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Abstract

The main focus of this dissertation is on audio modeling and indexing toward audio

information retrieval. In this regard, various novel methodologies are proposed in the

direction of capturing audio context within a wide spectrum of audio contents; from well-

structured music to unstructured environmental sound. This dissertation consists of two

major parts depending on the types of audio contents: music information retrieval and

general audio information retrieval.

In the first part, an efficient context-based music information retrieval method using

music fingerprint is introduced. The music fingerprint is proposed to encapsulate musi-

cal context of a given music audio in a compact representation obtained directly from

the music audio signal; it provides an efficient handle for music information retrieval in

terms of both accuracy and computing requirements. The musically meaningful aspects

considered in deriving this representation include harmonic structures and their temporal

dynamic information (a.k.a. chord progression). Empirical results on various music infor-

mation retrieval tasks, such as opus identification, composer identification and semantic

description annotation show that the proposed music fingerprint is competitive to the

state-of-the-art systems in terms of accuracy and computing power requirements.

In the second part, a new contextual modeling algorithm for general audio information

retrieval is introduced. Assuming that hidden acoustic topics exist and they represent

the context of an audio clip, we proposed a latent acoustic topic model that learns a

probability distribution over a set of hidden topics of a given audio clip in an unsupervised

manner. We use the latent Dirichlet allocation (LDA) method to implement the latent

acoustic topic model and introduce the notion of acoustic words to support modeling

x



within this framework. The proposed audio information retrieval system also aims to

provide users with flexibility in formulating their retrieval queries using näıve text as

well as pre-determined categories or audio examples. To mitigate interoperability issues

between the annotation and retrieval processes inherent in text descriptions, we propose

an intermediate audio description layer (iADL) spanned by onomatopoeic and semantic

labels in conjunction with context-based text transformation methods that map näıve

descriptions onto the proposed iADL.

xi



Chapter 1

Introduction

The main focus of this dissertation is to model context in audio signals with applications

to information retrieval. It studies the relationship among an audio signal, embedded

information, and verbal descriptions within an audio information retrieval framework.

This is motivated by the need for efficient data mining and search schemes for audio

contents in browsing, retrieval, summarization, and annotation. The goal is to propose

novel methodologies for context-based audio information retrieval by investigating various

aspects of audio signals, embedded information, and verbal descriptions.

1.1 Motivation

A huge amount of multimedia data has been archived, and it is exponentially growing

through various routes such as broadcasting services, WEB 2.0 applications, and online

stores. Advances in storage and data sharing technologies have been accelerating this

growth. This multimedia data explosion has created an information overload phenom-

ena [60]. In the studies of attention economy which deals with information management

strategies, researchers showed that users are easily overwhelmed or frustrated by too much

information [60, 18]. Furthermore, the information overload may cause information pol-

lution problems which consume users’ attention to unsolicited or undesirable information

[18].
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Information management strategies for multimedia data, therefore, become crucial

as the amount of multimedia data grows [52]. In fact, information retrieval from the

multimedia data has been studied from various aspects: text, image, video, audio, and

their combinations. In this work, we focus on the aural aspect of multimedia data which

provides audible information to users. It can be found in many multimedia formats; in

some formats, such as movies or animations, audio signals play important roles for users

to experience the multimedia data. On the other hand, in some multimedia formats, such

as music or sound clips, audio signals are the only media that users can experience. Audio

information retrieval, therefore, provides an essential, complementary in some cases, way

to access the information embedded in the multimedia data.

1.2 Open Challenges

The main question in designing an audio information retrieval system is how to link

audio signals to descriptions of embedded information in audio signals and desired in-

formation of users. If we rewrite the question in machine learning terminologies, it can

be rephrased as how to “model” audio “features” according to their “categories”. It ac-

companies three classical machine-learning concerns: reliability, efficiency, and scalability.

Reliability should be considered for the system to be toll quality, and efficiency should

be considered for dealing with a huge database. To deal with a fast growing amount of

data, such as today’s multimedia data, the scalability factor is inevitable.

One simple idea in extracting audio features is to use manually-generated descriptions

such as filenames and metadata embedded in audio files. Although it may satisfy the

reliability criterion by providing high accuracy within a given data set, it is not scalable

because manually labeling individual audio files in an exponentially growing database is

not tractable. Therefore, many systems are being developed in the direction of a content-

based approach which aims to extract desired information directly from audio signals

without prior-tagged labels.
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Content-based audio information retrieval, however, also includes various open chal-

lenges. An audio signal typically represents a heterogeneous mixture of several sound

sources; each sound source carries its own array of information and the mixture preserves

individual characteristics. Furthermore, these heterogeneous aspects are time-variant;

sound sources that compound an audio signal are distributed over time unevenly. In this

section, we point out a couple of challenges related to the heterogeneity.

The challenges from the heterogeneous characteristics are often related to extracting

reliable features from audio signals using various signal processing algorithms. Since not

all of the sources are of interest or relevant, it is necessary to consider only desirable

sound sources among multiple sound sources. This raises technical questions that have

not been completely solved yet. Actually, one of the critical stumbling blocks is that the

way of combining the sound sources is usually not known or difficult to estimate. In the

speech signal processing society, for example, researchers have being trying to mitigate

ambient noises to extract robust speech features [11, 62]. In pursuing the goal, many

methodologies are being developed based on a set of assumptions about how speech sig-

nals and ambient noises are combined; common assumptions may include that they are

statistically independent or uncorrelated. The results show that, however, the algorithms

have not reached the complete solution so far, which indicates that the way of combining

speech signals and ambient noises is not fully understood yet. The time-variant het-

erogeneous characteristics also prohibit extracting reliable features from desirable sound

sources; it is because the distribution of sound sources can be changed as time changes.

To deal with the time-variant heterogeneous characteristics, salient region extraction [38]

and foreground/background classification [22] have been studied for extracting desired

sound sources.

Another challenges from the heterogeneous characteristics are related to the context-

dependent characteristics of audio signals; similar audio contents indicates different mean-

ings according to surrounding sounds. Suppose an engine sound is present in an audio

clip. Even if an audio information retrieval system correctly recognize the engine sound,

3



some degree of uncertainty still exist in terms of where the sound comes from; it can be

recorded in a factory, in constructing site, or in a car. Considering surrounding sound

would help to disambiguate the uncertainty. If there is a sound of baby crying along with

an engine sound, it is likely that the sound is recorded in a car.

On the other hand, the variability in describing embedded information is also a chal-

lenging factor in designing audio information retrieval systems. The variability in de-

scriptions is inherited from various factors; one of the factors is the heterogeneity of

audio signals, and another is the way of describing audio signals. From the heterogene-

ity point of view, individual sound sources preserve their own array of information in a

mixed audio signal. Even a signal from a single sound source contains acoustic variability

so that it carries a variety of information. In speech signals, for example, there exists

an array of information in a single utterance: lexical content, speaker identity, emotion,

health condition, etc. This abundant information tends to be modeled separately with

task-dependent suboptimal representations for target applications [31]. Consequently,

models trained for a specific audio information retrieval system are usually not usable for

other systems that retrieve other types of information. This property is contrary to the

scalability criterion because a system should retrain the models if a user requires a new

information for which the system has not been trained yet. In addition to the problems

in dealing with audio signals, there exist ambiguities in descriptions themselves due to

inherent characteristics of text descriptions; people can use different words to describe

the same object and the same word can indicate different meanings (polysemic words).

There are many studies to tackle this problem in text information retrieval applications

and natural language processing [6, 7, 37].

1.3 Proposed Approaches

The main focus of this dissertation is on context-based audio information retrieval, which

investigates how an audio signal is generated by analyzing neighboring sounds. As we
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approach the problem, the multifaceted nature of the audio contents should be consid-

ered in developing a context-based audio information retrieval system. The multifaceted

nature of the audio contents represents that each category of sound has their own strat-

egy to build the sound. Fig. 1.1 represents the spectrum of audio contents with respect

to how the audio contents are generated along with a few examples. The right side of

the spectrum represents the audio contents that are generated in a “structured” way,

while the left side of the spectrum represents the audio contents that are generated in

an “unstructured” way. The terms “structured” and “unstructured” are used to denote

whether there exist evident rules in producing the sound.

Music audio signals, for example, are located in the most right side of the spectrum

among the given examples. Music audio signals are typically mixtures of a variety of

musical instruments and voices, and there exist a set of rules that govern individual

sound sources. The rules are usually written in music scores which explicitly denote how

to make the sound, i.e. play, in terms of pitch, timing, and intensity. The degree of

freedom that the music audio signals have is, if any, limited. Speech signals, the second

most right example, are also highly structured in terms of a person having to articulate

his or her organs to make the sound, i.e. speak, for generating and transmitting linguistic

information. It is well structured in the sense that the linguistic information can be

Figure 1.1: Spectrum of audio contents in terms of how the audio contents are generated.
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written in a text form. However, the degree of freedom is relatively higher than that of

the music audio signals. Let us consider two different speech signals which contain the

same linguistic information. Even though they have the same linguistic information, they

differ according to various factors such as speaker characteristics, emotions, and health

conditions. This variability increases if there is more than one speaker talking, such as in

a meeting environment (the second left example). The most left side example is ambient

audio signals which can be classified as unstructured sounds. They are usually mixtures

of various environmental sound sources, but the sound generating rules to combine those

sound sources are rarely evident.

In this dissertation, we aim to develop a context-based audio information retrieval

system that models the context of a given audio signal according to the characteristics of

the given audio signal.

1.4 Objectives

In this dissertation, we propose to explore various aspects of the wide spectrum of audio

contents in the audio information retrieval framework. This spectrum was introduced in

the previous section as we analyzed audio contents with respect to how audio contents

are generated. In this wide spectrum, our exploration will be conducted in the way of

achieving the following specific objectives.

The first objective is to introduce “context-based” approaches for audio information

retrieval which shed a light on the problems from the perspective of how the sounds are

produced rather than “content-based” approaches which focus on what the sounds are

like. These two types of approaches may seem similar, but they differ in the sense that

a context-based approach seeks any constructing rules in the contents. In pursuing the

goal, we aim to devise the methodologies to extract constructing rules from two extreme

cases of audio contents: well-structured audio signals and general audio signals which

include unstructured audio signals. We will emphasize the efficiency criterion in dealing

with well-structured audio signals, since constructing rules may be evident and relatively
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easy to extract. In general audio signals, we emphasize extracting non-evident, possibly

hidden rules to produce the sound signals.

The second objective is to use the extracted context as features to index the cor-

responding sound. In pursuing the objective, we apply the proposed context-based ap-

proaches to different categories of descriptions to show if the constructing rules are valid

representations for various types of information. We will also investigate whether the

methodologies satisfy the efficiency and scalability criteria as well as the reliability crite-

rion in various empirical tasks.

To evaluate and apply these ideas, we use two different application scenarios: music

information retrieval and general audio information retrieval; in each application scenario,

we propose novel methodologies to model constructing rules and use the rules for audio

information retrieval. The following subsections will provide brief descriptions of the

proposed algorithms.

1.4.1 Music Information Retrieval

Music audio signals are relatively well-structured according to the spectrum of audio

contents. The constructing rule, which governs various sound sources such as instruments

and voices, is well studied in music theory. In this study, we propose to investigate the

role of the musical rules based on the music theory in music information retrieval systems.

Specifically, we focus on extracting musically meaningful representations such as harmony

structures and their dynamics (a.k.a chord progression). The rationale behind using these

musical attributes is that they capture unique features of a given music audio signal.

Although it may not be necessary for all the music information retrieval applications

to have musically meaningful features, some applications such as those considered in this

paper rely on, or benefit from, such representations and models. In this dissertation, we

propose an efficient methodology to extract constructing rules, such as harmony structures

and their dynamics, of music audio signals and use it for context-based music information

retrieval. We call the proposed representation music fingerprint [40, 44] in the sense that

7



it is a signal description that can be embedded in audio files compactly in a limited

memory space. The music fingerprint consists of a set of real values which are extracted

directly from acoustic signals.

The proposed context-based music fingerprint offers several advantages. It requires

less computing power so it can be implemented in energy-sensitive mobile devices such

as portable mp3 players. The proposed music fingerprint has also been found to be

attractive in terms of accuracy through experiments on various information retrieval

tasks. Furthermore, since it is directly extracted from signals, the music fingerprint can

be generated readily if the audio file does not have or is missing the music fingerprint.

Therefore, it can be used as an alternative and complementary access to music information

that text metadata provides.

In this dissertation, the advantages of the proposed music fingerprint are demonstrated

on a variety of tasks whose focuses are on different types of information; namely opus

identification, composer identification, and semantic annotation tasks. The reason we

choose these specific tasks is that the target information for which the individual tasks

seek is usually written as text metadata and they cover a variety of information that is

used to describe music audio signals.

The details of the proposed methodologies along with experimental results are de-

scribed in Chapter 2.

1.4.2 General Audio Information Retrieval

Dealing with general audio signals is particularly difficult due to the heterogeneity of the

signals; they include unstructured audio signals whose constructing rules are, if any, not

known or difficult to estimate. The embedded information is also ambiguous due to the

variety of information that the heterogenous mixture includes.

To extract possibly hidden semantic rules from general audio signals, we propose a

latent acoustic topic model influenced by the topic model that was originally proposed for

text information retrieval [35, 17]. In text information retrieval, it models each document
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as a distribution over a fixed number of unobservable hidden topics. Each topic, in

turn, can be modeled as a distribution over a fixed number of observable words. One of

the motivations for modeling hidden topics in a document is to handle the ambiguities

of interpretations of words; although individual words have their own meanings, the

interpretations of the words vary according to the topics of the document.

The latent acoustic topic model is motivated by drawing analogies between text and

sound. We hypothesize that short segments of audio signals play similar roles as words

in text and that there are latent topics in audio signals which would be determined by

the context of audio signals. In other words, each audio clip is viewed to consist of latent

acoustic topics that generate acoustic words. We use the latent Dirichlet allocation (LDA)

method [15] to model the latent acoustic topics.

We also attempt to provide users with flexibility for their queries, so that people can

use naive descriptions or audio examples for their queries. To this end, we introduce

a novel method to disambiguate the descriptions of embedded or desired information.

Assuming that onomatopoeia and semantic labels provide essential descriptions about

sounds, we introduce a method that transforms naive text queries or audio examples

to onomatopoeia and semantic labels for audio information retrieval. The reason we

choose the onomatopoeic words and semantic labels is that they were shown to carry

abundant information about sounds in human-to-human audio information retrieval tasks

[78]. Furthermore, as it is seen in Fig. 3.2, these labels are particularly interesting because

they are highly related to psychoacoustic activities which connect physical properties and

human experience of sounds; onomatopoeia labels can be considered from the perspective

of the sensation process, and semantic labels from cognition process [61].

The details of the proposed methodologies along with experimental results are de-

scribed in Chapter 3.
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1.5 Contribution Summary

The proposed context-based audio information retrieval presents new ideas, techniques,

and future directions. This section summarizes the contributions of this dissertation;

specifically in music information retrieval and general audio information retrieval. In

both applications, we contributed

1. by providing novel structure analysis methodologies for finding context of audio

contents

2. by utilizing the constructing rules as features for information retrieval tasks.

The following points describe the specific contributions of this work.

