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Abstract

Human judgments on human behavior are an important part of interpersonal interac-

tions and many assessment and intervention designs. While humans have evolved to be

naturally adept at processing behavioral information, there are some challenges. Namely,

human descriptions on behaviors are oftentimes qualitative, and there is variability be-

tween people’s judgments due to the subjective nature of the judgment process.

Technology can help humans process behavioral data in a number of ways. Quanti-

tative descriptors can be extracted from objective signals (e.g., audio, video) that rep-

resent aspects of human behavior in consistent and repeatable ways. There are many

emerging engineering pursuits centered around modeling human behavior. Much of this

research focuses on modeling specific human actions (e.g., head nods) during acted or

non-spontaneous scenarios. Behavioral signal processing involves the development of

computational methods that model human behavior in real-life scenarios. In this thesis,

we automatically quantify and predict human subjective judgments on human behavior

from speech signals in the context of societally-significant domain applications (education,

family studies, health), where human observers play a critical role.

There are many technological challenges to quantifying and predicting human subjec-

tive judgments on human behavior. These include modeling several sources of variability,
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including the human behavior itself (heterogeneity) and the human evaluators themselves.

There is a need to extract robust generalizable features that capture the human behavior

and the relevant perceptual cues human evaluators are using. In addition, there is possi-

bly information across multiple modalities/cues, and it is not always clear how humans

weight them when making their judgments. Many relevant human judgments are “gist-

like,” based off a large amount of behavioral data. Thus, modeling the data at possibly

multiple granularities is important, since some temporal regions may be more relevant

than others and a particular cue’s importance may vary as a function of time. Finally,

since we are analyzing real data in real-life scenarios, the human behavior can be complex

and the data can be non-ideal (e.g., noisy).

For this thesis, we focused on concrete problem domains that highlighted specific

aspects of the technological challenges: literacy assessment, couples therapy research,

and autism diagnosis. In the literacy assessment domain, we show that we can exploit

human-inspired information into the computational framework for accurate modeling of

evaluator’s perception of children’s overall reading ability for one specific reading task.

We fused features that represented multiples aspects of the human behavior and robustly

emulated human observational subjective processes by learning from individual and mul-

tiple evaluator’s judgments. We also exploit the fact that evaluators’ level of agreement

significantly varies (depending on the child being judged) by incorporating this source of

evaluator variability in the modeling framework. In the couples therapy research, we ana-

lyze a large corpus of spontaneous dyadic interactions between married couples and show

we can predict six relevant high-level observational judgments (e.g., level of acceptance,

global negative affect) using speaker-dependent acoustic speech features. Furthermore,
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we demonstrate one method for fusing automatically-derived speech and language in-

formation for improved classification of spouses’ level of blame (high vs. low). Finally,

we discuss our effort in collecting a multimodal corpus of child-psychologist interactions,

recorded in the context of a social interaction used by psychologists for a research-level

diagnosis of autism spectrum disorders. We highlight initial work with this corpus and

discuss future experiments for the quantification of psychologists’ clinical judgments on

atypical social behavior (e.g., atypical prosody).

This thesis is on the development of a quantitative, automated framework that em-

ulates human observational processes to describe human behavior from speech signals.

We hope it makes impactful technological contributions to modeling complex human sub-

jective processes. This work represents a significant step towards a shift in engineering

from modeling and recognizing more objective human behaviors (e.g., speech recognition)

to quantifying more subtle and abstract ones, a central theme to the emerging area of

behavioral signal processing.
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Chapter 1

Introduction

Understanding human behavior is a general goal of many fields in science. This includes

understanding how people communicate, move, emote, and interact. There is also a need

to understand the way in which people judge human behavior. Human judgments on

human behavior occur everywhere: in everyday life (e.g., when judging the emotions dis-

played by a conversational partner), in educational settings (e.g., when teachers assess

the reading skills of their students), in human-centered research (where oftentimes hy-

potheses are tested by manually coding relevant judgments on human behavior), and in

clinical settings (e.g., when diagnosing psychological disorders).

