing necessary conditions, our emphasis in this report is on the former8, because it is only 
the sufficient conditions for a specific outcome that are in the form of if-then rules; hence, our 
use of the term “fsQCA” implies the phrase “fsQCA for sufficient conditions.” 

One may ask: “Why is this report needed, since Ragin et al. have already published so much 
about fsQCA?” Our answer to this rhetorical question is: This report, for the first time, explains 

fsQCA in a very quantitative way, something that is not found in the existing literature, and 

something that is needed if engineers and computer scientists are to use fsQCA. 
The rest of this report is organized as follows: Section II describes the steps of fsQCA and puts 

them on an analytical footing. Section III provides numerical examples that illustrate the steps of 
fsQCA and also show how the results from those steps can be collected together in summary 
tables. Section IV is about Counterfactual Analysis (CA), which is a way to overcome the 
limitation of a lack of empirical instances, i.e. the problem of limited diversity. CA leads to so-
called intermediate solutions (summarizations). Section V provides new theoretical results that 
either help to improve the computations fsQCA or help to explain the results from fsQCA. 
Section VI provides very detailed comparisons between fsQCA and two other methods for 
linguistic summarization that also use fuzzy sets. This is needed so that it is absolutely clear how 
fsQCA differs from those methods. Section VII is about the connections between the number of 
cases and number of causal conditions that can be used in fsQCA. Section VIII describes a 
method for establishing the membership functions that are needed in order to perform fsQCA. 
Section IX provides our conclusions and also includes a list of limitations of fsQCA that should 
be viewed in a positive way as a list of research opportunities. 

There are six appendixes to this report. Appendix A is a glossary that explains many terms 
used in this report that either may be new to the reader or are used in a context that may be 
different from the ones they are used to. Appendix B explains why Ragin became disillusioned 
with conventional quantitative analysis and developed fsQCA. Appendix C contains an 
algorithm for determining intermediate solutions and was provided to the senior author by Ragin. 
Appendix D contains examples for five causal conditions (Section III contains similar examples 
for three causal conditions). Appendix E explains how fsQCA can also be used to determine if a 
causal condition or its complement is a necessary condition. Because necessary conditions are 
very rare in engineering and computer science applications, they are not emphasized in this 
report. Appendix F provides a detailed example of how minimal prime implicants can be 

                                                
8 How to determine necessary conditions is explained in Appendix E. 
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computed by hand. It is meant for explanatory purposes only, because the QM algorithm is used 
in practice to make such calculations. 
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II. FSQCA  
 

A. Introduction  

fsQCA seeks to establish logical connections between combinations of causal conditions and a 
desired outcome, the result being rules (typological configurations) that summarize9 (describe) 
the sufficiency between subsets of all of the possible combinations of the causal conditions (or 
their complements) and the outcome. It is not a methodology that is derived through 
mathematics, e.g. as the solution to an optimization problem (nor are the linguistic 
summarization methods of Yager, Kacprzyk, Zadro ny, Niewiadomski and Wilbik that are 
mentioned in Section I), although, as will be seen below, it uses mathematics. Our mathematical 
description of fsQCA does not appear in the existing literatures about fsQCA. It is needed, 
though, if engineers and computer scientists are to use fsQCA. 

To begin, one must choose a desired outcome, e.g. high (low) 180-day cumulative oil 

production rate. One then postulates a subset of k possible causes for the desired outcome, using 
the substantive knowledge of the researcher or domain experts. These causes or their 
complements become the antecedents in the fsQCA causal combinations, and, in each causal 
combination, they are always connected by the logical AND operation that is modeled using the 
minimum operation.  

Let Cj  denote the jth causal condition ( j = 1,...,k ) and O  denote the desired outcome. For the 

k  possible causal conditions, it is assumed that each has nC  terms10 describing it (e.g., low 

permeability, moderate permeability and high permeability, in which case nC = 3 ) and these 

terms are denoted Cj
v  ( v = 1,...,nC ), respectively. In Ragin’s works [e.g., Rihoux and Ragin 

(2009), Chapter 5] it is quite common for each causal condition to be described just by one term, 
e.g., in a study of the breakdown of democratic systems for 18 countries in Europe between 
World Wars 1 and 2, he chose the following five ( k ) candidate causal conditions: [country is] 
developed, urban, literate, industrial and unstable. Observe that none of these words has 
adjectives appended to it, whereas in most engineering applications for fsQCA it is very common 
to have adjectives appended to a causal condition, e.g., low permeability and high permeability. 
If a causal condition has more than one term describing it (e.g., low permeability and high 

permeability), then each term is treated as an independent causal condition
11; hence, 

Cj
v Cj ( j = 1,2,...,nCk ). These causes or their complements become the antecedents in the 

fsQCA causal combinations, and, in each causal combination, they are always connected by the 

                                                
9 Ragin does not think of fsQCA as linguistic summarization; he thinks of it as describing what’s going on between 

a collection of causal conditions and an outcome. It is only in Rihoux and Ragin [2009, page 15, Box 1.4] that 

“summarizing data” is acknowledged as one of the five types of uses of QCA techniques. Consequently, it now 

seems legitimate to use fsQCA for linguistic summarization. The other four uses for QCA are: check coherence of 

data, check hypotheses of existing theories, quickly test conjectures, and develop new theoretical arguments. 
10 It may be that nC is different for each Cj  in which case nC could be changed to nCj

. In this report it is assumed that 

nC is the same for each Cj . 
11 Initially, it was thought that a separate fsQCA would have to be performed for each term of a causal condition. 
Doing this would not only have led to an explosion in the number of fsQCAs, but it would also have led to possible 

conflicting summaries (e.g., one for low permeability and another for high permeability) that would somehow have 

to be resolved. Prof. Peer Fiss (of the Marshall School of Business, at the University of Southern California) told us 

that when he used a causal condition that had two terms associated with it (e.g., low income and high income) he 

treated each term as a separate causal condition. We have adopted his approach. 
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logical AND operation that is modeled using the minimum operation. In the rest of this report, 
we assume thatnCk k , and talk about k causal conditions. 

It is also assumed that the desired outcome has nO  terms describing it (e.g., low 180-day 

cumulative oil production rate and high 180-day cumulative oil production rate, in which case 

nO = 2 ) and these terms are denoted Ow  (w = 1,...,nO ).  

fsQCA is usually performed separately for each of the n0  outcome terms (as well as for their 

complements). For Ragin’s study of democratic systems there are two fsQCAs (typological 
configurations), one for survival of democratic systems and one for non-survival—breakdown—
of democratic systems. Generally there is causal asymmetry between the two fsQCAs, meaning 
that it is generally not the complements of the causal combinations associated with survival of 
democratic systems that are associated with breakdown of democratic systems. How many 
outcome terms fsQCA is performed for is up to the researcher. So, without loss of generality, it is 

assumed that n0 = 1; hence, Ow O . 

 
B. Membership Functions and Derived Membership Functions 

fsQCA needs membership functions (MFs) for the k possible causal conditions and the desired 

outcome. Let j j  denote the domain for the j
th causal condition, and  denote the 

domain for the desired outcome. The MFs for Cj  and O are respectively denoted, as:  

                                                μCj
( j ) , j j , j = 1,2,...,k   

and  
                                                          μO ( ) ,   

In this section, it is assumed that these membership functions, which are continuous functions of 

independent variables, j  or , are known. How to obtain them is non-trivial, but those details 

(described in Section VIII) are not needed now in order to understand the major computations of 
fsQCA, which are the focus of this section.  

Before proceeding to a description of the fsQCA computations, it is important to understand 
that they can only be performed for the available N cases (data) (e.g., the 18 European countries 
in Ragin’s study of the survival or breakdown of democratic systems, or the 60 oil wells in a 
fracture optimization data set, etc.). These cases have no natural ordering (e.g., 18 countries, 60 
oil wells), but instead each case is identified by an integer, so that by knowing the integer one 
also knows the case. The integers x = 1, 2, …, N are used to represent the N cases, and in this 
way the cases are ordered12.  

Next, one computes derived membership functions for the k possible causal conditions and the 

desired outcome as functions of the ordered cases13. Let j (x)  denote the jth causal variable for 

causal condition Cj  evaluated for case-x, and (x)  denote the desired outcome variable for 

outcome O  evaluated for case-x, where x = 1,2,...,N . The derived membership functions are 

                                                
12 For a person to repeat someone else’s fsQCAs, and compare their intricate details with someone else’s intricate 
details, they need to know the ordering of the N; hence, it is assumed that this information is provided to them. 
13 Ragin does not use the phrase “derived membership functions” nor does he interpret such a calculation as a MF of 

another fuzzy set. The latter is important for the subsethood calculation that is performed below. Instead, he 

provides tables [Ragin (2008), Rihoux and Ragin (2009)] that list the membership in each causal condition and in 

the causal combinations for each of the N cases. We provide such tables in Section III. 
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μCj
(x)  and μO (x) , where 

 

                                               μCj
(x) = μCj

( j (x))   x = 1,2,...,N  (1) 

 
                                                μO (x) = μO ( (x))   x = 1,2,...,N  (2) 

 
Generally, μCj

(x)  and μO (x)  are neither normal nor unimodal functions14 of x. 

 
C. Methodology of fsQCA  

C.1 Candidate rules (causal combinations): fsQCA begins by establishing a set of 2k  
candidate rules, one rule for each possible causal combination of the k causal conditions or its 
complement. Each such causal combination is an ordered combination of the k causal conditions, 
and is denoted herein as Fi  (which we shall call a firing-level fuzzy set

15) where 

 

                                                        Fi = A1
i A2

i ... Ak
i ,  (3) 

 
in which  is the logical AND operation that is implemented using minimum; 

 

                                              Aj
i
= Cj  or cj    j = 1,...,k  and i = 1,...,2k  (4) 

 
in which cj  denotes the complement of Ci , so that  

 
                                                        μ

Aj
i (x) = μCj

(x) or μcj
(x) ; (5) 

 

and the derived MF for cj , μcj
(x) , is computed, as: 

 
                                                     μcj

(x) = 1 μCj
(x)  (6) 

 
It is useful to think about fsQCA as establishing one rule (typology) for the desired outcome O 

that has the form: 
 
                                              IF F1  or F2  or ... or F

2k
, THEN O  (7) 

 
where the logical OR operation (a disjunction) is implemented using the maximum. This rule can 

also be expressed as a collection of 2k  rules (one for each causal combination) each having the 
same consequent, i.e.: 

                                                
14 This is okay, because in a traditional type-1 fuzzy logic system (T1 FLS), when fired-rule output fuzzy sets are 
combined by the union operation, the resulting fuzzy set is also non-normal and is also frequently non-unimodal; so, 

such fuzzy sets are already in wide use. 
15 Ragin does not use the term “firing-level fuzzy set”; instead, he uses the phrase “causal combination.” Here terms 

and phrases are used that are already well established in the T1 FLS literature, however, the terms “firing-level 

fuzzy set” and “causal combination” are used by us interchangeably. 
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IF F1,THEN O;or

IF F2 ,THEN O;or

...

IF F
2k

,THEN O

 (8) 

 

We shall refer to the 2k  rules in (8) as candidate rules. In the rest of fsQCA these rules are either 
deleted or simplified. 
 

C.2 From candidate rules to subset of firing-level surviving rules: The first major computation 
is the firing level

16 for each case [e.g., Mendel (2001)], i.e. the membership value of the ith causal 
combination in its k causal conditions, μFi

(x) , but for each of the N cases, i.e.: 

 

                         μFi
(x) = min μ

A1
i (x),μ

A2
i (x),...,μ

Ak
i (x){ }    x = 1,2,...,N  and i = 1,2,...,2k  (9)  

 
Clearly, each firing level can be a number whose value may range from 0 to 1, and is associated 
with Fi  in (3). The universe of discourse X for Fi  contains exactly N elements, one for each of 

the available data cases. 

Each of the 2k  causal combinations is thought of by Ragin as one vertex in a 2k - dimensional 
hypercube [Kosko (1992)]. In crisp set QCA, a candidate rule is either fully supported (i.e., it’s 
firing level MF value equals 1) or is not supported at all (i.e., it’s firing level MF value equals 0), 
and only the fully supported candidate rules survive. fsQCA backs off from the stringent 
requirement of crisp set QCA by replacing the vertex membership value of “1” with a vertex 
membership value of > 0.5, meaning that if the firing level is greater than 0.5 then the causal 
combination is closer to its vertex than it is away from its vertex. Only those cases whose firing 
levels are greater than 0.5 are said to support the existence of a candidate rule.  

Let NFi
 denote the number of cases for which μFi

(x) > 0.5 . A candidate rule is kept only if its 

firing level is greater than 0.5 for “enough” cases, i.e. if NFi
f . Quantifying “enough” is 

subjective and is done by choosing a number (f) that is called the “frequency threshold,” whose 
value depends on how many cases are available. f is an fsQCA tuning parameter and must be 
chosen by the user. Some guidance on how to choose f is provided by Ragin, i.e. for a small 
number of cases f is set at 1 or 2 [Ragin (2007)], whereas for a large number of cases f is at 
least17 10 [Ragin (2008), p. 197]. Unfortunately the words “small” and “large” are fuzzy, so the 

                                                
16 Ragin does not use this terminology; he calls this the “fuzzy set membership of cases in the causal conditions.” In 

order to be consistent with terms that are already used in the FS literature, the term “firing level” is used herein. 
17 Ragin and Fiss (Fiss is the co-author of Chapter 11 of [Ragin (2008, p. 197)]) state (for large N): “The fuzzy-set 

analysis that follows uses a frequency threshold of at least ten strong instances. This value was selected because it 
captures more than 80 percent of the [more than N = 700] cases assigned to [causal] combinations [in their works].” 

Setting the threshold at 10 and then deleting all causal combinations where there are fewer than 10 cases left them 

with 80% of the cases. In other words, there is a tradeoff between requiring more cases per causal combination and 

covering the whole population. In a later work [Fiss (2010)] f was chosen to be 3 when N  = 205. 
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user must vary f until acceptable results are obtained. At this time, there does not seem to be a 
way to quantify what “acceptable results” means.  

One (new) idea for choosing f is based on counting the number of cases for which the MF of 
the desired outcome is > 0.5. This is very different than thinking about choosing f in terms of all 
of the cases. For example, the number of oil wells for which 180-day cumulative oil production 
rate is high is quite small, whereas the number of oil wells for which 180-day cumulative oil 
production rate is low is large; hence, f can be different for these different desired outcomes. 

The outcome of this first major computation of fsQCA is a small subset of RS  surviving rules 

of the original 2k  candidate rules that could be called the “subset of firing-level surviving 

rules”18. The firing levels for these RS  surviving rules are denoted Fl
S  with associated re-

numbered membership functions μ
Fl
S (x) , l = 1,2,...,RS . 

 
C.3 From subset of firing-level surviving rules to subset of actual rules: So far the calculations 

of fsQCA have focused exclusively on the antecedents of a candidate rule (which means that 
they do not have to be repeated for different desired outcomes). The next major calculation 
involves both the antecedents and the consequent of a firing-level surviving rule.  

A traditional fuzzy logic (FL) rule assumes that its antecedents are sufficient for its consequent, 
by virtue of the a priori construct of that if-then rule, e.g., “ if D, then E ” means “D implies E,” 

i.e. “D is sufficient for E.” One does not usually question the existence of the stated FL rule; 
however, at this point in fsQCA it is not known if the antecedents of a firing-level surviving rule 
are indeed sufficient for the consequent, i.e. one questions the existence of the rule!19  

If the antecedents are sufficient for the consequent, then the rule actually exists; however, if 
they are not then the rule does not exist. So, the next calculation of fsQCA establishes whether or 
not a rule exists. This calculation is a quantification of the fact that a causal combination is 

sufficient for an outcome if the outcome always occurs when the causal combination is present 
(however, the outcome may also occur when a different causal combination is present), i.e. the 
causal combination (the antecedents) is a subset of the outcome. Ragin uses Kosko’s [1992] 
subsethood formula in order to compute the subsethood—consistency

20—of the antecedents in 
the outcome for each of the RS  firing-strength surviving rules.  

In fuzzy set theory, subsethood is a computation involving two fuzzy sets, e.g., if one wants to 
compute the subsethood of type-1 fuzzy set D in type-1 fuzzy set E, then, using Kosko’s 
subsethood formula, one computes21 

 

                                             ssK (D,E) =
min(μD (xi ),μE (xi ))i=1

N

μD (xi )i=1

N  (10) 

 

                                                
18 Ragin does not use this terminology.  
19 Such questioning seems to be related to causality, i.e. which causal combinations are the causes of the desired 

outcome? Hence, fsQCA can also be viewed as a methodology for establishing causality, not of a single causal 
condition but of combinations of such causal conditions, i.e. conjuntural causation. 
20 “Consistency” is the term favored by Ragin [Ragin (2008) and Rihoux and Ragin (2009)], although he also uses 

the term “subsethood.” Here we use the two terms interchangeably.  
21 There are other formulas for subsethood and to-date no research has been conducted to study if one formula is 

more preferable for fsQCA than another. 
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Subsethood of the antecedents in the outcome of each firing-level surviving rule requires 
computing 
 

                                       ssK (Fl
S ,O) =

min(μ
Fl
S (x),μO (x))

x=1

N

μ
Fl
S (x)

x=1

N    l = 1,2,...,RS  (11) 

 
All of the MFs needed to compute (11) are available at this point; hence, (11) can be computed. 
Some important geometric interpretations of subsethood (consistency) are given in Section E. 

For Fl
S  to be a subset of O , Ragin (2007) requires that22,23 

 

                                                               ssK (Fl
S ,O) 0.80  (12) 

 
The result is an even smaller subset of rules, namely24 RA  actual rules. The firing levels for the 

actual rules are denoted Fn
A  with associated (further re-ordered) membership functions μ

Fn
A (x) , 

n = 1,2,...,RA . Each of the actual rules is associated with a sub-set of the original N data cases, so 

that by knowing the specific actual rule one also knows the best instances for that rule. 
Connecting the best instances to each of the actual rules is very important in fsQCA because it 
allows the end-user to better understand what is happening in those specific cases. 

 
C.4. From subset of actual rules to subsets of complex and parsimonious rules: It is quite 

possible that there are still too many rules, but now for a totally different reason than before. 
When the RA  actual rules are combined using the logical OR (disjunction) operation, then, 

because all of these rules share the same consequent, they can be re-expressed, as: 
 

                                                IF (F1
A F2

A ... FRA
A ),  THEN O  (13) 

 

Each Fn
A  in (13) is the conjunction of one of the 2k  combinations of the k original causal 

conditions, e.g., F2
A C1 c2 c3 ... Ck 1 ck , F5

A c1 C2 c3 ... ck 1 Ck , etc. It 

should be obvious to anyone who is familiar with set theory that there can be a lot of redundancy 

in F1
A F2

A ... FRA
A , e.g., if k = 3 , RA = 2 , F1

A c1 c2 c3  and F2
A c1 c2 C3 , then by 

using simple set theory calculations, F1
A F2

A  can be simplified, i.e.: 

 

                         F1
A F2

A
= (c1 c2 c3) (c1 c2 C3) = (c1 c2 ) (c3 C3) = c1 c2  (14) 

 

because c3 C3 = 3  and μ
3
( 3) = 1 .  

                                                
22 Ragin (2007) also advocates “… looking for gaps in the upper range of consistency [subsethood] that might be 

useful for establishing a threshold, keeping in mind that it is always possible to examine several different thresholds 

and assessing the consequences of lowering or raising the consistency [subsethood] cut-off.” 
23 Fiss (2010) uses a threshold of 0.80, which is the threshold we use. 
24 Ragin calls them “primitive Boolean expressions” or “truth table rows.” Sometimes we also use the former. 
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While it was easy to perform the set-theoretic computations in (14) by hand, it is difficult to do 
this for larger values of k and RA . Instead, Ragin uses the Quine-McCluskey (QM) algorithm25 

to do this automatically. In order to use the QM algorithm it is important to step back from all of 
the details just presented, that made use of fuzzy sets, and realize that the RA  actual rules can be 

re-interpreted as knowing exactly which of the RA  vertices of the 2k  possible vertices 

contributed antecedents to the rules. There no longer is anything fuzzy about this, because either 
a vertex has or has not contributed antecedents. Consequently, each of the remaining RA  vertices 

is obtained by converting their fuzzy membership values into crisp—binary—values, by 
computing (n = 1,2,...,RA ) 

 

                      Bi
n
=

1 if Ci
n  is the component of the causal combination

0 if ci
n  is the component of the causal combination 

   i = 1,...,k  (15) 

 
the results of which are collected into RA  k 1  binary vectors bn , where 

 

                                                    bn = col(B1
n ,B2

n ,...,Bk
n )   n = 1,2,...,RA  (16) 

 

Each bn  may be said to be a binary version of Fn
A . 

The QM algorithm computes the prime implicants
26 as well as the minimal prime implicants

27 

of bn{ }n=1
RA

, both of which are used by fsQCA (see Section D below). Ragin equates the prime 

implicants with a complex solution (linguistic summarization, containing RC  terms), the minimal 

prime implicants with a parsimonious solution (linguistic summarization, containing RP  terms), 

and interprets these two solutions as the end-points of a countable continuum of solutions, where 
the intermediate solutions (linguistic summarizations containing RI  terms) have to be 

established using a methodology called counterfactual analysis (CA) [Ragin (2008, Chapters 8 
and 9)]. He believes that the most useful linguistic summarization is an intermediate 
summarization. 

Each of the RC  terms (still referred to as a causal combination) in the complex solution usually 

is comprised of fewer than the original k causal conditions. Each of the RP  terms in the 

parsimonious solution is almost always comprised of much fewer than the original k causal 
conditions. Each of the RI  terms in an intermediate solution is almost always comprised of 

fewer causal conditions than are in the complex solutions, but more than the causal conditions 
that are in the parsimonious solutions. 

 

                                                
25 The Quine-McCluskey algorithm is used to minimize Boolean functions; see, e.g., sub-section D, 

http://en.wikipedia.org/wiki/Quine-McCluskey_algorithm, or Mendelson (1970). 
26 A prime implicant is a combination of primitive Boolean expressions that differ on only one cause and have the 
same output. 
27 Minimal prime implicants (also called essential prime implicants by Ragin (1987)), cover as many of the primitive 

Boolean expressions as possible with a logically minimal number of prime implicants. For an example of how 

minimal prime implicants are determined from prime implicants, see Ragin (1987, pp. 95-98). Other examples can 

be found in Mendelson (1970).  
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C.5 From subsets of complex and parsimonious rules to subset of intermediate rules: 

Counterfactual analysis (CA) involves performing thought experiments in which the substantive 

knowledge of a domain expert is used. Recall that 2k RS  causal combinations were eliminated 

early on in fsQCA because either there were too few cases to support them or their firing levels 
were below the threshold of 0.5. CA begins with both the complex and parsimonious solutions 
and modifies the complex solutions subject to the constraint that the parsimonious solution must 
always be present (in some form) in the final intermediate solutions. The modifications use 
causal combinations for which there either were no cases or not enough cases, and require that 
the user bring a lot of substantive knowledge about the cases into the modification process. Each 
modified complex solution is called a counterfactual, and each counterfactual is usually less 
complex in its structure than is the complex solution, unless the complex term does not change as 
a result of CA, in which case it becomes the counterfactual. Once all of the counterfactuals have 
been obtained for all of the complex terms, they are combined using the set theory operation 
union. This result is called the (set of) intermediate solutions, and it contains RI  terms. Because 

CA is so important to fsQCA, more details about it are given in Section IV.  
 
C.6 From subset of intermediate rules to subset of simplified intermediate rules: Because CA 

leads to a new set of solutions, it is possible that their union can be simplified. This is 
accomplished by subjecting the intermediate solutions to the QM algorithm in which the 
remainders are set to false. The result of doing this are a set of RSI  simplified intermediate 

summarizations (solutions)28.  
 
C.7 From subset of simplified intermediate rules to subset of believable simplified intermediate 

rules: It is important to re-compute the consistencies of the RSI  simplified intermediate 

summarizations, because CA also makes no use of the fuzzy nature of the causal conditions and 
outcome, and so this connection back to fuzziness has to be re-established. It can happen, for 
example, that one or more of the simplified intermediate solutions have a consistency that is well 
below 0.80, in which case they are not to be believed. Further discussions about this are given in 
Section E. The end of all of this is a collection of RBSI  believable simplified intermediate 

summarizations (solutions) for a desired outcome.  
 

C.8 Summary: Because of the many steps in fsQCA in which the original 2k  causal 
combinations have been reduced to RBSI  believable simplified intermediate solutions, we 

summarize fsQCA in a new mnemonic way in Fig. 1. The emphasis in this diagram is on the 

reduction of causal combinations from 2k  to RBSI . Also shown are the “fuzzy” and “crisp” 

computations. In addition, we provide a flowchart for fsQCA in Figs. 2 and 3. 
It is also quite common to compute the best instances for the RBSI  believable simplified 

intermediate solutions29 as well as the coverage of the cases by them. Coverage is discussed in 
Section F. 

It is also frequently very useful to also summarize the calculations for each fsQCA in a 
collection of tables, as is illustrated by the examples in Section III. 

                                                
28 Ragin does not use different naems for the intermediate and simplified intermediate solutions, and it was only in 

e-mail to the senior author that he mentioned his using QM to obtain the simplified intermediate solutions. 
29 This can also be done for the complex and parsimonious solutions. 
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Figure 1. Mnemonic summary of fsQCA. 
 

 

 
 

Figure 2. Flowchart for fsQCA; it is continued in Fig. 3. 
 

D. Prime Implicants and Minimal Prime Implicants 

Fig. 4 shows how the original 2k  causal combinations are partitioned into three non-
overlapping subsets by fsQCA.  

• Subset X1  contains the causal combinations whose firing levels are < 0.5. This group of 

causal combinations never made it to the fsQCA sufficiency test, and can be thought of as 
the causal combinations that do not have cases, and are the ones associated with limited 

diversity. Limited diversity refers to limited knowledge about a causal combination. The 
removed causal combination is called a “remainder,” which means either its presence or 
absence can cause the desired outcome to happen, but we just don’t know.  

 



14 

 
 

Figure 3. Flowchart for fsQCA, continued. 
 
 

 
 

Figure 4. fsQCA partitions the original 2k  causal combinations into three subsets. 
 

• Subset X2  contains the causal combinations whose firing levels are > 0.5 but that failed the 

sufficiency test. Because these causal combinations made it all the way through fsQCA but 
failed the sufficiency test, they are forever after discarded.  
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• Subset X3  contains the causal combinations whose firing levels are > 0.5 and passed the 

sufficiency test. These causal combinations are the short-term winners of fsQCA, the so-
called actual rules or primitive Boolean expressions [Ragin (1987)]. 