• Music Information Retrieval

– Finding audio musical context

∗ Modeling musically meaningful attributes: harmony structure, usage of

pitch classes, and their dynamics

∗ Extracting dynamic information: delta chroma feature and chromatic

delta feature

∗ Music Fingerprint: unique and compact representation for a given music

piece

– Using the musical context for information retrieval

∗ Music fingerprint

∗ Accurate, efficient, and scalable handle for music information retrieval

∗ Applicable in portable devises such as MP3 players

∗ Alternative and complementary to text metadata
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• General Audio Information Retrieval

– Finding general audio context

∗ Latent acoustic topic model: discovering latent structure of audio signal

using latent Dirichlet allocation (LDA)

∗ Acoustic words: representing an audio signal as a text signal to make a

text-like audio signal

∗ N-gram approach: capturing partial dynamics of acoustic words consider-

ing adjacent acoustic words

– Using the rules for information retrieval

∗ Intermediate audio description layer (iADL): 2-dimensional domain using

onomatopoeia and semantic labels

∗ Providing users with query flexibility: audio examples and naive text

queires

∗ Query transformation: transformation of naive text queries onto interme-

diate audio description layer

These contributions initiate the following future directions.

• Multimodal approaches

– Fusion with video features; general multimedia data analysis

– Analysis of multimedia data in Web 2.0 applications, such as SNS and Youtube

data

• Analysis of community-contributed multimedia data

– How people respond to multimedia data

– Analysis of social tags: sentiments and emotional tags

– Ratings, recommend/unrecommend
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1.6 Structure of the Dissertation

This dissertation is organized as follows. We will focus on information retrieval from music

audio signals and general audio signals in Chapter 2 and Chapter 3, respectively. In each

chapter, the detailed descriptions of the proposed context-based information retrieval

from the corresponding audio signals will be provided along with experimental settings

and results. In Chapter 4, the conclusions and future work will be presented.
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Chapter 2

Music Information Retrieval

2.1 Introduction

A variety of music information retrieval (MIR) systems have been proposed and imple-

mented targeting specific end use and interface requirements. The need for such music

information retrieval systems has accompanied recent advances in storage and network-

ing capabilities that have accelerated the multimedia data explosion, and have fueled this

need for intuitive and efficient data mining and search schemes. A singular evidence for

this is provided by the growth of an annual evaluation, music information retrieval eval-

uation exchange (MIREX), exemplifying the growing body of interests of various MIR

applications [25].

The use of text metadata embedded within audio files, providing manually-generated

language based descriptions of the corresponding audio file, is one of the simple solutions

for MIR applications to enable convenient user interactions. This could include an array

of information including, but not limited to, composer, genre, lyrics, mood reflected, and

opinions expressed by listeners. With a large volume of data, however, it is not tractable

to manually label the whole database to generate metadata that adequately capture the

rich music information. Also, there are other forms of interactions that involve direct

example based query than text based query. Therefore, many systems are also being

developed in the direction of content-based information retrieval which aims to extract

useful information directly from audio signals. Building a reliable content-based music
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information retrieval system, however, is also very challenging due to several factors.

Firstly, dealing with the audio signal is much more difficult than processing text data.

Since the music audio signal typically represents a mixture of several instruments or

voices, from a signal processing point of view, it is necessary to handle multiple pitches

(polyphony) and multiple timbres that raise technical questions that have not been com-

pletely solved yet. Secondly, computing power and memory requirements are usually

greater than for information retrieval using text metadata. It is not a desirable option for

low computing power devices, such as portable mp3 players and mobile phones. Finally,

extracting musically meaningful information including rhythm, harmonic structures, and

chord progression is a challenging issue and includes several open problems. Although

it may not be necessary for all the applications to have musically meaningful features,

some applications (such as those considered in this paper) rely on, or benefit from, such

representations and models. There are, however, numerous, often disparate, questions

and challenges in this line of work, and one approach researchers have adopted is to focus

on the specific aspect of musicality relevant to their retrieval task at hand.

In this work, our goal is to propose an efficient handle for context-based music infor-

mation retrieval using musically meaningful context. Specifically, the proposed method

is based on extracting two types of musical context: vertical and temporal context. Ver-

tical context represents the way of different pitch classes are played simultaneously, while

temporal context represents the movement of pitch classes along with time. They can

be denoted as harmonic structure and harmonic progression (a.k.a. chord progression or

simultaneity succession) respectively in musical terms. The advantages of the proposed

method is shown in an opus identification framework. The opus identication task is to

classify given music pieces with their opus numbers; it is very similar to the cover song

identification task in MIREX evaluation except it deals with Classical music. The same

opus can be played in various ways: different tempo and keys and/or with different in-

struments. The advantages of the proposed music fingerprint are also demonstrated on

a variety of tasks, namely composer identification, and semantic annotation tasks. The
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reason we choose these tasks is that the target information for which the individual tasks

seek is usually written as text metadata.

The main contributions of this work are two-fold: a novel feature extraction procedure

that incorporates temporal context and a new modeling scheme for musical context that

capture unique information of music pieces. Assuming that conventional chroma feature

vectors model the vertical context of given music audio signal segments by representing

energy distributions over Western pitch classes, we propose a couple of methods to de-

scribe sequential dynamics in the chroma feature vectors to capture the temporal context

of a given music piece. To model the musical context with a compact representation,

we use second-order statistics of the features instead of highly profiled machine learn-

ing algorithms. Although using a sophisticated machine learning approach, such as with

an HMM or GMM, may yield accurate performance in some applications, considerable

computing power and storage space are demanded. The proposed contextual modeling

method requires less computing power so it can be implemented in energy-sensitive mo-

bile devices such as portable mp3 players. Furthermore, since it is directly extracted from

signals, it can be generated readily if the audio file does not have or is missing the model.

We will describe the related work and a summary of our contributions later in this

section. The description of the proposed context modeling approach will be provided in

the following sections: extracting feature vectors in Section 2.2, building music fingerprint

in Section 2.3, and a similarity measure for use with the proposed built music fingerprint

in Section 2.4. The experimental setups and results for the target MIR applications are

described in Section 2.5 and Section 2.6, respectively.

2.1.1 Related Work

Fig. 2.1 shows the basic system diagram of a generic content-based music information

retrieval system which takes an acoustic music signal as an input and yields retrieved in-

formation. It typically consists of three major components: feature extraction, modeling,

and similarity measurement. Each processing step faces many theoretical and practical
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issues, and a variety of different approaches are being pursued to tackle those issues. In

this section, we introduce related previous work categorized in terms of major contri-

butions. It should be noted that tackling a certain issue arising from one component,

however, cannot be performed independently since individual components are highly re-

lated to one another. The modeling procedure should consider the type of feature vector,

while the similarity measure needs to be chosen according to the modeling scheme.

2.1.1.1 Feature Extraction

The focus here is to seek, from a given audio music signal, features that describe desirable

attributes for the target application. Robustness issues (e.g. against timbre variation and

noisy environment) need to be consider because dealing with signals that are a mixture

of multiple pitches and multiple timbres is challenging.

Mandel et al. utilized a timbre-related feature to measure the similarity in terms

of the artist of music [55]. They computed the overall distribution of mel frequency

cepstral coefficients (MFCC) for each piece of music audio, which is one of the most

Figure 2.1: System diagram of general music information retrieval system.
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well-known features in audio and speech processing [63]. Even if it models the timbre-

related attributes of the signal regarding human auditory characteristics, the aspects of

musical attributes such as pitch class information can be barely described through MFCC.

Instead, many researchers have utilized a chroma feature vector which describes an energy

distribution on a chromatic scale [76, 30, 49, 47]. It is based on Shepard’s helix model

(see Fig. 2.2) which factorizes the perception of frequency into tone height and chroma

as follows [68].

f = 2h+c h ∈ Z, c ∈ [0, 1) (2.1)

where h, c, and f represent tone height, chroma, and frequency, respectively. We can

compute the chromagram by first performing a short-time power spectrum analysis,

xc (t) =
∑
h

s
(
t, 2h+c

)
(2.2)

where s
(
t, 2h+c

)
represents a short time power spectrum at time t. Appropriately quan-

tizing the chroma into twelve levels yields a twelve dimensional vector x(t) that can

closely match the Western chromatic pitch classes (A to G#). These quantized quanti-

ties are usually called a chroma feature vector, and each element of the vector represents

the energy of the corresponding pitch class at the time instance t. In practice, since

the power spectral analysis is performed on a short-time segment the discrete short-time

segment index number n is used instead of continuous time t. Therefore, x(n) represents

the chroma feature vector at the segment n.

Some systems quantize the chroma feature into the letter representations of harmony

structures, such as C or Dm [48, 77, 10, 56, 57]. Bello used a string matching algorithm

to analyze the effects of possible quantization errors in chord representations, such as

shift, gaps, swaps, and beats [10]. Based on the results, it was argued that the similarity

measurement based on the chord representations works reasonably robustly in music

information retrieval systems even with some chord estimation errors.
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2.1.1.2 Modeling

The goal of modeling is to capture the characteristics of a music piece with a set of

extracted features. Various machine learning algorithms have been adopted to devise an

appropriate scheme to capture the characteristics of a music piece. These include hidden

markov models (HMMs), support vector machines (SVMs), language models (LMs; N-

gram symbol sequence models), and string matching algorithms.

Kim et al. used an HMM to model the feature vectors derived from chroma features

[47]. Assuming that similar songs will have similar state sequences in the HMM frame-

work, they estimated the similarity between two songs by comparing the histograms of

the maximum likelihood state in the HMM models toward identifying the cover songs. N-

gram language models along with the quantized chroma feature vectors have been utilized

in query-by-example tasks [77]. In their work, Unal et al. extracted letter representations

Figure 2.2: Speard’s helix model [68] and Western music scale on piano keyboard.
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derived by the spiral array model proposed in [20, 23]. They applied an n-gram model

and computed a perplexity measure for query-by-example retrieval tasks. Turnbull et al.

performed automatic semantic annotation and retrieval for music and sound effects [75].

They applied the mixture hierarchies estimation method, a supervised multiclass labeling

(SML) model, to solve multiclass classification problems. The results showed that their

algorithm is useful for content-based annotation and retrieval when each music piece or

sound effect has multiple semantic descriptions.

Some systems do not create parameterized models. Instead, raw feature vectors are

used directly to extract desired information. In [48], Lee utilized dynamic time warping

(DTW) with a sequence of automatically transcribed chord representation proposed in

[49]. Assuming that similar songs usually preserve the harmonic content even if they

vary in other aspects, he used the chord representation quantized from the chroma feature

vectors. An HMM framework was used to compute the cost function for the dynamic time

warping (DTW) algorithm in his work. Ellis et al. proposed a cross-correlation scheme

with the chroma feature vectors [30, 29]. Instead of using dynamic programming schemes,

they used a beat synchronous segmentation method in [21] to generate tempo-invariant

features. A cover song identification system using the algorithm won the first place at

the MIREX 2006. Serrà and Gómez utilized a dynamic programming local alignment

(DPLA) toward the cover song identification [67], and they won the first place at the

MIREX 2007 [65] and 2008 [66].

2.1.1.3 Similarity measure

The choice of the similarity measure highly depends on the modeling scheme and the

intended application. At the same time, however, some of the global-level variations such

as key differences can be taken care of in this stage. For example, in a system that

utilizes the chord representation for cover song identification task, Lee et al. used the

first detected chord representation to adjust the possible key differences [48]. Ellis et al.

measured the similarity with every possible combination of key transitions [29].
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In summary, the aforementioned efforts provide a concrete context for the present

work in terms of both musically inspired features and models, as well as the engineering

methods to handle them.

2.1.2 Contributions of this work

The main contributions of this work include both a novel feature extraction procedure

that incorporates dynamic information and a new modeling scheme for extracting context-

based music fingerprint. We utilize the chroma feature vector, rather than timbre-related

features, to provide musically meaningful and interpretable information. The proposed

feature representations to capture the dynamic information in chroma feature vectors are

expected to model syntax information of music to some extent.

Although using a sophisticated machine learning approach, such as with an HMM

or GMM, may yield accurate performance in some applications, considerable computing

power and storage space are demanded. Since the purpose of this work is to devise an

efficient and low complexity method which can be implemented even on energy-scarce

portable devices, we did not focus on highly profiled machine learning algorithms. In this

work, instead, we use second order statistics of features to model music audio to provide

an efficient method in terms of both computational power and storage space, as well as a

reliable discrimination measurement. In particular, it aims to provide musically intuitive

and meaningful descriptions of a given music audio, such as harmony structure and its

dynamics, that can enable us to analyze the roles of musical semantic and syntax as music

signatures.

To demonstrate the advantages of the proposed context-based music fingerprint, we

perform three different experiments: opus identification, composer identification and se-

mantic annotation tasks. These tasks are chosen because this information is often saved

as text metadata and the purpose of this work is to devise context-based music finger-

print that can provide an alternative or supplemental access to the information that text

metadata provides.
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2.2 Feature Extraction: Vertical and Temporal Context

2.2.1 Vertical context feature

We use the chroma feature vector that many researchers use to describe an energy distri-

bution on a Western chromatic scale [76, 30, 49, 47]. This conventional chroma feature

vector can be interpreted as representing vertical context in the sense that it describes the

way of different pitch classes are played simultaneously in terms of energy distribution

within a given music audio segment. It is based on Shepard’s helix model which factorizes

the perception of frequency into tone height and chroma as describe earlier.

The chroma feature vector describes the energy distribution over the Western pitch

classes. Since it is an energy-related quantity, it is often normalized to mitigate sound

level differences. Normalization is usually designed to have a unit length vector, i.e.,

xc[n]←
xc[n]

∥x[n]∥
(2.3)

2.2.2 Temporal context feature

In this section, we introduce two types of dynamic modeling schemes to capture temporal

context based on the chroma feature vectors: delta chroma feature and chromatic delta

feature. By considering only one adjacent feature vector in both methods, we expect to

obtain the dynamic information between adjacent time segments. The reason we choose

to consider only one adjacent segment is not only because of its simplicity but also due to

the evidence provided by psychological experiments. In experiments designed to analyze

how human beings perceive musical tension in a long chord sequence, Bigand argued

that musical events are perceived in local chord structures [13]. In this work, we utilize

a beat-synchronous flexible length segmentation based on the beat detection algorithm

presented in [28]. With the beat-synchronous segmentation, the features hence model the

dynamic information between two adjacent beats.
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2.2.2.1 Delta chroma feature

The delta chroma feature can be computed as follows:

∆x(n) = x(n+ 1)− x(n) (2.4)

It models the temporal dynamic change in each pitch class (an example is shown in

Fig. 2.3(b)). This is akin to the dynamic feature used for automatic speech recognition,

except that we presently use only one adjacent frame feature vector rather than applying

a several-tap long FIR filter. The reason for this choice of just one adjacent segment is

not only because of its simplicity but also due to the evidence provided by psychological

experiments. In experiments designed to analyze how human beings perceive musical

tension in a long chord sequence, Bigand argued that musical events are perceived in

local chord structures [13].

2.2.2.2 Chromatic delta feature

We also introduce a chromatic delta feature motivated by psychophysical observations. It

is a well-known fact that humans perceive or produce relative pitch changes with greater

ease than absolute pitch values, and this characteristic has been utilized in several music

information retrieval systems (e.g. query-by-humming systems [76]). This argument can

be partially supported by results in neuroscience. In [81], Warren et. al. used functional

magnetic resonance imaging (fMRI) to show the psychophysical effects of pitch changes

in the human brain by manipulating the pitch values of the signal that subjects listen to.