Humans are naturally attuned to observe human behavior. For example, the human

auditory system is optimized for perceiving human speech. However, there are challenges

to human processing of behavioral information. First, humans lack the ability to quan-

titatively track or describe certain human behavior (e.g., the fine details of a speaker’s

pitch or the timing interplay between facial gestures). Second, there is variability due

to the inherent subjective nature of some human judgments, which causes there to be

differences between people’s judgments due to many factors (e.g., background, expertise,
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mood). The next section is meant to illuminate these limitations of manually analyzing

human behavioral data to motivate the use of automated computational methods.

1.1 Human Coding Complications

Oftentimes human behavior is recorded for off-line coding of relevant observational events;

this is especially true when testing research hypotheses or for the purpose of training

human coders. This manual coding is a costly and time consuming process. First, a

detailed coding manual must be created, which often requires several design iterations.

Then, multiple coders, each of whom has his/her own biases and limitations, must be

trained in a consistent manner. The process is mentally straining for evaluators, and the

resulting human agreement can be quite low. The following subsection provides a simple

example illustrating one of the complications that can occur when manually annotating

human behavioral data.

1.1.1 Example

The example we explain here is drawn from our experience when training two student

evaluators to manually code specific social communication behaviors of children while

interacting with a computer agent (work that is not included as part of this thesis [13,

14]). One of the behaviors we were interested in coding was when the child was smiling.

The frequency of smiles (e.g., counts/minute) have been used in previous studies as a

quantitative measure of shared enjoyment (e.g., in [173]). To ensure that the student

evaluators could reliably code this behavior, we had them code instances of smiles on
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Figure 1.1: The manual coding results of 3 different evaluators (evaluator 1 is an ex-
pert psychologist, and evaluators 2 and 3 were trained students), coding a 100-second
interaction between a computer character and a child. All three evaluators were shown
the same video clip, and the three colored streams represent the time instances in which
the evaluators recorded when the child was smiling. While there are temporal regions
in which all three evaluators agree, there are noticeable coding differences between the
three evaluators, which suggests that coding smiles is less objective than it may seem.

a few training videos. We also had an expert psychologist (who designed the coding

manual) code these training videos.

Figure 1.1 shows the “smile” coding results of the three evaluators for one training

video. It is clear from this figure that there are temporal regions in which all three

evaluators agree. Yet, the labeling strategies of the three evaluators differ significantly,

mainly on their strictness for what they consider a smile. That is, Evaluator 1 (the

expert) marked fewer smiles than Evaluator 2, who in turn, marked fewer instances of

smiles than Evaluator 3. This illustrates how subjective manual coding can be, even for

seemingly simple human behavioral coding tasks. For reference, Figure 1.2 shows frames

of the training video during regions in which 0, 1, 2, and 3 of the evaluators marked the

frame as a smile.

This example motivates the need for a more objective way to code human behavior.

One way to accomplish this is by using stringent coding systems for each relevant human

behavior. For this smiling example, the Facial Action Coding System (FACS) provides
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Figure 1.2: Selected frames during the 100-second child-computer interaction in which a
variable number of the 3 evaluators recorded that the child was smiling. Frame 0 was a
randomly selected frame in which none of the evaluators said the child was smiling. Only
Evaluator 3 said the child was smiling in frame 1. Evaluators 2 and 3 marked frame 2 as
the child smiling. All evaluators marked the child as smiling for frame 3.

detailed descriptions on a number of social human facial systems to help make this coding

process more objective and consistent [68]. Even in this case, though, each coder needs to

be trained to reliably code the data this way. Alternatively, one can imagine an automated

smile detector that can track smiles in a continuous manner, thresholding the occurrence

of a smile to match a particular coding style. This is currently being addressed in related

research efforts [170,176].

However, this thesis goes beyond modeling unimodal lower-level human behaviors

such as smiling. It is primarily concerned with emulating higher-level subjective judg-

ments, in which detecting smiles may be one useful cue/feature. For example, in [14],
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we showed that children playing a conversational, problem-solving computer game ex-

press uncertainty by using a combination of lexical (e.g., “I don’t know”), acoustic (e.g.,

question intonation), and visual/gestural (e.g., raised eyebrows) cues. In this work, we

first had human evaluators mark which speaker turns/utterances they felt the child was

uncertain. We then had evaluators manually code a number of potentially relevant audio-

video cues. Finally, we used machine learning techniques to map the presence/absense

of the cues within a turn to the perception of user uncertainty. In this dissertation, we

examine these types of perceptually relevant learning problems, but critically, we find

computational ways to model and predict them directly from the audio signal.