 
The primitive Boolean expressions can be simplified in two different ways, leading to two sets 

of sufficient conditions—the RC  prime implicants (referred to by Ragin as the complex sufficient 

conditions) and the RP  minimal prime implicants (referred to by Ragin as the parsimonious 

sufficient conditions).  
Prime implicants are obtained from the primitive Boolean expressions by using Boolean 

algebra reduction techniques (that are equivalent to set theoretic reduction techniques) that 
simplify (reduce) those expressions until no further simplifications are possible. The following 
are examples of reduction techniques that are used frequently: ABC + ABC = ABC , A + a = 1  
and ABC + AB = AB . The latter, known as the absorption rule, is true because: 

 
  ABC + AB = ABC + AB(C + c) = ABC + ABC + ABc = ABC + ABc = AB(C + c) = AB  (17) 

 
Sometimes it is possible to perform these reductions by hand; however, when there are many 

causal conditions and combinations it is very tedious (and next to impossible) to do this by hand. 
The Quine-McCluskey (QM) minimization method can be used to obtain the prime implicants 
automatically. This requires setting the causal conditions in X3  as present and the causal 

conditions in both X1  and X2  as absent. 

We used free software called “Logic Friday” that is available at: http://sontrak.com/. 

Many times there are too many prime implicants, i.e., they are not all needed in order to cover 
the primitive Boolean expressions. A second running of the QM algorithm, in which subsets X1  

and X3  are combined by the union operation and are then simplified (reduced), produces the 

minimal prime implicants. This requires setting the causal conditions in X3  as present, the causal 

conditions in X2  as absent, and the causal conditions in X1  as don’t care. In other words, 

remainders are set to be present for the desired outcome if and only if they result in 
simplifications of the primitive Boolean expressions; otherwise, they are treated as absent. An 
example that illustrates the calculation of minimal prime implicants is given in Appendix F. 

When X2  is vacuous (i.e., it contains no elements), a situation that we have encountered but 

have not seen reported on in Ragin’s works, then there will be no minimal prime implicants, and 
consequently no parsimonious solutions. This is because of the following: 

 

Theorem 1. If X2  (see Fig. 4), then minimal prime implicants exist. If, on the other hand, 

X2 = , then minimal prime implicants do not exist. 

 
Proof: Consider k causal conditions {C1,C2 ,...,Ck} . In order to find minimal prime implicants 

the causal combinations in X3  are set to present, causal combinations in X2  are set to absent, 

and causal combinations in X1  are set to don’t care.  

If X2 =  then X1 + X2 + X3 = X1 + X3 = X  so that X1 + X3  always equals X. One can 

therefore set all don’t care combinations to present. Because no causal combinations have been 
removed (i.e., X1 + X3 = X ), all possible combinations of the causal conditions can be generated 
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by expanding the following product: (C1 + c1)(C2 + c2 )(C3 + c3)...(Ck + ck ) ; but, this equals 1. 

Consequently, it is obvious that by using Boolean algebra reduction techniques, all combinations 
of causal conditions must combine. This is the simplest result for X1 + X3  and it does not contain 

any combination; hence, minimal prime implicants do not exist if X2 = .  

If, on the other hand, X2  then X1 + X3 X , so X1 + X3  does not contain all combinations 

and simplification in X1 + X3  results in the minimal prime implicants.  

 

E. Geometry of Consistency and Best Instances 
Prior to QM and CA it is easy to connect each case to a causal combination because each 

surviving causal combination that has a MF value greater than 0.5 can be directly connected to a 
case, and each actual causal combination whose consistency is greater than 0.8 can also be 
directly connected to a case. This will be made very clear in the examples of Section III.  

Unfortunately, the causal combinations used in QM are not revealed to the end-user because 
they are internal to the QM processing. Because CA begins with the results from QM, CA also 
does not provide a direct connection to the causal combinations. Consequently, after QM and CA 
it is no longer possible to directly connect cases to each of the RBSI  believable simplified 

intermediate solutions (see Fig. 1). In this section we explain how Ragin establishes the best 
instances for the believable simplified intermediate solutions.  

In order to understand how Ragin does this, it is important to first discuss the geometry of 

consistency, something that is emphasized in Ragin’s 2000 and 2008 books, but is not mentioned 
in Rihoux and Ragin (2009). The geometry of consistency lets us reconnect the RBSI  believable 

simplified intermediate solutions to the fuzzy natures of the desired outcome and the causal 
conditions that appear in each of these solutions. 

Fig. 5 is modeled after Fig. 3.1 in Ragin (2008). The 45-degree line in Fig. 5 is very important 
and derives from the consistency formula (11), because maximum consistency is 1, and this can 
only occur when min(μ

Fl
S (x),μO (x)) = μ

Fl
S (x) , for x = 1,2,...,N , which will be true if 

μO (x) μ
Fl
S (x)  for x = 1,2,...,N . So, if μO (x)  lies above the 45-degree line μO (x) = μ

Fl
S (x) , 

for x = 1,2,...,N  (anywhere in the region A B ), then ssK (Fl
S ,O) = 1 . This leads to: 

 

 
Figure 5. Consistency regions. Regions A and B are where maximum consistency can occur. 
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Geometrical Fact #1: For maximum consistency the pairs (μO (x),μFl
S (x))  ( x = 1,...,N ) must 

be above the 45-degree line, i.e., they must be in the upper triangle A B  on the plot of μO (x)  

versus μ
Fl
S (x) .  

Next we explain why, if all cases hypothetically were to lie in A B , it is impossible for all of 

them to lie in Region A, but that it is possible for all cases to lie in Region B. 
1. The MF of each of the RA  actual causal combinations is > 0.5 for at least one case. This 

is because only those RS  causal combinations whose firing levels are > 0.5 for at least 

one case make it to the consistency test, and that test reduces the number of causal 
combinations from RS  to RA  (Fig. 1). Each of the RA  causal combinations still has a 

firing level that is > 0.5 for at least one case. 
2. During QM and CA causal conditions are only removed from a causal combination; 

hence, the number of causal conditions in a causal combination can never increase as a 

result of QM and CA. For QM, this is obvious from the fact that, for both the primary and 
minimal primary implicants, set theory (e.g., absorption) is used to combine terms, 
meaning that the number of causal conditions in a term, after QM, is never larger than the 
number of causal conditions in a term before QM. For CA, it should also be clear, from 
the fact that an intermediate solution has a number of causal conditions between the 
number in the complex and parsimonious solutions, that statement 2 is also true. 

3. In Section III, we will prove that if μFi*
(x |C1,C2 ,...,Ck1

)  has been computed for k1  

causal conditions C1,C2 ,...,Ck1
 and one now considers k2  causal conditions 

C1,C2 ,...,Ck2
, where k2 > k1 , then (for all x)  

 
                               μFi*

(x |C1,C2 ,...,Ck2
) μFi*

(x |C1,C2 ,...,Ck1
)  (18) 

 

4. Viewing (18) from right-to-left observe that when causal conditions are removed from 

an existing causal combination, the firing level for the resulting causal combination 

can never be smaller than the prior firing level, i.e. firing levels tend to become 

strengthened when fewer causal conditions are included in a causal combination. 
5. Geometrical Fact #2: There must be at least one case for which μ

Fl
BSI (x) > 0.5 , which 

means that it is not possible for all cases to be in Region A in Fig. 5. Prior to QM and 
CA we began with RA  causal combinations, which, from Item 1 had MF values greater 

than 0.50 for at least one case. The RA  causal combinations are reduced to RSI  causal 

combinations by the QM-CA-QM calculations (Fig. 1). From Items 2 and 4, it must 
therefore be true that μ

Fl
BSI (x) > 0.5  for at least one case.  

6. Geometrical Fact #3: A case can only be in Region B if μ
Fl
BSI (x) > 0.5 ; hence, if all 

cases lie in A B  this is only possible if all cases lie in Region B. 

 
Item 6 does not mean that all cases will lie in Region B. It means that Region B is the most 

desirable region for a case to lie in to obtain the largest possible value for consistency, which is 
why it is labeled “Desirable region” in Fig. 5. Ragin (in e-mail to the first author, on October 26, 
2010) suggests that Region B should extend a bit below ( ) the 45-degree line to account for 

the subjectivity of MF values. 
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We are now able to state Ragin’s procedure (provided to the first author in e-mail, dated 
October 19, 2010) for choosing the best instances for each of the RBSI  believable simplified 

intermediate solutions
30. Let Fq

BSI  denote one of the RBSI  terms in the believable simplified 

intermediate solutions (q = 1,...,RBSI ): 

1. For each case and each Fq
BSI  compute μ

Fq
BSI (x)  ( x = 1,...,N  and q = 1,...,RBSI ). The result 

of doing this is an N RBSI  matrix of μ
Fq
BSI (x)  numbers in which each row is for a case 

and each column is for one of the believable simplified intermediate solutions. 
2. For each row of the N RBSI  matrix, find the subset of the believable simplified 

intermediate solutions that have the largest μ
Fq
BSI (x) 0.50 , i.e., find q (x)  [and, 

subsequently Fq (x )
BSI ] such that  

 

                                  q (x) = arg max
q=1,...,RBSI

μ
Fq
BSI (x) 0.50{ }  x = 1,...,N  (19) 

 
Often there is only one solution of (19); however, it is possible that there could be more 
than one solution of (19) because there can be ties, i.e. 
 

                                                 q (x) = {q1(x),q2 (x),...,qQ (x)}  (20)  

 
where 
 

                                                 qj (x) [1,...,RBSI ],  j = 1,...,RQ  (21) 

 
Consequently, more than one believable simplified intermediate solution may be retained 
for each case.  

3. Focus on each Fq (x )
BSI , and examine the ordered pair (μ

Fq ( x )
BSI (x),μO (x)) . If  

μO (x) μ
Fq ( x )
BSI (x)  (by Step 2, μ

Fq ( x )
BSI (x) 0.50 ) then Case x is declared a best instance 

for the believable simplified intermediate solution Fq (x )
BSI .  

At the end of this procedure, each of the believable simplified intermediate solutions will have 
best instances attached to it. 
 

F. Coverage 
Coverage is an assessment of the way respective terms in the believable simplified 

intermediate solution31 “cover” observed cases [Rihoux and Ragin (2009)]. Ragin [2008, Ch. 3] 
mentions three kinds of coverage and Rihoux and Ragin [2009, p. 64] define them as: (1) 
solution coverage, Cs, which is the proportion of cases that are covered by all of the terms; (2) 
raw coverage, Cr, which is the proportion of cases that are covered by each term one at a time; 
and, (3) unique coverage, Cu, which is the proportion of cases that are uniquely covered by a 

                                                
30 This same procedure can be used for the complex, parsimonious and intermediate solutions. 
31 Coverage can also be computed for the complex and parsimonious solutions. 
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specific term (no other terms cover those cases). Each measure of coverage provides a different 
insight into the believable simplified intermediate solutions. The formulas for these three 
coverages are obtained by extending their comparable formulas from crisp to fuzzy sets, 
something that is commonly done by the fuzzy set community [e.g., see Mendel (1995) or 
Mendel (2001, Ch. 1)]. 

There are several different definitions of coverage for crisp sets (e.g., Rihoux and Ragin 
[2009], Kacprzyk and Zadro ny [2005], Niewiadomski [2008] and Wu and Mendel [2011]). For 
an if-then rule, these definitions are: 
 

                          C1 =
Number of cases covered by both antecedents & consequents 

Number of cases covered by antecedents
 (22) 

 

                          C2 =
Number of cases covered by both antecedents & consequents 

Number of cases covered by consequent
 (23) 

 

                          C3 =
Number of cases covered by both antecedents & consequents 

Total number of cases 
 (24) 

 
Observe that the numerators of (22)-(23) are the same, and that they count only the number of 
cases for which both the antecedent and consequent occur simultaneously, i.e. for which their 
MFs equal 1. The denominator of C1 counts only the number of cases covered by the 
antecedents; the denominator of C2 counts only the number of cases covered by the consequent; 
but, the denominator of C3 counts the total number of cases, which causes C3 to be much smaller 
than C1 or C2 and has led to the use of an amplification function [Wu and Mendel (2011)] to 
rescale C3 to a meaningful degree of sufficient coverage. 

No theory exists for determining which coverage definition is the best one to use. Presently, 
this can only be determined by means of experiments. Observe, however, that C1 in (22) is very 
similar to the definition of consistency, and has a high correlation with it, so it is not very useful, 
and, C3 in (24) needs a scaling function that may differ for different experiments. Consequently, 
C2 in (23) seems the most reasonable coverage to use, which agrees with how Ragin computes 
coverage. 

For fuzzy sets, (22)-(24) cannot be used as is because for such sets a term is associated with a 
case only to the degree of its MF for each case (for crisp sets, that degree is always either 1 or 0). 
From fuzzy set theory [Klir and Yuan (1995)], the number of cases covered by a single fuzzy set 
is a simple summation of membership scores in that fuzzy set; and, the number of cases 
simultaneously covered by two fuzzy sets is the size of the overlap of the two fuzzy sets. 
Consequently, if one wants to compute the coverage of T1 FS D in T1 FS E, C(D,E) , then, 

using the extension of  (23) to T1 FSs, one computes 
 

                                                  C(D,E) =
min(μD (xi ),μE (xi ))i=1

N

μE (xi )i=1

N  (25) 
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Although the numerator of this coverage is identical to the numerator in the formula for 
consistency in (11) the denominator of (25) is different. (25) is the coverage formula that is used 
by Ragin [2008]. 

The believable simplified intermediate solutions often contain several terms, 
 
F

l

BSI  

( l = 1,2,...,R
BSI

), connected by the logical OR (modeled by the maximum). We shall refer to the 

union of the terms of the believable simplified intermediate solutions as the composite solution, 

and denote it as  F
BSI . The firing level of  F

BSI  is the maximum of the firing levels of each of its 
terms. Consequently, solution coverage, Cs, which is the proportion of cases that are covered by 

all of the terms in  F
BSI , is obtained from (25), as: 

 

                                            

  

C
s
(F

BSI ,O) =

min max
i

μ
F

i

BSI
(x)( ),μO

(x)( )x=1

N

μ
O

(x)
x=1

N
 (26) 

 

Raw coverage, 
 
C

r
, is the proportion of cases that are covered by each term Fl

BSI  separately, 

and is computed directly from (25), as: 
 

                                       

  

C
r
(F

l

BSI ,O) =
min(μ

F
l

BSI
(x),μ

O
(x))

x=1

N

μ
O

(x)
x=1

N
, l = 1,2,..., R

BSI
 (27) 

 

Unique coverage, 
 
C

u
, is the proportion of cases that are uniquely covered by a specific term, 

 
F

l
i

BSI  (
  
l
i
= 1,2,..., R

BSI
), and is calculated by subtracting the solution coverage of 

 
F

BSI
¬F

l
i

BSI  

from C
s
(F BSI ,O) , i.e.: 

 

              

  

C
u
(F

l
i

BSI ,O) = C
s
(F BSI ,O)

min max
j

j i

μ
F

l j

BSI
(x) ,μ

O
(x)

x=1

N

μ
O

(x)
x=1

N
, l

i
= 1,2,..., R

BSI
 (28) 

 
All of these coverages provide different insights into the believable simplified intermediate 

solutions. Presently, there is no threshold for coverage, as there is on consistency, because, in 
general, coverage is only used descriptively, although sometimes Ragin uses it to exclude a 
solution. Consequently, there are no guidelines given regarding what is “good coverage” because 
coverage depends on the nature of the evidence (Ragin, private e-mail to first author, Sep. 23, 
2010). Of the three kinds of coverage unique coverage is almost always very low in solutions 
with several terms (private e-mail from Ragin to the first author sent on Sept. 23, 2010). 
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III. EXAMPLES 
 
In order to illustrate fsQCA, we present two very simple examples. For desired outcome O 

there are three candidate causal conditions, C1 = A , C2 = B  and C3 = C , each of which has only 

one fuzzy set associated with it, e.g. when it is possible to model a causal condition using an s-
shaped or reverse s-shaped MF (see Section VIII). In Example 1, the desired outcome is 
Breakdown of Democracy, whereas in Example 2, the desired outcome is Likely

32
 Breakdown of 

Democracy.  
 
A. Example 1. Three Causal Conditions and O = Breakdown of Democracy 
The data in Table I are taken from Table 5.2 in Rihoux and Ragin (2009), for which the desired 

outcome is O = Breakdown of Democracy (of European countries between World Wars 1 and 2) 
and the three causal conditions are A = developed (country), B = urban (country) and C = literate 
(country).  
 

TABLE I 

DATA- AND FUZZY-MEMBERSHIP-MATRIX (SHOWING ORIGINAL VARIABLES 

AND THEIR FUZZY-SET MEMBERSHIP FUNCTION SCORES)a 
Outcome Condition and MF scores 

Case 
o MF(O) A MF(A) B MF(B) C MF(C) 

1 -9 0.95 720 0.81 33.4 0.12 98 0.99 
2 10 0.05 1098 0.99 60.5 0.89 94.4 0.98 
3 7 0.11 586 0.58 69 0.98 95.9 0.98 
4 -6 0.88 468 0.16 28.5 0.07 95 0.98 
5 4 0.23 590 0.58 22 0.03 99.1 0.99 
6 10 0.05 983 0.98 21.2 0.03 96.2 0.99 
7 -9 0.95 795 0.89 56.5 0.79 98 0.99 

8 -8 0.94 390 0.04 31.1 0.09 59.2 0.13 
9 -1 0.58 424 0.07 36.3 0.16 85 0.88 
10 8 0.08 662 0.72 25 0.05 95 0.98 
11 -9 0.95 517 0.34 31.4 0.10 72.1 0.41 
12 10 0.05 1008 0.98 78.8 1 99.9 0.99 
13 -6 0.88 350 0.02 37 0.17 76.9 0.59 
14 -9 0.95 320 0.01 15.3 0.02 38 0.01 
15 -4 0.79 331 0.01 21.9 0.03 61.8 0.17 
16 -8 0.94 367 0.03 43 0.30 55.6 0.09 

17 10 0.05 897 0.95 34 0.13 99.9 0.99 
18 10 0.05 1038 0.98 74 0.99 99.9 0.99 

a This table is modeled after Table 5.2 in Rihoux and Ragin (2009), and the numbers in it are 
the same as the ones in that table. 

 
Using knowledge and techniques from social science, numerical values were obtained for A, B 

and C for 18 European countries that in Table I are called33 “Cases 1–18.” Numerical values 
were initially obtained by Ragin for o = Survival of Democracy, which was assumed to be the 
complement34 of Breakdown of Democracy; hence, MF(O)  was computed from MF(o)  as 

                                                
32 A synonym for Likely is Promising. It does not have the same probabilistic connotation that Likely has, so one 

could use Promising instead of Likely.  
33 The numbered cases correspond to the following countries: 1-Austria, 2-Belgium, 3-Czechoslovakia, 4-Estonia, 5-

Finland, 6-France, 7-Germany, 8-Greece, 9-Hungary, 10-Ireland, 11-Italy, 12-Netherlands, 13-Poland, 14-Portugal, 

15-Romania, 16-Spain, 17-Sweden, and 18-United Kingdom.  
34 Breakdown of Democracy actually is an antonym of Survival of Democracy, and the MF of an antonym is very 

different from the MF of the complement. Let B = Breakdown of Democracy and S = Survival of Democracy; then, 
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1 MF(o) . S-shaped MFs were obtained for Survival of Democracy, developed (country), urban 

(country), and literate (country) using a method that is described in Ragin (2008) and in Section 
VIII, the details of which are not important for this example. Using these MFs, Ragin obtained 
the MF scores that are also given in Table I. These MFs implement (1) and (2).  

From this point on, A, B and C are viewed as generic causal conditions for a generic outcome 
O, because there are more actual causal conditions that are associated with Breakdown of 

Democracy than are shown in Table I, and because tables for three causal conditions are easy to 
display. A more comprehensive version of this example, with five causal conditions, is presented 
in Appendix D. 

For three causal conditions there are eight causal combinations, all of which are given in Table 
II, along with their memberships. These memberships are the firing levels in (9), e.g. 

 

                 
  
μ

F
1

(x) = min μ
a
(x),μ

b
(x),μ

c
(x){ } = min 1 μ

A
(x),1 μ

B
(x),1 μ

C
(x){ }  (29) 

 
TABLE II  

FUZZY SET MEMBERSHIP OF CASES IN CAUSAL COMBINATIONS
a  

Membership in causal 

conditions 

Membership in corners of vector space formed by causal 

conditions: Firing Levels 
Case 

MF(A) MF(B) MF(C) 
F1 

abc 
F2 

abC 
F3 

aBc 

F4 

aBC 

F5 

Abc 

F6 

AbC 

F7 

ABc 

F8 

ABC 

1 0.81 0.12 0.99 0.01 0.19 0.01 0.12 0.12 0.81 0.01 0.12 
2 0.99 0.89 0.98 0.01 0.01 0.01 0.01 0.01 0.11 0.02 0.89 

3 0.58 0.98 0.98 0.02 0.02 0.02 0.42 0.02 0.02 0.02 0.58 

4 0.16 0.07 0.98 0.02 0.84 0.02 0.07 0.07 0.16 0.02 0.07 
5 0.58 0.03 0.99 0.01 0.42 0.01 0.03 0.03 0.58 0.01 0.03 
6 0.98 0.03 0.99 0.01 0.02 0.01 0.02 0.02 0.97 0.01 0.03 
7 0.89 0.79 0.99 0.01 0.11 0.01 0.11 0.11 0.21 0.01 0.79 

8 0.04 0.09 0.13 0.87 0.13 0.09 0.09 0.09 0.04 0.04 0.04 
9 0.07 0.16 0.88 0.12 0.84 0.12 0.16 0.16 0.07 0.07 0.07 
10 0.72 0.05 0.98 0.02 0.28 0.02 0.05 0.05 0.72 0.02 0.05 
11 0.34 0.1 0.41 0.59 0.41 0.10 0.10 0.10 0.34 0.10 0.10 

12 0.98 1 0.99 0 0 0.01 0.02 0 0 0.01 0.98 

13 0.02 0.17 0.59 0.41 0.59 0.17 0.17 0.17 0.02 0.02 0.02 
14 0.01 0.02 0.01 0.98 0.01 0.02 0.01 0.02 0.01 0.01 0.01 
15 0.01 0.03 0.17 0.83 0.17 0.03 0.03 0.03 0.01 0.01 0.01 
16 0.03 0.30 0.09 0.70 0.09 0.30 0.09 0.30 0.03 0.03 0.03 
17 0.95 0.13 0.99 0.01 0.05 0.01 0.05 0.05 0.87 0.01 0.13 
18 0.98 0.99 0.99 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.98 

Number of memberships > 0.5 (
 
N

F
i

) 5 3 0 0 0 5 0 5 
a This table is modeled after Table 5.6 in Rihoux and Ragin (2009), and the numbers in it are the same as the ones 
in that table. 

 
The bold-faced numbers in Table II indicate memberships that are greater than 0.5. The 

numbers of such memberships (
 
N

F
i

) are listed in the last row of the table for each of the eight 

causal combinations. Using a frequency threshold of three (i.e., f = 3, which is the smallest non-
zero value that NFi

 has in this example), only four of the eight causal combinations survive, i. e. 

  R = 4 . Those firing-level surviving rules are summarized in Table III; they constitute the 

                                                                                                                                                       
a MF for an antonym is μB (x) = μS (10 x)  [Kim et al. (2000) and Zadeh (2005)]. This μB (x)  is very different from 

using the complement of S; however, for the purposes of this example, we use the complement because it is widely 

used by Ragin. 



 23 

elements in X2 + X3  that are depicted in Fig. 4. The four causal combinations that did not pass 

the frequency threshold test are in X1 .  

The first column of Table III is called “Best Instances.” It lists the cases that are associated 
with each surviving causal combination. This is a very important column because it directly 
connects the fsQCA back to the original cases. The next three columns of this table are for the 
three causal conditions and their entries are listed as 0 or 1, where a 0 occurs if the complement 
of the causal condition appears in the causal combination, and a 1 appears if the causal condition 
appears in the causal combination [e.g., abC (0,0,1) ]. The next column in this table states the 

causal combination (the corresponding vector space corner) using set notation (e.g., abC ). The 
last column in this table gives the count (from Table II) of the number of MF entries that are > 
0.5. 

 
TABLE III 

 DISTRIBUTION OF CASES ACROSS CAUSAL CONDITIONS
a
 

 
 

 

 

 

 
 

a This table is modeled after a combination of Tables 5.7 and 5.8 in Rihoux and 
Ragin (2009) and the numbers in it are the same as the ones in Table 5.7. 

 
Next, the consistencies (subsethoods) are computed using (11). Note that these calculations use 

the MFs for all 18 cases. Results are summarized in Table IV, which looks like Table III, except 
that it has one more column called “Set theoretic Consistency.” The rows of Table III are re-
ordered so that the first row of Table IV has the largest value for Consistency and the last row 
has the smallest value for Consistency; however, for this example, no reordering of the rows was 
necessary in going from Table III to Table IV. 
 

TABLE IV 

DISTRIBUTION OF CASES ACROSS CAUSAL CONDITIONS AND SET-THEORETIC 

CONSISTENCY OF CAUSAL COMBINATIONS
a, 

Causal 

Conditions 
Best Instances 

A B C 

Corresponding 

Vector Space 

Corner 

Number of 

cases with 

 > 0.5 

membership 

Set-theoretic 

Consistency 

8, 11, 14, 15, 16 0 0 0 abc 5 0.98 
4, 9, 13 0 0 1 abC 3 0.84 

1, 5, 6, 10, 17 1 0 1 AbC 5 0.44 

2, 3, 7, 12, 18 1 1 1 ABC 5 0.34 
a This table is modeled after a combination of Tables 5.7 and 5.8 in Rihoux and Ragin (2009) and the 
numbers in it are the same as the ones in Table 5.7. 

 
Using a consistency threshold of 0.80 only two of the four rules become actual rules, i.e. 

  
R

A
= 2 . These are the first two rules in Table V, abc and abC, and they constitute the elements 

of X3  in Fig. 4. Observe that abC, which has fewer cases with > 0.5 membership than do AbC or 

ABC, survives, whereas AbC and ABC do not. 

Causal 

Conditions 
Best Instances 

A B C 

Corresponding 

Vector Space 

Corner 

Number of 

cases with 

 > 0.5 

membership 

8, 11, 14, 15, 16 0 0 0 abc 5 
4, 9, 13 0 0 1 abC 3 

1, 5, 6, 10, 17 1 0 1 AbC 5 
2, 3, 7, 12, 18 1 1 1 ABC 5 
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The prime implicant for abc + abC  is easy to obtain, because abc + abC = ab(c + C) = ab . 

The minimal prime implicant, found from the QM algorithm, is a. These solutions can be 
expressed linguistically, as: 
 

                               
Complex solution IF C1 = a and C2 = b,THEN O

Parsimonious solution IF C1 = a,THEN O
 (30a) 

 
In words, these solutions are: 
 

Complex solution
Not  developed  and not  urban (rural) is a sufficient causal combination

for Breakdown of  Democracy

Parsimonious solution
Not  developed  is a sufficient condition

for Breakdown of  Democracy

 (30b) 
To complete fsQCA, counterfactual analysis has to be performed. This is done in Section IV. 
 