The results showed specific brain regions of activation attributed to pitch changes: the

pitch was represented in the anterior to primary auditory cortex, while the pitch height

change was represented in the posterior to primary auditory cortex. These observations

inspired us to explore the usefulness of dynamic chroma information as a signal modeling

feature.
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Figure 2.3: Examples of (a) chroma feature vectors, (b) delta chroma vectors, and
(c) chromatic delta chroma feature vectors extracted from a synthesized audio signal
(BWV772) along with (d) the pianoroll figure of the MIDI data from which the signal is
synthesized.
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We define chroma change as a relative interval between the pitch classes that are

played sequentially in terms of semitone. For example, if the pitch class D is played

after C is played, the relative chroma change interval is +2 semitones. A scalar value

would represent the chroma change in case of a monophonic melody signal. In most

cases, however, the music audio signal is polyphonic, representing a mixture of multiple

pitches from various instruments. It leads to multiple chroma changes at the same time.

For example, if the pitch classes D and F are played simultaneously after C is played,

the relative chroma change interval can be both +2 semitones and +5 semitones. To

deal with the simultaneous multiple chroma changes, a vector representation is required.

Hence, we propose a new vector representation to describe the degree of chroma changes

on all possible intervals.

Note that the magnitude of the delta chroma feature in (2.4), i.e. ∥∆x[n]∥, represents

the Euclidean distance between two adjacent chroma feature vectors. It can be also

interpreted as the likelihood of not sustaining the same pitch class (zero interval chroma

change); the smaller the value it represents, the more likely the pitch classes move toward

the zero interval chroma change (no change). In other words, if the value is close to zero,

it is likely for the pitch classes to be retained as they are.

We can get similar quantities considering any chroma change interval i by circularly

rotating the latter chroma feature vector, i.e.,

∥∥∆xi [n]
∥∥ =

∥∥xi [n+ 1]− x [n]
∥∥ ; 0 ≤ i ≤ 11, (2.5)

where xi represents the rotated vector x whose elements are circularly moved by i semi-

tones. The value represents the unlikelihood of moving toward the i chroma change

interval. Similar to the zero chroma change interval case shown above, the smaller the

value it represents, the more likely are the pitch classes to move toward the i chroma

change interval. For simplicity, we define the range of i as in the above equation (2.5).

One should note that i is modulus of 12 so that a −2 interval can be interpreted as +10

interval and vice versa.
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Based on the above quantities, we can define a new vector representation which de-

scribes the likelihood of moving toward individual chroma change intervals. Since the

above quantities are unlikelihoods, we need a reciprocal function that transforms unlike-

lihood to likelihood values. In this work, we simply put a negative sign and add the

maximum value among the elements to make a vector whose elements are non-negative.

Therefore, the proposed dynamic chroma feature vector can be written as

∇x [n] = {∇x0 [n] ,∇x1 [n] , · · · ,∇x11 [n]}T , (2.6)

where

∇xi [n] = −
∥∥∆xi [n]

∥∥+Xmax (2.7)

and

Xmax = max
j

∥∥∆xj [n]
∥∥ . (2.8)

As seen in Fig 2.3, the chromatic delta chroma feature shows the relative chroma

change interval between the adjacent time segments while the delta chroma feature shows

the temporal dynamic information of each pitch class.

2.3 Music Fingerprint

In the design of handle for music information retrieval system, it is desirable to have

a small memory and low complexity as well as high accuracy in capturing the unique

characteristics of a given music piece. The work by Jensen et al. is particularly relevant in

this regard [36]. They applied a filter bank on the trajectory of individual chroma feature

vector elements, which yields a small matrix that is efficient in terms of computing power

and memory requirement. In this work, we propose to use the covariance matrix of the

chroma feature vectors as a representative feature of music piece, i.e.

Φ = E
[
(x− E [x]) (x− E [x])T

]
(2.9)

25



Pitch Class

P
itc

h 
C

la
ss

 

 

A A# B C C# D D# E F F# G G#

A

A#

B 

C 

C#

D 

D#

E 

F 

F#

G 

G#

−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 2.4: An example of music fingerprint using chroma feature vectors (BWV 772).

where T represents the matrix transpose. Although this metric is identical to the co-

variance matrix in a single multivariate Gaussian approach, the usages differ in the sense

that it is used as a template rather than generating probability distribution (detailed

description on similarity measure using the proposed metric is provided in Section. 2.4).

In our previous work [40, 39], it is also called a music fingerprint in the sense that the

metric is a two-dimensional image-like matrix that captures muscial idiosyncrasy. For

consistency, hereafter, we call the covariance matrix a music fingerprint.

2.3.1 Vertical Context Model

We start with a fingerprint that is defined by the chroma feature vectors. We hypothesize

that this covariance matrix of chroma feature vectors contains useful information about

a music piece, such as overall usage of pitch classes and the harmonic structure. This is
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based on the analogy between the covariance matrix and harmony: just as the covariance

matrix of vectors reveals how individual elements in the vector are related one another,

the term harmony is used to describe the event of more than one pitch class being played

simultaneously.

• Usage of pitch classes: We hypothesize that the diagonal elements of the covariance

matrix represent the degree of activity for each pitch class. The greater the value,

the more dominantly or frequently the corresponding pitch class is used in the music

piece. For example, in Fig. 2.4, the diagonal elements for C, D, E, F, G, A and B

are relatively greater than others. It implies that those pitch classes are used more

dominantly than others in the given music piece.

• Harmonic structure: Each column of the covariance matrix denotes how the various

individual pitch classes are related to a given pitch class. Since the relationships

between pitch classes represent harmonic information, each column of the music

fingerprint can be interpreted as capturing the harmonic structure for a given pitch

class. Pitch classes with positive values are likely to be played with a given pitch

class simultaneously, while pitch classes with negative values are likely not to be

played with a given pitch class simultaneously. Pitch classes with values close to

zero do not have specific trends. For example, in Fig. 2.4, D is rarely harmonized

with C or E, while it does not have any distinctive tendency of co-presence with

other pitch classes.

Fig. 2.5 and 2.6 support our hypotheses by comparing the MIDI data with the syn-

thesized audio signal. The dotted lines represent the results from MIDI data, and the

solid lines represent the synthesized audio signals. Even though the dotted and solid

lines are not identical, they provide a rough idea about the usage of pitch classes and the

underlying harmonic structures. We argue that the difference between the two results is

primarily due to signal processing challenges associated with polyphonic audio signals.

Some of these challenges are also illustrated in Fig. 2.3. Comparing the pianoroll of the
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Figure 2.5: An example of usage of notes information; a comparison between music
fingerprint and MIDI data (BWV 772).

MIDI data and the chroma feature vectors obtained from the synthesized audio signal,

one can easily observe that the chroma feature vectors obtained from the synthesized

audio signal show effects of noise. For instance, there are several non-zero quantities

in the chroma vectors from the audio signal when the corresponding pitch class is not

played (e.g. G, A, B, and C in the first 4 notes). This might be caused by the charac-

teristics of overtones, which impose considerable amount of energy on the perfect 5-th

(7 chromatic interval) pitch class. Noise due to release-time differences can be also ob-

served. Residual energy beyond MIDI events and vanishing energy during MIDI events

are also evident. This might be caused by the fact that the release time is dependent

on the specific type of musical instruments. The chroma feature vectors from polyphonic

and multiple-instrument audio signals would be even more complicated than the given

example which is nearly monophonic with just one musical instrument.

Even though seeking more robust alternatives to the chroma feature vectors is beyond

the scope of this present work, we attempt to minimize the aforementioned effects by using

the covariance matrix. Note that it can be easily shown that other second order statistics

methods, such as the correlation matrix, would introduce additional assumptions about
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Figure 2.6: An example of harmonic structure information; a comparison between music
fingerprint and MIDI data (BWV 772).

the noise by using MIDI-synthesized audio signals. Suppose the chroma feature vector

from the audio signal is corrupted by additive noise, i.e.,

x[n] = x[n] + ε[n] , (2.10)

where x and ε represent the chroma feature vector from MIDI data and the noise vector

which can be observed in Fig. 2.3, respectively. Then, the music fingerprint can be

represented as

Φ = Φ +∆ (2.11)

where Φ and ∆ represent the music fingerprint from MIDI data and the noise matrix,

respectively.

In the proposed covariance matrix framework, the noise matrix can be written as

∆ = 2
{
E
[
εxT

]
− E [ε]E [x]T

}
+
{
E
[
εεT
]
− E [ε]E [ε]T

}
. (2.12)
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If other second-order statistics are utilized to model the harmony structure, those can be

also easily derived: for example, the correlation matrix can be written as

∆ = 2
{
E
[
εxT

]}
+
{
E
[
εεT
]}
, (2.13)

and the mean matrix is

∆ = 2
{
E [ε]E [x]T

}
+
{
E [ε]E [ε]T

}
. (2.14)

Compared with (2.12), the method using the correlation matrix assumes E[ε]E[x]T =

0 and E[ε]E[ε]T = 0 which are equivalent to zero-mean signal processing noise assump-

tion, which is not necessarily true in practice. The assumption embedded in the method

using the mean matrix is even stronger. It assumes E[εxT ] = 0 which is equivalent to

saying x and ε are orthogonal. It also assumes that the signal processing noise is uncorre-

lated with itself. As shown earlier in Fig. 2.3, however, the assumption is not valid in the

given chroma feature extraction algorithm. The noise appears highly correlated with the

corresponding pitch class (e.g. considerable amount of energy on the perfect 5-th pitch

class of the played pitch class). See [39] for empirical results.

2.3.2 Temporal Context Model

The covariance matrix of the chroma features only captures static information. Instead,

we construct super-vectors which consist of the chroma feature vectors and dynamic

feature vectors, comprising either the delta chroma features or chromatic delta features

proposed in Section 2.2, to specify the music fingerprint. Computing the covariance

matrix of the super-vectors generates the proposed music fingerprint:

Φ∆ = E
[
(x∆ − E [x∆]) (x∆ − E [x∆])

T
]

(2.15)
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where

x∆ =

 x

∆x

 . (2.16)

or

Φ∇ = E
[
(x∇ − E [x∇]) (x∇ − E [x∇])

T
]

(2.17)

where

x∇ =

 x

∇x

 . (2.18)

Fig. 2.7 shows examples of music fingerprints using super-vectors, which model the

dynamic properties of chroma feature vectors. Since the length of the vector is doubled,

the size of the fingerprint is four times larger. We analyze each quadrant separately

to interpret it in terms of musical attributes. Note that the third quadrant of each

fingerprint, which is in the bottom-left of the plane, is identical to the fingerprint that

uses only chroma feature vectors.

The first quadrant of the fingerprint represents the covariance matrix of the delta

chroma feature vectors. Since the delta chroma feature vectors represent the relative

energy difference between two consecutive segments, these quantities are more related to

temporal changes in intensity rather than the intensity itself. Diagonal elements of the

quadrant denote the trajectory dynamics of individual pitch classes, and they can be also

interpreted as the intensities of on-set and release events. They are somewhat related,

but not identical, to the diagonal elements of the third quadrant. One can also predict

the dominant pitch classes of the music by observing these quantities. For example, in the

first quadrant in Fig. 2.7(a), the diagonal elements for C,D,E,F,G,A and B are relatively

larger than others. It indicates that those pitch classes are used more frequently than

others, which is similar to the previous conclusion in Fig. 2.4. Elements in each column

represent the tendency of the temporal movements with respect to a given pitch class.

Positive values indicate that the corresponding pitch classes tend to move collaboratively

with the given pitch class, either on-set or release, while negative values represent that
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Figure 2.7: Examples of music fingerprints using delta chroma feature vectors and chro-
matic delta feature vectors extracted from music audio (BWV772)
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they collude inversely. If the value is close to zero, there is no significant movement

along with the given pitch class. For example, C and E are more likely not to be played

simultaneously with D than any other pitch classes. It is also highly related with the

harmonic structure modeled in the third quadrant since it reveals which pitch classes are

harmonized with a given pitch class. From this analysis, we argue that the first quadrant

also models usage of pitch classes and harmonic structure based on temporal dynamics,

so it may provide complementary information.

When we consider the second or fourth quadrant (note that those two quadrants are

symmetric), we can observe the cross-covariance matrix between chroma feature vectors

and delta chroma feature vectors. Each vector describes the movements of the pitch

classes that follow with respect to a given current pitch class. If the value is positive,

there is a tendency of on-set of the pitch class after the given pitch class. If it is negative,

there is a tendency of release of the pitch class after the given pitch class. If the value

is close to zero, there is no significant movement on the pitch class after the given pitch

class. For example, B and D are more likely to be on-set than any other pitch classes

after C is played, while C itself is likely to be released. This reveals the global pitch

progression between two adjacent segments.

If we use a super-vector of the chroma feature vector and the chromatic delta feature

vector, i.e., x =
[
xT∇xT

]T
, the content of the music fingerprint is somewhat different

compared to the one with delta chroma feature vectors (see Fig. 2.7(b) for the examples).

Firstly, the axes of the music fingerprint with the proposed delta chroma feature vectors

consist of the pitch classes and the relative intervals rather than pitch classes. In the

first quadrant of the figure, the diagonal elements represent the intensities of chroma

changes. Each vector in the first quadrant describes how the chroma changes happen

simultaneously with the corresponding chroma change.

In the second quadrant of the figure (it is symmetric to the fourth quadrant), each

vector illustrates which direction the chroma change happens after the corresponding

pitch class is played. The greater the value is, the stronger the tendency exists for
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the pitch classes that are simultaneously played with the corresponding pitch class to

move toward the corresponding interval. It is remarkable that the temporal dynamic

information is modeled as a group of the pitch classes that are simultaneously played

with the corresponding pitch class. For example, after the pitch class A is played, there

exists a tendency for the pitch classes that are played with the pitch class A to be retained

as they are, or move toward 2 semitones above.

2.4 Similarity Measure

We use a simple template matching to measure the similarity of the two candidate music

fingerprints. The similarity between music i and j is computed as follows.

sij =
D∑

k=1

D∑
l=1

ϕ
(i)
kl ϕ

(j)
kl , (2.19)

where ϕkl represents the k-th row and l-th row element of the music fingerprint Φ. A

greater value represents higher similarity between two pieces of music.

2.4.1 Key compensation

It should be noted that even in playing the same music, it is possible to transpose the

key of the music. To compensate for possible key transposition, we circularly shift one

of the fingerprints in the diagonal direction by one semi-tone step to get the maximum

similarity value.

sij = max
m

D∑
k=1

D∑
l=1

ϕ
(i)
kl ϕ

m
kl

(j) ; 0 ≤ m ≤ 11, (2.20)

where

ϕmkl = ϕmod((k+m)/12)mod((l+m)/12) (2.21)

and mod(·) represents the modulus of the division. In the case of using delta chroma

features, the shifting process should done separately in each quadrant. Especially with

the chromatic delta feature vector, special care should be paid to deal with the possible
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transposition. Since the chroma change interval is a relative value and independent of

the key, it should not be moved during the key compensation process. Therefore, the first

quadrant should be retained as it is and the second (or fourth) quadrant should circularly

move to the right (or upper) direction to compensate for possible key difference.