1.2 Thesis Statement

This thesis examines the modeling, quantification, and prediction of subjective judgments

on human behavior in the context of societally-significant domains (education, family

studies, health), where human behavioral evaluation plays a central role. This thesis

addresses many of the technological challenges that have emerged as a result of working on

this new class of problems, and the methods developed here can have broad implications

in the new field we are calling behavioral signal processing, explained next.

1.3 Behavioral Signal Processing

Behavioral signal processing (BSP) is an emerging field in engineering. It encompasses

the development of computational methods that model human behavior. This includes

5



 

Human 
Evaluator 

 
 
 
 

Available Data (e.g., audio, video, text, physiological) 

Subjective Judgments 
(e.g., is one spouse 
blaming the other?) 

Signal Processing 
(e.g., feature extraction) 

Computational Modeling 
(e.g., machine learning) Feedback 

Human Behavior or Interaction of Interest  
(e.g., a married couple discussing a problem) 

Direct Observation 

BEHAVIORAL 
INFORMATICS 

Figure 1.3: A high-level flow chart that applies to a range of scenarios in behavioral
signal processing (BSP) and shows the interplay between human evaluators and automatic
computational algorithms.

emulating human-like observational and subjective processes. By behavior, we mean “any-

thing that a person does involving action and response to stimulation [124].” There are

multiple aspects of behavior that can be modeled, including those that are observable

(and processed) by humans, and those that are manifested in physiological cues (such as

autonomous responses to stimuli). While both can be built into the larger computational

framework we call BSP, this thesis is primarily focused on the human observational and

subjective processes. By subjective, we mean “modified or affected by personal views, ex-

perience, or background [125].” Therefore, a core aspect of BSP involves the development

of objective technological tools that model two “human” aspects: 1) the conventionally-

observable human behavior/interaction itself, and 2) the subjective judgments made by

human evaluators who are observing the behavior/interaction. BSP can offer an invalu-

able ancillary to manual analysis in some cases, and can enable novel insights in others,

for human-centered research and practice.
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Figure 1.3 is a flow chart for a typical BSP scenario that shows the interplay between

human evaluators and automatic computational algorithms. At the top of the chart,

there is a human behavior or human interaction of interest (e.g., a married couple dis-

cussing a problem in their relationship). Human evaluators, who can range from trained

coders to domain experts, are either directly observing the behavior/interaction or view-

ing the available data off-line and making relevant subjective judgments concerning the

behavior/interaction (e.g., the “level of blame” expressed from one spouse to another in

a conversation). This evaluation process can be formal or informal, explicit or implicit,

expert-based or näıve-observer based. An example of a formal, explicit, expert-based

evaluation would be a trained psychologist manually rating a child’s social communica-

tion skills using a multi-dimensional coding scheme developed to help diagnose children

with developmental disorders. An example of an informal, implicit, näıve-observer based

evaluation would be a person sensing the emotions of a conversational partner in real-time.

On the computational side, signal processing methods transform the available data

in some meaningful way, and computational modeling techniques (e.g., machine learning,

estimation, fuzzy inference) map the signal cues to the human (often, fairly subjective)

judgments of behavior. The human evaluator can aid in this automation by, for example,

informing which signal features may be most relevant and also by providing labeled data

used for automatic learning purposes. Conversely, the automatic output(s) can provide

relevant feedback to the human evaluator(s) by automatically labeling new data and/or

by offering some novel information and details about the human behavior/interaction

(“behavioral informatics”). This back-and-forth information transfer can be computa-

tionally formalized and be iterated a number of times to form human-in-the-loop learning
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scenarios that refine the automatic algorithms to better complement or enhance human

evaluations.

1.4 Technological Challenges

There are a number of technological challenges with quantifying and predicting subjective

judgments on human behavior, due to the fact that modeling human behavior is inherently

a complex problem. There is variability across both the human behavior itself (e.g., no two

speakers speak in the same manner) and in the evaluators (due to the subjective nature

of the judgments). The challenge of modeling this production-perception relationship is

then two-fold: 1) there is a need to extract robust features from the available data that

model the human behavior in a fashion that is generalizable within and across subjects,

and 2) some processing of the subjective evaluations is oftentimes needed to allow for the

computational methods to robustly learn human grading trends.