B. Example 2. Three Causal Conditions and O = Likely Breakdown of Democracy 
Examining MF(O)  in Table I, observe that there are eight cases for which MF(O) < 0.5 ; so, it 

seems plausible that these cases do not contribute much useful knowledge about Breakdown of 

Democracy. In order to examine this conjecture, we now focus on the modified desired outcome 
of Likely Breakdown of Democracy. Our interpretation of “Likely Breakdown of Democracy” is 
that only those cases for which MF(O) > 0.5  should be kept for its fsQCA. It is very important 

to understand that we are not equating Likely Breakdown of Democracy and Breakdown of 

Democracy; instead, we are treating each as possible desired outcomes. 
Tables V–VIII are analogous to Tables I–IV. The numbering of the cases in the former tables 

corresponds to the numbering of the cases in the latter tables. Although the same four rules 
survive in Table VI (compare with Table II), and constitute the elements in X2 + X3 , the number 

of cases supporting AbC and ABC has decreased from five to one, because four cases that 
previously supported these rules have been omitted from this example since MF(O) < 0.5  for 

them. Whereas the frequency threshold for Example 1 was 3, for this example it is 1, a number 
that is supported by having only 10 cases. The four causal combinations that did not pass the 
frequency threshold test are in X1 . The consistencies in Table IV were computed for all 18 cases, 

whereas the consistencies in Table VIII are computed only for the 10 cases for which 
MF(O) > 0.5 . 

Comparing Tables IV and VIII, observe that for Likely Breakdown of Democracy: (1) The 
consistencies for all four causal combinations have increased, (2) all four of the causal 
combinations pass the 0.8 consistency test, which means that X2 = , and (3) causal conditions 

AbC and ABC, which were much less than 0.80 when all 18 cases were used, and were therefore 
discarded, have now achieved the maximum possible consistency values of 1 when only the 10 
cases were used. It seems that the cases that were eliminated, for which their MF(O) < 0.5 , 

dragged down the consistencies of AbC and ABC by very considerable amounts. A theoretical 
explanation of this is given in Example 8 in Section V. 
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TABLE V 

DATA- AND FUZZY-MEMBERSHIP-MATRIX (SHOWING ORIGINAL VARIABLES 

AND THEIR FUZZY-SET MEMBERSHIP FUNCTION SCORES) ONLY FOR THE 

CASES FOR WHICH MF(O) > 0.5  

Outcome Condition and MF scores 
Case 

o MF(O) A MF(A) B MF(B) C MF(C) 

1 -9 0.95 720 0.81 33.4 0.12 98 0.99 
4 -6 0.88 468 0.16 28.5 0.07 95 0.98 
7 -9 0.95 795 0.89 56.5 0.79 98 0.99 
8 -8 0.94 390 0.04 31.1 0.09 59.2 0.13 
9 -1 0.58 424 0.07 36.3 0.16 85 0.88 
11 -9 0.95 517 0.34 31.4 0.10 72.1 0.41 

13 -6 0.88 350 0.02 37 0.17 76.9 0.59 
14 -9 0.95 320 0.01 15.3 0.02 38 0.01 
15 -4 0.79 331 0.01 21.9 0.03 61.8 0.17 
16 -8 0.94 367 0.03 43 0.30 55.6 0.09 

 
TABLE VI 

FUZZY SET MEMBERSHIP OF CASES IN CAUSAL COMBINATIONS
 
ONLY FOR THE CASES FOR 

WHICH MF(O) > 0.5  

Membership in causal 

conditions 

Membership in corners of vector space formed by causal 

conditions: Firing Levels 
Case 

MF(A) MF(B) MF(C) 
F1 

abc 
F2 

abC 
F3 

aBc 

F4 

aBC 

F5 

Abc 

F6 

AbC 

F7 

ABc 

F8 

ABC 

1 0.81 0.12 0.99 0.01 0.19 0.01 0.12 0.12 0.81 0.01 0.12 
4 0.16 0.07 0.98 0.02 0.84 0.02 0.07 0.07 0.16 0.02 0.07 
7 0.89 0.79 0.99 0.01 0.11 0.01 0.11 0.11 0.21 0.01 0.79 

8 0.04 0.09 0.13 0.87 0.13 0.09 0.09 0.09 0.04 0.04 0.04 

9 0.07 0.16 0.88 0.12 0.84 0.12 0.16 0.16 0.07 0.07 0.07 
11 0.34 0.1 0.41 0.59 0.41 0.10 0.10 0.10 0.34 0.10 0.10 
13 0.02 0.17 0.59 0.41 0.59 0.17 0.17 0.17 0.02 0.02 0.02 
14 0.01 0.02 0.01 0.98 0.01 0.02 0.01 0.02 0.01 0.01 0.01 
15 0.01 0.03 0.17 0.83 0.17 0.03 0.03 0.03 0.01 0.01 0.01 
16 0.03 0.30 0.09 0.70 0.09 0.30 0.09 0.30 0.03 0.03 0.03 

Number of memberships > 0.5 (
 
N

F
i

) 5 3 0 0 0 1 0 1 

Sums
a 4.54 3.38 0.87 0.95 1.17 1.70 0.32 1.26 

a These are used in Table XIII. 

 
TABLE VII 

 DISTRIBUTION OF CASES ACROSS CAUSAL CONDITIONS FOR  

THE CASES FOR WHICH MF(O) > 0.5  

 
 

 

 
 

 

 

 

The primitive Boolean expressions (from Table VII) are: abc + abC + AbC + ABC. The prime 
implicants are also easy to obtain, as follows: 
 
                             abc + abC + AbC + ABC = ab (c+C) +AC(b+B) = ab + AC (31) 
 

Causal 

Conditions 
Best Instances 

A B C 

Corresponding 

Vector Space 

Corner 

Number of 

cases with 

 > 0.5 

membership 

8, 11, 14, 15, 16 0 0 0 abc 5 
4, 9, 13 0 0 1 abC 3 

1 1 0 1 AbC 1 
7 1 1 1 ABC 1 
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There are no minimum prime implicants, because X2 =  (see Theorem 1). 

The complex solution can be expressed linguistically, as: 
 
                                    IF (C1 = a and C2 = b) or (C1 = A and C2 = C),THEN O  (32) 

 
In words, these solutions are: 
 

                    
(Not  developed  and not  urban (rural)) OR (Developed  and Literate)

are sufficient causal combinations for Likely Beakdown of  Democracy
 (33) 

 

TABLE VIII 

DISTRIBUTION OF CASES ACROSS CAUSAL CONDITIONS AND SET-THEORETIC 

CONSISTENCY OF CAUSAL COMBINATIONS FOR THE CASES FOR WHICH MF(O) > 0.5  

Causal 

Conditions 
Best Instances 

A B C 

Corresponding 

Vector Space 

Corner 

Number of 

cases with 

 > 0.5 

membership 

Set-theoretic 

Consistency 

8, 11, 14, 15, 16 0 0 0 abc 5 0.985 
4, 9, 13 0 0 1 abC 3 0.923 

1 1 0 1 AbC 1 1 
7 1 1 1 ABC 1 1 

 
C. Comments  
(1) Example 1 demonstrates that, by including the eight countries for which MF(O) < 0.5 , the 

rule AC in (32) can be made to vanish, and Example 2 demonstrates that the results from fsQCA 
for Likely Breakdown of Democracy are different than for Breakdown of Democracy.  

(2) See Appendix D for two examples that parallel Examples 1 and 2, but for five causal 
conditions. Regarding the Breakdown of Democracy problem, the examples in Appendix D are 
much more realistic than the ones in this section because they include two other causal 
conditions (industrial country and stable country) that are closely aligned with the desired 

outcome. In order to display results for five causal conditions (for which there would be 25 = 32  
causal combinations), a totally different way of computing the surviving causal combinations is 
presented in Section V, one that does not necessitate computing the firing levels for all 32 causal 
combinations but requires doing this only for the subset of causal combinations in (Fig. 4) 
X2 + X3 . 
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IV. COUNTERFACTUAL ANALYSIS (CA) 
 

A. Introduction 
AS we have seen, by using the QM algorithm one obtains two solutions (linguistic 

summarizations), the prime implicants—the complex (least parsimonious) solution—and the 
minimal prime implicants—the parsimonious solution. Ragin (2008) stresses that these solutions 
should be viewed as the two end-points of a continuum35 of solutions that range from the most 
complicated to the least complicated. The methodology for providing “intermediate solutions” is 
what he calls “counterfactual analysis (CA),” and such solutions are considered to be the most 
useful ones by him. 

CA [Fiss (2010)] offers a way to overcome the limitations of a lack of empirical instances, i.e. 
the problem of limited diversity [Ragin (2000, pp. 81 ff.)], and involves thought experiments. 
Recall that diversity refers to whether or not a case actually exists for a particular combination of 
causal conditions. In most applications it is very common for no cases to exist for many 
combinations of causal conditions, and this is referred to as “limited diversity.” 

CA begins with both the complex and parsimonious solutions and modifies the complex 
solutions subject to the constraint that the parsimonious solution must always be present (in some 
form) in the final intermediate solutions. The modifications use causal combinations for which 
there either were no cases or not enough cases, and require that the user bring a lot of substantive 
knowledge about the cases into the modification process. Each modified complex solution is 
called a counterfactual, and each counterfactual is usually less complex in its structure than is the 
complex solution, unless the complex term does not change as a result of CA, in which case it 
becomes the counterfactual. Once all of the counterfactuals have been obtained for all of the 
complex terms, they are combined using the set theory operation union. This result is called the 
(set of) intermediate solutions, and it contains RI  terms (Fig. 1).  

Recall that, after CA, the intermediate solutions are simplified using set theory simplifications 
(or one last QM to obtain only the primary implicants of the union of counterfactuals) in order to 
remove redundancies. This result is called (by us) the (set of) simplified intermediate solutions, 
and it contains RSI  terms (Fig. 1). Finally, the consistencies of the RSI  simplified intermediate 

solutions are computed and only those solutions whose consistencies that are close to or above 
0.80 are retained. The result is the collection of RBSI  believable simplified intermediate solutions 

for a desired outcome (Fig. 1).  
According to Ragin (Appendix C):  

The procedure [for CA] evaluates each term in the parsimonious solution against each term in the complex 

solution. The number of terms in a solution is the number of combinations of causal conditions joined by “+”. 

For example, if the parsimonious solution is AB + CD, then there are two parsimonious terms. If there are RP  

parsimonious terms and RC  complex terms, the [CA] procedure cycles RC RP  times, once for each possible 

pairing. 
Furthermore, according to Ragin (private e-mail to the first author on September 15, 2010):  

In essence, you can examine each element in a complex solution recipe and ask: Can I drop this element? If 

doing so would contradict the parsimonious solution, the answer is no. For the remaining elements, the answer 
is yes if this elimination is consistent with substantive knowledge. 

Although it is possible to explain and illustrate CA using generic symbols for causal 
conditions, as is done next in Example 3, substantive knowledge about adding or removing a 

                                                
35 The word “continuum” is used in the following sense (Merriam-Webster’s Online Dictionary): a coherent whole 

characterized as a collection, sequence, or progression of values or elements varying by minute degrees. 
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causal condition—a thought experiment—is only possible (meaningful) for non-generic causal 
conditions for which the symbols have actual meanings.  

 

B. Example 3. Illustration of CA 

Ragin (Appendix C, when letters are used to replace its linguistic causal conditions) begins 
with the following complex and parsimonious solutions for a situation in which there are five 
causal conditions: 

 
Complex solution (RC = 5 ): ABCd + ABCE + ABCF + AbdEf + BCdEf 

Parsimonious solution ( RP = 2 ): B + E 

 
In addition, he assumes the following: 
Substantive knowledge: The desired outcome could have occurred if C, D, E, or F occurred.  
 

Because the substantive knowledge is silent about the first two causal conditions (A and B), 
meaning that this knowledge is neutral with respect to those causal conditions, one or both must 
be included in an intermediate solution if they already appear in a complex solution. 

Based on the just-quoted procedure, CA for this example requires 2 5 = 10  cycles of 
computation. Note that the order in which the parsimonious and complex terms are examined is 
unimportant, because the same results are obtained regardless of that ordering.  

A complete CA is summarized in Table IX, in which first the parsimonious term B is used and 

then parsimonious term E is used. The notation, e.g. 
CA(D )

 means replace d in the complex 

solution term by D. After a counterfactual has been produced, it is unioned with its associated 
complex solution; this is shown in the second line of the two lines that are in the braces. 

In some situations (Cycles 2, 3 and 7), the complex term becomes its own counterfactual 
because the substantive knowledge is already contained in that term. In other situations (Cycles 
4, 6 and 8), a complex term is excluded from CA because it does not contain the parsimonious 
term.  

Seven of the 10 possible cycles produce an intermediate solution, and two pairs of 
counterfactuals are the same (Cycles 2 and 7 and Cycles 5 and 10), so that each of their unions is 
that term. The final result is that there are five counterfactuals in the union of the 
counterfactuals—the intermediate solutions—ABC + ABCE + ABCF +BCE + AbE. The 
footnote to Table IX demonstrates that this union reduces to three terms, ABC + BCE + AbE, 
and it is these three terms that constitute the simplified intermediate solutions.  

Observe that each of these simplified intermediate solutions is more complex than the 
parsimonious solutions and is less complex than the complex solutions.  

It should be clear from this example that there are some rules that can be extracted from the 
CA process that can greatly simplify that process. 

 
C. CA Rules 
Five CA rules are: 
 

CA Rule 1:  If a complex solution term does not contain the parsimonious solution term, then 

there is no counterfactual for that combination of parsimonious and complex solution terms 
(e.g., see Cycle 4 in Table IX, for which the parsimonious solution term is B, and the complex 
solution term is AbdEf). 
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TABLE IX 

THE PROCESS OF COUNTERFACTUAL ANALYSIS (CA); PARSIMONIOUS SOLUTIONS ARE SHOWN UNDERLINED 

Cycle 
Parsimonious 

Solution 

Complex 

Solution 
Results: Counterfactuals 

1 B ABCd 

 
ABCd

CA(D )
ABCD

ABCd + ABCD = ABC
ABC  

It is unnecessary to include E and F in ABC because both will be absorbed into 
ABC (see first part of footnote a). 

2  ABCE Because C and E are already in ABCE, the counterfactual is ABCE 
3  ABCF Because C and F are already in ABCF, the counterfactual is ABCF 
4  AbdEf Because B is not in AbdEf, counterfactual analysis is not done for this term. 

5  BCdEf 
BCdEf

CA(D )
BCDEf

BCdEf + BCDEf = BCEf
BCEf

BCEf
CA(F )

BCEF

BCEf + BCEF = BCE
BCE  

6 E ABCd Because E is not in ABCd, counterfactual analysis is not done for this term. 
7  ABCE Because C and E are already in ABCE, the counterfactual is ABCE 

8  ABCF Because E is not in ABCF counterfactual analysis is not done for this term. 

9  AbdEf 

AbdEf
CA(D )

AbDEf

AbdEf + AbDEf = AbEf
AbEf

AbEf
CA(F )

AbEF

AbEf + AbEF = AbE
AbE  

It is unnecessary to include C in AbE because it will be absorbed into it. 

10  BCdEf 
BCdEf

CA(D )
BCDEf

BCdEf + BCDEf = BCEf
BCEf

BCEf
CA(F )

BCEF

BCEf + BCEF = BCE
BCE  

Union of Counterfactuals–

Intermediate Solutions 
ABC + ABCE + ABCF + BCE + AbE  

Simplified Intermediate Solutions
a ABC + BCE + AbE 

a ABC + ABCE = ABC(E + e) + ABCE = ABCE + ABCe = ABC(E + e) = ABC  (absorption); similarly, ABC + ABCF = ABC ; hence, 

ABC + ABCE + ABCF + BCE + AbE = ABC + BCE + AbE . 

 
CA Rule 2: If the substantive knowledge is silent about a causal condition (or its complement) 

that already appears in a complex solution term, then no change is made to that causal condition 

in a counterfactual term (e.g., see Cycle 1 in Table IX, for which the complex solution term is 
ABCd and the substantive knowledge is silent about A and B). 

 

CA Rule 3: If the substantive knowledge contains a causal condition (or its complement) that 

already appears in a complex solution term, then the counterfactual for that complex solution 

term is the same as that complex solution term (e.g., see Cycle 2 in Table IX, for which the 
parsimonious solution term is B, the complex solution term is ABCE, and the substantive 
knowledge includes C and E). 

 
CA Rule 4: If the substantive knowledge contains a causal condition (or its complement) that 

does not appear in a complex solution term, then that causal condition (or its complement) does 

not contribute anything to that complex solution term, and such substantive knowledge can be 

bypassed during the CA for that complex solution term, i.e. such a causal condition (or its 

complement) is absorbed into the complex solution term (e.g., see Cycle 1 in Table IX, for which 
the parsimonious solution term is B, the complex solution term is ABCd, and the substantive 
knowledge includes E and F; see, also, footnote a to that table). 

 

CA Rule 5: If the substantive knowledge contains the complement of a causal condition (or its 

complement) that appears in a complex solution term, then the counterfactual for that complex 

solution term no longer contains that causal condition (or its complement), i.e. it is absorbed 
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into the remaining causal combination of that complex solution term (e.g., see Cycle 1 in Table 
IX, for which the parsimonious solution term is B, the complex solution term is ABCd, and the 
substantive knowledge includes D). 

 
Each of these rules is quite useful. They let us simplify a complex solution term like (see Cycle 

9 in Table IX) AbdEf, when the substantive knowledge is CDEF, in one shot to AbE.  
 

D. Comments 

1. Ragin distinguishes between easy and difficult counterfactuals. According to Fiss (2010): 
“Easy” counterfactuals refer to situations in which a redundant causal condition is added [by means of 

disjunction] to a causal combination that by itself already led to the outcome in question. As an example, 

assume we have evidence that the combination of conditions ABc leads to the presence of the outcome. We 

do not have evidence as to whether the combination ABC would also lead to the outcome, but theoretical or 

substantive knowledge links the presence (not the absence [the complement]) of C to the outcome. In such 

a situation, an “easy” CA indicates that both ABc and ABC will lead to the outcome, and the expression can 

be reduced to AB because whether C is absent or present has no effect on the outcome. In “easy” CA, the 

researcher thus asks: would adding another causal combination make a difference? If the answer is “no,” 

we can proceed with the simplified expression. 

 In contrast, “difficult” counterfactuals refer to situations in which a causal condition is removed from a 

set of causal conditions leading to the outcome on the assumption that this causal condition is redundant. 
For instance, we might have evidence that the causal combination ABC leads to the outcome, but we do not 

have evidence as to whether the causal combination ABc would also lead to the outcome in question. This 

case is of course the inverse of the situation above. In a “difficult” CA, the researcher asks: would 

removing a causal condition make a difference? This question is more difficult to answer. Theoretical or 

substantive knowledge links the presence, not the absence [the complement], of C to the outcome, and 

since we have no empirical instance of ABc, it is much harder to determine whether C is in fact a redundant 

causal condition that may be dropped, thus simplifying the solution to merely AB. [If evidence is available, 

then it is okay to remove a causal condition.] 

 
2. The distinction between the two kinds of counterfactuals is not needed in order to 

perform CA. Ragin also states that difficult counterfactuals are to be avoided at all costs. 
In a private e-mail to the senior author (September 15, 2010) he states: 

The idea of a difficult counterfactual is simply that you shouldn't remove an element from a complex 

solution if that element makes sense! The parsimonious solution sometimes does exactly that, and the 

purpose of CA is to put it back in! The parsimonious solution doesn't care which counterfactuals are easy 

and which are difficult (from the perspective of existing knowledge). 

 
3. In a private (2009) e-mail, the first author asked Ragin:  

The extreme situation for counterfactuals would be if we began with no cases. Then the final results from 

QCA would be based entirely on one’s substantive knowledge. I doubt anyone would take those results 

seriously. So, in your experience what is the “breakpoint,” if you will, between this extreme situation and 

situations where counterfactuals are used, i.e. what percentage of the total number of causal combinations 

can be treated as counterfactuals with people still believing the results? 
 
He replied: 

This is a great question. You are way ahead of my colleagues in social science. I like to think of it in 

terms of the width of the interval between the parsimonious and the complex solution. If the parsimonious 

solution is A and the complex solution is AbCDe, then the width is great, perhaps too great. It also depends 

on the number of initial conditions in the truth table, of course. This can be formalized and I think I've done 

it in my notes somewhere. Still, the short answer to your question is that I don't have a breakpoint. My 

guess also is that it depends in part on the nature of the research question 
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4. Surprisingly, there is nothing written about CA in Rihoux and Ragin (2009), which 
suggests to this author that CA is problematic for the social scientists who wrote the 
chapters of that textbook. In a private (2009) e-mail to the senior author, Ragin states: 

In general, social scientists have been very slow to catch on to the idea of CA and to the fact that some 

are easy and some are difficult. I published the ideas about five years ago because (almost) everyone was 

reporting parsimonious solutions and never checking to see which remainders had been incorporated and 

then assessing them. What I sketched then was how to do CA by hand, with a little algebra, comparing the 

parsimonious and complex solutions. Still, no one really did it, because it seemed all too technical. So I had 

it programmed into fsQCA. Finally, social scientists are starting to try it. Still, there are very few who 

(previously) checked all the remainders (one at a time), even though this was my original recommendation. 

It's just too demanding for most social scientists. They are accustomed to privileging parsimony, which I 

think is a mistake. 
Some references for CA are Ragin (2008, Chapters 8 and 9) and Ragin and Sonnett 

(2004). Also, Appendix C provides a “New Intermediate Solution Algorithm,” sent to the 
senior author by Ragin in December of 2009.  

 
5. In August, 2010 the first author asked Prof. Peer Fiss why CA, that seems to fill in 

missing cases, is not as objectionable as what is done in conventional methods (e.g., 
regression), in which interpolation or extrapolation can be used after-the-fact to obtain 
results for cases that were not originally available. His answer to this question is 
[expressed in our own words]: The causal combinations that are included as part of CA 
are based on and supported by the substantive knowledge of an expert, and these causal 
combinations are used to lead to intermediate solutions, whereas the interpolated or 
extrapolated conclusions drawn from, e.g. a regression occur after the regression is 
completed, and, therefore are not supported by such knowledge, and are meant to be a 
replacement for such knowledge, but this can not be verified because such knowledge 
does not exist. This answer is best embodied by Item 3 in Appendix B, and is so 
important that it is repeated here: 

Conventional methods have a de facto dependence on simplifying assumptions about kinds of cases 

not found in the data set. Limited diversity is the rule, not the exception, in the study of naturally occurring 
social phenomena. Once researchers identify relevant causal variables, they typically find that many 

regions of the vector space defined by those variables36 are void, or virtually void, of cases. When 

conventional researchers estimate statistical models using data that are limited in their diversity, the 

additive-linear techniques they typically apply to their data assume, in essence, that if there were cases in 

the vacant regions in the vector space, they would conform to the patterns exhibited by cases in the regions 

that are well populated with cases. Thus, these models incorporate de facto assumptions about kinds of 

cases that are absent or virtually absent from the researcher’s data set. Unfortunately, these assumptions are 

invisible, not only to most researchers, but also to the audience for social research. In the fuzzy set 

approach, by contrast, the consideration of limited diversity is an explicit part of the analysis. Not only do 

researchers identify simplifying assumptions, it is possible, as well, to evaluate the plausibility of these 

assumptions and then selectively incorporate those that seem plausible. The process of incorporating 
simplifying assumptions is explicit and visible. Furthermore, the audiences for social research are free to 

challenge such assumptions and to construct alternate representations of the same evidence. 

 
E. CA Applied to Examples 1 and 2 

In the rest of this section CA is applied to the results for Examples 1 and 2 (Section III). 
 

E.1 Example 1–Continued: Three causal conditions and O = Breakdown of Democracy: 
Recall, from Section III.A, that:  

                                                
36 Recall, that if there are k causal variables, then there are 2k corners in the Boolean vector space. 
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• Complex solution obtained by hand [see first line of (30a)] (RC = 1 ): ab 

• Parsimonious solution obtained from QM [see second line of (30a)] (RP = 1 ): a 

• Substantive knowledge (these were made up by us, but seemed reasonable): The desired 
outcome could have occurred if a (not developed), b (not urban (rural)) or c (not literate) 
occurred.  

• Counterfactual Analysis: Using CA Rules 2 and 3, one finds that the intermediate 
solution is ab, or, in words: 

 
Not developed and not urban (rural) is a sufficient causal combination 
for Breakdown of Democracy (34) 

 
According to Wagemann and Schneider (2007), it is a good practice to summarize the 

intermediate solutions in a table such as the one in Table X.  
 

TABLE X 

SUMMARY FOR THE BELIEVABLE SIMPLIFIED INTERMEDIATE SOLUTION 

(BSIS) OF EXAMPLE 1 
MFs for Outcome  

and Causal Conditions 
BSIS MF 

Case 

MF(O) MF(A) M(B) MF(ab) 

In the Desirable 

Region (Fig. 5)—

Best Instance? 

1 0.95 0.81 0.12 0.19 No 

2 0.05 0.99 0.89 0.01 No 

3 0.11 0.58 0.98 0.02 No 
4 0.88 0.16 0.07 0.84 Yes 

5 0.23 0.58 0.03 0.42 No 

6 0.05 0.98 0.03 0.02 No 

7 0.95 0.89 0.79 0.11 No 

8 0.94 0.04 0.09 0.91 Yes 

9 0.58 0.07 0.16 0.84 No 

10 0.08 0.72 0.05 0.28 No 

11 0.95 0.34 0.10 0.66 Yes 

12 0.05 0.98 1.00 0 No 

13 0.88 0.02 0.17 0.83 Yes 

14 0.95 0.01 0.02 0.98 Yes 

15 0.79 0.01 0.03 0.97 No 

16 0.94 0.03 0.30 0.70 Yes 

17 0.05 0.95 0.13 0.05 No 

18 0.05 0.98 0.99 0.01 No 

 
 
• Consistency: The set theoretic consistency of ab was computed to be [using (11)] 0.837, 

which is greater than 0.80, so this solution is retained, and therefore ab is the believable 

simplified intermediate solution (and 
  
R

BSI
= 1). 

• Best Instances: Referring to the three-step procedure that is given in Section II. E: Step 1 
leads to the numbers that are in the column of Table X called “BSIS MF;” Step 2 does not 

have to be performed because 
  
R

BSI
= 1; and, Step 3 leads to the best instances that are 

labeled “Yes” in the last column of Table X. We do not show a plot of μO (x)  versus 

μab (x)  for x = 1,...,18  because it is very messy since many of the cases lie almost on top of 

one another. Observe that the Best Instances for ab are Cases 4, 8, 11, 13, 14, and 16.  
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• Coverage: Using MF(O)  and MF(ab)  that are given in Table X it is straightforward to 

compute the raw coverage37 in (27), as Cr (ab,O) = 0.736 . 