2.4.2 Fingerprint Normalization

Since the music fingerprint contains energy-related quantities, it is crucial to normalize

the covariance matrix appropriately to balance overall the loudness level, i.e,

sij = max
m

D∑
k=1

D∑
l=1

N
(
ϕ
(i)
kl

)
N
(
ϕmkl

(j)
)
, (2.22)

where N (·) represents the chosen normalization algorithm. In this paper, we use a

column-wise normalization which lays emphasis on the harmonic structure of each asso-

ciated pitch class by dividing the squared sum (energy) in the column of the fingerprint,

i.e.,

N (ϕkl) =
ϕkl√∑

m
(ϕml)

2
. (2.23)

The column-wise normalization (CN) scheme prevents neglecting information from less

dominant pitch classes [40].

2.4.3 Score Fusion Method

As we described in the previous section, each quadrant of the proposed music fingerprint

compacts different musical attributes. Since the roles of individual aspects can be different

depending on the target application, we introduce a weighted sum of similarities from

individual quadrants.

sij =

4∑
q=1

λq · sij(q) , (2.24)

where sij(q) denotes the similarity computed as in (2.20) for quadrant q, and λq represents

the weighting coefficient with a constraint
∑

q λq = 1.
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Although there are four quadrants, we only consider three quadrants because the

second and the fourth are symmetric. It simplifies the problem that the degree of freedom

is two, i.e.

sij = λ1 · sij(1) + λ2 · sij(2) + (1− λ1 − λ2) · sij(3) , (2.25)

where sij(1), sij(2), and sij(3) represent the similarities using the first, second (or fourth),

and third quadrant respectively. The weighting coefficients are determined empirically in

each experimental setup.

2.5 Experimental Setup

In this work, we perform three different experiments: opus identification, composer iden-

tification, and semantic annotation tasks. The reason we choose these tasks is that the

target information for which the individual tasks seek is usually written in text meta-

data. Since the purpose of this work is to devise context-based music fingerprint that

can provide alternative access to the information that such text metadata provides, these

empirical tasks were considered reasonable case studies.

To evaluate these tasks, we utilize three different databases: MIDI-synthesized Clas-

sical music, real recordings of Classical music, and Western popular songs, each used

according to the designated application.

2.5.1 Databases

2.5.1.1 Database I

In Database I, there are approximately 2000 recordings by 11 classical music composers;

Bach, Beethoven, Brahms, Chopin, Debussy, Handel, Haydn, Mozart, Schubert, Tchaikovsky,

and Vivaldi (Approx. 1000 pieces and 2 variations of each piece). They were originally

recorded in the MIDI format [1], and the audio signal for each was generated using Timid-

ity++ toolkit [2] to have 16kHz sampling rate. The length of the pieces varies from 1

minute to 10 minutes, and the pieces whose length exceeds 10 minutes were truncated
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to 10 minutes for simplicity. Each piece of music has two different versions with possible

changes of tempo, orchestration, and key. In this database, however, we have observed

that expressiveness in MIDI data is very restricted or quantized (e.g. velocity values).

2.5.1.2 Database II

Besides the MIDI synthesized audio data, we also have real recordings of classical music.

We have collected the works of J.S. Bach, specifically Inventions and Sinfonias. There

are 30 pieces of music whose opus numbers are from BWV 772 to BWV 801. In the

collection, there are 6 different recordings of the Inventions and Sinfonias yielding 180

audio files total. They differ in various aspects; player, tempo, instruments, and even

adding or omitting some notes according to players’ expressive intention. They were

originally encoded in mp3 format (320kbps, 44kHz sampling rate, stereo) and converted

to wave format (44kHz sampling rate, mono).

2.5.1.3 Database III - CAL500

We also use Western popular songs collected by Turnbull et al. which consists of 500

different songs [75]. It is called the Computer Audition Lab 500 (CAL500) database,

and it includes 1708 subjective annotations evaluated by 66 subjects. The annotations

are collected by asking the subjects to label songs with acoustically relevant words. The

words can be categorized into 6 categories; emotion, genre, instrument, solo, usage, and

vocal. After pruning the words that are represented by fewer than five songs, the total

number of the words is 174. See [75] for more details.

2.5.2 MIR applications

2.5.2.1 Opus Identification task

For the opus identification task, we utilize Database I and Database II which include

various versions of the same opus. The opus identification task is very similar to the

cover song identification task in MIREX evaluation except it only deals with Classical
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music. We use one of the versions as a test set and the other remaining versions as

training sets. We make a decision by using the maximum similarity score among the

training data set, and consider the result correct when it is the same opus with the query

among the test set.

2.5.2.2 Composer Identification task

For the composer identification task, we utilize Database I which includes 11 different

composers. We perform a two-fold experiment so that each experiment does not have

the same opus in the dataset to prevent artificially high performance by choosing opuses

which are obviously written by the same composer. In each dataset, we make a decision

based on the composer of the most similar piece with one-leave-out method.

2.5.2.3 Semantic Description Annotation task

There are many types of descriptions about music other than simple opus number or

composer name. We utilize Database III to evaluate semantic description annotation

task performance. We make a decision based on likelihood of annotation words of k

nearest neighbors, i.e.,

l (w) =
k∑

r=1

s (r)ψw (r) (2.26)

where s (r) and ψw (r) represent similarity between the corresponding song and the r-

th closest song and ground truth annotation of r-th closest song considering word w,

respectively. After the likelihood of word w is computed, only A words that score the

highest likelihoods will be chosen as the semantic description of the corresponding song.

We perform a ten-fold cross validation and compute per-word precision and recall to

evaluate the performance.
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2.6 Results and Discussion

2.6.1 Opus Identification Task

Table 2.1 shows the performance of the opus identification task using music fingerprint

built with vertical context and their temporal context derivatives in terms of accuracy.

In both data sets, using dynamic feature vectors along with chroma feature vectors im-

proves accuracy rate. Although dynamic feature vectors themselves are not as efficient

as chroma feature vectors, they play an important role as complementary feature vectors

in identifying the opus of a music audio signal. The contributions of different types of

dynamic feature vectors may vary with respect to data sets; the accuracy can be maxi-

mized by using the chromatic delta feature in Database I, while using the delta chroma

feature vectors can maximize the accuracy in Database II.

To provide comparison with conventional algorithms, we use a cover song identification

system proposed by Ellis et al. [29] as a baseline system. We chose their system because

they won first place in the MIREX 2006 evaluation and they published their algorithm in

their web page [27]. Since our target application is the opus identification whose scenario

is somewhat different from cover song identification tasks, a direct comparison between

the proposed scheme and the conventional algorithm may be difficult. Nevertheless,

the comparison provides a glimpse of the advantages of the proposed algorithm; the

new method is competitive with the conventional method in terms of accuracy rate and

significantly outperforms in terms of searching time1. Tables 2.1 and 2.2 show that

the proposed algorithm outperforms the conventional system in terms of searching time

without suffering too much in accuracy (the best accuracy rates are comparable).

In experiments with Database I, the proposed algorithm significantly outperforms the

baseline system. The reason is that the proposed music fingerprint captures and compares

the global characteristics of given music signals while the conventional system utilizes local

similarity to compare two different music pieces. Computing the local similarities can be

1The searching time is estimated using Matlab on a Windows machine with Pentium IV 3.06GHz and
2GB RAM. It excludes the time for the chroma feature extraction procedure.
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Table 2.1: Performance of the opus identification task using music fingerprint in terms
of accuracy. A plus sign indicates that the dynamic feature vectors are used to make
super-vectors with chroma feature vectors.

Accuray (%) Database I Database II

Chroma 75.0 90.6

Delta 65.8 57.2

+ Delta 78.0 92.8

Chromatic Delta 52.6 57.2

+ Chromatic Delta 78.5 91.7

Baseline [30] 65.0 93.9

Table 2.2: Performance of the opus identification task using music fingerprint in terms of
searching time in seconds.

Searching time (sec.) Database I Database II

Proposed method ∼ 600 ∼ 40

Baseline [30] ∼ 42,000 ∼ 900

powerful when only small portions of two different music pieces are similar (many cases

can be found in popular songs - cover song identification). Especially with a large data

set such as Database I, two music pieces whose opus numbers are different can be falsely

identified to be the same when they have high local similarity values.

2.6.2 Composer Identification Task

Table 2.3 shows the performance of composer identification using music fingerprint in

terms of accuracy. For this task, we utilize Database I which includes approximately 1,000

pieces by 11 different composers. The results show that the proposed music fingerprint

is able to model the signature of a Classical music composer well. With only the chroma
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feature vectors, the identification rate is significantly higher than chance level. This is

reasonable because the way of building the harmony, i.e., harmony structure, is often

governed by common practice period and reflects inherent characteristics of composers in

Western music.

From the results, it can be easily seen that the dynamic information - delta and chro-

matic delta - can not perform better than chroma feature vectors by themselves. However,

the performance improves when the dynamic feature vectors are used as complementary

feature vectors. This observation reveals that the characteristics of composers are em-

bedded not only in harmony structure but also in how the harmony structure changes.

It is also notable that greater improvement is achieved by using chromatic delta feature

vectors as complementary feature vectors rather than simple delta feature vectors.

With regard to the recent results of MIREX evaluations [4, 5], although it is difficult

to compare the performance directly due to the different data sets, the proposed method

seems to provide a similar range of performance against these state-of-the-art systems.

Table 2.3: Performance of the composer identification task using music fingerprint in
terms of accuracy. A plus sign indicates that the dynamic feature vectors are used to
make super-vectors with chroma feature vectors.

Accuray (%) Database I

Chroma 45.4

Delta 39.3

+ Delta 46.8

Chromatic Delta 37.3

+ Chromatic Delta 49.7

MIREX 2007 [4] 19.7 ∼ 53.7

MIREX 2008 [5] 34.1 ∼ 53.3
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2.6.3 Semantic Description Annotation Task

Table 2.4 and Fig. 2.8 show the performance of the semantic description annotation task

using music fingerprint in terms of per-word precision and recall. The bottom of the table

shows the baseline and the performance of a conventional system that was introduced in

[75]. Note that we use the per-word precision and recall instead of per-song, which means

the metric focuses on predicting all the words in the vocabulary. The motivation and

advantage of this measure are well described in [75], and we use the same measurement

for consistency.

Based on the 10 fold cross-validation results, the proposed method is found to outper-

form the random baseline. Furthermore it was found that using dynamic feature vectors

as complementary feature vectors, especially the chromatic delta feature, can improve

performance. The results indicate that the proposed music fingerprint is competitive to

the conventional model based learning algorithms. The proposed method outperforms the

Table 2.4: Performance of the semantic description annotation task using music finger-
print in terms of per-word precision and recall.

Precision Recall

Chroma 0.191 (0.007) 0.132 (0.009)

Delta 0.186 (0.011) 0.126 (0.005)

+ Delta 0.195 (0.017) 0.135 (0.013)

Chromatic Delta 0.193 (0.011) 0.134 (0.008)

+ Chromatic Delta 0.201 (0.017) 0.142 (0.016)

ModelAvg [75] 0.189 (0.007) 0.108 (0.009)

MixHier [75] 0.265 (0.007) 0.158 (0.006)

Random [75] 0.144 (0.004) 0.064 (0.002)
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Figure 2.8: Graphical illustration of the performance of the semantic description annota-
tion task using music fingerprint in terms of per-word precision and recall. Colored and
white dots represent the performance of the proposed method and convensional method,
respectively.

conventional method named ModelAvg (the improvement can be observed more clearly

in recall measurement) although it is not as good as the other method MixHier.

2.6.4 Memory requirement

Since the goal of this work is to embed the proposed music fingerprint within a music file,

improvements in terms storage memory requirements are worth discussion. While state-

of-the-art machine learning based systems need to store whole chroma feature vectors and

parameterized models for each song, the proposed system needs to store only the music

fingerprint itself whose size is 576 Bytes (assuming double type, without any compression

algorithm) for each song. In the case of using additional dynamic feature vectors, it only

requires 1728 Bytes.
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2.7 Chapter Summary

We introduced a new music information retrieval method using the proposed context-

based music fingerprint. The proposed music fingerprint models musically meaningful

aspects of a music audio signal, such as harmonic structures and their temporal dynamic

information, in a compact representation. It provides an efficient way of extracting infor-

mation useful for various music information retrieval applications. Through experimental

evaluation with MIR frameworks, such as opus identification, composer identification,

and semantic annotation, we discussed the performance of the proposed context-based

music fingerprint method. The results suggest that the proposed music fingerprint is

efficient in terms of complexity, both processing and storage requirements, while yielding

performance accuracy that is competitive against state-of-the-art systems. New algo-

rithms which extract dynamic information were also proposed, and it is shown that they

can be incorporated to provide complementary information.
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Chapter 3

General Audio Information Retrieval

3.1 Introduction

Extracting useful information from unstructured data is receiving significant attention

from both research and industrial perspectives. Unstructured data can include various

types of media: text, video, and audio that are typically user generated and poorly

annotated in comparison to the rich information contained in them. In this chapter, we

focus on unstructured audio data which can be present in various multimedia content,

such as broadcasting [32], consumer videos [50], and personal sound logs [26]. The main

challenge in retrieval of unstructured audio is that the context and the individual acoustic

sources (for example human speech, laughter, or other environmental sounds such as car

horns) are not known a-priori.

Researchers have been showing promising results in classifying generic audio clips

with pre-defined descriptive categories using various machine learning approaches, such

as with Gaussian mixture model (GMM) [75] and hidden Markov model (HMM) [53, 82].

For example, Slaney presented a framework to derive semantic descriptions of audio to

signal features [69]. Turnbull et. al. applied their supervised multi-class labeling method

(SML), originally devised for music information retrieval, to sound effects database [75].

In addition, the recent work from Google, Chechik et. al. successfully performed a large-

scale content-based audio retrieval from text queries for audio clips with multiple tags [19].

Their method is scalable to a large number of audio data based on a passive-aggressive
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model for image retrieval (PAMIR). Furthermore, applications like environment sound

recognition aim to decode ambient sounds [21]. These types of machine learning algo-

rithms are usually trained in a supervised manner which requires corresponding labels at

the training phase. On the other hand, various unsupervised learning methods based on

latent variables have also been proposed [73, 50, 84]. Sundaram et al. introduced a latent

perceptual indexing (LPI) method based on latent semantic analysis (LSA) [73]. Lee et al.

[50] and Zeng et al. [84] applied a modified version of LSA, probabilistic latent semantic

analysis (pLSA), for generic audio categorization and consumer video classification using

sound track, respectively.

In this chapter, our focus is on modeling context information in general audio signals

within a general audio information retrieval framework. Linking audio signal to linguistic

descriptions is a perennial challenge in designing content-based audio information retrieval

systems. While methodologies to extract acoustic features from audio signals according

to pre-defined descriptive categories have been studied intensely, various open challenges

still remain. The challenges are often related to ambiguities inherent in both audio signals

and linguistic descriptions used to characterize them.

In this regard, we introduce context-based approaches to address these ambiguities

toward robust audio information retrieval. The central idea is to capture contextual

information embedded within a collection of audio signals and linguistic descriptions

in a data driven fashion. The ideas of latent acoustic topic models and intermediate

audio descriptive layer are proposed for audio signal modeling and linguistic description,

respectively.