Furthermore, in regards to the extraction of useful features, it is not clear how human

evaluators weight various modalities and behavioral cues when making their judgments.

The extraction of features that completely cover the spectrum of cues that may be relevant

to human evaluators is one of the critical challenges in BSP research, in addition to finding

intelligent ways to merge, combine, or fuse multiple features. In addition, some temporal

regions may be more relevant than others, and a particular cue’s importance may vary

as a function of time. One of the main challenges is the development of computational

methods that are able to take into account the dynamic nature of the human behavior.
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In addition, many human judgments are high-level or “gist-like,” based on a large

amount of human behavioral data. These types of judgments are inherently fuzzy and

qualitative by nature, since it is difficult for humans to pinpoint exactly how they are mak-

ing them. Appropriately modeling the human behavior/interaction (at possibly multiple

granularities) is important in order to emulate higher-level subjective judgments.

Finally, since we are analyzing human behavior in real-life scenarios, the data analysis

is challenging. Human behaviors can be very complex (e.g., interpersonal dyadic inter-

actions). In addition, human evaluators may have access to more information than is

available to the computational algorithms (especially in cases in which the human evalu-

ator was directly observing the human behavior/interaction). Cues that humans reliably

use may not be able to be robustly extracted from the available signals. Also, there may

be information loss (due to noisy environment conditions) or systematic data collection

errors (such as poor microphone placement or inconsistent video angles across sessions).

Appropriately dealing with adverse data conditions, while simultaneously ensuring eco-

logical validity when collecting new data, are other aspects of BSP that are critical for

the technology to be useful in real-life scenarios.

1.5 Three Application Domains

In this thesis, we focus on concrete problem domains to highlight specific aspects of the

technological challenges described in the previous section. The empirical and applied

aspects of this dissertation are developed based on data drawn from, and inspired by, so-

cietal problems in education, family studies, and health. Specifically, we will explore case

9



studies that incorporate the central ideas of this thesis from three application domains:

1) children’s literacy assessment, 2) couples therapy psychology research, and 3) autism

diagnosis. These three domains involve societally significant problems that depend crit-

ically on human subjective judgments. Each domain addresses aspects of the general

technological challenges, and we will explain the new computational contributions that

have emerged as a result of tackling these unique problems. The following subsections

give an overview of the three case studies highlighted in this dissertation.

1.5.1 Automatic literacy assessment

Literacy assessment is an important element in children’s early education [28]. With

respect to the BSP framework, the behavior of interest is children reading aloud, and

the human evaluator is the teacher; assessments by the teacher include rating the chil-

dren’s correctness of pronunciation and judging the children’s ability to fluently read at

an acceptable rate. Education experts agree that one of the most effective assessment

frameworks is formative assessment, where children are repeatedly assessed as they are

taught [95]. Unfortunately, formative assessment is challenging for a number of reasons.

First, assessment often requires one-on-one time, which teachers may not be able to pro-

vide, especially in large classrooms. Second, formative assessment requires an adaptive

approach to teaching, where teachers are continually adjusting their lesson plans based

on the children’s rate of learning.

BSP can help with this process by emulating the teacher assessments and providing

relevant feedback on the children’s reading performance. In this thesis, the literacy assess-

ment application is used to show that computational methods can mimic human grading

10



patterns for “high-level” overall performance across a reading task. These assessments

are subjective since overall judgments are less definable by nature, requiring evaluators to

weight multiple aspects of the children’s reading to attain an overall grade. The children

analyzed for this application of the thesis were from a diverse bilingual background and

were recorded in actual kindergarten to second grade classrooms. There are a number

of challenges in modeling this type of human behavior, due to the noisy environment

conditions and the variability of children’s speech and second language learners [115].