 
E.2 Example 2–Continued: Three causal conditions and O = Likely Breakdown of 

Democracy: Recall, from Section III.B, that:  
 

• Complex solution obtained by hand [see (32)] (RC = 2 ): ab + AC 

• Parsimonious solution: As mentioned in Example 2 (just below (31)), there are no 
minimum prime implicants, because X2 =  (see Theorem 1); hence, there is no 

parsimonious solution. 
• Counterfactual Analysis: No CA is possible because there is no parsimonious solution; 

hence, the final solution is the same as the complex solution, and is ab + AC, or, in words: 
 

(Not developed and not urban (rural)) OR (Developed and Literate) 
are sufficient causal combinations for Likely Breakdown of Democracy (35) 

 
Results for all cases are summarized in Table XI. 

 
TABLE XI 

SUMMARY FOR THE BELIEVABLE SIMPLIFIED INTERMEDIATE SOLUTION (BSIS) OF EXAMPLE 2 
MFs for Outcome and 

Causal Conditions 

BSIS #1 

MF 

BSIS #2 

MF 

Maximum 

MF of BSISs Case 

MF(O) MF(A) MF(B) MF(C) MF(ab) MF(AC) MF BSIS 

In the Desirable 

Region (Fig. 5)—

Best Instance? 

1 0.95 0.81 0.12 0.99 0.09 0.81 0.81 AC Yes 

4 0.88 0.16 0.07 0.98 0.84 0.16 0.84 ab Yes 
7 0.95 0.89 0.79 0.99 0.11 0.89 0.89 AC Yes 
8 0.94 0.04 0.09 0.13 0.91 0.13 0.91 ab Yes 
9 0.58 0.07 0.16 0.88 0.84 0.07 0.84 ab No 
11 0.95 0.34 0.10 0.41 0.66 0.34 0.66 ab Yes 
13 0.88 0.02 0.17 0.59 0.83 0.02 0.83 ab Yes 
14 0.95 0.01 0.02 0.01 0.98 0.01 0.98 ab Yes 
15 0.79 0.01 0.03 0.17 0.97 0.01 0.97 ab No 
16 0.94 0.03 0.30 0.09 0.70 0.03 0.70 ab Yes 

 
• Consistency: The consistency for ab is 0.93 and for AC is 1 (both were computed using 

(11)), and since they are both greater than 0.80 they are both retained, and both are 

believable simplified intermediate solutions (R
BSI

= 2 ).  

• Best Instances: Referring to the three-step procedure that is given in Section II. E: Step 1 
leads to the numbers that are in the columns of Table XI called “BSIS#1MF” and 

“BSIS#2MF;” Step 2 has to be performed because R
BSI

= 2 , and the results of doing this 

are in the column of Table XI called “Maximum MF of BSISs” [in this example only one 
believable simplified intermediate solution is retained for each case, i.e. Q = 1 for all of the 
cases (see (20)]; and, Step 3 leads to the best instances that are labeled “Yes” in the last 
column of Table XI. Observe that the Best Instances for ab are Cases 4, 8, 11, 13, 14, and 
16, and the Best Instances for AC are Cases 1 and 7. 

                                                
37 Because there is only one intermediate term, raw coverage, unique coverage and solution coverage are all the 

same [Rihoux and Ragin (2009, p. 64)]. 
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• Coverage: Using MF(O)  and MF(ab)  that are given in Table XI, it is straightforward to 

compute the raw coverage in (27), as Cr (ab,O) = 0.736  and Cr (AC,O) = 0.270 . 
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V. NEW THEORETICAL RESULTS 
 

A. Introduction 

In this section, new theoretical results are presented that not only expedite the fsQCA 

calculations in two different ways, one for the computation of firing levels of the 2k  causal 
combinations, and the other for computation of consistency, but also establish when cases for 
which MF(O) < 0.5  can cause rules to be eliminated. None of these results could have been 

obtained without the mathematical formalization of fsQCA that has been presented in Section II. 
 
B. A Simplified Way to Determine the Winning Causal Combination for Each Case 

Examination of Tables I and V reveals that each of their rows contains only one element (in 
boldface) whose membership is greater than 0.50. This was already observed in Ragin (2008, p. 
131) who states: “This table demonstrates an important property of intersections of fuzzy sets, 
namely, that each case can have (at most) only a single membership score greater than 0.5 in the 
logical possible combinations from a given set of causal conditions.” Because no mathematical 
proof of this fact is given by Ragin, this section begins with such a proof. The proof includes a 

direct way for computing the one causal combination (out of 2k  possible causal combinations) 
for each case whose membership score is greater than 0.5. Theorem 2 leads to a major 
simplification of the way in which computations are performed in fsQCA, something that is 
discussed later in this section. 

 
Theorem 2. Given k causal conditions, C1,C2 ,...,Ck  and their respective complements, 

c1,c2 ,...,ck . Form the 2k  causal combinations Fi = A1
i A2

i ... Ak
i  ( i = 1,...,2k ) where 

Aj
i
= Cj  or cj  and j = 1,...,k . Let μFi

(x) = min μ
A1
i (x),μA2

i (x),...,μAk
i (x){ } , x = 1,2,...,N . Then for 

each x there is only one i, i*, for which μFi*
(x) > 0.5  and μFi*

(x)  can be computed as: 

 

        μFi*
(x) = min max μC1

(x),μc1
(x)( ),max μC2

(x),μc2
(x)( ),...,max μCk

(x),μck
(x)( ){ }  (36) 

 
Fi*(x)  is determined from the right-hand side of (36), as: 

 

        Fi*(x) = argmax μC1
(x),μc1

(x)( )argmax μC2
(x),μc2

(x)( )  ... argmax μCk
(x),μck

(x)( )  (37) 

 

where argmax μCj
(x),μcj

(x)( )  denotes the winner of max μCj
(x),μcj

(x)( ) , namely Cj  or cj . 

 

Proof
38: If Aj

i
= Cj  and μCj

(x) = min μCj
(x),μcj

(x){ } , then it is true that 

μcj
(x) = max μCj

(x),μcj
(x){ } . If, instead, μCj

(x) = max μCj
(x),μcj

(x){ }  then it is true that 

μcj
(x) = min μCj

(x),μcj
(x){ } . Consequently, choosing Aj

i
= Cj  or cj  is equivalent to choosing 

                                                
38 This proof was provided by Ms. Jhiin Joo. 
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μ
Aj
i (x)  as either min μCj

(x),μcj
(x){ }  or max μCj

(x),μcj
(x){ } , so that rather than thinking about 

the 2k  causal combinations for each case in terms of Cj  and cj , with their associated MFs 

μCj
(x)  and μcj

(x) , one can think about the 2k  causal combinations for each case in terms of the 

following new ordering of the Fi  and their MFs, μFi
(x) : 

 

                    

μF1
(x) = min min μC1

(x),μc1
(x)( ),min μC2

(x),μc2
(x)( ), ...,min μCk

(x),μck
(x)( ){ }

μF2
(x) = min min μC1

(x),μc1
(x)( ),min μC2

(x),μc2
(x)( ), ...,max μCk

(x),μck
(x)( ){ }

...

μF
2k
(x) = min max μC1

(x),μc1
(x)( ),max μC2

(x),μc2
(x)( ), ...,max μCk

(x),μck
(x)( ){ }

 (38) 

 
Because it is always true that  
 

                                                        min μCj
(x),μcj

(x){ } 0.5 , (39) 

 

when such terms are evaluated in (38) the first 2k 1  terms will always have a MF value that is 
also  0.5. It is only the last term in (38) that can have a MF value that is > 0.5, and that term is 
the one in (36). 

Observe that (37) is an immediate consequence of the last line of (38) [which is the same as 

(36)], and that i* = 2k .  

 
Example 4. In order to illustrate (36) and (37), we shall focus on Case 1 in Table II, for which 
Fi*(1) = AbC ; hence, 

 

          
μFi*

(1) = min max MF(A),MF(a)( ),max MF(B),MF(b)( ),max MF(C),MF(c)( ){ }

          = min max 0.81,0.19( ),max 0.12,0.88( ),max 0.99,0.01( ){ }
 (40) 

 

                    μFi*
(1) = min 0.81,0.88,0.99{ } = 0.81 (41) 

 
Observe, also, that: 
 

                    Fi*(1) = argmax 0.81,0.19( )argmax 0.12,0.88( )argmax 0.99,0.01( ) = AbC  (42) 

 
This agrees with the boldface item in the Case-1 row of Table II.  

 
The procedure that has just been used in this example, which can be referred to as the min-max 

procedure (for simplicity), is very different from the one that was used to create Table II. It only 

computes one number for each case instead of 2k  numbers, which is a huge savings in 
computation. Of course, one can no longer fill in all of the numbers in Table II, but most of those 
numbers are irrelevant to succeeding steps of fsQCA. In addition, this new procedure directly 
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provides the subset of firing-level surviving rules and their associated cases. Because only this 
subset of rules is used in remaining fsQCA computations, it is much easier to display the results 
for just the surviving rules. A table such as Table II is no longer needed to do this, as is 
demonstrated in our next example.  

This is also important because of another reason. While it is easy to display Table II for a small 
number of causal conditions and cases, it is difficult-to-impossible to do this for even five causal 

conditions, for which there are 25 = 32  causal combinations. A table with 32 causal condition 
columns would have to be printed in such small type that it would not be readable.  

 
Example 5.  Applying Theorem 1 to all 18 cases in Table I, one obtains (calculations are left to 

the reader): Case 1 AbC , Case 2 ABC , Case 3 ABC , Case 4 abC , Case 5 AbC , 
Case 6 AbC , Case 7 ABC , Case 8 abc , Case 9 abC , Case 10 AbC , 
Case 11 abc , Case 12 ABC , Case 13 abC , Case 14 abc , Case 15 abc , 
Case 16 abc , Case 17 AbC  and Case 18 ABC . Examining these 18 results, one 
observes that only four causal combinations have survived, namely: AbC (Cases 1, 5, 6, 10, and 
17), ABC (Cases 2, 3, 7, 12, and 18), abC (Cases 4, 9, and 13) and abc (Cases 8, 11, 14, 15 and 
16), which agree with our previous results in Example 1. Table III collects these results; hence, 
Table II is no longer needed, and one can go directly from Table I to Table III.  
 

Based on Theorem 1, one is able to modify the Figs. 2 and 3 fsQCA flowcharts to the ones that 
are depicted in Figs. 6 and 7, respectively. Comparing Figs. 2 and 6, observe that no firing levels 

are now computed, whereas previously 2k  firing intervals were computed. Comparing Figs. 3 
and 7, observe that firing intervals are computed but only after the RS  surviving rules have been 

established, and then only RS  (and not 2k ) firing intervals are computed for all of the cases. 

 

C. A Simplified Way to Determine the Winning Causal Combination for Each Case When the 

Number of Causal Conditions Changes 
Sometimes one wants to perform fsQCA for different combinations of causal conditions, by 

either including more causal conditions into the mix of the original k causal conditions, or by 
removing some of the original k causal conditions. Presently, doing any of these things requires 
treating each modified set of causal conditions as a totally new fsQCA. The results in this section 
show that there are much easier ways to perform fsQCA once it has already been performed for k 
causal conditions.   

Observe in (37) that, e.g., argmax μC1
(x),μc1

(x)( )  is unchanged whether there are one, two, 

three, etc. causal conditions. This means that, for each case, the winning causal combination for k 
causal conditions includes the winning causal combination for k  causal conditions, when 
k < k , and is contained in the winning causal combination for k  causal conditions, when 
k > k . It also means that if one knows the winning causal combination for k  causal 
conditions, where k > k , and one wants to know the winning causal combination for k causal 
conditions, one simply deletes the undesired k k  causal conditions from the winning causal 
combination of k  causal conditions.  
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Figure 6. Modified Fig. 2 flowchart for fsQCA; it is continued in Fig. 7. 
 

 
 

Figure 7. Modified Fig. 3 flowchart for fsQCA. 
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For example, if AbcdE  is a winning causal combination for case 1 when five causal conditions 
are used, and if one wants to eliminate causal conditions B and D, then AcE  is the winning 
causal combination for case 1 when the three causal conditions A, C and E are used. No new 
computations have to be performed to obtain this result, because the winning causal combination 
for case 1 when the three causal conditions A, C and E are used is contained in the winning 
causal combination for case 1 when five causal conditions are used. 

These observations suggest that there are both a forward recursion and a backward recursion 
for (36) and (37). 

In what follows, it is assumed that the smallest number of causal conditions for which an 
fsQCA is performed is two. 

 
Corollary 2-1 (Forward Recursion). For each case, it is true that ( k = 3,4,... ): 

 

                        Fi*(x |C1,C2 ,...,Ck ) = Fi*(x |C1,C2 ,...,Ck 1)argmax μCk
(x),μck

(x)( )  (44) 

 

                   μFi*
(x |C1,C2 ,...,Ck ) = min μFi*

(x |C1,C2 ,...,Ck 1),max μCk
(x),μck

(x)( ){ }  (45) 

 

These results, arguably for the first time, connect fsQCA firing-level calculations for k and k - 
1 causal conditions. They provide an entirely new way to perform fsQCA computations when one 
wishes to study different combinations of causal conditions on a desired outcome, and should 
lead to a vast reduction in computation time for such a study.  

Proof: It is easy to prove both (44) and (45) by using mathematical induction, and this is left to 
the reader. 

 
Example 6: Here the proofs of (44) and (45) are illustrated for k = 3. 
(a) Proof of (44): From (37), it follows that: 

 

                          Fi*(x |C1,C2 ) = argmax μC1
(x),μc1

(x)( )argmax μC2
(x),μc2

(x)( )  (46) 

 

  Fi*(x |C1,C2 ,C3) = argmax μC1
(x),μc1

(x)( )argmax μC2
(x),μc2

(x)( )argmax μC3
(x),μc3

(x)( )  (47) 

 
Comparing (46) and (47), it is easy to see that: 
 

                                  Fi*(x |C1,C2 ,C3) = Fi*(x |C1,C2 )argmax μC3
(x),μc3

(x)( )  (48) 

 
which is (44). 
 

(b) Proof of (45): From (36), it follows that: 
 

                         μFi*
(x |C1,C2 ) = min max μC1

(x),μc1
(x)( ),max μC2

(x),μc2
(x)( ){ }  (49) 
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   μFi*
(x |C1,C2 ,C3) = min max μC1

(x),μc1
(x)( ),max μC2

(x),μc2
(x)( ),max μC3

(x),μc3
(x)( ){ }  (50) 

 
(50) can also be expressed as: 
 

μFi*
(x |C1,C2 ,C3) = min min max μC1

(x),μc1
(x)( ),max μC2

(x),μc2
(x)( ){ },max μC3

(x),μc3
(x)( ){ }

 (51) 
 
which can then be expressed as: 
 

                     μFi*
(x |C1,C2 ,C3) = min μFi*

(x |C1,C2 ),max μC3
(x),μc3

(x)( ){ }  (52) 

 
which is (45).  

 

Corollary 2-2 (Backward Recursion). Let Cj  denote the suppression of causal condition Cj . 

Then it is true that: 
 

                              Fi*(x |C1,C2 ,..., Cj ,...,Ck ) = Fi*(x |C1,C2 ,...,Cj 1,Cj+1,...,Ck )  (53) 

 
Proof: Obvious from (37). 
 
This backward recursion can also lead to a vast reduction in computation time. For example, if 

the winning causal combination Fi*(C1,C2 ,...,Ck )  has been determined for six causal conditions 

(k = 6), then it can be used to establish the winning causal combination for any combination of 
five, four, three, or two of the causal conditions, by inspection! 

No way has yet been determined for computing μFi*
(x |C1,C2 ,..., Cj ,...,Ck )  from 

μFi*
(x |C1,C2 ,...,Cj ,...,Ck ) . It seems that once Fi*(C1,C2 ,..., Cj ,...,Ck )  has been determined from 

(53), μFi*
(x |C1,C2 ,..., Cj ,...,Ck )  must be computed directly from (36), as: 

 

    

μFi*
(x |C1,C2 ,..., Cj ,...,Ck ) = min max μC1

(x),μc1
(x)( ),...,max μCj 1

(x),μcj 1
(x)( ),{

                                                        max μCj+1
(x),μcj+1

(x)( ),...,max μCk
(x),μck

(x)( )}
 (54)  

 
Corollary 2-3 (Firing Levels are Bounded). If μFi*

(x |C1,C2 ,...,Ck1
)  has been computed for 

k1  causal conditions, and one now considers k2  causal conditions, where k2 > k1 , then    

 
                                         μFi*

(x |C1,C2 ,...,Ck2
) μFi*

(x |C1,C2 ,...,Ck1
)  (55) 

 
This means that when new causal conditions are added to an existing set of causal conditions, 

the firing level for the new winning causal combination (which, by Corollary 2-1, contains the 
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prior winning causal combination) can never be larger than the prior firing level, i.e. firing levels 
tend to become weakened when more causal conditions are included. 

 
Proof: (55) is obvious from (45).  

 
D. Recursive Computation of Consistency 
The formula for subsethood of the antecedents (causal combinations) in the outcome of each 

firing-level surviving rule is given in (11), which is repeated here for the convenience of the 
readers: 

 

                                     ssK (Fl
S ,O) =

min(μ
Fl
S (x),μO (x))

x=1

N

μ
Fl
S (x)

x=1

N    l = 1,2,...,RS  (56) 

 
Consider two populations, one of size N1  and the other of size N2 . In order to show the 

dependency of ssK (Fl
S ,O)  on the population size, we use a conditioning notation, i.e.: 

 

                             ssK (Fl
S ,O | N1) =

min(μ
Fl
S (x),μO (x))

x=1

N1

μ
Fl
S (x)

x=1

N1
   l = 1,2,...,RS  (57) 

 

                             ssK (Fl
S ,O | N2 ) =

min(μ
Fl
S (x),μO (x))

x=1

N2

μ
Fl
S (x)

x=1

N2
   l = 1,2,...,RS  (58) 

 

Theorem 3. Suppose N2 > N1 . ssK (Fl
S ,O | N2 )  can be computed recursively from 

ssK (Fl
S ,O | N1) , as: 

        ssK (Fl
S ,O | N2 ) =

1

1+
μ
Fl
S (x)

x=N1 +1

N2

μ
Fl
S (x)

x=1

N1

ssK (Fl
S ,O | N1) +

min(μ
Fl
S (x),μO (x))

x=N1 +1

N2

μ
Fl
S (x)

x=1

N2
 (59) 

 
After proving this result, we shall show how it can be used to provide an understanding of 

when or if a rule that has survived fsQCA based on N1  cases can be obliterated (or not) by an 

additional set of N2 N1  cases. 

 
Proof: Beginning with (58) and N2 > N1 , it follows that: 

 

                ssK (Fl
S ,O | N2 ) =

min(μ
Fl
S (x),μO (x)) + min(μ

Fl
S (x),μO (x))x=N1 +1

N2

x=1

N1

μ
Fl
S (x)x=1

N2
 

  



 42 

               ssK (Fl
S ,O | N2 ) =

min(μ
Fl
S (x),μO (x))x=1

N1

μ
Fl
S (x)x=1

N2
+

min(μ
Fl
S (x),μO (x))x=N1 +1

N2

μ
Fl
S (x)x=1

N2
 

 

               ssK (Fl
S ,O | N2 ) =

min(μ
Fl
S (x),μO (x))x=1

N1

μ
Fl
S (x) + μ

Fl
S (x)x=N1 +1

N2

x=1

N1
+

min(μ
Fl
S (x),μO (x))x=N1 +1

N2

μ
Fl
S (x)x=1

N2
 

 

               

ssK (Fl
S ,O | N2 ) =

1

1+
μ
Fl
S (x)

x=N1 +1

N2

μ
Fl
S (x)

x=1

N1

min(μ
Fl
S (x),μO (x))

x=1

N1

μ
Fl
S (x)

x=1

N1

                            +
min(μ

Fl
S (x),μO (x))

x=N1 +1

N2

μ
Fl
S (x)

x=1

N2

 (60) 

 

Using the formula for ssK (Fl
S ,O | N1)  that is given in (57) it is easy to see that (60) can be 

expressed as in (59).  
 

Note that μ
Fl
S (x)x=1

N2
 can also be computed recursively, but we do not pursue that here. 

Equation (59) allows us to examine the relative sizes of ssK (Fl
S ,O | N2 )  and ssK (Fl

S ,O | N1) . 

Let 
 

                                  ssK (Fl
S ,O | N2 N1)

min(μ
Fl
S (x),μO (x))x=N1 +1

N2

μ
Fl
S (x)x=N1 +1

N2
 (61) 

 

ssK (Fl
S ,O | N2 N1)  is the subsethood of Fl

S  in O, but only for the new N2 N1  cases. 

 

Corollary 3-1. If 
 

                                                ssK (Fl
S ,O | N2 N1)

<
ssK (Fl

S ,O | N1)  (62) 

 
then 

                                                        ssK (Fl
S ,O | N2 )

<
ssK (Fl

S ,O | N1)  (63) 

 

Proof: When ssK (Fl
S ,O | N2 ) ssK (Fl

S ,O | N1) , then, using (59), it follows that: 
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1

1+
μ
Fl
S (x)x=N1 +1

N2

μ
Fl
S (x)x=1

N1

ssK (Fl
S ,O | N1) +

min(μ
Fl
S (x),μO (x))x=N1 +1

N2

μ
Fl
S (x)x=1

N2
ssK (Fl

S ,O | N1)  (64) 

 
This inequality can be reorganized as follows: 
 

              

min(μ
Fl
S (x),μO (x))

x=N1 +1

N2

μ
Fl
S (x)

x=1

N2
ssK (Fl

S ,O | N1) 1
1

1+
μ
Fl
S (x)

x=N1 +1

N2

μ
Fl
S (x)

x=1

N1

                                             ssK (Fl
S ,O | N1) 1

μ
Fl
S (x)

x=1

N1

μ
Fl
S (x)

x=1

N1
+ μ

Fl
S (x)

x=N1 +1

N2

                                             ssK (Fl
S ,O | N1)

μ
Fl
S (x)

x=N1 +1

N2

μ
Fl
S (x)

x=1

N1
+ μ

Fl
S (x)

x=N1 +1

N2

 

               
min(μ

Fl
S (x),μO (x))x=N1 +1

N2

μ
Fl
S (x)x=1

N2
ssK (Fl

S ,O | N1)
μ
Fl
S (x)x=N1 +1

N2

μ
Fl
S (x)x=1

N2
 (65) 

 
A further simplification of (65) leads to: 
 

                       min(μ
Fl
S (x),μO (x))x=N1 +1

N2 ssK (Fl
S ,O | N1) μ

Fl
S (x)x=N1 +1

N2
 (66) 

 
This can be expressed as: 

 

                                          
min(μ

Fl
S (x),μO (x))x=N1 +1

N2

μ
Fl
S (x)x=N1 +1

N2
ssK (Fl

S ,O | N1)  (67) 

 

Because the left-hand side of this last equation is ssK (Fl
S ,O | N2 N1)  [see (61)], it follows that 

(67) can be expressed as in the top part of (63).  

The proof that ssK (Fl
S ,O | N2 ) < ssK (Fl

S ,O | N1)  is so similar to the one just given for 

ssK (Fl
S ,O | N2 ) ssK (Fl

S ,O | N1) , that we leave it to the reader.  
 

The next corollary to Theorem 3 introduces the consistency threshold into the analysis, and is 
more useful than Corollary 3-1 because it can be used to establish when a causal combination 



 44 

can be obliterated by a new set of N2 N1  cases. 

 

Corollary 3-2. Suppose ssK (Fl
S ,O | N1) = 0.8 + (N1) , where39 0 (N1) 0.2 . Let  

 

                                                              
μ
Fl
S (x)x=1

N1

μ
Fl
S (x)x=N1 +1

N2
 (68) 

 
Then 
 

                                                            ssK (Fl
S ,O | N2 ) < 0.8 , (69) 

 
 if and only if 
 

                                                 ssK (Fl
S ,O | N2 N1) < 0.8 (N1)  (70) 

 

which means that Fl
S  is obliterated. Another way to express (70) is:   

 

                                                       <
0.8 ssK (Fl

S ,O | N2 N1)

ssK (Fl
S ,O | N1) 0.8

 (71) 

 
 

Observe that (70) or (71) provide constructive tests to establish if a rule that has survived the 
consistency threshold based on N1  cases will be obliterated by the additional N2 N1  cases. 

This requires computing both sides of (70) [or (71)] to see if it is (or is not) satisfied. If it is 
satisfied, then (69) will be true and the lth rule will be obliterated. If it is not satisfied, then the lth 
rule will not be obliterated. 

 is a very interesting parameter; it is the ratio of the sums of firing levels, one for the original 

N1  cases and the other for the additional N2 N1  cases. Example 7 below examines  in order 

to learn something about it for rules that are obliterated. 
 

Proof: (a) Sufficiency of (70): To begin, we express  ssK (Fl
S ,O | N2 )  in (59) in terms of , i.e.: 

 

  

 ssK (Fl
S ,O | N2 ) =

+1
ssK (Fl

S ,O | N1) +
min(μ

Fl
S (x),μO (x))

x=N1 +1

N2

μ
Fl
S (x)

x=N1 +1

N2

μ
Fl
S (x)

x=N1 +1

N2

μ
Fl
S (x)

x=1

N2

                        =
+1

ssK (Fl
S ,O | N1) + ssK (Fl

S ,O | N2 N1)
μ
Fl
S (x)

x=N1 +1

N2

μ
Fl
S (x)

x=1

N2

 (72) 

 

                                                
39 The maximum value of consistency is 1. 
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Beginning with the identity 
 

                                             μ
Fl
S (x)x=1

N2
= μ

Fl
S (x)x=1

N1
+ μ

Fl
S (x)x=N1 +1

N2
 (73) 

 
it is straightforward to show that  
 

                                        
μ
Fl
S (x)x=1

N2

μ
Fl
S (x)x=N1 +1

N2
=

μ
Fl
S (x)x=1

N1

μ
Fl
S (x)x=N1 +1

N2
+1 = +1  (74) 

 
so that 
 

                                         
μ
Fl
S (x)x=N1 +1

N2

μ
Fl
S (x)x=1

N2
=

1

+1
 (75) 

 
Substituting (75) into (72), it follows that: 
 

                      ssK (Fl
S ,O | N2 ) =

+1
ssK (Fl

S ,O | N1) +
1

+1
ssK (Fl

S ,O | N2 N1)  (76) 

 

If (70) is true, and making use of the fact that ssK (Fl
S ,O | N1) = 0.8 + (N1) , then (76) 

becomes: 
 

          ssK (Fl
S ,O | N2 ) <

1

+1
(0.8 + (N1)) + (0.8 (N1) )[ ] =

1

+1
0.8( +1)[ ] = 0.8  (77) 

 
which completes the proof of the sufficiency of (70). 
 