3.1.1 Contributions of this work

The first major contribution of this paper is the introduction of a generative model using

context-based information in audio, a model that is distinct from the well-known content-

based methods which are based on modeling realizations of sound sources. These two

approaches differ in the sense that a context-based approach seeks latent embedded rules
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in the content based on surrounding acoustic properties. It should be noted that excellent

advances in content-based retrieval are taking place. We believe that the content-based

retrieval provides a complementary source of information and we intent to investigate

hybrid systems in our future work. We apply latent topic modeling approaches to model

the hidden context in unstructured audio signals. These approaches have been applied

and widely used in text document processing, and here we adopt, extend, and evaluate

those ideas in an audio information retrieval scenario by drawing analogies between text

and audio signals.

The next major contribution of this work is the approach to mitigate the mismatch

between descriptions of aural experiences at the time of annotation and the query that

contains the desired information at the time of retrieval in dealing with unstructured audio

signals. This will benefit addressing the interoperability issue during the annotation and

retrieval processes. Our approach also provides users with sufficient flexibility in queries to

express their desired information with not only audio examples or categorical descriptions

but also their näıve (natural language) text queries. In this work, this is brought about by

using an intermediate audio description layer (iADL) which brings descriptions of aural

experience and desired sounds into one common platform.

3.1.2 Structure of the Chapter

This chapter is organized as follows. We will describe the proposed framework in Section

3.2. The description of the proposed latent acoustic topic model will be given in Section

3.3 which includes the review of the Latent Dirichlet Allocation (LDA) and detailed

implementation of the proposed method. We also discuss about some drawbacks of the

proposed latent acoustic topic model and proposed methodologies to overcome those

drawbacks in Section 3.4. Experimental setup description and results are provided in

Section 3.5 and Section 3.6, respectively. The chapter summary is given in Section 3.7.
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Figure 3.1: A simple diagram of audio information retrieval system.

3.2 Proposed Framework

An audio information system has two major components: annotation and retrieval. Our

goal is to build a general audio information retrieval system that annotates audio signals

with tags and retrieves a list of audio signals that are related to input queries. In this

chapter, we propose novel approaches in both aspects to build a context-based audio

information retrieval system. As illustrated in Fig. 3.1, the output of annotation process

is usually stored in storage so that the retrieval process can access the storage instead of

rerunning the annotation processes for the entire audio database. Although this strategy

is reasonable for the system to be efficient, it is still problematic when users inquire

atypical; it is often called an out-of-vocabulary problem. Therefore, we also introduce

an intermediate audio description layer that can provide the interoperability between

annotation and retrieval processes.

3.2.1 Intermediate Audio Description Layer

Before going into the detailed descriptions of the system, we introduce an intermediate

audio description layer so that annotation and retrieval processes could be built accord-

ingly. Note that processing ambiguous descriptions of embedded information in the array

of heterogenous information is challenging. Furthermore, the ambiguities also exist in

describing both the embedded information in audio contents and the desired information

for input queries. In designing an audio information retrieval system, one should pay

attention to these types of ambiguities to prevent a mismatch among them.
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As we approach this problem, we introduce a two-dimensional spectrum of descriptions

to illustrate the variability of descriptions with respect to how people verbally express the

embedded information in sounds. The two-dimentional spectrum is depicted in Fig. 3.2.

In the spectrum, we utilize two axes; one is for a psychoacoustic domain and the other

is for an evaluation domain. In the psychoacoustic domain, the upper part represents

the cognition process which requires users to have prior knowledge or models, while the

bottom part represents the sensation process which denotes immediate responses [61].

The evaluation domain indicates the influence of personal background, such as culture,

experience and social circumstances, in obtaining information from the audio signals. In

the evaluation domain, the left side yields more subjective vocabulary which indicates

Figure 3.2: An approximated mapping of various desired information onto two-
dimensional spectrum (the scales and boundaries of the examples are not exact).
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strong influence of personal background. Hence, variations across the describer in the left

side are greater than the right side.

In the figure, we provide three different kinds of information that exemplify the wide

spectrum of desired information. Although the scales and boundaries are not exact, it

provides a brief perspective of the wide variability of the information. These examples,

i.e. onomatopoeia, semantic information, and sentiments, are often considered as “de-

scription of sound itself”, “description of sounding situation”, and “description of sound

impression”, respectively. They are particularly interesting because they are known to

carry abundant information about sound. In their human-to-human audio information

retrieval tasks, Wake and Asahi showed that users can successfully describe sounds with

these three categories [78].

To mitigate the effects of ambiguities in descriptions, we introduce an intermediate

audio description layer, which can carry abundant information about sounds in a set

of pre-determinded categorical classes. This is motivated by the research on human-to-

human communication; Wake and Asahi showed that people can successfully describe

sounds with “sounding situation,” “sound itself,” and “sound impression” to another

people [78]. These categories of descriptions are related to the examples shown in Fig. 3.2;

“sound itself” with onomatopoeias, “sounding situation” with semantic information, and

“sound impression” with emotional information.

Among the variety of information, we focus on two different information aspects of

audio data: semantic and onomatopoeia descriptions. The semantic descriptions focus on

what makes sounds, while the onomatopoeia descriptions focus on how people describe

what they hear. These labels are particularly interesting because they are highly related

to psychoacoustic processes, which connect physical properties and human experience

of sounds; onomatopoeia labels can be considered from the perspective of the sensation

process, and semantic labels from cognition or perception process [61]. We leave the

emotional aspect of information for future work.
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3.2.2 Annotation

The annotation process is to extract embedded information in given audio clips and to

label with tags according to the extracted information. Dealing with general audio signals

is particularly difficult due to the heterogeneity of the signals; it includes unstructured

audio signals whose constructing rules are, if any, not known or difficult to estimate [58].

In the chapter, we utilize a latent topic model to describe audio context directly ob-

tained from audio signals. It models each audio content as a distribution over a fixed

number of unobservable hidden topics. Each topic, in turn, can be modeled as a dis-

tribution over a fixed number of acoustic words. The topic model algorithm was orig-

inally proposed in the framework of text information retrieval [35, 17, 70]. This idea

has been successfully extended to content-based image information retrieval applications

[8, 16, 83, 79]. Assuming that hidden “topics” exist behind image features, many re-

searchers have been using the topic modeling approach in their applications. The image

features are often quantized to provide discrete index numbers to resemble words in the

text topic modeling approach.

Despite the advantages of the latent topic model, to the best of our knowledge, there

have been only few efforts that applied topic modeling to content-based sound or audio

information retrieval applications. One of the first steps can be found in [72, 73, 74].

Sundaram et. al. used the Latent Perceptual Index (LPI) method for classifying audio

descriptions inspired by Latent Semantic Indexing (LSI) [9]. In two categories of audio

descriptions, i.e., onomatopoeia and semantic descriptions, they demonstrated a promis-

ing performance using latent structure in audio information retrieval applications. Levy

et. al. used an aspect model, which is based on probabilistic latent semantic indexing

(pLSI) on music information retrieval [51]. To built the aspect model, they utilized the

proposed muswords extracted from music audio signals and words from social tags.

In this chapter, we propose an acoustic topic model motivated by drawing analogies

between text and sound. We hypothesize that short segments of audio signals play a

similar role as words in text and that latent topics in audio signals which would be
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determined by the context of audio signals. In other words, each audio clip is viewed to

consist of latent acoustic topics that generate acoustic words. We use Latent Dirichlet

Allocation (LDA) method [35, 17, 70, 15] to model the acoustic latent topics and perform

audio information retrieval tasks.

3.2.3 Retrieval

The retrieval process is to extract a list of audio clips that are related to users’ input

queries. In this work, we attempt to provide users with flexibility in their queries, so

that people can use both naive text descriptions and audio examples as queries. Fig. 3.3

illustrates both types of queries in a retrieval process. In case of using audio example

queries, the system can annotate the input audio example with the pre-determined tags

and retrieve a list of audio clips related to the extracted information from the storage.

In case of using naive text queries, however, it is somewhat problematic to deal with

naive text queries because users’ naive descriptions to express their desired information

may vary. This may cause the out-of-vocabulary problem issued in [19] for audio retrieval

from text queries. Similar issues exist in text information retrieval applications [37, 6, 7].

In [37], Jones et. al. proposed a substitution method which replaces user’s original

descriptions for query systems. Bai et. al. utilizes a word similarity measurement to

extend their text queries [6, 7].

Figure 3.3: A simple diagram of audio information retrieval system (with various input
queries).
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To this end, we propose a transformation strategy that maps naive text queries to

pre-determinded classes on the intermediate audio description layer; specifically ono-

matopoeia and semantic labels. As it is described earlier, the rationale behind is that

onomatopoeias and semantic labels represent unique characteristics of an audio signal

and the text descriptions can be mapped into both semantic labels and onomatopoeia.

In turn, both annotation and retrieval processes have a shared labels in common so that

they are interoperable.

3.3 Latent Acoustic Topic Model

3.3.1 Latent Dirichlet Allocation (LDA)

The topic model assumes that documents consist of hidden topics and each topic can be

interpreted as a distribution over words in a dictionary [35]. This assumption enables

the generative model like Latent Dirichlet allocation (LDA). Fig. 3.4 illustrates a basic

concept of the LDA in a graphical representation, a three-level hierarchical Bayesian

model.

Let V be the number of words in a dictionary and w be a V -dimensional vector whose

elements are zero except the corresponding word index in the dictionary. A document

consists of N words, and it is represented as d = {w1, w2, · · · , wi, · · · , wN} where wi is

the i th word in the document. A data set consists of M documents and it is represented

as S = {d1,d2, · · · ,dM}.

In this work, we define k latent topics and assume that each word wi is generated by

its corresponding topic. The generative process can be described as follows:
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1. For each document d, choose θ ∼ Dir(α)

2. For each word wi in document d,

(a) Choose a topic ti ∼Multinomial(θ)

(b) Choose a word wi with a probability p(wi|ti, β),

where β denotes a k×V matrix whose elements represent the probability of a

word with a given topic, i.e. βnm = p(wi = m|ti = n).

In LDA, the most challenging question is how to estimate or infer latent parameters

like θ, t, α, and β while the only variable we can observe is w. In this section, we provide

a step-by-step description of LDA.

Suppose that we have k latent topic. We define θ as a document specific k-dimensional

random variable, which provides a probability for choosing topics for each word in the

corresponding document. A topic for each word is determined by choosing one topic

among a set of topics based on the probability that is provide by θ; this process can be

considered as a multinomial process. Therefore, it is reasonable to use a Dirichlet random

variable, which is a conjucate prior distribution of multinomial distribution.

A k-dimensional Dirichlet random variable θ is in the k−1 simplex because
∑k

n=1 θn =

1 and ∀n θn ≥ 0. The probability of θ is given as following:

p(θ|α) =
Γ(
∑k

n=1 αn)∏k
n=1 Γ(αn)

θα1−1
1 · · · θαk−1

k (3.1)

where α is a k-dimensional vector and Γ(·) is the Gamma function.

Figure 3.4: Graphical representation of the topic model using Latent Dirichlet Allocation.
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For each word, the corresponding topic t is a k-dimensional multinomial random

variable whose number of trials is just one; only one element tτ is 1 where τ is the index

of chosen topic, and the rest of the elements in t are zeros. Therefore, the probability can

be represented as following:

p(tτ = 1|θ) = 1!

t1! · · · tk!
θt11 · · · θ

tk
k

= θτ

(3.2)

where the subscripts represent the indices of elements in a vector. In general, the proba-

bility of t can be written as

p(t|θ) =
k∏

n=1

(θn)
tn . (3.3)

According to the chosen topic, we can draw a word form in a dictionary based on word

probabilities β. The word probability β is a k×V matrix where βij = p(wj = 1|ti = 1). A

V -dimensional word vector w is also a multinomial random variable. It can be represented

as only one element wυ is 1 and the rest of the elements in w are zeros, where υ is the

index of chosen word. The probability of the word with a given topic and word probability

β can be represented as following:

p(wυ = 1|tτ = 1, β) =
1!

w1! · · ·wV !
βw1
τ1 · · ·β

wV
τV

= βτυ

(3.4)

In general, the word probability can be written as

p(w|tτ = 1, β) =

V∏
m=1

(βτm)wm . (3.5)

Let us consider that we have a set of N words in w and its corresponding set of N

topics t; a topic ti represents a topic for word wi where the subscripts denote the index
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of a vector in a set. With given parameters α and β, the joint probability of θ, w, and t

can be derived as follows.

p(θ, t,w|α, β) = p(θ|α, β) · p(t|θ, α, β) · p(w|θ, t, α, β)

= p(θ|α) · p(t|θ) · p(w|t, β)

= p(θ|α)
N∏
i=1

p(ti|θ)p(wi|ti, β)

(3.6)

where the subscripts represent the indices of the vector in a sequence of vectors.

If we marginalize the latent components, we need to sum over topics in each word

level and to integrate over θ in a document level:

p(w|α, β) =
∫
p(θ|α)

N∏
i=1

∑
ti

p(ti|θ)p(wi|ti, β) dθ (3.7)

If we simplify the above equation in terms of model parameters using (3.3) and (3.5), the

marginal distribution can be written as followings.

p(w|α, β) =
∫
p(θ|α)

N∏
i=1

∑
ti

p(ti|θ)p(wi|ti, β) dθ

=

∫
p(θ|α)

N∏
i=1

k∑
n=1

p(tin = 1|θ)p(wi|tin = 1, β)dθ

=

∫
p(θ|α)

N∏
i=1

k∑
n=1

θn p(wi|tin = 1, β)dθ

=

∫
p(θ|α)

N∏
i=1

k∑
n=1

θn

V∏
m=1

(βnm)wimdθ

=

∫
p(θ|α)

N∏
i=1

k∑
n=1

V∏
m=1

(θnβnm)wimdθ

=
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

∫ k∏
n=1

(θn)
αn−1

N∏
i=1

k∑
n=1

V∏
m=1

(θnβnm)wimdθ

(3.8)

where the subscripts represent the indices of the vector in a sequence of vectors and the

second subscripts represent the indices of element in the corresponding vector.
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Now, the question is how to estimate or infer parameters like t, α, and β while the

only variable we can observe is w. In many estimation processes, parameters are often

chosen to maximize the likelihood values of a given data w. The likelihood can be defined

as

l(α, β) =
∑
w∈w

log p(w|α, β) . (3.9)

Once α and β are estimated, the joint probability of θ and t with given w should be

estimated as

p(θ, t|w, α, β) = p(θ, t,w|α, β)
p(w|α, β)

. (3.10)

These processes, however, are computationally impossible because both inference and

estimation require computing p(w|α, β), which includes intractable integral operations

(See (3.8)). To solve this problem, various approaches, such as Markov Chain Monte Carlo

(MCMC) [70], gradient descent optimization method [54] and variational approximation

[15] have been proposed. In this work, we try a variational approximation method and a

Gibbs sampling method, a specific form of MCMC, to estimate and infer the parameters

of the topic model.

The rationale behind of the variational approximation method is to minimize distance

between the real distribution and the simplified distribution using Jensen’s inequality [15,

24]. The simplified version has γ and ϕ, which are the Dirichlet parameter that determines

θ and the multinomial parameter that generates topics respectively, as depicted in Fig. 3.5.