Eleven human evaluators rated 42 children on their overall reading ability, after lis-

tening to recordings of them reading a list of English words aloud. We extracted multiple

human-inspired features from the audio signal that were correlated with cues human

evaluators stated they used: pronunciation correctness, speaking rate, and the fluency

of the speech. Using linear regression techniques, we automatically predicted individual

evaluators’ high-level scores with a mean Pearson correlation coefficient of 0.828, and we

predicted average evaluator’s scores with correlation 0.952. These human-machine agree-

ment statistics exceeded the mean inter-evaluator agreement, demonstrating the potential

power in using features derived from objective signals. We also show the ability for auto-

mated methods to learn from multiple evaluator’s grading patterns, resulting in a robust

automatic literacy assessment system that agrees with people’s perception significantly

better, on average, than people agree amongst themselves.

1.5.2 Couples therapy research

Several fields in psychology depend critically on perceptual judgments made by people.

Historically, behavioral psychology research has depended on manual analysis of human
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behavior [120], which can be a severe bottleneck in larger longitudinal studies. BSP can

offer a powerful ancillary by providing a quantitative computational framework built on

the processing of objective signals. In this thesis, we analyze a corpus consisting of real

married couples spontaneously interacting about a problem in their relationship [45]. The

coding manuals designed for this study had multiple trained evaluators rate each session

with 33 high-level codes representing relevant aspects of each spouse’s behavior (e.g.,

global positive affect expressed by the husband) [93,99].

In initial experiments, our goal was to learn these high-level codes using audio features.

This is a challenging learning problem due to the time scale of the evaluations; we were

trying to predict session-level codes that represented the overall behavior of each spouse,

a subtle “gist-like” judgment. In addition, since the data was originally only intended for

manual coding, the recording conditions were not ideal for automatic analysis; the video

angles, microphone placement, and background noise varied across sessions. By extracting

a large number of speaker-normalized prosodic, spectral, and voice quality speech acoustic

features, we were able to train models to classify extreme spouses’ behavior (e.g., high

vs. low level of blame) significantly better than chance for all six codes we examined.

In addition, for the spouses’ level of blame, we improved classification performance by

incorporating important lexical blaming cues through fusion of automatically-derived

speech and language information for multimodal prediction of evaluators’ judgments.

1.5.3 Autism diagnosis

The final application domain in this thesis, which represents ongoing and future work,

involves the diagnosis of autism spectrum disorders in children. Autism is a developmental
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disorder that results in impaired social communication and restricted, repetitive, and/or

stereotyped behavioral patterns [3]. While studies have shown that an early diagnosis

and an appropriate intervention can lead to improved communication skills in autistic

children, diagnoses can be inaccurate, and interventions are oftentimes expensive and

time-consuming [67,149].

Our goal is to use computational methods to help psychologists and clinicians make

the difficult judgments necessary when assessing children’s social and communicative

skills; this could be used for diagnostic purposes or to track children’s progress during

interventions. We are in the process of collecting a large multimodal (audio-video) corpus

of children interacting with a trained psychologist in the context of the Autism Diagnos-

tic Observation Schedule (ADOS) [118], a popular tool that psychologists use to help

diagnose children with autism spectrum disorders. During the ADOS, the child interacts

with the psychologist in a semi-constrained fashion that enables the psychologist to assess

the child on a number of autism-relevant social and communication skills. One of the

difficulties with the ADOS grading scheme is the qualitative nature for some of the codes.

The collection of this corpus is an important step in the development of technological

tools for the automatic quantification of clinical judgments. Future plans involve the

training of normative models of children’s behavior and using data-driven methods with

the corpus to automate aspects of the ADOS grading. Incorporating quantitative methods

and models could lead to a more consistent grading scheme across subjects and over time.

The technology could potentially be scalable to large populations of children.
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1.6 Related Work

The work addressed in this thesis is inherently interdisciplinary, drawing from, and sub-

suming, problems being addressed in the behavioral sciences and borrowing from several

related human-centered fields in engineering and computer science. There are a num-

ber of established or emerging disciplines of inquiry (often with intellectual overlap).

These include human behavioral analysis/understanding, social signal processing, and af-

fect/emotion recognition. We will introduce each field and discuss how they fit within the

BSP umbrella.

Human behavioral analysis/understanding uses multimodal signal processing of audi-

tory and visual information to model human actions in the context of human-human and

human-computer interactions [1, 144]. This can range from the recognition of gestures

(e.g., head movements [35,129]) to the modeling of spoken turn-taking behavior [112,128]

to the detection of anomalous human activities (e.g., a person falling over [137]). Track-

ing, detecting, and categorizing human actions is an important element of BSP, since the

behavior of interest in BSP research must be properly processed and analyzed.