(b) Necessity of (70): Substituting ssK (Fl
S ,O | N1) = 0.8 + (N1)  into the right-hand side of (59), 

and assuming that ssK (Fl
S ,O | N2 ) < 0.8 , it follows that: 

  

                       
1

1+
μ
Fl
S (x)x=N1 +1

N2

μ
Fl
S (x)x=1

N1

(0.8 + (N1)) +
min(μ

Fl
S (x),μO (x))x=N1 +1

N2

μ
Fl
S (x)x=1

N2
< 0.8  (78) 

 
Performing straightforward algebra on (78), it follows that: 
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μ
Fl
S (x)x=1

N1

μ
Fl
S (x)x=1

N2
(0.8 + (N1)) +

min(μ
Fl
S (x),μO (x))x=N1 +1

N2

μ
Fl
S (x)x=1

N2
< 0.8  

 

                           (0.8 + (N1)) μ
Fl
S (x)x=1

N1
+ min(μ

Fl
S (x),μO (x))x=N1 +1

N2
< 0.8 μ

Fl
S (x)x=1

N2
 

 

                                       (N1) μ
Fl
S (x)x=1

N1
+ min(μ

Fl
S (x),μO (x))x=N1 +1

N2
< 0.8 μ

Fl
S (x)x=N1 +1

N2
 

 

                                  (N1)
μ
Fl
S (x)x=1

N1

μ
Fl
S (x)x=N1 +1

N2
+

min(μ
Fl
S (x),μO (x))x=N1 +1

N2

μ
Fl
S (x)x=N1 +1

N2
< 0.8  

 

                        ssK (Fl
S ,O | N2 N1) < 0.8 (N1)

μ
Fl
S (x)x=1

N1

μ
Fl
S (x)x=N1 +1

N2
= 0.8 (N1)  (79) 

 
which is (70). This completes the proof of the necessity of (70). 

It is straightforward to obtain (71) from (70), using the additional fact that  
 

                                             (N1) = ssK (Fl
S ,O | N1) 0.8 0   (80) 

 
 

Example 7. In this example, we return to Examples 1 and 2 (Section III) in order to explain 
(predict) why the four rules in Example 2, for Likely Breakdown of Democracy, were reduced to 
two rules in Example 1 for Breakdown of Democracy. The importance of this example is it alerts 
us to choose the desired outcome in fsQCA very carefully.  

We begin with Example 2 for Likely Breakdown of Democracy, for which N1 = 10 , and treat 

the eight cases that were eliminated from Example 1 [when the requirement that MF(O) > 0.5  

was imposed in Example 2] as our N2 N1  additional cases; hence, N2 = 18 . Results are 

summarized in Table XII. 
The eight cases in this table are the ones that were eliminated from Example 1 and do not 

appear in Example 2. The memberships in the output of Breakdown of Democracy (O) for these 
eight cases were taken from Table I. The memberships of the firing levels for causal 
combinations AbC, ABC, abc and abC were taken from Table II. The top portion of Table XII 

provides the minima that are needed to compute the consistency ssK (Fl
S ,O | N2 N1)  [the left-

hand side of (70)] for the eight cases, using (61). ssK (Fl
S ,O | N1)  was taken from the last column 

of Table VIII. (N1)  was computed from (N1) = ssK (Fl
S ,O | N1) 0.8 . μ

Fl
S (x)x=1

N1
, in the 

numerator fraction on the right-hand side of , was found from Table VI in its last row for AbC, 

ABC, abc and abC; and, μ
Fl
S (x)x=N1 +1

N2
, in the denominator of , is found in the “Sums” row in 

the top portion of the present table. The right-hand side of (70) could then be computed. 
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Inequality (70) could then be tested, because both of its sides have been computed. Observe from 
its row that it is satisfied for AbC and ABC, but is not satisfied for abc and abC, which means 
that AbC and ABC are obliterated because of these eight cases, whereas abc and abC are not. 

Examining , observe from its row in Table XII that when it is smaller than 1, rules get 

obliterated, whereas when it is larger than 1 they do not. We do not claim that this is a general 
rule. It is true for this example, and is worthy of further study.  
 

TABLE XII 

COMPUTATIONS ASSOCIATED WITH INEQUALITY (70) FOR EXAMPLES 1 AND 2. THE NUMBERS 

IN THE TOP PORTION OF THE TABLE ARE FIRING LEVELS, AND FOR NOTATIONAL SIMPLICITY,  

E. G., A IS SHORT FOR MF(A). 

Case O AbC 
Min (O, 

AbC) 
ABC 

Min (O, 

ABC) 
abc 

Min (O, 

abc) 
abC 

Min (O, 

abC) 

2 0.05 0.11 0.05 0.89 0.05 0.01 0.01 0.01 0.01 

3 0.11 0.02 0.02 0.58 0.11 0.02 0.02 0.02 0.02 

5 0.23 0.58 0.23 0.03 0.03 0.01 0.01 0.42 0.23 

6 0.05 0.97 0.05 0.03 0.03 0.01 0.01 0.02 0.02 

10 0.08 0.72 0.08 0.05 0.05 0.02 0.02 0.28 0.08 

12 0.05 0 0 0.98 0.05 0 0 0 0 

17 0.05 0.87 0.05 0.13 0.05 0.01 0.01 0.05 0.05 

18 0.05 0.01 0.01 0.98 0.05 0.01 0.01 0.01 0.01 

Sums 3.28 0.49 3.67 0.42 0.09 0.09 0.81 0.42 

Consistency 

for 8 cases 

[lhs of (70)] 

ssK (Fl
S ,O | N2 N1 )  

0.49/3.28  

= 0.149 

0.42/3.67 

= 0.114 

0.09/0.09 

= 1 

0.42/0.81 

= 0.519 

ssK (Fl
S ,O | N1 )  1 1 0.985 0.923 

(N1 )  0.20 0.20 0.185 0.123 

μ
Fl
S (x)x=1

N1
 1.70 1.26 4.54 3.38 

μ
Fl
S (x)x=N1+1

N2
 3.28 3.67 0.09 0.81 

 1.70/3.28 
 = 0.518 

1.26/3.67  
= 0.343 

4.54/0.09 
= 50.444 

3.38/0.81 
= 4.173 

Rhs of (70) 
0.8 -0.2(0.518) 

= 0.696 
0.8 -0.2(0.343) 

= 0.731 

0.8 -
0.2(50.444) 

= -8.532 

0.8 -0.2(4.173) 
= 0.287 

Is Inequality (70) 

satisfied? 

0.149 < 0.696 
YES 

0.114 < 0.731 
YES 

1 > -8.532 
NO 

0.519 > 0.287 
NO 

Conclusion 
AbC is 

obliterated 

ABC is 

obliterated 

abc is  

retained 

abC is  

retained 

 
 
E. Consistency and it Dependence on the Number of Causal Conditions 
In Section C we showed that when the number of causal conditions changes (increases or 

decreases) then there is a simplified way to determine the winning causal combination for the 
changed number of causal conditions. Unfortunately, as we show next, similar results are not 
obtained for consistency calculations. 

Starting with (55), which we repeat here for the convenience of the reader,  
 
                                           μFi*

(x |C1,C2 ,...,Ck2
) μFi*

(x |C1,C2 ,...,Ck1
)  (81) 

 
it follows that: 
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                      min μFi*
(x |C1,C2 ,...,Ck2

),μO (x)( ) min μFi*
(x |C1,C2 ,...,Ck1

),μO (x)( )  (82) 

 
Consequently, 

 

        
min μFi*

(x |C1,C2 ,...,Ck2
),μO (x)( )x=1

N

μFi*
(x |C1,C2 ,...,Ck2

)
x=1

N

min μFi*
(x |C1,C2 ,...,Ck1

),μO (x)( )x=1

N

μFi*
(x |C1,C2 ,...,Ck2

)
x=1

N  (83) 

 
which can also be expressed, as: 

 

        

min μFi*
(x |C1,C2 ,...,Ck2

),μO (x)( )x=1

N

μFi*
(x |C1,C2 ,...,Ck2

)
x=1

N

min μFi*
(x |C1,C2 ,...,Ck1

),μO (x)( )x=1

N

μFi*
(x |C1,C2 ,...,Ck1

)
x=1

N

                                                                    
μFi*

(x |C1,C2 ,...,Ck1
)

x=1

N

μFi*
(x |C1,C2 ,...,Ck2

)
x=1

N

 (84) 

 
or,  

 

                            ssK (Fi*,O | k1) ssK (Fi*,O | k2 )
μFi*
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)
x=1

N
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)
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Starting with (81) it is also true that 
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)
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which can be expressed as: 
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When (87) is applied to (85) we reach the disappointing conclusion that it is possible for 
ssK (Fi*,O | k1)  to be larger or smaller than ssK (Fi*,O | k2 ) , depending upon how much larger than 

1 the ratio μFi*
(x |C1,C2 ,...,Ck1

)
x=1

N
/ μFi*

(x |C1,C2 ,...,Ck2
)

x=1

N
 is. 

Perhaps another inequality exists between ssK (Fi*,O | k1)  and ssK (Fi*,O | k2 )  that will resolve 

this issue, but to-date we have not found it. 
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VI. COMPARISONS OF LINGUISTIC SUMMARIZATION METHODS THAT USE FUZZY SETS 
 

In this section comparisons are provided between fsQCA and two other methods that use fuzzy 
sets for linguistic summarization, namely Yager, Kacprzyk, Zadro ny, et al.’s summarizers (see 
Paragraph 2 in Section I for the references) and Wu and Mendel’s (2010, 2011) if-then rules. 
This is needed so that it is clear how fsQCA differs from those methods. Our comparisons are 
given in Table XIII, which has been organized according to the chronology in which we have 
presented fsQCA. The comparisons should be self-explanatory, and so no additional comments 
about them are provided. 

Note that fsQCA is not meant to be a replacement for these existing linguistic summarization 
methods; it is meant to provide a different kind of if-then linguistic summarization, one that 
establishes the rules from data that are available about cases.  

One may also wonder about a comparison between fsQCA and the if-then rules that are 
obtained from the Wang-Mendel (WM) method [Wang and Mendel (1992)]. Because the WM-
rules are predictive whereas the fsQCA rules are descriptive (see Section I for explanations of 
what this means), the two are non-competitive and are therefore not compared in this report. 
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TABLE XIII 

COMPARISONS OF THREE LINGUISTIC SUMMARIZATION (LS) METHODS THAT USE FUZZY SETS 
Linguistic Summarization Method 

Does the LS Method 

Include fsQCA 
Yager, Kacprcyk, Zadrozny, et 

al.’s Summarizers 

Wu & Mendel’s 

If-then rules 

Focusing on a 
specific desired 

outcome? 

Yes (fsQCA must be 
repeated for each such 
outcome and usually its 
complement, one at a 

time) 

Yes and No [one or more 
desired outcomes 

(summarizers) are chosen, but 
each can have more than one 

linguistic term associated with 
it; summaries are pre-

established for all of these 
linguistic terms]  

Yes and No (a desired outcome is 
chosen, and is the consequent of the if-

then rules; it has mO linguistic terms 
associated with it, and rules are pre-
established for all of these linguistic 

terms) 

Pre-establishing a 
library (codebook) of 

summaries? 
No Yes  Yes  

A specific structure 
for the summaries? 

Yes (summaries are 
multiple-antecedent if-
then rules, all for the 

same consequent term; 
rules connected by OR) 

Yes (there are two canonical 
forms for the summariesa; 

multiple summary 
connections are not specified 

explicitlyb) 

Yes (summaries are multiple antecedent 
if-then rules, for all of the consequent 
terms; multiple summary connections 

are not specified explicitlyb) 

Pre-chosen 
summarizers?  

Yes (called causal 

conditions) 
Yes (called summarizers) Yes (called antecedents) 

A summarizer that is 
described by more 
than one linguistic 

term? 

Yes (each linguistic term 
is considered to be a 

separate causal condition 
in the same causal 
combination of the 
causal conditions) 

Yes (usually each of the k 
summarizers is described by 
mi terms; but, each of these 
terms is not thought of as a 
separate summarizer in the 
same summary, i.e. there is 
only one linguistic term per 

summarizer for each 

summary) 

Yes (usually each of the k antecedents is 
described by mi linguistic terms; but, 
each of these linguistic terms is not 

thought of as a separate antecedent in 
the same rule, i.e. there is only one 

linguistic term per antecedent for each 
rule) 

The complement of a 
summarizer? 

Always (both the causal 
condition and its 

complement are used) 
Usually not Never 

The concept of 
combinations of 
summarizers? 

Yes (each is called a 
causal combination in 

which the causal 

conditions are connected 
by AND; also, called 

conjunctural causation) 

Yes (multiple summarizers are 
connected by AND, but they 

do not constitute a causal 

combination in the sense of 
fsQCA) 

Yes (multiple antecedents connected by 
AND constitute a causal combination in 

the sense of fsQCA) 

A collection of 2k 
summaries that are 
constructed from k 

summarizers or their 
complements? 

Yes (to begin, there are 
2k candidate causal 

combinations—rules) 

No (if there are k summarizers 
and each is described by the 
same number of m linguistic 
terms, then there can be mk 

summarizations in the library 

of pre-established summaries)  

No (if there are k antecedents and each 
is described by the same number of m 
linguistic terms, then there can be mk 
rules in the library of pre-established 

summary rules) 

a The two forms are: (1) Q (a linguistic quantifier) objects from a given database are/have summarizers 1 through N at truth level T (e.g., Many 
automobile models have heavy weight and low MPG [T = 0.60]); and, (2) Q (a linguistic quantifier) objects from a given database with a pre-

specified linguistically-qualified summarizer are/have additional summarizers 1 through N-1 at truth level T (e.g., Many automobile models with 
heavy weights have low MPG [T = 0.58]). 
b “Multiple summary connections are not specified explicitly” means that when more than one summarizer (or if-then rule) is used, it is not 

specified if the summarizers (or if-then rule) are connected by the words OR, AND, or ELSE. 
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TABLE XIII (CONTINUED) 
Linguistic Summarization Method 

Does the LS Method 

Include fsQCA 
Yager, Kacprcyk, Zadrozny, et 

al.’s Summarizers 

Wu & Mendel’s 

If-then rules 

Interpreting a 

candidate 
summarization as a 
corner in a vector 

space? 

Yes (with 2k dimensions)  No No 

Removing a subset of 
the candidate 

summarizations based 
on computing firing 

levels and a frequency 
threshold test? 

Yes No No 

Computing 
subsethood? 

Yes (called consistency) 
Yes (called truth level; the 
formulas for truth level and 
consistency are the same) 

Yes (called truth level; the 
formulas for truth level and 
consistency are the same) 

Discarding additional 

candidate 
summarizations based 

on a subsethood 
threshold? 

Yes (usually the threshold 

is  0.80) 

No (in addition to truth level, 

other summarization measures 
are computed, with the objective 

usually being to choose a best 
summarization) 

No (in addition to truth level, other 

summarization measures are 
computed, with the objective 
usually being to choose a best 

summarization) 

Further processing? 

Yes (QM algorithm used 
to compute prime and 

minimal prime implicants, 
after which 

Counterfactual Analysis is 
performed) 

No No 

Accounting for limited 

diversity? 

Yes (done during 
Counterfactual Analysis, 

by means of thought 
experiments and using the 
substantive knowledge of 

an expert) 

No No 

Multiple summaries 
for the same outcome? 

Yes (this occurs 
automatically, and is 

called equifinal 

causation—equifinality) 

Maybe (it depends on the user, 
and occurs only if the user 

decides he/she wants more than 
one summary; the user must 

choose how many summaries 
and the structure of the 

summaries)  

Maybe (it depends on the user, and 
occurs only if the user decides 

he/she wants more than one 
summary; the user must choose 
how many summaries and the 

structure of the summaries) 

A direct connection to 
best instances? 

Yes No No 

Collections of 
summaries?  

Yes (ranging from most 

complex, to intermediate 
to parsimonious; 

intermediate summaries 
are considered to be the 

most useful ones) 

No (no reason why they could 
not be obtained, but this would 

require creating a library of 
summarizations with numbers of 
summarizers ranging from 1 to 

k) 

No (no reason why they could not 
be obtained, but this would require 

creating a library of rules with 
numbers of antecedents ranging 

from 1 to k) 
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VII. ON THE NUMBER OF CAUSAL CONDITIONS 
 

In his early works on QCA, Ragin limited QCA to “small N” because in many social science 
studies having access to only a small number of cases is the norm; however, in later works he 
relaxed this to “moderate N,” and eventually, as the general applicability of QCA became more 
evident, he removed all limitations on N.  

Of course, there must be some connection between the number of cases that are available and 
the number of causal conditions that can be used in QCA. By analogy to a variable-oriented 
approach (e.g., a regression model, in which one cannot assume too many independent variables 
when only a limited amount of data are present), in the QCA approach there must be some 
connection between the number of causal conditions (i.e., variables) one can safely use relative 
to the number of available cases; but, what is the connection? 

Marx (2005) provides an answer to this question (however, as pointed out below, this answer is 
not necessarily applicable to fsQCA). His work was motivated by the attack on QCA by 
Lieberson (2004) who hypothesized: “QCA is unable to distinguish real from random data and 
generated ‘valid’ models and explanations based on random data.” If this were true, results 
obtained from QCA would be meaningless. 

Marx (2005) “… addresses this issue through a methodological experiment [that] uses 
randomly created data matrices to show that QCA [csQCA] can make a distinction between real 
and random data.” His focus is on the number of contradictions that should occur when using 

QCA on random data. Contradictions [Marx (2005, p. 4)] “… occur in QCA when an identical 
configuration of independent variables accounts for both the presence and absence of an 
outcome. In QCA-terms, a contradiction occurs when, [e.g.] AbC D  and AbC d .” 

Marx postulates [assumes] (2005, p. 4, and p. 5) “ … a QCA analysis on random data should 
result in many contradictions. … If many contradictions occur, QCA is not able to produce a 
valid model on random data.” He further notes (2005, p. 4): “ … the question of under what 
conditions it is safe to make this assumption has never been addressed.” His paper addresses it. 

In short, what Marx’s postulate means is that when random data matrices are used one should 
expect to be inundated with many contradictions. His results show that this postulate depends in 
a very quantitative way on the relationship of the number of variables to the number of cases. 
More specifically, he shows [Marx (2005, p.21)]: “ … a QCA-application is restricted by the 
proportion of variables on cases and by an upper limit of variables which can be used in an 
analysis [this limit occurs when contradictions do not occur]. If both restrictions are not taken 
into account QCA cannot make a distinction between random and real data.” For 10 cases [Marx 
(2005, Table 5)], the number of variables [causal conditions] has to be limited to 4; for 15 cases, 
the number of variables has to be limited to 5; for 25 cases, the number of variables has to be 
limited to 6; for 30 cases, the number of variables has to be limited to 7; and, for 45 cases40, the 
number of variables has to be limited to 8.” He also states [Marx (2005, p. 18)]: “ … for 50 cases 
the upper-limit of variables is 8.” 

Marx summarizes these quantitative results by stating [Marx (2005, p. 2)]: “ … a QCA-
analysis should be performed with care. … if the research-design takes the limiting conditions 
into consideration a QCA-analysis can produce valid models which contribute to model/theory 
development.” 

                                                
40 He limited his study to 50 cases, because in social science [Marx (2005, p. 5)] “knowing more than 50 cases more 

or less in depth becomes difficult.” 
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In a private correspondence with Ragin, by the first author, about this (June 6, 2010), he states: 
“The problem of ‘too few’ cases (which really means cases that are limited in their diversity) is 
partially ameliorated via ‘easy’ counterfactuals [see Section IV], something that Marx has not 
addressed. … A typical fsQCA analysis has 4-8 causal conditions, almost regardless of the 
number of cases. I think the real reason for this has more to do with our ability to decipher with 
complexity than anything else. …”   
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VIII. MEMBERSHIP FUNCTIONS 
 

A. Introduction 
 Ragin (2000, pp. 165-171) has interesting general discussions about measuring MFs; however, 

it is in Ragin (2008, pp. 85-97) where one finds details about two methods for “calibrating fuzzy 
sets.” In the direct method “… the researcher specifies the values of an interval scale that 
correspond to the three qualitative breakpoints that structure a fuzzy set: full membership, full 
non-membership, and the crossover point. These three qualitative breakpoints are then used to 
transform the original interval scale to fuzzy membership scores.” In the indirect method the 
researcher has to provide a “qualitative assessment of the degree to which cases with given 
scores on an interval scale are members of the target set. The researcher assigns each case into 
one of six categories and then uses a simple estimation technique to rescale the original measure 
so that it conforms to these qualitative assessments.”  

Both of Ragin’s methods are limited to fuzzy sets that can be described using either a left-
shoulder or a right shoulder MF. While it may be true that many causal conditions and desired 
outcomes in social science and political science can be described by such fuzzy sets, it is 
unfortunately not true that such sets are the only ones that are used in engineering and computer 
science, because in those fields causal conditions and desired outcomes frequently include 
adjectives, such as low, small, moderate amount, some, high, large, etc. A term that uses the 
adjective low or high may indeed be modeled using a shoulder MF; however, terms that use the 
adjectives moderate or some are always modeled using a fuzzy set whose MF is an interior (non-
shoulder) MF.  

Because some terms used in engineering and computer science can be modeled using shoulder 
MFs, the rest of this section provides details, but only for Ragin’s direct method, since it is useful 
when quantitative data are available for a target set41, which is the situation that we always have.  

 
B. Details of Ragin’s Direct Method 
To begin, data must be collected from an expert about three qualitative breakpoints for a 

particular target set by answering the following questions42,43:  
Based on your knowledge of the range for a specific causal condition or desired outcome:  
(Q1) What is the threshold for full non-membership in this set?  
(Q2) What is the crossover point in this set (the value of the interval-scale variable where 

there is maximum ambiguity as to whether a case is more in or more out of the target 
set)? 

(Q3) What is the threshold for full membership in this set?  
For example, for the set of developed countries based on average per capita national income 

(for which it is known that in US$, average per capita national income ranges from $110 for 
Burundi to $40,110 for Switzerland [Ragin (2008, Table 5.2)]), Ragin chooses $2,500, $5,000, 
and $20,000 and as the answers to these three questions. 

                                                
41 A target set is one of Ragin’s terms used for either a causal condition or the desired outcome. 
42 Of course, one could ask more than three questions, but to do so would most likely be even more confounding to a 

subject than asking just these three questions. 
43 These questions are not stated in the order in which they would actually be asked; that order is (3), (1) and (2). 

Our ordering, which is in an increasing order of the primary variable, is more useful for the rest of the discussions in 

this section. 
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As another example, Fiss (2010) has the following method for establishing the three answers 
for the target set high-performing firms, that are based on knowing the return on assets (ROA) 
for 205 high-technology manufacturing firms located in the United Kingdom: (Q1) ROA 7.8%, 
(about the 50th percentile), (Q3) ROA  16.3% (the 75th percentile or higher), and (Q2) ROA = 
12% (approximately the average of 7.8% and 16.3%). When the target set was very-high-

performing firms, he used: (Q1) ROA 7.8% (about the 50th percentile), (Q3) ROA  25% 
(“arguably very-high performance in the eyes of most analysts”) and (Q2) ROA =16.3% (“the 
75th percentile in full membership of high-performing firms). 

Let μA ( )  denote the MF for fuzzy set A. The answers to the above three questions provide 1 , 

2  and 3 , respectively for which μA ( 1) = 0 , μA ( 2 ) = 0.5  and μA ( 3) = 1 . One approach 

(arguably the easiest approach) to obtain μA ( )  from this data, is to use these three MF values 

and the breakpoints to approximate μA ( )  by a piecewise linear function with one straight line 

segment going from ( 1,0)  to ( 2 ,0.5)  and another straight line segment going from ( 2 ,0.5)  

to ( 3,1) . μA ( )  is 0 for all 1  and μA ( )  is 1 for all 3 . 

Another approach to approximating μA ( ) , the one that is advocated by Ragin (2008, pp. 87-

94), is to smooth out the MF by using a log-odds transformation. To be specific, let 

yA ( ) odds of membership , where44 

 

                                                               yA ( ) =
μA ( )

1 μA ( )
 (88) 

 

and zA ( ) log  odds of membership , where 

 

                                                               zA ( ) = ln yA ( )   (89) 

 
Then, from (89) and (88), it follows that: 

 

                                                             μA ( ) =
exp zA ( )( )

1+ exp zA ( )( )
 (90) 

 

The usefulness of the log odds is that it is completely symmetric about zA ( ) = 0  and it  is 

automatically bounded between 0 and 1. The drawback to the log odds is that it is incapable of 

producing values of μA ( )  that are exactly equal to either 1 or 0, due to the logarithmic 

transformation. 

Ragin defines the threshold of full membership as zA ( ) = 3 , for which 
 
μA ( ) 0.95 , and the 

threshold of full non-membership as zA ( ) = 3 , for which 
 
μA ( ) 0.05 . A plot of zA ( )  versus 

2  is depicted in Fig 8. The straight lines are approximations and connect zA ( ) = 3  to 

zA ( ) = 0 , and zA ( ) = 0  to zA ( ) = 3 . Note that zA ( ) = 0  occurs when yA ( ) = 1  which occurs 

when μA ( ) = 0.5 . 

                                                
44 (88) is the ratio of the membership of being in A over the membership of not being in A. 
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Once 1 , 2  and 3  are known (by answering the above three questions), then it is easy to 

determine (approximate) zA ( )  for all values of  above or below 2 . Observe, from Fig. 8, that 

the slope of zA ( )  for all  above 2  (to the right of the origin) is 3 / ( 3 2 ) , whereas the 

slope of zA ( )  for all  below 2  (to the left of the origin) is 3 / ( 2 1) . Consequently, for all 

2 > 0 ,  

 

                                                         zA ( ) =
3

3 2

( 2 ) , (91) 

 

whereas for all 2 < 0 ,  

 

                                                           zA ( ) =
3

2 1

( 2 ) . (92) 

 

Once zA ( )  has been computed by either of these formulas, then μA ( )  is solved for from (90). 

 

 
Figure 8. Log-odds, zA ( ) , shown as a function of 2  rather than as a function of . 

 
It should be obvious that the Achilles’ heel in Ragin’s direct method is providing crisp answers 

to the above three questions. An expert is more likely to feel comfortable with providing 
intervals of numbers as the answers rather than a single number. And, different experts will most 
likely provide different intervals, reflecting their personal substantive knowledge about the 
causal condition or desired outcome. This suggests that type-1 fuzzy sets may not be a good 
model for fsQCA and that interval type-2 fuzzy sets, that can make use of the uncertainties in the 
answers to the three questions, may be a better model. We plan to study the application of IT2 
FSs to fsQCA and will summarize those results in another report. 
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IX. CONCLUSIONS 
 

It is quite common these days for people who work in the general field of computational 
intelligence (CI), which includes fuzzy sets as one of its major pillars (the others being neural 
networks and evolutionary computing), to inquire how a CI technique can be used to solve 
problems in interdisciplinary or non-traditional (i.e., non-engineering or non-computer-science) 
fields. The expectations are there will be a flow from CI into these fields. Rarely, does the flow 
occur in the other direction. Charles Ragin’s fsQCA is one of those remarkable exceptions and 
represents a flow from social science and political science into CI.  

As is stated in the Introduction, this report has for the first time explained fsQCA in a very 

quantitative way, something that is not found in the existing literature, and something that is 

needed if engineers and computer scientists are to use fsQCA. This report has also provided new 
theoretical results for fsQCA, results that could only have been obtained after a formal 
quantification of fsQCA had occurred. 