Figure 3.5: Graphical representation of the approximated topic model for variational
inference method to estimate and infer the Latent Dirichlet Allocation parameters.
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The mathematical details of the methods are provided in Appendix A. On the other hand,

Gibbs sampling method is based on MCMC which is a iterative process of obtaining

samples by allowing a Markov chain to converge to the target distribution [34, 70].

3.3.2 Implementation of Latent Acoustic Topic Model

In this subsection, we provide in-depth descriptions of the proposed algorithm. Since we

utilize the latent topic model, which is originally proposed for text document modeling

applications, it requires word-like, discrete indexing numbers to apply the latent topic

model as it is done in image retrieval applications. In this work, we introduce the notion

of acoustic words to tackle this problem. After extracting feature vectors that describe

acoustic properties of a given segment, we assign acoustic words based on the closest

word in the pre-trained acoustic words dictionary. With the extracted acoustic words,

we perform the Latent Drichlet Allocation (LDA) to model hidden acoustic topics in an

unsupervised way [45]. Then, we use the posterior Dirichlet parameter which describes

the distribution over the hidden topics of each audio clip as a feature vector of the

corresponding audio clip. Fig. 3.6 illustrates a simple notion of the proposed acoustic topic

model procedure, and the detailed descriptions are given in the following subsections.

3.3.2.1 Acoustic Features

We use mel frequency cepstral coefficients (MFCC) to extract acoustic properties in a

given audio signal. The MFCCs provide spectral information considering human auditory

characteristics, and they have been widely used in many sound related applications, such

as speech recognition and audio classification tasks. The reason we have chosen MFCC is

to investigate the effects of spectral characteristics in the latent topic model approach. In

this work, we applied 20 ms hamming windows with 50% overlap to extract 12-dimensional

feature vectors.
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3.3.2.2 Acoustic Words

With a given set of acoustic features, we trained a dictionary using a vector quantization

algorithm called LBG-VQ [33]. Similar ideas to make acoustic words can be also found

in [19, 73, 72]. The rationale is to cluster audio segments which have similar acoustic

characteristics and to represent them as discrete indexing numbers. Once the dictionary

is built, the extracted acoustic feature vectors from sound clips can be mapped to acoustic

words by choosing the closest word in the dictionary. In this work, we set the number of

words in the dictionary as an experimental setting. For simplicity, we choose one of values

in a set V ∈ {200, 500, 1000, 2000, 4000}. After extracting acoustic words, we generate

a word-document co-occurance matrix, which describes a histogram of acoustic words in

individual audio clips. The word-document co-occurance matrix is fed in to the Latent

Dirichlet Allociation (LDA) algorithm to model the acoustic topics.

Figure 3.6: Diagram of the proposed acousic topic model algorithm
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most probable topics (the number of acoustic words is 1,000 and the number of latent
topic is 100).
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3.3.2.3 Latent Acoustic Topic

Each sound clip is assumed to be a mixture of acoustic topics. Since the acoustic topics

are hidden variables, they are learned in an unsupervised manner (although the number

of latent topics should be set manually). As described in the previous section, we use

both variational inference method and Gibbs sampling method to estimate and infer the

parameters of the acoustic topic model.

Fig. 3.7 illustrates an example of acoustic topic modeling results (the number of

acoustic words is 1,000 and the number of latent topic is 100; we use a sound clip from

the database in Section 3.5 whose filename is 1-GOAT-MACHINE-MILKED-BB.wav).

Fig. 3.7 (a) depicts a topic distribution in a given audio document, while Fig. 3.7 (b)-

(f) represent the 5 most probable acoustic words with their probabilities in the 5 most

probable topics. In Fig. 3.7 (a), there are only several topics are evidently present among

100 latent topics. In turn, as it is illustrated in Fig. 3.7 (b)-(f), each topic has a probability

distribution over acoustic words (12-dimensional MFCC). With this acoustic topic model,

an audio signal can be modeled as a probability distribution over the latent acoustic

topics. In this work, we utilize the probability distribution as a representative feature of

the audio signal.

For comparison, we use the Latent Perceptual Indexing (LPI) scheme proposed in

[72] as a baseline. It is based on Singular Value Decomposition (SVD) that would reduce

the feature vector dimension. The procedure is identical up to the step of generating the

word-document co-occurance matrix. In the sense that the dimensions of feature vectors

are reduced after the process, the topic model can be considered as a feature dimension

reduction as well. However, they differ in interpretations of feature vectors that represent

the corresponding audio clip. The topic model uses statistical inference, while Latent

Perceptual Indexing (LPI) extracts feature vectors deterministically using Singular Value

Decomposition (SVD). The differences in experimental results will be described later in

this chapter.
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Figure 3.8: An example of latent acoustic topic model from the posterior point of view.
Acoustic words represent discrete symbols of acoustic characteristics (vector quantized
MFCC in this work). The size of circles indicate the probability that an acoustic word can
be assigned to the corresponding latent topic (four latent acoustic topics in this example)

3.4 Modified Methodologies for Improving Latent Acoustic

Topic Model

In this section, we discuss about some drawbacks of the proposed latent acoustic topic

model and propose modified methodologies to improve the original idea. Particularly, we

tackle the bag-of-words approach and unsupervised approach as described in the following

subsections.

3.4.1 N-gram approach

Researchers have been showing promising results by treating audio signals analogous to

text documents [50, 19, 73, 45, 42]. Many of them used mel-frequecy cepstral coefficients

(MFCC) to capture acoustic properties and transformed the coefficients into discrete

indices. Once the audio signals are represented with a sequence of discrete indices like

text documents, many text modeling algorithms can be applied; Chechik et al. used the

passive-aggressive model for image retrieval (PAMIR) [19]; Sundaram et al. introduced

a latent perceptual indexing (LPI) method based on latent semantic analysis (LSA) [73],

and Lee et al. applied probabilistic latent semantic analysis (pLSA) [50]. Recently,
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we have proposed the acoustic topic models using latent Dirichlet allocation (LDA) to

characterize unstructured audio signals [45]. Assuming that there exist latent acoustic

topics and each audio clip is a mixture of those latent topics, we could demonstrate

promising results in audio classification tasks.

One of the drawbacks of these algorithms, including our acoustic topic modeling

scheme, is that the bag-of-words approach which does not consider temporal dynamics

of features. In this work, we introduce an N -gram approach to account for temporal

dynamic information of audio features. The closest work to this idea has been done by

Reed and Lee [64]. For music information retrieval applications, they proposed a new

iterative segmentation method based on Viterbi decoding and Baum-Welch estimation.

With the proposed segments, they apply the bi-gram approach to capture the temporal

dynamic information in an LSA framework.

3.4.1.1 Uni-gram approach

Once the dictionary is built, the extracted acoustic feature vectors from the test sound

clips can be mapped to acoustic words by choosing the closest word in the dictionary

so that individual short time segments have their assigned indices, acoustic word. In

this work, we call this method uni-gram approach to contrast with the proposed N -gram

approach. After extracting uni-gram words, we generate a word-document co-occurrence

matrix which describes a histogram of acoustic words in individual audio clips. The

word-document co-occurrence matrix is used with the LDA to model audio clips as a

distribution of latent acoustic topics. After the LDA modeling, we use the Dirichlet pa-

rameter γ as the representative feature vector of a single sound clip to be used consequent

classifiers.

3.4.1.2 N-gram approach

To model the dynamic information embedded in acoustic words, we introduce the N -gram

approach which describes partial dynamics of acoustic words by considering consecutive
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Figure 3.9: An illustration of extracting n-gram (bi-gram in this work).

words. In this work, without the loss of conceptual generality, we consider only one

adjacent word to make bi-grams, since N = 2 case is a good starting point to explore the

usefulness of local context and computational complexity (since dictionary size increases

exponentially) [46].

A new acoustic dictionary W̃ can be built based on the bi-grams whose elements are

from the original acoustic dictionaryW. The i-th word in the new dictionary w̃i is defined

as follows:

w̃i = {(wn, wm) |wn, wm ∈ W} (3.11)

where

n = ⌊i/V ⌋

m = mod(i/V ) ,

(3.12)

⌊·⌋ and mod(·) represent the maximum integer that does not exceed the value of the

division and the modulus of the division, respectively. Note that the size of the new

dictionary is V 2.

Once the new dictionary for bi-grams is built, the extracted acoustic feature vectors

from the test sound clips should be first mapped to acoustic words by choosing the

closest word in the dictionary and then consider the adjacent acoustic words to generate

the bi-grams. After extracting bi-gram words, we follow the same procedure as uni-gram

approach; we generate a word-document co-occurrence matrix and feed into the LDA

framework.
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In this work, we set the number of words in the dictionary 200 for simplicity. Conse-

quently, the size of bi-gram dictionary is 40,000.

3.4.1.3 Hybrid approach

We also introduce a way of combining both uni-gram and bi-gram approaches. In this

work, we propose to make a super-vector of Dirichlet parameters after the LDA inference

process; γunigram and γbigram from using uni-gram and bi-gram approaches, respectively.

The dimension of the features which are fed into classifiers is, therefore, 2 × k where k

represents the number of latent acoustic topics.

3.4.2 Supervised Latent Acoustic Topic Model

The proposed unsupervised latent acoustic topic model requires consequent classifiers,

such as k-nearest neighborhood (kNN) or support vector machines (SVM), to perform

pattern recognition. Although the categorial labels are not necessary for modeling audio

signals, the labels are required to train the consequent classifiers. Therefore, the classi-

fication performance also depend on the specific classifiers rather than audio modeling

procedure itself.

In this subsection, we propose the supervised version of acoustic topic model to asso-

ciate the categorical labels of sound clips with latent acoustic topics; specifically we apply

the supervised LDA (sLDA) method introduced in [14, 80]. The rationale behind this is

that considering categorical labels in learning latent variables might endow discriminant

power rather than treating the acoustic topic modeling and the classification processes

separately and independently [43]..

As pointed out in the previous section, the LDA-based acoustic topic model is trained

in an unsupervised manner which does not require any labels during learning phase. The

proposed supervised acoustic topic model utilizes a modified version of LDA as shown

in Fig. 3.10 which shares most of properties with unsupervised LDA except it includes a

node c that represents the category of a document and a kernel function η that transfers
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Figure 3.10: Graphical representation of topic models: supervised LDA.

the topic distribution t to the categories. The generative process can be described as

follows:

1. For each document d, choose θ ∼ Dir(α)

2. For each word wi in document d,

(a) Choose a topic ti ∼ Multinomial(θ)

(b) Choose a word wi with a probability p(wi|ti, β)

3. Choose class label c|t ∼ softmax(t̄, η),

where t̄ represents the topic frequency of a document, i.e., t̄ = 1
N

∑N
n=1 tn. The

probability of a certain class with give t̄ and η can be represented as

p (c|t̄, η) = exp(ηc
T t̄)∑C

c′=1 exp(ηc′
T t̄)

(3.13)

3.4.2.1 Inference

Like the conventional Latent Dirichlet Allocation method, computing exact values is

not computationally feasible either because it involves intractable integral operations. To

solve this problem, various approaches such as Laplace approximation and Gibbs sampling

method, have been proposed. In this work, we utilize the variational inference method.
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The simplified version has γ and ϕ which, respectively, are the Dirichlet parameter

that determines θ and the multinomial parameter that generates topics, as depicted in

Fig. 3.5. Note that this variational approximate method is valid for both unsupervised

LDA and supervised LDA, since the node c in supervised LDA is not associated with any

latent variable.

The joint probability of θ and t can be represented as

q (θ, t|γ, ϕ) = q(θ|γ)q(t|ϕ)

= q(θ|γ)
N∏
i=1

q(ti|ϕi)
(3.14)

and tries to minimize the difference between real and approximated joint probabilities

using Kullback-Leibler (KL) divergence, i.e.

argmin
γ,ϕ

D(q(θ, t|γ, ϕ)||p(θ, t|w, c, α, β)) . (3.15)

If we take a partial derivative with respect to γn and ϕin, we can obtain the fol-

lowing iterative process to minimize the difference between real and approximated joint

probability:

γn = αn +
N∑
i=1

ϕin (3.16)

ϕin ∝ βnm exp

Ψ(γn)−Ψ

 k∑
j=1

γj


· exp

(
1

N
ηcn − (hTϕi

old)−1hn

) (3.17)

where ϕoldi represents the value of ϕi at the previous iteration and h represents a simplified

linear function of ϕi (see [80] for more details).
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Recall that the inference procedure for the conventional LDA is

γn = αn +

N∑
i=1

ϕin (3.18)

ϕin ∝ βnτ exp

Ψ(γn)−Ψ

 k∑
j=1

γj

 . (3.19)

Note that both approaches share the same update for Dirichlet parameter γ while update

for ϕin is scaled according to the kernel function η and the previous ϕi. The main

difference between LDA and sLDA lies in this update.

3.4.2.2 Classification

With the BBC Sound Effects Library (details are given in Section 3.5.1), we perform a

5-fold classification task with the onomatopoeic and semantic labels of audio clips.

Since the models using sLDA are trained with corresponding labels, we can classify

test audio clips without extra consequent classifiers. Inferring a class category from

sLDA-based models requires some approximation processes as well, such as variational

approximation and Jensen’s inequality [80]. The inference can be written as follows.

ĉ = argmax p(c|w) (3.20)

where

p(c|w) ≈
∫
p (c|t) q(t)dt

=

∫
exp(ηc

T t̄)∑C
c′=1 exp(ηc′

T t̄)
q(t)dt

≥ exp

(
Eq

[
ηc

T t̄
]
− Eq

[
log

(
C∑

c′=1

exp
(
ηc′

T t̄
))])

(3.21)
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Since the second term is common for all classes, we can infer the class which maximizes

the first term, i.e.,

ĉ = argmaxEq

[
ηc

T t̄
]

= argmax ηc
T ϕ̄

(3.22)

where ϕ̄ = 1
N

∑N
n=1 ϕn.

3.5 Experimental Setup

3.5.1 Database

We have collected 2,140 audio clips from the BBC Sound Effects Library [3], and labeled

each file with onomatopoeia, semantic labels and short descriptions. The semantic labels

and short descriptions are provided with the database. The semantic labels are given

as one of predetermined 21 different categories. They include transportation, military,

ambiences, human, and so on. The short descriptions consist of a set of words that repre-

sent the audio clip. Total number of words in the description is 2,820 word and average

number of words in each description is 7.2 words after removing stop words and punc-

tuation marks. For onomatopoeic words, we performed subjective annotation to label

individual audio clips. We asked subjects to label the corresponding audio clip among

Table 3.1: Summary of BBC Sound Effect Library.

Number of sound clips 2,140

Number of semantic categories 21

Number of onomatopoeic words 22

Number of words for descriptions 2,820

Average number of words in a description 7.2

Average number of acoustic words in an audio clip 1,294
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Table 3.2: Examples of BBC sound library along with its various descriptions.

Ex 1. Filename 1-GOAT-MACHINE-MILKED-BB.wav

Semantic category MACHINERY/TOOLS

Onomatopoeia BLEATING

Short description animals: goats one goat milked by machine

other goats bleating occasionally - interior - abrupt end

Ex 2. Filename 1-ENGLISH-GOAT-BLEATING-BB.wav

Semantic category ANIMALS

Onomatopoeia BLEATING

Short description animals: goats one old english goat bleating -

occasional wind noise - interior

22 onomatopoeia descriptions. See [73] for more details about collecting onomatopoeic

words. The audio clips are originally recorded with 44.1kHz (stereo) sampling rate and

down-sampled to 16kHz (mono) for acoustic feature extraction. The average length of the

audio clips is about 13 seconds, which can generate approximately 1,300 acoustic words

for an audio clip. A summary of the database is given in Table 3.1.