Social signal processing attempts to understand the social signals expressed by people

through the detection of lower-level human behavior, such as smiling and eye blinking

[146, 174]. Similar to human behavior analysis/understanding, research in social signal

processing overlaps with BSP topics since the detection of these lower-level signals is

important when modeling human behavior. In addition, many of the societally relevant

BSP topics involve a human social component, and accurately modeling these social

signals becomes critical.
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Affect/emotion recognition research involves the modeling and recognition of affec-

tive human behavior in realistic and acted scenarios using features derived from audio,

video (including motion capture), language, and physiological signals [36, 86, 111, 126,

135, 153, 181]. This research naturally intersects with BSP topics, since affective states

and emotions have both an expressive and perceptual component to them. In this re-

gard, affect/emotion recognition can be considered a subset of the problems that BSP

addresses.

BSP, along with the aforementioned related fields, represents a shift in engineering

from modeling and recognizing more objective human processes (e.g., speech recognition)

to quantifying more abstract ones. The hallmark of BSP, while it relies and leverages

advances in the various related areas, is in extracting meaningful information about hu-

man behavior (behavioral informatics) in the context of societally significant application

domains in which human evaluators play a critical role.

1.7 Contributions of the Thesis

In [25], we showed that disfluencies (e.g., hesitations, sound-outs, question intonations)

in children’s read speech were considered perceptually relevant to human evaluators when

judging the overall reading ability of children. We devised a novel automatic speech recog-

nition method that exploited the constraints of the reading task to automatically detect

these speech disfluencies directly from the audio signal. In [23, 24], we extended this re-

search to automatically predict evaluators’ judgments on children’s overall reading ability

by extracting cues representing various aspects of the children’s reading: pronunciation

15



correctness, fluency, and speaking rate. Related work had concentrated on unimodal as-

pects of children’s speech (pronunciation correctness or fluency or speaking rate), and

fusing them together for one high-level prediction was a novel idea that enabled us to

train models that more closely mimicked real reading evaluators like teachers. In [27],

we provided an additional extension by showing that we can automatically learn both

individual and average evaluators’ grading trends. This body of work demonstrates how

computational methods can learn from human evaluators at multiple stages: by informing

feature extraction and by modeling multiple evaluators’ perspectives.

In [17, 18], we provide details on experiments run on the couples therapy database.

One of the main contributions of this thesis is the analysis of real data, and this corpus

represents actual data recorded for a longitudinal study on the efficacy of a new form

of couples therapy [45]. Manually transcribing and coding the data took a collaborative

effort between multiple universities over a period of several years. Automatically ana-

lyzing real-life data collected from psychology-based studies is one novel aspect of this

thesis. In [17, 18], we provide details on how we were able to align the text transcrip-

tions to the audio signal for more than 60 hours of the couples’ recordings. As part of our

work, we showed we could separate extreme behaviors (as coded by trained evaluators) on

relevant judgments (e.g., level of blame expressed by the husband) by extracting speaker-

normalized speech features from the audio signal. In [16], we fused automatically-derived

acoustic and language features for improved classification of spouses’ level of blame. These

technical and algorithmic contributions are very general and could be applied to any spon-

taneous interaction.
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For the autism diagnosis research, the corpus we are currently collecting is an im-

portant novel contribution. Recruitment of subjects from protected populations (like

children diagnosed with autism) is very difficult, which has led to smaller-scale studies

that lack statistical significance and generalizability. We have already collected data from

70 subjects to date, which will allow for a larger-scale analysis of speaking trends across

a heterogeneous subject population. As part of this thesis, we designed the audio-video

recording set-up for a real clinic at Children’s Hospital Los Angeles that records the

interaction between the psychologist and child in a consistent and repeatable manner.

Chapter 4 describes this USC CARE Corpus [26] and discusses future work we will carry

out using this corpus.

This thesis provides in-depth analysis on the three aforementioned application do-

mains that explores how computational models can help humans make subjective judg-

ments on human behavior. The methods used in this paper are meant to be broadly

useful for many problems that fall under the expanding BSP umbrella by addressing the

general technological challenges in modeling high-level subjective judgments on realistic

human behaviors.