Stepping back from the details, fsQCA for sufficient conditions—each of which is a linguistic 
summarization—involves the following steps: (1) Choose a desired outcome; (2) Choose k 
causal conditions (if a condition is described by more than one term, treat each term as an 
independent causal condition45); (3) Treat the desired outcome and causal conditions as fuzzy 
sets, and determine MFs for all of them; (4) Evaluate these MFs for all available cases, the 

results being derived MFs; (5) Create   2
k  candidate causal combinations (rules) and view each as 

a possible corner in a 2k -dimensional vector space; (6) Compute the MF of each of the 2k  

candidate causal combinations in all of the available cases, and keep only the ones—the 
 
R

S
 

surviving causal combinations (firing-level surviving rules)—whose MF values are > 0.5, i.e., 
keep the causal combinations that are closer to corners and not the ones that are farther away 

from corners; (7) Compute the consistencies (subsethoods) of these 
 
R

S
 surviving causal 

combinations, and keep only those 
 
R

A
 causal combinations—the actual causal conditions (actual 

rules)—whose consistencies are46 > 0.80; (8) Binarize the 
 
R

A
 actual causal conditions and use 

the QM algorithm to obtain prime implicants (the complex solutions) and minimal prime 
implicants (the parsimonious solutions); (9) Use substantive knowledge from an expert to 
perform Counterfactual Analysis on the complex solutions, constrained by the parsimonious 
solutions, to obtain the intermediate solutions; (10) Perform QM on the intermediate solutions to 
obtain the simplified intermediate solutions; (11) Retain only those simplified intermediate 
solutions whose consistencies are approximately greater than 0.80, the believable simplified 
intermediate solutions; (12) Connect each solution (complex, intermediate and parsimonious) 
with its best instances; and, (13) Compute the coverage of each solution. It is a good practice to 
perform fsQCA not only for the desired outcome but also for the complement of that outcome, 
because of the asymmetrical nature of this logic-based approach to linguistic summarization. 

fsQCA for necessary conditions can also be performed as explained in Appendix E, but 
because such conditions are very rare in engineering and computer science applications, they are 
not emphasized in this report.  

                                                
45 Although we have not illustrated this in the present report, it has been successfully used by us in applications of 

fsQCA. These will be reported on in future publications. 
46 Sometimes people use a lower threshold, e.g., 0.75, instead of 0.80. 
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fsQCA is very different from other linguistic summarization methods, and is compared with 
two existing LS methods in Section VI that also use fuzzy sets. As mentioned in that section, 
fsQCA is not meant as a replacement for either of these methods. It is, instead, meant as a 
different way to obtain a linguistic summarization.  

We believe that fsQCA has the potential to be widely applicable in engineering and computer 
science. In another publication we shall report on its use for an oilfield application.  

We conclude this report with a list of some limitations of fsQCA that should be viewed in a 
positive way as a list of research opportunities, many of which are already under study. 

• The results from fsQCA depend on the frequency cutoff and consistency threshold. If 
intervals of numbers were used for both of these instead of crisp numbers, then more robust 
results could be obtained. 

• Counterfactual Analysis (CA), while very important, is complicated to understand, and 
consequently is often ignored. CA is totally dependent on substantive knowledge that is 
known to an expert. Sometimes expert knowledge is not available and must be extracted 
from case-data. How to do this and use it in CA is very important. The robustness of 
fsQCA results to such knowledge also needs to be studied. 

• It is very common in engineering and computer science applications of fuzzy logic to use 
more than two terms for a causal condition (e.g., low permeability, moderate permeability 
and high permeability). The more terms that are used, the larger k becomes, and 

subsequently the larger the number of causal combinations, 2k , becomes, which worsens 

the problem of limited diversity. How to use fsQCA (or if it can be used) for very large 2k  
needs to be studied.  

• It would seem that there should be some connection between the numbers of causal 
conditions one can safely use in QCA relative to the number of available cases. Although 
some work has been done to study this for crisp set QCA [Marx (2005)] no work has yet 
been done to study this for fsQCA. Such a study must, of course, also account for the 
handling of limited diversity by counterfactual analysis.  

• Related to using more than two terms for a causal condition, is the problem of how to 
obtain the MFs for them. MFs depend on the size of the vocabulary used to describe a 
causal condition. For example, the MF of low permeability will be quite different if the 
vocabulary for permeability includes two terms (low permeability and high permeability) or 
three (or more) terms (e.g., low permeability, moderate permeability and high 

permeability). The impact of this on fsQCA needs to be studied. 

• Also related to using more than two terms for a causal condition, is the problem of 
simplifying the final results from fsQCA, because each causal combination (with up to k 
terms in it) will be long and therefore so complicated that it will be very difficult to 
understand. As an example of what we mean by simplifying the final results from fsQCA, 
suppose the MFs for low permeability and high permeability have been established for a 
vocabulary of permeability that includes three terms (low permeability, moderate 

permeability and high permeability), but only these two terms are used in fsQCA. Then, a 
summary that contains, e.g. not low permeability AND not high permeability can be 

simplified to moderate permeability. This kind of simplification can be done by using 
similarity notions from fuzzy set theory, and needs to be studied, to obtain a library of 
simplifications. 
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• Coverage, as defined by Ragin, needs further study because exactly what to do with it is 
vague.  

• There are other linguistic summarization measures that have been defined in the linguistic 
summarization literature to assist in deciding which summary to use. Perhaps some of them 
could also be used in fsQCA. 

• Validation of fsQCA needs to be examined because engineers and computer scientists are 
so used to doing this for, e.g. classification problems. Validation experiments will provide a 
level of confidence to engineers and computer scientists so that they will try fsQCA on 
other problems. We will report on some validation experiments in a future publication. 

• Because words mean different things to different people [e.g., Mendel and Wu (2010)] the 
fuzzy sets that are used in fsQCA should be interval type-2 fuzzy sets rather than type-1 
fuzzy sets. This means that fsQCA needs to be re-examined for IT2 FSs. 

 
Finally, the reader needs to be aware that Ragin presented his first ideas about crisp QCA in his 

1987 book, but after he realized that things are not black and white in social science applications 
he extended (abandoned) crisp QCA to fsQCA that has been presented by him in two versions. 
The first version is in his 2000 book and the second version is in his 2008 book. The major 
difference between the two versions is in the way he computes consistency. In his 2008 book (p. 
48) he refers to the 2000 approach as “simplistic.” It does not use the subsethood formula, but 
instead uses a crisp counting technique. We mention all of this because if a reader only reads the 
2000 book he/she will be implementing an out-of-date version of fsQCA. 



 60 

 ACKNOWLEDGEMENTS 
 

The first author is very pleased to acknowledge the generous help provided to him by Prof. 
Charles Ragin in explaining the many ramifications of fsQCA. This was done through an 
extensive e-mail dialog with Prof. Ragin, beginning on October 8, 2009, and continuing even to 
this date. Both authors would like to acknowledge help provided to them by Prof. Peer Fiss, who 
met with them a number of times to discuss some ramifications of fsQCA. 
 

 



 61 

APPENDIX A. GLOSSARY 
 

Because many terms in this report may either be new to the reader or are used in a context that 
may be different from the ones they are used to, they are explained in this Glossary, which is 
modeled very closely after the Glossary in Rihoux and Ragin (2009). A non-boldfaced italicized 
item in the description of each term means that such an item also appears in the Glossary. The terms 
in this Glossary are arranged in alphabetical order. 
 

Case 

A case is an object for which data (measurements) are available, i.e. there are empirical instances 
(e.g., oil well, ground vehicle, kind of wine, patient, country, village, library, etc.). The cases dealt 
with are (or should be) well known rather than anonymous. 

 
Causal Combination 

It is a combination of the causal conditions or their complements (a configuration). If there are k 

causal conditions, then one begins fsQCA with 2k  candidate causal combinations.  
 

Causal Complexity 
The more causal conditions are to be considered, the more combinations of them can occur, and 

therefore the more causally complex is the situation. 
 
Coherence of Data 

Data are coherent [Rihoux and Ragin (2009), p. 15] when there are no contradictory 

configurations, i.e. there are no cases that are identical with respect to causal conditions, but 
different in outcome. Checking the coherence of data means detecting contradictory configurations. 

 
Condition 

A condition (also referred to as a condition variable or a causal condition) [Rihoux and Ragin 
(2009), p. 182] is an explanatory variable that may affect the outcome (it is not an ‘independent 
variable’ in the statistical sense).  

 
Configuration 

A configuration [Rihoux and Ragin (2009), p. 182] is a combination of conditions relevant to a 
given outcome; it is analogous to a multiple-antecedent rule, and may correspond to one, more than 
one, or no empirical case(s).  

 
Conjunctural Causation 

Conjunctural causation refers to causation being due not necessarily to a single causal condition 
but instead to a group of causal conditions that are combined using conjunction (AND). 

 

Consistency 

Consistency [Rihoux and Ragin (2009), p. 182] is the degree to which empirical evidence supports 
the claim that a set theoretic relation exists. A subset relation may signal a necessary or a sufficient 

condition, depending on which is the subset, the cause (sufficiency) or the outcome (necessity). 
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Contradictory Configuration 

A contradictory configuration [Rihoux and Ragin (2009), p. 182] is a configuration whose 
outcome value is 1 for some cases and 0 for other cases; it, therefore, covers a set of empirical cases, 
which, although they share the same set of condition values (e.g., antecedents), display different 
outcome values (e.g., consequent). 
 

Counterfactual Analysis 

Counterfactual analysis involves evaluating the outcome that a counterfactual case would exhibit 
if, in fact, it existed. It is like a thought experiment. In counterfactual analysis remainders are treated 
as don’t care combinations; it results in new (often) simpler causal combinations called 
counterfactuals. 

 
Counterfactual Case (see also, Logical Remainder, Difficult Counterfactual Case, and Easy 

Counterfactual Case) 
A counterfactual case is a substantively relevant combination of causal conditions that does not 

exist empirically. 
 
Coverage 

Coverage is an assessment of the way respective terms of the minimal formulas (see prime 

implicants) “cover” observed cases. There can be three kinds of coverage: (1) raw coverage which is 
the proportion of outcome cases that are covered by a given term; (2) unique coverage which is the 
proportion of outcome cases that are uniquely covered by a given term (no other terms cover those 
cases); and, (3) solution coverage, which is the proportion of cases that are covered by all the terms. 
 

Difficult Counterfactual Case 
Difficult counterfactuals attempt to remove a contributing causal condition from a configuration 

displaying the outcome. 
 
Diversity 
Diversity refers to whether or not a case actually exists for a particular combination of causal 

conditions. In social science applications it is very common for no cases to exist for many 
combinations of causal conditions, and this is referred to as “limited diversity.” 

 
Easy Counterfactual Case 
Easy counterfactuals assume that adding a redundant causal condition to a configuration known to 

produce the outcome (e.g., condition D to ABC, so that the result is ABCD) would still produce the 
outcome.  

 
Equifinality 
Equifinality refers to different causal combinations leading to the same outcome. 
 
Holistic perspective 

The holistic perspective [Rihoux and Ragin (2009), p. 6] means that each individual case is 
considered as a complex combination of properties, a specific ‘whole’ that should not be lost or 
obscured in the course of the analysis.  
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Limited Diversity (see Diversity) 

 
Logical Remainder 

A logical remainder (also called a counterfactual or a non-observed case) [Rihoux and Ragin 
(2009), p. 182] is a configuration (combination of conditions) that lacks empirical instances. 

 

Multiple-Conjunctural Causation 

The phrase multiple-conjunctural causation [Rihoux and Ragin (2009), p. 8] means that different 
causal ‘paths’—each path being relevant, in a distinct way—may lead to the same outcome. The 
term ‘multiple’ refers to the number of paths, while the term ‘conjunctural’ conveys the notion that 
each path consists of a combination of conditions. 

 

Necessary Condition 

A condition is necessary for an outcome [Rihoux and Ragin (2009), p. 183] if it is always present 
when the outcome occurs. In short, the outcome is a subset of the cause (the same cause may also 
affect other outcomes).  
 

Net Effects 
According to Ragin (2008, pp. 112-114): To estimate the net effect of a given independent 

variable, the researcher offsets the impact of competing causal conditions by subtracting from the 
estimate of the effect of each variable any explained variation in the dependent variable it shares 
with other causal variables. This is the core meaning of net effects—the calculation of the non-
overlapping contribution of each independent variable to explained variation in the dependent 
variable. Degree of overlap is a direct function of correlation. Generally, the greater the correlation 
of an independent variable is with its competitors the less is its net effect. 

 

Outcome 

An outcome (also referred to as an outcome variable) [Rihoux and Ragin (2009), p. 183] is the 
variable to be explained by the conditions; usually the outcome is the main focus of a study, and it is 
analogous to the consequent in a rule.  

 

Prime Implicants 

Prime implicants [Rihoux and Ragin (2009), p. 183] are reduced expressions derived in the course 
of Boolean minimization. Each prime implicant is usually a set of conditions joined by the Boolean 
“AND” operator. A subset of the derived prime implicants constitutes a minimal formula, the 
endpoint of a Boolean minimization. Each prime implicant in a minimal formula covers a collection 
of configurations from the truth table for a given outcome. 
 

Qualitative Comparative Analysis 

Qualitative Comparative Analysis (QCA) [Rihoux and Ragin (2009), pp. xix and xx] is an 
umbrella term that captures the three main types (Boolean, multi-value and fuzzy set) as a group. It 
is now common to refer to the original Boolean version of QCA as csQCA, where “cs” denotes 
“crisp set,” the version that allows multiple-category conditions to be used as mvQCA, where “mv” 
denotes “multi-value,” and to the fuzzy set version of QCA as fsQCA, where “fs” denotes “fuzzy 
set. 
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Remainder (see Logical Remainder) 
 

Subset Relation 

With crisp sets, a subset relation [Rihoux and Ragin (2009), p. 184] exists between two sets 
whenever all the members of one set are contained within the other set; with fuzzy sets a subset 
relation exists between two sets whenever membership scores in one set are consistently less than or 
equal to membership scores in the other set. 
 

Sufficient Condition 

A condition (or combinations of conditions) is sufficient for an outcome [Rihoux and Ragin 
(2009), p. 184] if the outcome always occurs when the condition is present (however, the outcome 
can occur for other reasons as well). In short the cause is a subset of the outcome. 
 

Truth Table 

A truth table [Rihoux and Ragin (2009), p. 184] is a synthetic display of all configurations 
(combinations of conditions) joined by the Boolean “AND” operator (set intersection). 
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APPENDIX B. ON WHY RAGIN DEVELOPED QCA 
 

In the 1980’s, Ragin became disillusioned with “conventional quantitative methods” (also 
called “conventional quantitative analysis” or “variable-oriented methods”), i.e. mathematical 
modeling methods that use correlation, such as regression and multivariate statistical analyses. 
This led him to invent QCA. Since then, he has expressed some very strong negative opinions 
about “conventional quantitative analysis” in three books [Ragin (2000), Ragin (2008) and 
Rihoux and Ragin (2009)]. Although he has done this in order to justify QCA, his negative 
opinions about “conventional quantitative analysis” are very illuminating. Although we don’t 
necessarily agree with all of his opinions, we feel that he has given them a great deal of thought, 
and are worth thinking about by all researchers who rely on mathematical models of data. 

There are lots of duplications in his statements about conventional quantitative analysis that 
appear in the three books. The most concise summary of his views, one that contrasts the fuzzy-
set approach (which he advocates) and the conventional quantitative analysis approach (which he 
is very critical of), are found in Ragin (2000, pp. 311-315) and are given next verbatim. 

 
The many contrasts between the fuzzy-set approach and conventional quantitative methods highlight the 

assumptions and judgments that are embedded in these methods—at least as they are conventionally used. I 

summarize these embedded features here. 

1. The dependence of conventional methods on fixed preferably “given” populations. Before researchers 

using conventional methods can compute a single statistic, much less a correlation between two variables, 
they must demarcate and fix boundaries of their sample or population. Once established, such boundaries 

are rarely questioned or revised. Instead, these boundaries reinforce the embedded assumption of case 

homogeneity and thus pose a barrier to the recognition of heterogeneity and diversity. The fuzzy set 

approach problematizes population boundaries and permits great heterogeneity, as manifested, for example, 

in causal complexity. This approach also allows population boundaries to be fuzzy rather than crisp. That 

is, cases can vary in their degree of membership in the set of cases relevant to a research question, and this 

varying degree of domain membership can be made an explicit part of the analysis. 

2. The dependence of conventional methods on an “accounting” approach to difference. From the 

viewpoint of conventional methods, cases are similar if they have many aspects that are the same and 

different if they have many aspects that are different. In additive-linear models47, similarities and 

differences are tallied, and cases with mostly similar scores on the independent variables receive mostly the 

same predicted values on the dependent variable. The embedded assumptions that permit this approach to 
cases are the following: (1) that all cases included in an analysis are members of the same population (i.e., 

case homogeneity); (2) that aspects of cases are non-interactive—that is, a case’s score on one aspect 

usually does not modify the meaning or relevance or causal impact of its score on other aspects (i.e., 

additivity); and, (3) that a case can offset its low score on some variables with a high score on others (i.e., 

compensation). From a fuzzy-set perspective, however, cases are not always as similar or comparable as 

they may seem. Sometimes a single difference between two cases can provide a basis for establishing a 

difference in kind—a qualitative distinction. The fuzzy-set approach implements its concern for potential 

differences in kind through its configurational approach to cases. Cases are evaluated in terms of their 

degree of membership in specific property-space locations, which in turn are conceived as ideal-type 

membership profiles. Two cases are considered similar only if they both have strong membership in the 

same ideal type property-space location. 
3. The de facto dependence of conventional methods on simplifying assumptions about kinds of cases not 

found in the data set. Limited diversity is the rule, not the exception, in the study of naturally occurring 

social phenomena. Once researchers identify relevant causal variables, they typically find that many 

regions of the vector space defined by those variables48 are void, or virtually void, of cases. When 

conventional researchers estimate statistical models using data that are limited in their diversity, the 

                                                
47 A conventional regression model, without interaction terms, is an example of an additive-linear model. 
48 If there are k causal variables (conditions), then there are 2k corners in the Boolean vector space. 
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additive-linear techniques they typically apply to their data assume, in essence, that if there were cases in 

the vacant regions in the vector space, they would conform to the patterns exhibited by cases in the regions 

that are well populated with cases. Thus, these models incorporate de facto assumptions about kinds of 

cases that are absent or virtually absent from the researcher’s data set. Unfortunately, these assumptions are 

invisible, not only to most researchers, but also to the audience for social research. In the fuzzy set 

approach, by contrast, the consideration of limited diversity is an explicit part of the analysis. Not only do 
researchers identify simplifying assumptions, it is possible, as well, to evaluate the plausibility of these 

assumptions and then selectively incorporate those that seem plausible. The process of incorporating 

simplifying assumptions is explicit and visible. Furthermore, the audiences for social research are free to 

challenge such assumptions and to construct alternate representations of the same evidence. 

4. The dependence of conventional methods on a correlational understanding of causation, an approach 

that is insensitive to necessity and sufficiency. Bivariate correlation, in one way or another, constitutes the 

backbone of most conventional techniques of quantitative analysis. Even a complex multi-variable model 

involving estimates of the net effects of many causal variables on an outcome variable is based, in the end, 

on a table of bivariate correlations. While very powerful as an analytical tool, the correlational approach to 

causation is incapable of addressing set-theoretic relationships. Is the outcome a subset of one or more 

causes (necessity)? Is a cause or causal combination a subset of the outcome (sufficiency)? While it is 

possible to discern set-theoretic relationships in cross-tabulations of categorical data, few statistical 
techniques focus on such relationships. The correlational approach to causation equates all prediction 

errors, whether they constitute violations of necessity or sufficiency, and counts all cases in the ambiguous 

null-location, where neither cause nor the outcome is present, as correct predictions. More telling is the 

simple fact that the study of set-theoretic relationships is completely outside the scope of techniques that 

use interval and ratio scale variables. With these measures, the usual focus is on covariance; set-theoretic 

relationships, the core of the fuzzy-set approach, are inaccessible. In the correlational view, causes do not 

delimit possibilities (necessity), nor do they combine in different ways to generate outcomes (sufficiency). 

Rather, each cause increases or decreases the level or probability of an outcome, net of the effects of other 

relevant causes. 

5. The dependence of conventional methods on additive, linear models and their consequent inability to 

unravel causal complexity. If no single cause is either necessary or sufficient for an outcome (i.e., 
maximum causal complexity), then there is little point in examining bivariate relationships or assessing the 

‘net effects’ of ‘independent’ variables. To assess causal complexity with conventional multivariate 

techniques, researchers must use interaction models. Generally, such models work well when: (1) the 

number of cases is very large, (2) the cases are fully diverse (i.e., limited diversity is not present), and (3) 

the number of independent variables is relatively small. When these conditions are not met, interaction 

terms tend to be highly collinear, and many different interaction models fit a given data set equally well. In 

short, when faced with causal complexity, conventional techniques are also confounded. For this reason, 

researchers are always warned to start with models that assumes perfect additivity (i.e., extreme causal 

simplicity) and then to add interaction terms (two-way terms first, then three-way terms if several two-way 

terms pass, and so on) only if the inclusion of interaction terms is strongly supported by both theory and 

evidence. In general, this is very good advice for users of conventional methods. However, causation is not 

always as simple as it seems, and it is likely that assuming simplicity merely relegates causal complexity to 
the error vector of additive models.  

6. The reliance of conventional methods on open-ended “variables” containing unspecified and often 

unknown quantities of irrelevant variation. The ‘variable’ is central to social research. The ideal variable 

is usually portrayed as an interval- or ratio-scale measure, and researchers are usually advised to maximize 

the variation that each variable exhibits. When variables display a wide range of values (and thus more 

variation), it is possible to derive better estimates of their effects in multivariate analyses. Generally, the 

advice to maximize variation is sound. Imagine trying to assess the impact on [political] party identification 

using incomes values that range from $20,000 to $25,000. While it is generally true that more variation is 

better then less, it is not true that all variation is meaningful. Thus, the assumption that ‘variation must be 

maximized’ should not be accepted uncritically. The meaningfulness of variation depends on the research 

question being asked and the concepts that are relevant to that question. Consider, for example, the 
researcher interested in studying the impact of having ‘too little’ income on food consumption. Social 

scientists know how to conduct a survey asking respondents about their income and how to find out who 

has more and who has less. That is, they are very good at making relative assessments. But, what’s a lot of 

income? How much is too little? How many people have enough? How many have far too little? If the 
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research question concerns the impact of having too little income, then most of the variation in the upper 

range of income is simply irrelevant. To answer the questions that address specific ranges of values (e. g., 

‘too little’ or ‘enough’), it is necessary to go outside of the data set and to find out about people—how they 

live and how they spend their money. This knowledge can be used to develop qualitative anchors that 

distinguish relevant from irrelevant variation, a central concern of the fuzzy-set approach. 

7. The dependence of conventional methods on mechanistically derived anchors to structure the 

interpretation of scores. Most conventional methods of data analysis focus on co-variation and 

correlation—an assessment of the degree to which the values of variables go together. If high values on one 

variable tend to go with high values of another, and low values with low values, then there is a positive 

correlation. The definition of ‘high’ versus low,’ however, is determined by the means and standard 

deviation of the relevant-variables, which, in turn, are derived mechanistically from the sample in question. 

For example, a researcher might compute the mean level of income and its standard deviation for a sample 

of individuals and use these values to define ‘low’ and ‘high income levels. Note, however, that the 

resulting evaluation of income is strictly in terms of relative levels within that sample. Note also that these 

statistics equate very different kinds of income gaps. For example, one single standard deviation unit might 

separate the well off from the rich on the one hand, and destitute from the working poor, on the other. Thus 

this ‘ready-made’ measure is only a measure of relative income; it is dependent on mechanistically derived 

anchors, and it treats all variation the same, no matter where in the range of values it occurs. With fuzzy 
sets, by contrast, ‘high’ and ‘low’ are defined in terms of strong and weak membership in sets, using 

criteria specified by the researcher. These criteria, in turn, are based on the researcher’s knowledge. They 

are not sample specific, nor are they mechanistically derived. 

 
Although Ragin is very critical of conventional quantitative methods, this does not mean he 

feels they should be replaced by QCA; instead, he believes there is a time and a place to use each 
methodology, e.g., Rihoux and Ragin (2009, p. 171) state:  

… the intension of QCA techniques is certainly not to supplant regression and related analyses, especially since 

the underlying logic and goals of the respective methods display stark differences. … one of the key differences is 

that regression-based methods focus primarily on the problem of estimating the net, independent effect of each 

variable included in an analysis of the outcome. By contrast, it would be a serious mistake to apply QCA 

techniques to this task, as the latter focuses on combinations of conditions. From the perspective of QCA, the idea 

of isolating the net, independent effect of each condition variable makes no sense. Fundamentally, QCA 

techniques attempt to explain specific outcomes in particular cases (hopefully also producing ‘modest’ 

generalizations); statistical analysis, by contrast, tries to generalize about averages across all cases in a population 
without attention to any specific case. … Probably a useful way to combine QCA techniques and other formal 

(typically statistical) techniques is to consider them sequentially. 
 

Finally, Ragin  (2008, pp. 176-177) states: 
While conventional quantitative methods are clearly rigorous, they are organized around a specific kind of 

rigor. That is, they have their own rigor and their own discipline, not a universal rigor. … They are typically 

centered on the task of estimating the ‘net effects’ of ‘independent’ variables on outcomes. … net effects thinking 

… this feature of conventional methods limits their usefulness. … the argument presented here is not that 
conventional analysis techniques are flawed—in fact, they are powerful and rigorous. Rather, the argument is that 

they are not well suited for analyzing causal complexity. Indeed, the assessment of net effects requires that the 

researcher assume that causation is uncomplicated. 
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APPENDIX C. NEW INTERMEDIATE SOLUTION ALGORITHM 
Prepared by Charles Ragin 

(Sent to Jerry M. Mendel on Dec, 13, 2009) 
 

The basic sketch of the new intermediate solution algorithm follows. 
The procedure evaluates each term in the parsimonious solution against each term in the 

complex solution. The number of terms in a solution is the number of combinations of causal 
conditions joined by “+”. For example, if the parsimonious solution is AB + CD, then there are 
two parsimonious terms. If there are k [our RP ] parsimonious terms and m [our RC ] complex 

terms, the procedure cycles k m  times, once for each possible pairing. 
 
1. Check to see if the complex term is a subset of the parsimonious term.  All the elements of 

the parsimonious term must appear in the complex term.  For example, if the parsimonious term 
is AB and the complex term is ABcD, then the subset relation is satisfied. However, if the 
parsimonious term is AB and the complex term is aBcD, then the subset relation is not satisfied.  
If the subset relation is not satisfied, then the procedure stops for this parsimonious/complex 
pairing and proceeds to the next pairing. 