Table 3.2 shows examples of BBC sound library along with various labels: semantic

labels, onomatopoeic words and short text descriptions. Both examples include the sound

of a goat. While the subjective annotation of onomatopoeic words are the same, the

semantic categories are different. These examples show the ambiguity of information

even when they include the same audio contents.

Table 3.3 shows the distribution of onomatopoeic words and semantic labels for the

database. For example there are 349 audio clips whose semantic labels are “animal’.’ In

that category of “animal”, there exist various onomatopoeic words to represent the audio

clips (e.g. 62 clips for “growl” and 60 clips “meow”).
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3.5.2 Experimental Scenarios

In this work, we design two different tasks; audio classification and text query classifi-

cation. The task of classifying audio signals can be used in the annotation process and

in the retrieval process using audio example queries. On the other hand, text query

classification task can be used in the retrieval process using naive text queries. This

experimental setting is reasonable because annotation process and retrieval process are

independent except they share the storage as it is illustrated in Fig. 3.1. In both tasks,

we allow an audio clip to have two tags, i.e. onomatopoeic and semantic labels assuming

that these two tags describe the audio signals.

3.5.2.1 Audio Classification

Using the acoustic topic model, we can extract a single feature vector from an audio clip.

Assuming that similar sounding situation share similar distribution over a set of topics,

the feature vector, i.e. a posterior Dirichlet parameter of the corresponding audio clip,

represents the distribution over latent topics in the corresponding audio clip. With the

feature vectors, we utilize a Support Vector Machine (SVM) with polynomial kernels as

a machine learning algorithm for this application. The performances are obtained by

averaging five times of 10-fold cross validation tasks.

3.5.2.2 Text Query Classification

In this work, as we discussed in Section 3.1, we attempt to provide users with flexibility

in their queries, so that people can use naive text as queries. In case of using naive

text queries, however, it is somewhat problematic to deal with naive text queries due to

uncertainty or ambiguity; users’ naive descriptions to express their desired information

are more explanatory rather than categorical. Furthermore, there are numerous types of

polysemic words and synonymic words in text descriptions. This phenomenon may cause

out-of-vocabulary problems where users inquire certain information which the system does

not have a corresponding model yet.
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Figure 3.11: A simple diagram of audio classification task.

Figure 3.12: A simple diagram of text query classification task.

In this section, we introduce a new method that transforms naive text queries to

pre-determinded audio descriptions on the intermediate audio description layer, i.e. ono-

matopoeias and semantic labels, so that people use their naive text descriptions to retrieve

sounds they want. We utilize the semantic analysis methods that are used for analyzing

acoustic context in the previous section: latent semantic indexing (LSI) and latent topic

model. As it is described in the previous chapter, the latent topic model represents the
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Figure 3.13: An example of words and their probability in topics. Topics that include
word “animal”.

probabilistic word distribution over topics [15, 35], while the LSI yields the association

between words in a semantic space [9]. To this end, we follow a general way to build both

topic models and latent semantic indexing. First, we build a dictionary that contains all

the words in descriptions. Then, we make a word-document co-occurance matrix as it is

done in an acoustic topic model. The word-document co-occurance matrix is fed in to

both LSI and LDA algorithms to model the naive text descriptions.

For text query transformation tasks, we also apply similar settings. First, we extract

a single feature vector from a description for an audio clip using latent topic model and

latent semantic indexing method. Then, we utilize a SVM to classify the descriptions

with the extracted feature vectors.

Fig. 3.13 shows an example of using the latent topic models to model text descriptions

(we use the database introduced in Section 3.5). The figure shows the topics that has the

word “animal(s)” in the 5 most probable words in the corresponding topics. Although

each topic contains the word “animal(s),” surrounding words are different across the top-

ics. It is notable that the surrounding words in individual topics are somewhat consistent

in making a word cluster.
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3.6 Results and discussion

3.6.1 Audio Classification

There are a couple of parameters that affect the modeling strategies in acoustic topic

models such as size of acoustic dictionary and the number of latent components, etc. In

this section, annotation accuracy (or classification accuracy in the sense that we consider

only one tags for each information category) according to these parameters will be given

to demonstrate their effects on modeling accuracy.

Fig. 3.14 shows the results of content-based audio description classification tasks using

Latent Perceptual Indexing (LPI, dashed line) and Latent Dirichlet Allocation (LDA, solid

lines) according to the number of latent components. The size of dictionary is set as 1,000

for this experiment. In LDA, we utilize both variational inference and Gibbs sampling

methods for LDA approximation (red line for variational inference and green line for Gibbs

sampling). Fig. 3.14 (a) and 3.14 (b) represent the results using onomatopoeic words and

semantic labels, respectively. The number of latent components can be interpreted as the

dimension of feature vector extracted from an audio clip. However, the interpretation

differs in Latent Perceptual Indexing (LPI) and Latent Dirichlet Allocation (LDA). The

number of latent components indicates a reduced rank after Singular Value Decomposition

(SVD) in LPI, while it represents the number of hidden topics used in LDA.

The results clearly show that the proposed acoustic topic model outperforms the con-

ventional SVD-based latent analysis method in both onomatopoeia labels and semantic

labels regardless of approximation methods (no significant accuracy difference is found

according to approximation methods). This significant improvement is evident regardless

of the number of latent components. We argue that such results are due to utilizing LDA

to analyze the hidden topics in audio clips. Note that the LPI analysis uses a deter-

ministic approach based on SVD to map each word to the semantic space [9]. Although

the semantic space is powerful to cluster the words that are highly related, the capabil-

ity to predict the clusters from which the words are generated is somewhat limited in
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Figure 3.14: Classification results of acoustic words using Latent Perceptual Indexing
(LPI, dashed line) and Latent Dirichlet Allocation (LDA, solid lines) according to the
number of latent components: (a) onomatopoeic words and (b) semantic labels.

76



an euclidean space. With the proposed topic model, on the other hand, we are able to

model the probabilities of acoustic topics that generate a specific acoustic word using a

generative model.

In classifying onomatopoeia labels, the overall accuracy is lower than that of classify-

ing semantic labels. This might be because the onomatopoeic words are for local sound

contents rather than global sound contents; while the onomatopoeic words are local repre-

sentations of sound clips, the topic model utilizes all the acoustic words from sound clips.

Saliency detection algorithms [38] or foreground/background classification method [22]

might be necessary to improve accuracy. It can be also observed that accuracy increases

as the number of latent components increase. This is reasonable in the sense of feature

dimension reduction; a larger feature vector usually captures more information. It should

be noted, however, that there is a trade-off between accuracy and complexity. Increasing

the feature vector size would increase computing power requirements exponentially as

well.

We also perform the similar tasks with various sizes of dictionary. Fig. 3.15 shows the

classification results according to the size of acoustic dictionary. Fig. 3.15 (a) and 3.15

(b) represent the results using onomatopoeic words and semantic labels, respectively.

In this experiment, we set the number of latent components as 5% of size of acoustic

dictionary for simplicity (e.g. 10 latent components for 200 acoustic words and 200 latent

components for 4,000 acoustic words). As it is shown in the previous results, the results

confirm that the proposed acoustic topic model outperforms the conventional SVD-based

latent analysis method in both onomatopoeia labels and semantic labels. This significant

improvement is evident regardless of the number of latent components (except the case of

semantic labels with 200 acoustic words). However, the performances do not seem to be

monotonically improving as the size of acoustic dictionary increases, especially concerning

LPI cases. This is because these results are not directly comparable between the different

sizes of acoustic dictionary; the numbers of latent components are also different if we

apply different size of acoustic dictionary.
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Figure 3.15: Classification results of acoustic words using Latent Perceptual Indexing
(LPI) and Latent Dirichlet Allocation (LDA) according to the size of acoustic dictionary:
(a) onomatopoeic words and (b) semantic labels.
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3.6.2 Query Classification

Unlike the acoustic topic model, we consider only one parameter that critically affects

the modeling strategies in topic models, i.e. the number of latent components. This is

because the size of vocabulary is already fixed with a given database. In this section,

annotation accuracy (or, classication accuracy in the sense that we consider only one

tags for each information category) according to the latent components will be given to

demonstrate their effects on modeling accuracy.

Fig. 3.16 illustrates the results of classification tasks of text descriptions of audio

signals using Latent Semantic Indexing (LSI, dashed line) and Latent Dirichlet Allocation

(LDA, solid lines) according to the number of latent components; the size of dictionary

is set as 1,000 for this experiment. In LDA, we utilize both variational inference and

Gibbs sampling methods for LDA approximation (red line for variational inference and

green line for Gibbs sampling). Fig. 3.16 (a) and 3.16 (b) represent the results using

onomatopoeic words and semantic labels, respectively. The number of latent components

can be interpreted as the dimension of feature vector extracted from a description of an

audio clip.

The results clearly show that the SVD-based LSI method outperforms LDA method in

classifying both onomatopoeic and semantic labels regardless of approximation methods

for LDA. These significant differences are evident regardless of the number of latent com-

ponents. We argue that this is because only few words are available for a description of

an audio clip. As shown in Table 3.1, the average number of words in a description is 7.2.

That might be too small to train the topic models which utilize a probabilistic approach

while LSI utilizes a deterministic method. Furthermore, in the cases that use the vari-

ational approximation scheme, the topic model method cannot even generate any result

as the number of latent components increases, while it somehow yield reasonable results

with the Gibbs sampling scheme. We argue that this is because of the characteristics of
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(b) Semantic labels

Figure 3.16: Classification results of text descriptions using Latent Perceptual Indexing
(LPI, dashed line) and Latent Dirichlet Allocation (LDA, solid lines) according to the
number of latent components: (a) onomatopoeic words and (b) semantic labels.
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approximation methods; while the Gibbs sampling method uses a simple iterative pro-

cess of sampling and updates, the variational approximation method requires a sufficient

number of training data to learn parameters.

In classifying onomatopoeia labels, just as the audio classification task, the overall

accuracy is lower than that of classifying semantic labels. This shows the descriptions

are highly related to semantic labels rather than onomatopoeic words. In LSA and LDA

with Gibbs sampling method cases, It can be also observed that accuracy increases as

the number of latent components increase. This is reasonable in the sense of feature

dimension reduction; a larger feature vector usually captures more information. It should

be noted, however, that there is a trade-off between accuracy and complexity. Increasing

the feature vector size would increase computing power requirements exponentially as

well.

3.6.3 Audio Classification with Modified Methodologies

3.6.3.1 N-gram approach

Fig. 3.17 shows the performance of audio classification tasks for both onomatopoeic la-

bels and semantic labels. These two types of labels are chosen based on our previous

work in [41] where the intermediate audio descriptive layer (iADL) was proposed to pro-

vide interoperability between the annotation and retrieval processes in an audio retrieval

framework.

The 5-fold cross validation performance is shown as a function of number of latent

components on the figure. As shown in the figure, the accuracy increases as the number

of latent acoustic topics increases across various types of experimental settings. It is

consistent with our previous work reported in [45] where we argued that this trend is

reasonable in the sense of feature dimension reduction.

The direct comparison of performance with respect to the same number of latent

acoustic topics is fair in the sense that the feature dimensions are the same which are

fed into the classifier. In that sense, there is no significant performance differences by
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using the bi-gram modeling approach (dash-dot lines) compared to the uni-gram approach

(dashed lines). However, the direct comparison may not be fair if we consider the latent

Dirichlet allocation algorithm as a dimension reduction process. For example, in the case

that the number of latent acoustic topics is 100 (the feature dimension of audio clips is

100), the system only uses 0.25% of original feature vector dimension in bi-gram cases

while it uses 50% in unigram cases. It is also related to the sparseness of data; for bi-gram

modeling, 40,000 acoustic words are used to represent audio signals while 200 acoustic

words are used for the uni-gram approach.

The solid lines show the performance using the hybrid method which makes super-

vectors of feature vectors from uni-gram and bi-gram approaches. For simplicity, we

use the feature vectors which are extracted using the same number of latent acoustic

topics. Since we concatenate two feature vectors to make a super-vector, the dimension

of a super-vector is greater than the one of original feature vectors (twice greater in this

experiment). The results clearly shows the significant performance improvement by using

the hybrid method which indicate that the uni-gram and bi-gram approaches represent

complementary information.

We proposed the N -gram approach to model dynamic information within the text-like

audio modeling scenario for information retrieval applications. Specifically, we have used

the bi-gram model to consider adjacent acoustic words and built a new acoustic word

dictionary for the bi-grams. Experimental results showed that the proposed N -gram ap-

proach brought significant improvements in the performance by providing complementary

local dynamic information.

3.6.3.2 Supervised LDA

Fig. 3.18 illustrates the classification results of audio clips using latent acoustic topics with

both LDA and sLDA (Table 3.4 shows the performance in numbers along with relative

improvements).
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Table 3.4: Classification results of audio clips using latent acoustic topics with LDA and
supervised LDA.

Relative
Accuracy (%) LDA sLDA

Improvement

Semantic
labels

38.8 43.4 11.9

Onomatopoeic
labels

32.1 35.1 9.3

As shown in the figure, the accuracy rates using the supervised acoustic topic model

are higher than the ones using conventional acoustic topic model for both onomatopoeic

and semantic labels (11.9% and 9.3 % relative improvements for semantic labels and

onomatopoeic labels, respectively). This significant improvement is from using sLDA

instead of LDA; sLDA learns its parameters according to categories of training data,

while LDA does not consider the categories. Instead, LDA uses a consequence classifier

(SVM, in this work) for classification tasks so that the acoustic topic modeling process is

independent of descriptive categories.

The conventional acoustic model using LDA, however, has some advantages over the

supervised acoustic model using sLDA, besides the fact that sLDA requires significant

greater computational power than LDA does. Since LDA learns the latent variables in

an unsupervised manner without considering the labels, one can apply various types of

categories and classifiers without re-learning the parameters. For example, in this work,

we trained two separate supervised acoustic topic models for two different descriptive

categories, i.e., onomatopoeic and semantic labels, while we could train only one acoustic

topic model for both descriptive categories and use consequent SVM for classification

tasks.

In this work, we investigated the effects of supervised acoustic topic models over the

conventional acoustic topic model within the unstructured audio information retrieval

framework. While the conventional acoustic topic model utilizes a latent Dirichlet allo-

cation (LDA) method, we adopted a modified version, supervised LDA (sLDA), which
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considers categorical labels during learning latent variables. The experimental results

with BBC Sound Effects Library showed that the supervised acoustic topic model using

sLDA outperforms the conventional acoustic topic model with LDA; it indicates that the

supervised acoustic model brings benefits in terms of classification accuracy by learning

parameters considering corresponding descriptive categories of audio clips rather than

unsupervised learning.

3.7 Chapter Summary

To model the context hidden in the audio signals, we proposed a latent acoustic topic

model based on Latent Dirichlet Allocation (LDA), which learns hidden acoustic topics in

a given audio signal in an unsupervised way. We adopted the variational inference method

and the Gibbs sampling method to train the topic model and used the posterior Dirichlet

parameters as a representative feature vector for an audio clip. Due to the rich acoustic

information present in audio clips, the embedded information can be categorized based on

the intermediate audio description layer which includes semantic and onomatopoeic cat-

egories; the semantic and onomatopoeic categories represent the cognition of the acoustic

realization of a scene and its perceptual experience, respectively. The results of classify-

ing theses two descriptions showed that the proposed acoustic topic model significantly

outperforms the conventional SVD-based latent structure analysis method.