1.8 Document Organization

As discussed earlier in the introduction, this dissertation is an analysis of specific case

studies from three broad application domains that are but a part of the larger BSP puzzle.

The rest of this dissertation is organized as follows. Chapter 2 examines work towards

automatic literacy assessment. Chapter 3 discusses work on the couples therapy research
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database. Chapter 4 discusses ongoing and future intended research on how technology

can help with autism diagnosis. Chapter 5 provides a conclusion and discusses open

problems and future work.
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Chapter 2

Automatic Literacy Assessment

2.1 Introduction

1 Education is one area in which technology has already made a profound impact by

providing an engaging learning experience to children [69]. Computer games have helped

children develop problem-solving skills [181], and virtual peers have helped encourage

creative thinking and children’s use of imagination [40]. Literacy tutors have been devel-

oped to track children’s reading and offer helpful feedback [89, 133]. These technologies

have been designed for a range of ages and developmental levels, and for children with

special needs [50].

While much research has focused on developing interactive educational technology,

relatively fewer studies have concentrated on ways to use computer technology to help

educators and teachers directly. We tackle this problem in the context of literacy assess-

ment for young children from a diverse bilingual background that are learning to read

English. Assessment of reading skills is an important aspect of early education [28]. Ex-

perts agree that one of the most effective assessment frameworks is formative assessment,

1This work was supported in part by the National Science Foundation.
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in which teachers assess their students throughout the learning process. This pedagogical

framework helps keep the teachers’ goals and the children’s progress aligned and prevents

children from being left behind [95]. Unfortunately, formative assessment is challenging

for a number of reasons. First, assessment is time-consuming since each child requires the

full attention of the teacher. Second, formative assessment requires teachers to continually

adjust their lesson plans.

Technology can help with this process in a number of ways. First, computers can

be used to administer the various reading assessment tasks in a consistent, repeatable

manner. Second, pronunciation verification systems can be developed to automatically

assess the children’s speech using objective signal-based methods (e.g., automatic speech

recognition). And third, these results can be analyzed and displayed to teachers, so

they can track the children’s reading proficiency over time, and adjust their lesson plans

accordingly.

Reading assessments can occur at different granularities (segmental or suprasegmen-

tal) depending on the intended application and reading task. For example, preliterate

children are assessed on their knowledge of the letter-to-sound rules of a particular lan-

guage, while more advanced students are assessed on their ability to fluently read phrases

and sentences aloud [145]. Appropriate reading tasks must be designed to elicit speech

that facilitates the intended assessment. One common theme among most reading as-

sessment tasks is the use of multiple test items (“tokens”) for each subject. This is done

for a number of practical reasons. First, it ensures the subjects are provided enough

tokens to cover many, or even possibly all, associated linguistic or category variations.

Second, it allows evaluators to adjust to the speaking style of the subjects, so accent
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and idiosyncratic behaviors are taken into account. Third, it provides evaluators with

statistically adequate evidence to make global (“high-level”) assessments on the subjects’

overall performance. We are specifically interested in this final aspect: to automatically

model and predict evaluators’ high-level assessments for a particular reading task widely

administered to young children.

There is a need for technology that can be incorporated in the classroom to collabo-

ratively assist in reading instruction [139]. We propose in this chapter to use automatic

computer-based literacy assessments to help teachers, allowing them to better concentrate

on lesson-planning and individualized teaching. Automatic computer-based literacy as-

sessments can have several advantages over manual human-based assessments. Manual

assessments are very time consuming, requiring one-on-one time. Doing continual as-

sessments may not be feasible in a common scenario like a classroom, where there are

several students and only one teacher, and where assessment time competes with in-

struction. Automatic assessment systems could significantly reduce the time burden of

teachers. Manual assessments are also not standardized across evaluators, dependent on

factors such as the evaluator’s experience, personal biases, and human limitations (e.g., fa-

tigue). Automatic computer-based assessments can provide a more consistent assessment

framework, relying on objective features extracted from the available audio-video signals.

A standardized computer-based automatic literacy assessment system could make more

meaningful comparisons across children and over time. Finally, automatic literacy assess-

ment systems can be portable and be scaled up to serve large populations of children.