 
Complex terms: 

 
1 GLOBAL*ECOVALPOL*CULTZONE*pwelreg+      

2 GLOBAL*ECOVALPOL*CULTZONE*DEMLONG+      

3 GLOBAL*ECOVALPOL*CULTZONE*HISTDEV+      

4 GLOBAL*ecovalpol*pwelreg*DEMLONG*histdev + 

5 ECOVALPOL*CULTZONE*pwelreg*DEMLONG*histdev   

 
Parsimonious: 
 
6 ECOVALPOL+       

7 DEMLONG   

 
Are the elements in #6 a subset of the elements in #1? Yes, proceed because #6 is a superset of 
#1. 
. . .  
Are the elements in #6 a subset of the elements in #4? No, stop. 
. . .  
 

2. Check to see if the user-inputted theoretical term [the user’s substantive knowledge] is 
consistent with the parsimonious term.  If it is not, then the element(s) in the theoretical term that 
differ from the parsimonious term are “trumped” by the parsimonious term. 

The theoretical term, as inputted by the user [for this example], is: 
 
CULTZONE (present)  

PWELREG (present)  

DEMLONG (present)  

HISTDEV (present) 

 

(The other two may be present or absent.) 
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In this example, the parsimonious term (#6) does not contradict with the theoretical term.  
However, we still need to complexify the theoretical term, yielding, for the #6#1 combination: 
 
8 ECOVALPOL*CULTZONE*PWELREG*DEMLONG*HISTDEV  

(ECOVALPOL added to theoretical case) 

 
3. Compare the complex term (#1) and the theoretical term (using the theoretical term that has 

been altered in step 2). Use the theoretical term to eliminate any extraneous elements from the 
complex term (pwelreg/PWELREG): 
 
1 GLOBAL*ECOVALPOL*CULTZONE*pwelreg+      

8 ECOVALPOL*CULTZONE*PWELREG*DEMLONG*HISTDEV  

 
Which yields [see our CA rules]: 
 
9 GLOBAL*ECOVALPOL*CULTZONE 
 

4. Save this intermediate term, and then proceed to the next pairing. Save all intermediate 
terms that are valid. 
 

5. List all valid intermediate terms in the truth table spreadsheet with outcome set to 1. Only 
these terms should appear in the truth table. 
 

For example, GLOBAL*ECOVALPOL*CULTZONE would appear as 
 
GLOBAL   ECOVALPOL   CULTZONE   PWELREG   DEMLONG   HISTDEV 

1        1           1          -         -         - 

(the dash signals “don’t care”/“already eliminated”) 
 

6. Simplify this truth table using Quine, setting all remainders to false. The result of this 
analysis is the full intermediate solution. 
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APPENDIX D. BREAKDOWN OF DEMOCRACY EXAMPLES FOR FIVE CAUSAL CONDITIONS 
 

In this appendix, Examples 1 and 2 are redone by increasing their three causal conditions to 
five: A = developed (country), B = urban (country), C = literate (country), D = industrial 
(country) and E =stable (country).  

 
D.1 Example D-1: Five Causal Conditions and O = Breakdown of Democracy 

In this example, the desired outcome is O = Breakdown of Democracy (of European countries 
between World Wars 1 and 2). The data in Table D.I are taken from Table 5.2 in Rihoux and 
Ragin (2009). 

Using knowledge and techniques from social science, numerical values were obtained for A, B, 
C, D, and e for 18 European countries that in Table D.I are called49 “Cases 1–18.” Numerical 
values were initially obtained by Ragin for o = Survival of Democracy, which was assumed to be 
the complement of Breakdown of Democracy; hence, MF(O)  was computed from MF(o)  as 

1 MF(o)  (see footnote 34). Similarly, numerical values were obtained by him for e = Unstable 

Country, which was assumed to be the complement of Stable Country; hence, MF(E)  was 

computed from MF(e)  as 1 MF(e) . S-shaped MFs were obtained for o, A, B, C, D and e using 

a method that is described in Ragin (2008) and in Section VIII.B, the details of which are not 
important for this example. Using these MFs, Ragin obtained the MF scores that are also given in 
Table D.I. These MFs implement Eqs. (1) and (2).  
 

TABLE D. I 

DATA- AND FUZZY-MEMBERSHIP-MATRIX (SHOWING ORIGINAL VARIABLES AND THEIR FUZZY-SET 

MEMBERSHIP FUNCTION SCORES)a 
Outcome Condition and MF scores 

Case 
o MF(O) A MF(A) B MF(B) C MF(C) D MF(D) e MF(E) 

1 -9 0.95 720 0.81 33.4 0.12 98 0.99 33.4 0.73 10 0.43 
2 10 0.05 1098 0.99 60.5 0.89 94.4 0.98 48.9 1 4 0.98 
3 7 0.11 586 0.58 69 0.98 95.9 0.98 37.4 0.90 6 0.91 
4 -6 0.88 468 0.16 28.5 0.07 95 0.98 14 0.01 6 0.91 
5 4 0.23 590 0.58 22 0.03 99.1 0.99 22 0.08 9 0.58 
6 10 0.05 983 0.98 21.2 0.03 96.2 0.99 34.8 0.81 5 0.95 
7 -9 0.95 795 0.89 56.5 0.79 98 0.99 40.4 0.96 11 0.31 

8 -8 0.94 390 0.04 31.1 0.09 59.2 0.13 28.1 0.36 10 0.43 
9 -1 0.58 424 0.07 36.3 0.16 85 0.88 21.6 0.07 13 0.13 
10 8 0.08 662 0.72 25 0.05 95 0.98 14.5 0.01 5 0.95 
11 -9 0.95 517 0.34 31.4 0.10 72.1 0.41 29.6 0.47 9 0.58 
12 10 0.05 1008 0.98 78.8 1 99.9 0.99 39.3 0.94 2 0.99 
13 -6 0.88 350 0.02 37 0.17 76.9 0.59 11.2 0 21 0 
14 -9 0.95 320 0.01 15.3 0.02 38 0.01 23.1 0.11 19 0.01 
15 -4 0.79 331 0.01 21.9 0.03 61.8 0.17 12.2 0 7 0.84 

16 -8 0.94 367 0.03 43 0.30 55.6 0.09 25.5 0.21 12 0.20 
17 10 0.05 897 0.95 34 0.13 99.9 0.99 32.3 0.67 6 0.91 
18 10 0.05 1038 0.98 74 0.99 99.9 0.99 49.9 1 4 0.98 

a This table is modeled after Table 5.2 in Rihoux and Ragin (2009), and the numbers in it are the same as the ones in that table. 

 

Because with five causal conditions there are 25 = 32  causal combinations, it is not possible to 
display a table like the one in Table II—it would be too long. Instead, the new min-max formulas 

                                                
49 The numbered cases correspond to the following countries: 1-Austria, 2-Belgium, 3-Czechoslovakia, 4-Estonia, 5-

Finland, 6-France, 7-Germany, 8-Greece, 9-Hungary, 10-Ireland, 11-Italy, 12-Netherlands, 13-Poland, 14-Portugal, 

15-Romania, 16-Spain, 17-Sweden, and 18-United Kingdom. 
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in (36) and (37) were used to establish the winning causal combination for each case. The 
following Table D.II (which is a new table) summarizes the min-max computations and is for all 
18 cases. It uses MF values for the five causal conditions taken from Table D.I. 
 

TABLE D.II 

MIN-MAX CALCULATIONS AND ASSOCIATED CAUSAL COMBINATIONS 
Maximum (MF, complement of MF)/Winner (W) 

Case Max(A,a)/

W 

Max(B,b)/

W 

Max(C,c)/

W 

Max(D,d)/

W 

Max(E,e)/

W 

Minimum 

calculation 

[Using (36)] 

Causal 

combination 

[Using (37)] 

1 0.81/A 0.88/b 0.99/C 0.73/D 0.57/e 0.57 AbCDe 

2 0.99/A 0.89/B 0.98/C 1/D 0.98/E 0.89 ABCDE 

3 0.58/A 0.98/B 0.98/C 0.90/D 0.91/E 0.58 ABCDE 

4 0.84/a 0.93/b 0.98/C 0.99/d 0.91/E 0.84 abCdE 

5 0.58/A 0.97/b 0.99/C 0.92/d 0.58/E 0.58 AbCdE 

6 0.98/A 0.97/b 0.99/C 0.81/D 0.95/E 0.81 AbCDE 

7 0.89/A 0.79/B 0.99/C 0.96/D 0.69/e 0.69 ABCDe 

8 0.96/a 0.91/b 0.87/c 0.64/d 0.57/e 0.57 abcde 

9 0.93/a 0.84/b 0.88/C 0.93/d 0.87/e 0.84 abCde 

10 0.72/A 0.95/b 0.98/C 0.99/d 0.95/E 0.72 AbCdE 

11 0.66/a 0.90/b 0.59/c 0.53/d 0.58/E 0.53 abcdE 

12 0.98/A 1/B 0.99/C 0.94/D 0.99/E 0.94 ABCDE 

13 0.98/a 0.83/b 0.59/C 1/d 1/e 0.59 abCde 

14 0.99/a 0.98/b 0.99/c 0.80/d 0.90/e 0.89 abcde 

15 0.99/a 0.97/b 0.83/c 1/d 0.84/E 0.83 abcdE 

16 0.97/a 0.70/b 0.91/c 0.70/d 0.80/e 0.70 abcde 

17 0.95/A 0.87/b 0.99/C 0.67/D 0.91/E 0.67 AbCDE 

18 0.98/A 0.99/B 0.99/C 1/D 0.98/E 0.98 ABCDE 

 
The firing-level surviving rules (obtained from the last column in Table D.II) are summarized 

in Table D.III when all 18 cases are used. Observe that only nine out of the 32 possible causal 
combinations have survived. Their Best Instances were obtained from the last and first columns 
of Table D.II.  

 

TABLE D.III 

 DISTRIBUTION OF CASES ACROSS CAUSAL CONDITIONS 

 
 

 

 

 

 
 

 
 
 
 

In this example, we used a frequency threshold of 1; hence, all nine of the surviving causal 
combinations in Table D.III had subsethoods (consistencies) computed using (11). Note that 
these calculations used the MFs for all 18 cases. In order to compute these subsethoods, one must 
first compute the firing levels for all 18 cases, but only for the nine surviving causal 
combinations (rather than for all 32 causal combinations). These firing levels are summarized in 
Table D.IV. MFs for the five causal conditions are in Table D.I. Results for the subsethoods are 

Causal Conditions 
Best Instances 

A B C D E 

Corresponding 

Vector Space 

Corner 

Number of cases 

with 

 > 0.5 membership 

1 1 0 1 1 0 AbCDe 1 

2, 3, 12, 18 1 1 1 1 1 ABCDE 4 
4 0 0 1 0 1 abCdE 1 

5, 10 1 0 1 0 1 AbCdE 2 
6,17 1 0 1 1 1 AbCDE 2 

7 1 1 1 1 0 ABCDe 1 
8, 14, 16 0 0 0 0 0 abcde 3 

9, 13 0 0 1 0 0 abCde 2 
11, 15 0 0 0 0 1 abcdE 2 
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summarized in Table D.V, which looks like Table D.III, except that it has one more column 
called “Set theoretic Consistency.” 
 

TABLE D.IV 

FIRING LEVELS FOR NINE SURVIVING CAUSAL COMBINATIONS AND 18 CASES. MFS FOR THE FIVE CAUSAL 

CONDITIONS ARE IN TABLE D.I.  
Memberships of Surviving Causal Combinations (minimum of five causal-condition-MFs): 

Firing Levels Case 

AbCDe ABCDE abCdE AbCdE AbCDE ABCDe abcde abCde abcdE 

1 0.57 0.12 0.19 0.27 0.43 0.12 0.01 0.19 0.01 

2 0.02 0.89 0 0 0.11 0.02 0 0 0 

3 0.02 0.58 0.02 0.02 0.02 0.09 0.02 0.02 0.02 

4 0.01 0.01 0.84 0.16 0.01 0.01 0.02 0.09 0.02 

5 0.08 0.03 0.42 0.58 0.08 0.03 0.01 0.42 0.01 

6 0.05 0.03 0.02 0.19 0.81 0.03 0.01 0.02 0.01 

7 0.21 0.31 0.04 0.04 0.21 0.69 0.01 0.04 0.01 

8 0.04 0.04 0.13 0.04 0.04 0.04 0.57 0.13 0.43 

9 0.07 0.07 0.13 0.07 0.07 0.07 0.12 0.84 0.12 

10 0.01 0.01 0.28 0.72 0.01 0.01 0.02 0.05 0.02 

11 0.34 0.10 0.41 0.34 0.34 0.10 0.42 0.41 0.53 

12 0.00 0.94 0 0 0 0.01 0 0 0 

13 0.00 0 0 0 0 0 0.41 0.59 0 

14 0.01 0.01 0.01 0.01 0.01 0.01 0.89 0.01 0.01 

15 0.00 0 0.17 0.01 0 0 0.16 0.16 0.83 

16 0.03 0.03 0.09 0.03 0.03 0.03 0.70 0.09 0.20 

17 0.09 0.13 0.05 0.33 0.67 0.09 0.01 0.05 0.01 

18 0.01 0.98 0 0 0.01 0.02 0 0 0 

Sum 1.56 4.28 2.80 2.81 2.85 1.36 3.38 3.09 2.23 

 
TABLE D.V 

DISTRIBUTION OF CASES ACROSS CAUSAL CONDITIONS AND SET-THEORETIC CONSISTENCY 

OF CAUSAL COMBINATIONS
a
 

 
 

 

 

 

 
 

 
 
 
 

a Bold-faced entries are for consistencies > 0.8. 
 

 
Examining Table D.V, observe that of the nine causal combinations only six have consistency 

values  0.8 (the ones that are in bold face). It follows, therefore, that the RA = 6  actual rules 

are:  
                             AbCDe + abCdE + ABCDe + abcde + abCde + abcdE O  (D-1) 

It is very interesting to observe that causal condition ABCDE that had the most cases 
supporting it—four— has now vanished from the analysis. Referring to Table D.I, observe that 
MF(O)  for Cases 2, 3, 12 and 18, which are the best instances of ABCDE, are 0.05, 0.11, 0.05 

Causal Conditions 
Best Instances 

A B C D E 

Corresponding 

Vector Space 

Corner 

Number of 

cases with  

> 0.5 

membership 

Set-theoretic 

Consistency 

1 1 0 1 1 0 AbCDe 1 0.974 

2, 3, 12, 18 1 1 1 1 1 ABCDE 4 0.250 

4 0 0 1 0 1 abCdE 1 0.861 

5, 10 1 0 1 0 1 AbCdE 2 0.498 

6,17 1 0 1 1 1 AbCDE 2 0.495 

7 1 1 1 1 0 ABCDe 1 0.971 

8, 14, 16 0 0 0 0 0 abcde 3 1 

9, 13 0 0 1 0 0 abCde 2 0.855 

11, 15 0 0 0 0 1 abcdE 2 0.982 
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and 0.05, respectively, which suggests that the low MF of these cases in O may have led to the 
demise of ABCDE.  

The prime implicants for (D-1) are easy to obtain by first recognizing that: 
 

                                               
abCdE + abCde = abCd(e + E) = abCd

abcde + abcdE = abcd(e + E) = abcd
 (D-2) 

 
The two surviving terms in (D-2) can be combined, i.e.: 
 
                                                      abCd + abcd = abd(c + C) = abd  (D-3) 

 
Substituting (D-2) and (D-3) into (D-1), it follows that: 
 

                           

AbCDe + abCdE + ABCDe + abcde

           + abCde + abcdE

                                        = (abCdE + abCde) + (abcde + abcdE)

                                             + AbCDe + ABCDe

                                        = abd + AbCDe + ABCDe

                                        = abd + ACDe(b + B)

                                        = abd + ACDe

 (D-4) 

 
This is exactly the same solution that Ragin obtained, that is given on the bottom of page 115 in 
Rihoux and Ragin (2009).  

The minimal prime implicants, found from the QM algorithm are a + e. These parsimonious 
solutions also agree with one ones that are given in Rihoux and Ragin (2009, p. 117). 

The complex and parsimonious solutions can be expressed linguistically, as: 
 

           
Complex solution

IF (C1  = a and C2  = b and C3  = d) 

OR (C1  = A and C2  = C  and C3 = D and C4  = e), 

THEN O

Parsimonious solution IF C1  = a OR C2  = e, THEN O

 (D-5) 

 
In words, these solutions are: 
 

      

Complex solution

(Not  developed  and not  urban (rural) and not  industrial)

OR (Developed  and literate and industrial  and not  stable), 

are sufficient causal combinations for Breakdown of  Democracy

Parsimonious solution
                 Not  developed  OR Not  stable

are sufficient conditions for Breakdown of  Democracy  

(D-6) 
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Next this example is continued by proceeding to its counterfactual analysis. To that end, the rest of 
this example is structured like the continuation of Example 1 that is given in Section IV.E. 

 
• Complex solution obtained by hand [see first line of (D-5)] (RC = 2 ): abd+ACDe 

• Parsimonious solution obtained from QM [see second line of (D-5)] (RP = 2 ): a+e 

• Substantive knowledge (these were made up by us, but seemed reasonable): The desired 
outcome could have occurred if a (not developed), b (not urban (rural)), c (not literate), or d 
(not industrial).  

• Counterfactual Analysis: There are four cycles in this CA. The details are worked out in 
Table D.VI using our new CA rules. The simplified intermediate solutions are abd + e. 
These solutions agree with one ones that are given in Rihoux and Ragin (2009, p. 117). 

 
TABLE D.VI 

THE PROCESS OF COUNTERFACTUAL ANALYSIS (CA) FOR EXAMPLE D.1 

Cycle 
Parsimonious 

Solution 

Complex 

Solution 
Results (parsimonious solution is underlined): Counterfactuals 

1 a abd  abd  (by CA Rules #2 and 3) 

2  ACDe No counterfactual (by CA Rule #1) 

3 e abd No counterfactual (by CA Rule #1) 

4  ACDe  e  (by CA Rules # 3and 4) 

Union of Counterfactuals–

Intermediate Solutions 
abd + e 

 
Translating these simplified intermediate solutions into words, we have the following:  

 
(Not developed and not urban (rural) and not industrial) OR (unstable) are  
sufficient causal combinations for Breakdown of Democracy. (D-7) 

 
Results for all cases are summarized in Table D.VII. 
 

• Consistency: The consistency of abd was computed to be [using (11)] 0.886, and of e is 
0.902, and, both are greater than 0.80, so both solutions are retained and both are believable 
simplified intermediate solutions (RBSI = 2 ). 

• Best Instances: Referring to the three-step procedure that is given in Section II. E: Step 1 
leads to the numbers that are in the columns of Table D.VII called “BSIS#1MF” and 

“BSIS#2MF;” Step 2 has to be performed because 
  
R

BSI
= 2 , and the results of doing this 

are in the column of Table D.VII called “Maximum MF of BSISs” (in this example only 
one believable simplified intermediate solution is retained for each case, except for Case 5, 
for which there is a tie); and, Step 3 leads to the best instances that are labeled “Yes” in the 
last column of Table D.VII. Observe that the Best Instances for abd are Cases 4, 8, and 11, 
and the Best Instances for e are Cases 1, 7, 14 and 16. 

• Coverage: Using MF(O) , MF(abd)  and MF(e)  that are given in Table D.VII, it is 

straightforward to compute the raw coverage in (27), as Cr (abd,O) = 0.678  and 

Cr (e,O) = 0.657 . 

 
Observations: (1) When D (or d) and E (or e) are deleted from the causal combinations that 



 75 

survive the frequency threshold, as given in Table D.III [AbCDe, ABCDE, abCdE, AbCdE, 
AbCDE, ABCDe, abcde, abCde and abcdE], one obtains AbC, ABC, abC and abc (some of these 
are repeated more than one time) which are the same as the causal combinations that survived the 
frequency threshold, as given in Table III for three causal conditions. This illustrates Corollary 2-
2, that the winning causal combinations for a smaller number of causal conditions are contained 
within the winning causal combinations for a larger number of causal conditions. 

(2) By comparing the firing levels in Table II with the ones in Table D.IV for the causal 
combinations in Table II that are contained within the causal combinations of Table D.IV (e.g., 
compare abc with abcde and abcdE), numerical confirmation of Corollary 2-3 is obtained, i.e. it 
is confirmed that firing levels tend to become weakened when more causal conditions are 
included.  

 

TABLE D.VII 

SUMMARY FOR THE BELIEVABLE SIMPLIFIED INTERMEDIATE SOLUTIONS (BSIS) OF EXAMPLE D.1 
MFs for Outcome and 

Causal Conditions 

BSIS #1 

MF 

BSIS #2 

MF 
Maximum MF of 

BSISs Case 

MF(O) MF(A) MF(B) MF(D) MF(E) MF(abd) MF(e) MF BSIS 

Best 

Instance?
a
 

1 0.95 0.81 0.12 0.73 0.43 0.09 0.57 0.57 e Yes 

2 0.05 0.99 0.89 1 0.98 0 0.02 0.02 e No 
3 0.11 0.58 0.98 0.90 0.91 0.02 0.09 0.09 e No 
4 0.88 0.16 0.07 0.01 0.91 0.84 0.09 0.84 abd Yes 

5 0.23 0.58 0.03 0.08 0.58 0.42 0.42 0.42 abd/e No 

6 0.05 0.98 0.03 0.81 0.95 0.02 0.05 0.05 e No 
7 0.95 0.89 0.79 0.96 0.31 0.04 0.69 0.69 e Yes 

8 0.94 0.04 0.09 0.36 0.43 0.64 0.57 0.64 abd Yes 

9 0.58 0.07 0.16 0.07 0.13 0.84 0.87 0.87 e No 
10 0.08 0.72 0.05 0.01 0.95 0.28 0.05 0.28 abd No 
11 0.95 0.34 0.10 0.47 0.58 0.53 0.42 0.53 abd Yes 

12 0.05 0.98 1 0.94 0.99 0 0.01 0.01 e No 
13 0.88 0.02 0.17 0 0 0.83 1 1 e No 

14 0.95 0.01 0.02 0.11 0.01 0.89 0.99 0.99 e Yes 

15 0.79 0.01 0.03 0 0.84 0.97 0.16 0.97 abd No 
16 0.94 0.03 0.30 0.21 0.20 0.70 0.80 0.80 e Yes 

17 0.05 0.95 0.13 0.67 0.91 0.05 0.09 0.09 e No 
18 0.05 0.98 0.99 1 0.98 0 0.02 0.02 e No 

a (MF(IS), MF(O)) has to be in the Desirable Region that is depicted in Fig. 5. 

 
 

D.2 Example D-2: Five Causal Conditions and O = Likely Breakdown of Democracy 

Examining MF(O)  in Table D. VII (as we did in Example 2 for Table I), observe that there are 

eight cases for which MF(O) < 0.5 ; so, it seems plausible that these cases do not contribute 

much useful knowledge about Breakdown of Democracy. In order to examine this conjecture, we 
now focus, as we did in Example 2, on the modified desired outcome of Likely Breakdown of 

Democracy. Our interpretation of Likely Breakdown of Democracy is that only those cases for 
which MF(O) > 0.5  should be kept for its fsQCA; hence, Table D.VIII is obtained from Table 

D.I by retaining only those cases for which MF(O) > 0.5 . Again, it is very important to 

understand that we are not equating Likely Breakdown of Democracy and Breakdown of 

Democracy; instead, we are treating each as possible desired outcomes. 
As in Example 2, which was for three causal conditions, only 10 cases survive, because this 

test depends only on the MF of the desired outcome. 
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TABLE D.VIII 

DATA- AND FUZZY-MEMBERSHIP-MATRIX (SHOWING ORIGINAL VARIABLES AND THEIR FUZZY-SET 

MEMBERSHIP FUNCTION SCORES) ONLY FOR THE CASES FOR WHICH MF(O) > 0.5  

Outcome Condition and MF scores 
Case 

o MF(O) A MF(A) B MF(B) C MF(C) D MF(D) e MF(E) 

1 -9 0.95 720 0.81 33.4 0.12 98 0.99 33.4 0.73 10 0.43 
4 -6 0.88 468 0.16 28.5 0.07 95 0.98 14 0.01 6 0.91 
7 -9 0.95 795 0.89 56.5 0.79 98 0.99 40.4 0.96 11 0.31 
8 -8 0.94 390 0.04 31.1 0.09 59.2 0.13 28.1 0.36 10 0.43 
9 -1 0.58 424 0.07 36.3 0.16 85 0.88 21.6 0.07 13 0.13 
11 -9 0.95 517 0.34 31.4 0.10 72.1 0.41 29.6 0.47 9 0.58 

13 -6 0.88 350 0.02 37 0.17 76.9 0.59 11.2 0 21 0 
14 -9 0.95 320 0.01 15.3 0.02 38 0.01 23.1 0.11 19 0.01 
15 -4 0.79 331 0.01 21.9 0.03 61.8 0.17 12.2 0 7 0.84 
16 -8 0.94 367 0.03 43 0.30 55.6 0.09 25.5 0.21 12 0.2 

 
Table D.IX is obtained from Table D.II by retaining only those cases (listed in the first column 

of Table D.VIII) for which MF(O) > 0.5 . The firing-level surviving rules are summarized in 

Table D.X when only the 10 cases are used. Now only six of the 32 possible causal combinations 
have survived. Surprisingly, ABCDE, which had the most number of cases (4) supporting it when 
all 18 cases were included (Table D.III), is no longer a surviving causal combination. 
 

TABLE D.IX 

MIN-MAX CALCULATIONS AND ASSOCIATED CAUSAL COMBINATIONS ONLY FOR THE CASES FOR 

WHICH MF(O) > 0.5  
Maximum (MF, complement of MF) /Winner (W) 

Case Max(A,a)/

W 

Max(B,b)/

W 

Max(C,c)/

W 

Max(D,d)/

W 

Max(E,e)/

W 

Minimum 

calculation 

(Using (36)) 

Causal 

combination 

(Using(37)) 

1 0.81/A 0.88/b 0.99/C 0.73/D 0.57/e 0.57 AbCDe 

4 0.84/a 0.93/b 0.98/C 0.99/d 0.91/E 0.84 abCdE 

7 0.89/A 0.79/B 0.99/C 0.96/D 0.69/e 0.69 ABCDe 

8 0.96/a 0.91/b 0.87/c 0.64/d 0.57/e 0.57 abcde 

9 0.93/a 0.84/b 0.88/C 0.93/d 0.87/e 0.84 abCde 

11 0.66/a 0.9/b 0.59/c 0.53/d 0.58/E 0.53 abcdE 

13 0.98/a 0.83/b 0.59/C 1/d 1/e 0.59 abCde 

14 0.99/a 0.98/b 0.99/c 0.80/d 0.9/e 0.89 abcde 

15 0.99/a 0.97/b 0.83/c 1/d 0.84/E 0.83 abcdE 

16 0.97/a 0.70/b 0.91/c 0.70/d 0.80/e 0.7 abcde 

 
TABLE D.X 

 DISTRIBUTION OF CASES ACROSS CAUSAL CONDITIONS ONLY FOR THE CASES 

FOR WHICH MF(O) > 0.5  

 
 

 

 

 

 
 

 
 

 

Subsethoods (consistencies) were computed for the six surviving causal combinations. These 
calculations used the MFs for only the 10 cases for which MF(O) > 0.5 . In order to compute 

Causal Conditions 
Best Instances 

A B C D E 

Corresponding 

Vector Space 

Corner 

Number of 

cases with 

 > 0.5 

membership 

1 1 0 1 1 0 AbCDe 1 
4 0 0 1 0 1 abCdE 1 
7 1 1 1 1 0 ABCDe 1 

8, 14, 16 0 0 0 0 0 abcde 3 
9, 13 0 0 1 0 0 abCde 2 
11, 15 0 0 0 0 1 abcdE 2 
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these subsethoods, one must first compute the firing levels for all 10 cases but just for the six 
surviving causal combinations. These firing levels are summarized in Table D.XI, which was 
obtained directly from Table D.IV by removing three columns (ABCDE, AbCdE, and AbCDE) 
and eight rows (cases 2, 3, 5, 6, 10, 12, 17, and 18). Results for the subsethoods are summarized 
in Table D.XII, which looks like Table D.X except that it has one more column called “Set 
theoretic Consistency.” 
 