We also proposed the text query transformation strategy to provide the flexibility in

input queries. We utilized both the latent semantic indexing (LSI) method and the latent

topic model to this end; it transformed naive input queries onto the intermediate audio

description layer so that the annotation process and the retrieval process are interopera-

ble. The results suggested that LSI yields better performance than the latent topic model

because of the number of words in a description.
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Figure 3.17: Classification results of audio clips using unigram and bigram acoustic words
in the acoustic topic model framework according to the number of latent acoustic topics:
(a) onomatopoeic words and (b) semantic labels.
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Figure 3.18: Classification results of audio clips using latent acoustic topics with LDA
and supervised LDA.
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Chapter 4

Concluding Remarks

4.1 Conclusion

In this dissertation, we have focused on extracting context information in audio signals

toward building context-based audio information retrieval systems. We have categorized

the audio signals according to how they are generated, and focus on two major categories

of audio signals: well-structured audio signals such as music and general audio signals

which include unstructured audio signals.

In dealing with well-structured audio signals, i.e. Chapter 2, we introduced a new

music information retrieval method using the proposed context-based music fingerprint.

The proposed music fingerprint models musically meaningful aspects of a music audio

signal, such as harmonic structures and their temporal dynamic information, in a compact

representation. It provides an efficient way of extracting information useful for various

music information retrieval applications. Through experimental evaluation with MIR

frameworks, such as opus identification, composer identification, and semantic annotation,

we discussed the performance of the proposed context-based music fingerprint method.

The results suggest that the proposed music fingerprint is efficient in terms of complexity,

both processing and storage requirements, while yielding performance accuracy that is

competitive against state-of-the-art systems. New algorithms which extract dynamic

information were also proposed, and it is shown that they can be incorporated to provide

complementary information.
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In dealing with general audio signals which include unstructured audio signals, i.e.

Chapter 3, we proposed an acoustic topic model based on Latent Dirichlet Allocation

(LDA) which learns hidden acoustic topics in a given audio signal in an unsupervised way.

We adopted the variational inference method and the Gibbs sampling method to train the

topic model, and use the posterior Dirichlet parameters as a representative feature vector

for an audio clip. Due to the rich acoustic information present in audio clips, they can

be categorized based on the intermediate audio description layer which includes semantic

and onomatopoeic categories; they represent the cognition of the acoustic realization of

a scene and its perceptual experience, respectively. The results of classifying theses two

descriptions showed that the proposed acoustic topic model significantly outperforms the

conventional SVD-based latent structure analysis method. We also proposed the text

query transformation strategy to provide the flexibility in input queries. We utilized

both the latent semantic indexing (LSI) method and the latent topic model to this end; it

transforms naive input queries onto the intermediate audio description layer so that the

annotation process and the retrieval process are interoperable. The results show that LSI

yields better performance than the latent topic model because of the number of words in

a description.

4.2 Possible Future Work

Possible future work can be performed in two major directions: algorithmic methodologies

and application domains. In the direction of developing new methodologies, we are going

to extend our context-based approaches proposed in Chapter 2 and Chapter 3.

Specifically, in the direction of exploring new applications, we are interested in ex-

tending our methodologies to general multimedia databases which include music, unstruc-

tured audio, and video. To this end, we need to devise algorithms and fusion strategies

to deal with multimodal data streams. Zhang et. al. provided a good benchmark-

ing framework in proposing algorithms to analyze video blogs [85]. We expect that our
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Figure 4.1: A blueprint of a sound archive management (SAM) system.

proposed context-based audio information retrieval algorithms can contribute to the mul-

timodal approach to the multimedia databases. Secondly, we are planning to explore the

community-contributed multimedia data in Web 2.0 applications. One of the examples of

community-contributed multimedia data is the social tags which include sentiments and

emotional responses to multimedia data [12, 71, 51]. Ratings, recommend/unrecommend,

etc. are also interesting aspects of the community-contributed data.

The research in this dissertation will eventually enable to build an end-to-end sound

archive management system whose blueprint is illustrated in Fig. 4.1. It will take queries

from users and yield a list of relevant audio clips in either WWW framework or local

computers.
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Appendix A

Variational approximation method for Latent Dirichlet

Allocation: Inference

One of the most important processes in LDA might be computing the joint probability

of θ and t with given w. It should be estimated as

p(θ, t|w, α, β) = p(θ, t,w|α, β)
p(w|α, β)

. (A.1)

As we describe earlier, it is computationally impossible to estimate the denominator of

the above equation. In this work, we utilize the variational inference method introduced

in [15]. Blei et al have shown that this approximation works reasonably well in various

applications, such as document modeling and document classification.

The rationale behind the method is to minimize distance between the real distribution

and the simplified distribution using Jensen’s inequality [24]. The simplified version has γ

and ϕ which are the Dirichlet parameter that determines θ and the multinomial parameter

that generates topics respectively, as depicted in Fig. 3.5. The joint probability of θ and

t in (A.1) can be simplified as

q(θ, t|γ, ϕ) = q(θ|γ)
N∏
i=1

q(ti|ϕi) (A.2)
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and tries to minimize the difference between real and approximated joint probabilities

using Kullback-Leibler (KL) divergence, i.e.

argmin
γ,ϕ

D(q(θ, t|γ, ϕ)||p(θ, t|w, α, β)) . (A.3)

We can begin with the log-likelihood of the marginal distribution. We can impose

a lower bound to the log-likelihood using Jensen’s inequality [24]. Jensen’s inequality

represent if a function f is a convex function and X is a random variable, then

Ef(X) ≥ f(EX) (A.4)

where E denotes an expectation operator. Since the log-likehood include a logarithm

function which is negative convex, i.e. concave, we can utilize the above property to

impose a lower bound to the log-likelihood of the marginal distribution.

log p(w|α, β) = log

∫ ∑
t

p(θ, t,w|α, β) dθ

= log

∫ ∑
t

q(θ, t|γ, ϕ)p(θ, t,w|α, β)
q(θ, t|γ, ϕ)

dθ

≥
∫ ∑

t

q(θ, t|γ, ϕ) log p(θ, t,w|α, β)
q(θ, t|γ, ϕ)

dθ

=

∫ ∑
t

q(θ, t|γ, ϕ) log p(θ, t,w|α, β)−
∫ ∑

t

q(θ, t|γ, ϕ) log q(θ, t|γ, ϕ)

= Eq[log p(θ, t,w|α, β)]− Eq[log q(θ, t|γ, ϕ)]
(A.5)

The difference between the left-hand and right-hand sides can be minimized by maxi-

mizing the lower bound. Further simplification by letting the right-hand side L(γ, ϕ|α, β)

can be done as follows.

L(γ, ϕ|α, β) = Eq[log p(θ, t,w|α, β)]− Eq[log q(θ, t|γ, ϕ)]

= Eq[log p(θ|α)] + Eq[log p(t|θ)] + Eq[log p(w|t, β)]

− Eq[log q(θ|γ)]− Eq[log q(t|ϕ)]

(A.6)
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L(γ, ϕ|α, β) = Eq[log p(θ|α)] + Eq[log p(t|θ)] + Eq[log p(w|t, β)]

− Eq[log q(θ|γ)]− Eq[log q(t|ϕ)]

= Eq

log
Γ

(∑k
n=1 αn

)
∏k

n=1 Γ(αn)

k∏
n=1

θαn−1
n

+ Eq

[
log

(
N∏
i=1

k∏
n=1

(θn)
tin

)]

+ Eq

[
log

(
N∏
i=1

k∏
n=1

V∏
m=1

(βnm)wim

)]
− Eq

log
Γ

(∑k
n=1 γn

)
∏k

n=1 Γ(γn)

k∏
n=1

θγn−1
n


− Eq

[
log

(
N∏
i=1

k∏
n=1

(ϕin)
tin

)]

= log Γ

(
k∑

n=1

αn

)
−

k∑
n=1

log Γ(αn) +
k∑

n=1

(αn − 1)Eq[log θn]

+

N∑
i=1

k∑
n=1

Eq [tin log θn]

+

N∑
i=1

k∑
n=1

V∑
m=1

Eq[wim log βnm]

−

{
log Γ

(
k∑

n=1

γn

)
−

k∑
n=1

log Γ(γn) +

k∑
n=1

(γn − 1)Eq[log θn]

}

−
N∑
i=1

k∑
n=1

Eq [tin log ϕin]

(A.7)

Some parts can be even simplified as follow; the expectation of the logarithmic Dirichlet

random variable θ can be written as

Eq[log θn] = Ψ(γn)−Ψ(γ0)

= Ψ(γn)−Ψ

 k∑
j=1

γj

 (A.8)

where Ψ represents the first derivative of the log Gamma function, i.e.

Ψ(γ) =
d

dγ
log Γ(γ) , (A.9)
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Eq[tin log θn] = Eq[tin] · Eq[log θn] (A.10)

because tin and θn are independent by the assumptions.

Eq[tin log θn] = Eq[tin] · Eq[log θn]

=

∫ ∑
t

q(θ, t|γ, ϕ)tin dθ · Eq[log θn]

=

∫ ∑
t

q(θ|γ)
N∏
a=1

q(ta|ϕa)tin dθ · Eq[log θn]

=

∫
q(θ|γ) dθ

∑
t

N∏
a=1

k∏
b=1

(ϕab)
tabtin · Eq[log θn]

= ϕin · Eq[log θn] ,

(A.11)

and

Eq[wim log βnm] =

∫ ∑
t

q(θ, t|γ, ϕ)wim log βnm dθ

=

∫ ∑
t

q(θ|γ)
N∏
a=1

k∏
b=1

(ϕab)
tabwim log βnm dθ

= ϕinwim log βnm

(A.12)

Finally, the approximated log-likelihood of the marginal probability can be written as

L(γ, ϕ|α, β) = log Γ

(
k∑

n=1

αn

)
−

k∑
n=1

log Γ(αn) +

k∑
n=1

(αn − 1)

Ψ(γn)−Ψ

 k∑
j=1

γj


+

N∑
i=1

k∑
n=1

ϕin

Ψ(γn)−Ψ

 k∑
j=1

γj


+

N∑
i=1

k∑
n=1

V∑
m=1

ϕinwim log βnm

−

log Γ

(
k∑

n=1

γn

)
−

k∑
n=1

log Γ(γn) +

k∑
n=1

(γn − 1)

Ψ(γn)−Ψ

 k∑
j=1

γj


−

N∑
i=1

k∑
n=1

ϕin log ϕin .

(A.13)
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To maximize the approximated log-likehood, we first use the Lagrange multiplier with

respect to ϕin whose constraint is
∑k

n=1 ϕin = 1, i.e.

L[ϕ](γ, ϕ|α, β) = L(γ, ϕ|α, β) +
N∑
i=1

λi

(
k∑

n=1

ϕin − 1

)
. (A.14)

When we take a derivative with respect to ϕin, we can obtain

∂

∂ϕin
L[ϕ](γ, ϕ|α, β) = Ψ(γn)−Ψ

 k∑
j=1

γj

+

V∑
m=1

wim log βnm − log ϕin − 1 + λi (A.15)

where wiτ = 1 and the other elements in wi are zeros. Hence, it can be even simplified as

∂

∂ϕin
L[ϕ](γ, ϕ|α, β) = Ψ(γn)−Ψ

 k∑
j=1

γj

+ log βnτ − log ϕin − 1 + λi . (A.16)

To satisfy the derivative to be zero, ϕin can be estimated as

ϕin = exp(λ− 1)βnτ exp

Ψ(γn)−Ψ

 k∑
j=1

γj


∝ βnτ exp

Ψ(γn)−Ψ

 k∑
j=1

γj

 .

(A.17)
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Now, we maximize the approximated log-likelihood with respect to γn. If take the

derivative of the approximated log-likelihood with respect to γn, we can obatin

∂

∂γn
L[γn](γ, ϕ|α, β) = (αn − 1)

Ψ′(γn)−Ψ′

 k∑
j=1

γj

+

N∑
i=1

(ϕin)

Ψ′(γn)−Ψ′

 k∑
j=1

γj


−Ψ

(
k∑

i=1

γi

)
+Ψ(γn)−

(
Ψ(γn)−Ψ

(
k∑

i=1

γi

))

− (γn − 1)

(
Ψ′(γn)−Ψ′

(
k∑

i=1

γi

))

= (αn − γn +
N∑
i=1

ϕin)

(
Ψ′(γn)−Ψ′

(
k∑

i=1

γi

))
.

(A.18)

To make the derivative zero, the following condition should be satisfied:

γn = αn +
N∑
i=1

ϕin (A.19)

Therefore, in the variational inference method, an iterative procedure of (A.17) and

(A.19) alternatively is required until it converges.
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Appendix B

Variational approximation method for Latent Dirichlet

Allocation: Parameter Estimation

In many estimation processes, parameters are often chosen to maximize the likelihood

values of a given data w. The likelihood can be defined as

l(α, β) =
∑
w∈w

log p(w|α, β)

=

M∑
d=1

Ld(γ, ϕ|α, β)
(B.1)

where Ld(γ, ϕ|α, β) represents the log-likelihood of the marginal probability of the docu-

ment d.

Firstly, we can perform the Lagrange multiplication to estimate β as we introduced

in the previous section. In the multiplier, we have a constraint
∑V

m=1 βnm = 1

L[β](γ, ϕ|α, β) = l(α, β) +

k∑
n=1

λn

(
V∑

m=1

βnm − 1

)
. (B.2)

If we take the derivative with respect to βnm, we can obtain

∂

∂βnm
L[β](γ, ϕ|α, β) =

M∑
d=1

∂

∂βnm
Ld(γ, ϕ|α, β) + λn

=

M∑
d=1

Nd∑
i=1

(ϕin)d(wim)d + λn

(B.3)
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where d represent the index of documents. To make this derivative zero, the following

should be satisfied

βnm = c

M∑
d=1

Nd∑
i=1

(ϕin)d(wim)d (B.4)

where c is a constant.

Next, we can take a derivative with respect to α that maximizes l(α, β), i.e.

∂

∂αn
l(α, β) =

M∑
d=1

∂

∂αn
Ld(γ, ϕ|α, β)

=

M∑
d=1

Ψ(αn)−Ψ

 k∑
j=1

αj

+Ψ(γn)−Ψ

 k∑
j=1

γj


=M

Ψ(αn)−Ψ

 k∑
j=1

αj

+

M∑
d=1

Ψ((γn)d)−Ψ

 k∑
j=1

((γj)d)

 .

(B.5)

This derivative, however, cannot be optimized with respect to αn since it depends on

αj (j ̸= n) as well. Therefore, we take another partial derivative with respect to αj :

∂

∂αnαj
l(α, β) = δ(n, j)MΨ′(αn)−Ψ′

 k∑
j=1

αj

 , (B.6)

which can be solve by Newton-Raphson optimization method which utilizes Hessian ma-

trix [59].

In this parameter estimation of variational approximation method, we use expectation-

maximization strategy so that it can repeatedly calculate the log-likelihood and estimate

α and β until it converges.
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