TABLE D.XI 

FIRING LEVELS FOR SIX SURVIVING CAUSAL COMBINATIONS AND 10 

CASES FOR WHICH MF(O) > 0.5 . MFS FOR THE FIVE CAUSAL 

CONDITIONS ARE IN TABLE D.VIII. 
Membership of Surviving Causal Combination (minimum of 

five causal condition MFs): Firing Levels Cases 
AbCDe abCdE ABCDe abcde abCde abcdE 

1 0.57 0.19 0.12 0.01 0.19 0.01 

4 0.01 0.84 0.01 0.02 0.09 0.02 

7 0.21 0.04 0.69 0.01 0.04 0.01 

8 0.04 0.13 0.04 0.57 0.13 0.43 

9 0.07 0.13 0.07 0.12 0.84 0.12 

11 0.34 0.41 0.10 0.42 0.41 0.53 

13 0 0 0 0.41 0.59 0 

14 0.01 0.01 0.01 0.89 0.01 0.01 

15 0 0.17 0 0.16 0.16 0.83 

16 0.03 0.09 0.03 0.70 0.09 0.20 

Sum 1.28 2.10 1.07 3.31 2.55 2.16 

 

 

TABLE D.XII 

DISTRIBUTION OF CASES ACROSS CAUSAL CONDITIONS AND SET-THEORETIC CONSISTENCY 

OF CAUSAL COMBINATIONS
a
 

 
 

 

 

 

 
 

 
a Bold-faced entries are for consistencies > 0.8. 

 

 
All six causal combinations have survived the consistency test, i.e., RA = 6 . After all of this 

work, we have obtained exactly the same results that were obtained by using all 18 cases in 

Example D.1, namely: 
 

                                         
AbCDe + abCdE + ABCDe + abcde + abCde + abcdE

           = abd + ACDe O
 (D-8) 

 
Next, we continue this example by proceeding to counterfactual analysis. To that end, the rest 

of this example is structured like the continuation of Example 2 that is given in Section IV.E. 
 

• Complex solution obtained by hand [see second line of (D-8)] (RC = 2 ): abd+ACDe 

Causal Conditions 
Best Instances 

A B C D E 

Corresponding 

Vector Space 

Corner 

Number of 

cases with  

> 0.5 

membership 

Set-theoretic 

Consistency 

1 1 0 1 1 0 AbCDe 1 1 

4 0 0 1 0 1 abCdE 1 1 

7 1 1 1 1 0 ABCDe 1 1 

8, 14, 16 0 0 0 0 0 abcde 3 1 

9, 13 0 0 1 0 0 abCde 2 0.898 

11, 15 0 0 0 0 1 abcdE 2 0.981 
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• Parsimonious solution obtained from QM: There are no prime implicants because X2 =  

(see Theorem 1); hence, there is no parsimonious solution. 
• Counterfactual Analysis: No CA is possible because there is no parsimonious solution; 

hence, the final solution is the same as the complex solution abd+ACDe; or, in words: 
 

(Not developed and not urban (rural) and not industrial) OR (Developed and Literate 
andIndustrial and Not stable) are sufficient conditions for Breakdown of Democracy. (D-9) 

 
Results for all cases are summarized in Table D.XIII. 

 
• Consistency: The consistency of abd was computed to be [using (11)] 0.932 and of ACDe 

is 1, and, both are greater than 0.80, so both solutions are retained and both are believable 
simplified intermediate solutions (RBSI = 2 ). 

• Best Instances: Referring to the three-step procedure that is given in Section II. E: Step 1 
leads to the numbers that are in the columns of Table D.XIII called “BSIS#1MF” and 

“BSIS#2MF;” Step 2 has to be performed because 
  
R

BSI
= 2 , and the results of doing this 

are in the column of Table D.XIII called “Maximum MF of BSISs” (in this example only 
one believable simplified intermediate solution is retained for each case); and, Step 3 leads 
to the best instances that are labeled “Yes” in the last column of Table D.XIII. Observe that 
the Best Instances for abd are Cases 4, 8, 11, 13, 14 and 16, and the Best Instances for 
ACDe are Cases 1 and 7. 

• Coverage: Using MF(O) , MF(abd)  and MF(ACDe)  that are given in Table D.XIII, it is 

straightforward to compute the raw coverasge in (27), as The raw coverage is 
Cr (abd,O) = 0.684  and Cr (ACDe,O) = 0.20 . 

 
TABLE D. XIII 

SUMMARY FOR BELIEVABLE SIMPLIFIED INTERMEDIATE SOLUTIONS (BSIS) OF EXAMPLE D.2 

MFs for Outcome and Causal Conditions 
BSIS#1 

MF 
BSIS#2 MF 

Maximum MF of 

BSISs Case 

MF(O) MF(A) M(B) MF(C) MF(D) MF(E) MF(abd) MF(ACDe) MF BSIS 

Best 

Instance?
a
 

1 0.95 0.81 0.12 0.99 0.73 0.43 0.19 0.57 0.57 ACDe Yes 

4 0.88 0.16 0.07 0.98 0.01 0.91 0.84 0.01 0.84 abd Yes 

7 0.95 0.89 0.79 0.99 0.96 0.31 0.04 0.69 0.69 ACDe Yes 

8 0.94 0.04 0.09 0.13 0.36 0.43 0.64 0.04 0.64 abd Yes 

9 0.58 0.07 0.16 0.88 0.07 0.13 0.84 0.07 0.84 abd No 

11 0.95 0.34 0.10 0.41 0.47 0.58 0.53 0.34 0.53 abd Yes 

13 0.88 0.02 0.17 0.59 0 0 0.83 0 0.83 abd Yes 

14 0.95 0.01 0.02 0.01 0.11 0.01 0.89 0.01 0.89 abd Yes 

15 0.79 0.01 0.03 0.17 0 0.84 0.97 0 0.97 abd No 

16 0.94 0.03 0.30 0.09 0.21 0.20 0.70 0.03 0.70 abd Yes 
a (MF(IS), MF(O)) has to be in the Desirable Region that is depicted in Fig. 5. 

 

Comparing the consistency numbers for the six causal combinations in Table D.XII with the 
respective ones in Table D.V, observe that when the number of cases was reduced from 18 in 
Example D.1 to 10 in Example D.2, this strengthened the consistencies for all six causal 
combinations. Observe, also, that no new causal combinations have occurred for the present 
situation of five causal conditions, when we focused on the desired outcome of Likely 

Breakdown of Democracy instead of Breakdown of Democracy, whereas one new causal 
combination appeared in Example 2, for Likely Breakdown of Democracy, when there were only 
three causal conditions. More comparisons are needed to better understand this. It is quite 
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possible that having too many weak cases (the other eight) can indeed cause a sufficient 
condition for the strong 10 cases to disappear, as happened in Example 1.  

In order to try and better understand this, we created Table D.XIV that is comparable to Table 
XII (for Example 7). For the present case of five causal conditions, the test for the obliteration of 
a rule is failed by all six of the surviving causal combinations; hence, they are all retained.  
 

TABLE D. XIV 

COMPUTATIONS ASSOCIATED WITH INEQUALITY (70) FOR EXAMPLES D.1 AND D.2. THE NUMBERS IN THE TOP 

PORTION OF THE TABLE ARE FIRING LEVELS, AND FOR NOTATIONAL SIMPLICITY, E. G. A IS SHORT FOR MF(A). 

 
The eight cases in this table are the ones that were eliminated from Example D.1 and do not 

appear in Example D.2. The memberships in the output of Breakdown of Democracy (O) for 
these eight cases were taken from Table D.I. The memberships of the firing levels for causal 
combinations AbCDe, abCdE, ABCDe, abcde, abCde and abcdE were taken from Table D.IV. 
The top portion of Table D.XIV provides the minima that are needed to compute the consistency 

ssK (Fl
S ,O | N2 N1)  [the left-hand side of (70)] for the eight cases, using (61). ssK (Fl

S ,O | N1)  

was taken from the last column of Table D.XII. (N1)  was computed from 

(N1) = ssK (Fl
S ,O | N1) 0.8 . μ

Fl
S (x)x=1

N1
, in the numerator fraction on the right-hand side of 

, was found from Table D.XI in its last row, for AbCDe, abCdE, ABCDe, abcde, abCde and 

abcdE; and, μ
Fl
S (x)x=N1 +1

N2
, in the denominator of , is found in the “Sums” row in the top 

portion of the present table. The right-hand side of (70) could then be computed. Inequality (70) 

Case O 
AbC 

De 

Min (O, 

AbCDe) 

abC 

dE 

Min (O, 

abCdE ) 

ABC 

De 

Min (O, 

ABCDe ) 

abc 

de 

Min (O, 

abcde ) 

abC 

de 

Min (O, 

abCde ) 

abc 

dE 

Min (O, 

abcdE ) 

2 0.05 0.02 0.02 0 0 0.05 0.05 0 0 0 0 0 0 
3 0.11 0.02 0.02 0.02 0.02 0.09 0.09 0.02 0.02 0.02 0.02 0.02 0.02 

5 0.23 0.08 0.08 0.42 0.23 0.03 0.03 0.01 0.01 0.42 0.23 0.01 0.01 
6 0.05 0.05 0.05 0.02 0.02 0.03 0.03 0.01 0.01 0.02 0.02 0.01 0.01 

10 0.08 0.01 0.01 0.28 0.08 0.01 001 0.02 0.02 0.05 0.05 0.02 0.02 

12 0.05 0 0 0 0 0.01 0.01 0 0 0 0 0 0 
17 0.05 0.09 0.05 0.05 0.05 0.09 0.05 0.01 0.01 0.05 0.05 0.01 0.01 
18 0.05 0.01 0.01 0 0 0.02 0.02 0 0 0 0 0 0 

Sums 0.28 0.24 0.79 0.40 0.33 0.29 0.07 0.07 0.56 0.37 0.07 0.07 

Consistency 

for 8 cases 

[lhs of (70)] 

ssK (Fl
S ,O

  | N2 N1 )
 

0.24/0.28 
= 0.857 

0.40/0.79 
= 0.506 

0.29/0.33 
= 0.879 

0.07/0.07 
= 1 

0.37/0.56 
= 0.661 

0.07/0.07 
= 1 

ssK (Fl
S ,O | N1 )

 
1 1 1 1 0.898 0.981 

(N1 )  0.20 0.20 0.20 0.20 0.098 0.181 

μ
Fl
S (x)x=1

N1
 1.28 2.01 1.07 3.31 2.55 2.16 

μ
Fl
S (x)x=N1+1

N2

 

0.28 0.79 0.33 0.07 0.56 0.07 

 4.571 2.544 3.242 47.286 4.554 30.857 

Rhs of (70) 
0.8 - 0.2(4.571) 

= - 0.114 
0.8 – 0.2(2.544) 

= 0.291  
0.8 – 0.2(3.242) 

= 0.152 
0.8 – 0.2(47.286) 

= - 8.657 

0.8 – 
0.098(4.554) 

= 0.354 

0.8 – 
0.181(30.857)  

= - 4.785 

Is Inequality 

(70) 

satisfied? 

0.857 < -0.114? 
NO 

0.506 < 0.291? 
NO 

0.879 <0.152? 
NO 

1 < - 8.657? 
NO 

0.661 < 0.354? 
NO 

1 < - 4.785? 
NO 

Conclusion 
AbCDe is 

retained 
abCdE is 

retained 
ABCDe is 

retained 
abcde  is 

retained 
abCde is 

retained 
abcdE is 

retained 



 80 

could then be tested, because both of its sides have been computed. Observe from its row that it 
is satisfied for all six of the causal combinations, which means that none of them are obliterated. 

Examining Table XII, observe that the two causal combinations that are obliterated have values 
of  that are less than one. The two surviving causal combinations in Table XII, as well as all 

six of the surviving casual combinations in Table D.XIV have values of  that are greater than 

one. These observations suggest that perhaps this could be a simple test for survival of a causal 
combination, something that needs further study. 
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APPENDIX E. FSQCA FOR NECESSARY CONDITIONS 
 

For crisp sets, in order to determine if a causal condition is necessary, one focuses on the 
desired outcome and establishes all of the cases that are associated with it. If a causal condition 
appears for all of those cases, then it is a necessary condition.  

When querying the necessity of the k causal conditions Ragin (2000, p. 211) states:  
Jointly necessary conditions can be identified one at a time. … If a single condition is necessary, it will 

be present in all instances of the outcome; if several conditions are necessary, then each condition will be 

present in all instances of the outcome. After identifying all necessary conditions one at a time, the 

researcher can view them as jointly necessary conditions and evaluate their plausibility as a combination or 

conjuncture.  

Finally, Ragin (2000, p. 295) states that both Cj  and cj  should be tested for necessity. 

The details for establishing if Cj or cj  (or neither of them) is a necessary condition are much 

simpler than the details for establishing the sufficient conditions. This is due in part to the fact 
that if Cj  is a necessary condition then cj  cannot be, and vice-versa.  

To begin, one computes μCj
(x)  and μcj

(x)  for x = 1,...,N  and j = 1,...,k . Then, one counts 

the number of cases for which μCj
(x) 0.5  and μcj

(x) 0.5 , calling these counts NCj
 andNcj

, 

respectively. Although Ragin (2008) suggests selecting a frequency threshold, fn , against which 

NCj
 andNcj

 are compared in order to determine whether or not Cj  or cj  should be treated as 

candidate necessary conditions, no guidelines are given in the literature for how to choose fn ; 

hence, the following ad hoc procedure was developed (which, in a private e-mail to the first 
author, has met with Ragin’s approval): 
 

      

IF NCj
> Ncj

,  THEN choose Cj  as a candidate necessary condition

IF Ncj
< NCj

,  THEN choose cj  as a candidate necessary condition

IF NCj
= Ncj

,  choose neither  Cj  or cj  as a candidate necessary condition

j = 1,...,k  (E-1) 

 

The result is a set of at most k candidate necessary conditions, Cj
c , where Cj

c
= Cj  or Cj

c
= cj , 

depending on (E-1).  Associated with Cj
c  is its derived MF μ

Cj
c (x) , where 

 

                                                  μ
Cj
c (x) = μ

Cj
c ( j (x))   x = 1,2,...,N  (E-2) 

 
The next major calculation involves both the k candidate necessary conditions and the desired 

outcome. Because a condition is necessary for an outcome [Rihoux and Ragin (2009), p. 183] if 
it is always present when the outcome occurs, necessity requires viewing the outcome as a subset 
of the cause (the same cause may also lead to other outcomes). Consequently, the next 
calculation is subsethood, but it is a different subsethood than the one in (11), i.e. for necessity, 
one computes: 
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                                        ssK (O,Cj
c ) =

min[μO (x),μ
Cj
c (x)]

x=1

N

μO (x)
x=1

N    j = 1,2,...,k  (E-3) 

 

For O  to be considered a subset of Cj
c , Ragin requires that 

 

                                                           ssK (O,Cj
c ) 0.90  (E-4) 

 
The result is a subset of RN  “necessary” causal conditions or their complements, where RN  is 

frequently zero or is an integer much smaller than k. It is also useful to summarize the above 
calculations in a table, as will be illustrated in Example E-1 below. 

Observe that no Quine-McCluskey algorithm is needed for necessity, because each causal 
condition or its complement stands alone.  

Ragin [Rihoux and Ragin (2009)] advocates examining each of the just obtained RN  necessary 

causal conditions or their complements and accepting (or not accepting) each only if it is not 
“trivial.” An example of a trivial causal condition for an oil-field data set is “The data comes 
from Section 32 of the oil field.” It is trivial because all of the data comes from this section. 
 

Comments: (1) Rules in fuzzy systems are formulated as, e.g. IF x1  = F1  and ... and xp  = Fp , 

THEN y = G. Such rules focus only on sufficiency. They are “activated” by measured values of 
x1 , …, xp  using Zadeh's sup-min composition, or by similarity computations between each 

fuzzified xi  and its corresponding antecedent FS Fi . For fuzzy sytems we usually do not focus 

on necessity. If we did, then such a focus would lead to a rule stated as, e.g., y = G ONLY IF x1  
= F1 . Such a rule requires knowledge of the consequent prior to knowledge about the antecedent, 

which in engineering terms is associated with an “inverse problem.” It is not clear how such a 
rule would be activated, which may be why they are avoided in a FLS. 

(2) This does not mean that necessary conditions should be avoided for linguistic 
summarization. Perhaps, though, a necessary condition should form a linguistic summarization 
that is a pre-cursor to the linguistic summarization that is derived from fsQCA for the sufficient 
conditions, i.e. the necessary conditions should be stated prior to the statement of the sufficient 
conditions. 

(3) Necessary conditions are more rare than are sufficient conditions; however, Ragin [(2000), 
(2007), (2008)] and Rihoux and Ragin (2009) advise checking for necessary conditions before 
conducting fsQCA for sufficiency. Wagemann and Schneider (2007) feel that a stronger 
emphasis should be given to necessary conditions. 

(4) What does one do with necessary conditions in fsQCA? Rihoux and Ragin (2009, Box 5.5, 
p. 118) provide the following “good practice” about necessary conditions: “If you explicitly 
hypothesize necessary conditions, test them before conducting fsQCA for sufficiency; set a high 
consistency threshold for necessary conditions and eliminate any condition that is found to be 
necessary from fsQCA for sufficiency (i.e., address such conditions separately, as necessary 
conditions).” All of the non-trivial necessary conditions are used as is in each of the causal 
combinations that are tested for sufficiency. Suppose that k  of the k causal conditions have been 
found to be necessary. This leaves k k  causal conditions that have to be tested for sufficiency. 



 83 

Each causal combination still has k components, but k  of them are fixed; hence, this reduces the 

number of possible causal combinations from 2k  to 2k k . 
(5) In a private e-mail, Ragin states that his position about necessary conditions has changed 

over the years. One approach is the one that is explained in Item (4). Another approach is to 
ignore necessity. In a private e-mail to the first author, Ragin states:  

What you have described is in fact what I routinely do. Ignore necessity. … That being said (ignore 

necessity), there is still a lot of interest in necessary conditions in the social sciences. Is ‘prior state 

breakdown’ (e.g., fiscal crises) a necessary condition for ‘social revolution’? If it is, then the outcome will 

be a subset of the cause when we look across historical cases. It takes the form: can you identify a case of 

social revolution not preceded by state breakdown? … Also, sometimes a student will be baffled because 

the truth table [fsQCA sufficiency] analysis results are weak. Often, if we go back and look at the data in 
terms of necessary conditions, we find a lot to talk about. Necessary conditions, however, are almost 

always one at a time. If you start compounding them via the min, you almost always degrade your 

consistency score [for the sufficiency analysis]. 

 
Example E-1. Breakdown of Democracy for Three or Five Causal Conditions 
Table E.I contains all of the computations associated with examining which (if any) of the 

five causal conditions (or their complements) in Ragin’s Breakdown of Democracy example 
(our Examples 1 and D-1) are necessary conditions. 

 
TABLE E.I 

CALCULATIONS FOR NECESSARY CONDITIONS 
MF Scores 

Case 
MF(O) MF(A) MF(a) MF(B) MF(b) MF(C) MF(c) MF(D) MF(d) MF(E) MF(e) 

1 0.95 0.81 0.19 0.12 0.88 0.99 0.01 0.73 0.27 0.43 0.57 

2 0.05 0.99 0.01 0.89 0.11 0.98 0.02 1 0 0.98 0.02 
3 0.11 0.58 0.42 0.98 0.02 0.98 0.02 0.90 0.10 0.91 0.09 
4 0.88 0.16 0.84 0.07 0.93 0.98 0.02 0.01 0.99 0.91 0.09 
5 0.23 0.58 0.42 0.03 0.97 0.99 0.01 0.08 0.92 0.58 0.42 
6 0.05 0.98 0.02 0.03 0.97 0.99 0.01 0.81 0.19 0.95 0.05 
7 0.95 0.89 0.11 0.79 0.21 0.99 0.01 0.96 0.04 0.31 0.69 

8 0.94 0.04 0.96 0.09 0.91 0.13 0.87 0.36 0.64 0.43 0.57 

9 0.58 0.07 0.93 0.16 0.84 0.88 0.12 0.07 0.93 0.13 0.87 

10 0.08 0.72 0.28 0.05 0.95 0.98 0.02 0.01 0.99 0.95 0.05 
11 0.95 0.34 0.66 0.10 0.90 0.41 0.59 0.47 0.53 0.58 0.42 
12 0.05 0.98 0.02 1 0 0.99 0.01 0.94 0.06 0.99 0.01 
13 0.88 0.02 0.98 0.17 0.83 0.59 0.41 0 1 0 1 

14 0.95 0.01 0.99 0.02 0.98 0.01 0.99 0.11 0.89 0.01 0.99 

15 0.79 0.01 0.99 0.03 0.97 0.17 0.83 0 1 0.84 0.16 
16 0.94 0.03 0.97 0.30 0.70 0.09 0.91 0.21 0.79 0.20 0.80 

17 0.05 0.95 0.05 0.13 0.87 0.99 0.01 0.67 0.33 0.91 0.09 

18 0.05 0.98 0.02 0.99 0.01 0.99 0.01 1 0 0.98 0.02 

Counts NA 10 8 5 13 13 5 8 10 11 7 

Candidate 

Necessary 

Condition 

NA A b C d E 

Subsethood NA 0.32 0.86 0.57 0.72 0.47 

Necessary 

Condition 
NA No No (Close) No No No 

 
The MF values for the desired outcome and the five causal conditions were taken from 

Table D.I. The MF values for the complements of each of the causal conditions were 
computed by using (6). The numbers that are in boldface are greater than 0.5, and let us 

compute the counts NCj
 andNcj

, both of which are given in the row called Counts. By using 
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(E-1), one obtains the Candidate Necessary Conditions, namely A, b, C, d and E. Subsethood 

ssK (O,Cj
c )  was then computed, with the results given in the row called Subsethood. Finally, 

the test in (E-4) was carried out for each of the five subsethoods, and a decision was made as 
to whether or not A, b, C, d or E are necessary conditions for Breakdown of Democracy. 
Observe form the last row of the table that none of these conditions passes the test in (E-4); 
hence, there are no necessary conditions for Breakdown of Democracy.  

Observe, also that the subsethood for b (not urban—rural), which is 0.86, is rather close to 
the threshold of 0.90. One might, therefore, be tempted to say that b is a necessary condition 
for Breakdown of Democracy. It turns out, though, that a country that experienced a 
Breakdown of Democracy was Germany and it was not rural. By adhering to the very high 
threshold of 0.90, one would not have made the mistake of saying that b is a necessary 
condition for Breakdown of Democracy, and also supports having such a high threshold in 
(E-4).  

 
Final Comment: It is our experience that necessary conditions are very rare. As evidenced 

above, there is no consensus on what to do with necessary conditions, even if they exist. Hence, 
we advocate the position similar to the one in Comments (2) and (5) above, i.e. a necessary 
condition should form a linguistic summarization that is a pre-cursor to the linguistic 
summarization that is derived from fsQCA for the sufficient conditions (meaning that the 
necessary conditions should be stated prior to the statement of the sufficient conditions); 
however, they should be ignored during the computation of sufficient conditions. This is why 
necessary conditions have not been emphasized in this report. 
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APPENDIX F. EXAMPLE OF COMPUTING MINIMAL PRIME IMPLICANTS 
 
From Table III of Example 1 (Section III.A), observe that two causal combinations pass both 

the consistency and frequency thresholds, and must therefore be present in our result, namely 
abC and abc; and, two causal combinations only pass the frequency threshold and must therefore 
be absent in our result, namely AbC and ABC. The remaining four causal combinations, aBc, 

aBC, Abc, and ABc, which are called remainders, must be absent to produce the prime 
implicants and must be treated as don’t care to produce minimal prime implicants. Using the 

notation in Fig. 4, this means: 1 { , , , }X aBc aBC Abc ABc= , 2 { , }X AbC ABC=
 

and 

3 { , }X abC abc= .
 

Just above (30a), we showed that the prime implicant is 

( )abC abc ab C c ab+ = + = .  Consequently complex solution is equal to ab. 

To find the minimal prime implicants, remainder combinations must be taken into account. 
Remainders are set to be present if and only if they result in the simplest Boolean expressions. 
To find out which remainders do this, one can combine all possible combinations of causal 
conditions and see which of those produce the simplest expression, i.e. one can combine all 

possible causal combinations in 
  
X

1
 with the causal combinations in 

  
X

3
 and use Boolean algebra 

reduction techniques to get the minimal prime implicants. Details for doing this are given in 
Table F.I. Observe, from this table, that the simplest Boolean expression is a; hence, the 
minimum prime implicant, which is the parsimonious solution, is a. This result was obtained 

(shown in bold face in Table F.I) by setting aBc and aBC in 
  
X

1
 to be present and remaining two 

don’t care combinations, Abc and ABc, to be absent.  
Note that, using Boolean reduction techniques one may combine different combinations of the 

causal conditions in 
  
X

1
 and 

  
X

3
, which may lead to different Boolean expressions. However, the 

simplest Boolean expression does not change.  
 

TABLE F.I 

PROCEDURE FOR CALCULATING MINIMAL PRIME IMPLICANTS 

Number of causal combinations  

selected from X1 

X
1
+ X

3
 

1 

  

(abc + abC) + aBc = ab + aBc

(abc + abC) + aBC = ab + aBC

(abc + abC) + Abc = ab + Abc

(abc + abC) + ABc = ab + ABc

 

2 

(abc + abC) + aBc + aBC = ab + aB = a 

  

(abc + abC) + aBc + Abc = ab + aBc + Abc

(abc + abC) + aBc + ABc = ab + Bc

(abc + abC) + aBC + Abc = ab + aBC + Abc

(abc + abC) + Abc + ABc = ab + Ac

(abc + abC) + aBC + ABc = ab + aBC + ABc

 

3 

  

(abc + abC) + aBc + aBC + Abc = ab + aB + Abc = a + Abc

(abc + abC) + aBc + Abc + ABc = ab + aBc + Ac

(abc + abC) + aBC + Abc + ABc = ab + aBC + Ac

(abc + abC) + aBc + aBC + ABc = ab + aB + ABc = a + ABc

 

4 (abc + abC) + aBc + aBC + Abc + ABc = ab + aB + Ac = a + Ac  
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