There are several benefits for providing high-level overall assessments rather than (or

in addition to) the more typical token-level assessments. First, having knowledge of the
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overall performance may be particularly useful when tracking performance over time.

Second, high-level assessments provide a thumbnail view of a child’s performance, which

may be useful for teachers by aiding in instruction planning or designing further perfor-

mance drill-down. Third, high-level assessments may model evaluators’ perception better

than token-level assessments. Whereas in token-level assessments, decisions are made on

the goodness of that particular token, high-level assessments are directly modeling eval-

uators’ interpretation on overall performance, which may be a multi-dimensional and/or

non-linear mapping from token-level performance. Therefore, high-level assessments can

be viewed as the interpretive extension to token-level assessments. Automatic high-level

literacy assessment is a difficult problem because it involves the modeling and prediction

of subjective human judgments. In order to accurately make high-level assessments, the

multiple cues human evaluators might use have to be automatically extracted from the

available measured observations. In addition, they have to be combined in a way that

accurately models the high-level assessment. People might base their assessments on dif-

ferent cues when forming a grading criteria, and even in cases where evaluators use the

same cues, they might differ on the relative importance of each. From a signal processing

viewpoint, this requires the robust extraction of perceptually relevant features, followed

by an appropriate machine learning algorithm that learns the interpretation of these cues,

based on individual evaluators or a bank of evaluators.

There has been significant work on reading assessment, especially in second language

learning and children’s reading applications. Most of the related work has involved adults

or children already reading phrases and sentences. We argue that literacy assessments at

an earlier age is critical, since it has been shown that early literacy proficiency is a good
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predictor for reading fluency and comprehension proficiency in later grades [56,139,145].

Importantly, studies have shown a significant decrease in the percentage of poor readers

when interventions take place before the second grade [143]. Automatic literacy assess-

ments targeting younger children could help catch problems earlier, and an effective inter-

vention could give children a better chance to grow into competent readers. In addition,

much of the related work has concentrated on detecting segmental and suprasegmental

errors in production for various reading tasks (e.g., [21, 22, 114, 132, 162–164, 175]), but

overall performance is rarely estimated. Some previous work has concentrated on pro-

viding overall scores (e.g., pronunciation quality [49], fluency [53], reading level [64]), but

automatic high-level reading assessments remain relatively under-researched. It should be

noted that the idea of modeling global holistic human judgments is not unique to literacy

assessment. For example, the computer vision community has viewed this problem in

the context of reconciling human evaluations and automatic scene classification [85,141].

Literacy assessments can fall under a number of overlapping reading-related skills, such as

decoding words, fluently reading sentences aloud, reading comprehension, and writing. In

this research, we assess children in kindergarten to second grade on their overall ability to

fluently decode a list of English words aloud. This reading task is appropriate for this age

group and resulted in speech that had a high level of variability in responses, including a

range of disfluencies (e.g., hesitating, sounding out the words, elongating phones). While

teachers can make use of both acoustic information and visual information (e.g., mouth

movement, eye gaze) when assessing children’s reading skills, we only have access to one

audio signal, recorded from a close-talking microphone. Both the human evaluators and

the automatic methods used this single audio channel, which may have resulted in a lower
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baseline performance for the human evaluators, as compared to a more traditional scoring

setup. Future research will incorporate both acoustic and visual information to provide a

more realistic scenario to human evaluators and to enable a multimodal approach to au-

tomatic literacy assessment. The combined use of audio and video information has been

shown to bring increased accuracy and robustness in the context of automatic speech

recognition [48,117]. In this research, human evaluators listened to the children’s speech

and rated each on their overall reading ability on a Likert scale of 1 to 7. These human

scores were the dependent variable for all our experiments and represented the high-level

literacy assessment targets. There is always some level of subjectivity involved in assess-

ment tasks, as is evident in variations across evaluators. Computers can help automate

these types of judgments if they are able to make predictions that are in line with human

evaluators. In this research, and in related research also involving human assessments

(e.g., [86, 169, 179]), performance of the automatic system is measured by computing

human-computer agreement. One could then view a computer as being competent if it

can agree with human evaluators as much as humans agree amongst themselves. Ideally,

computers would be able to adapt their grading styles to each evaluator or to a bank of

evaluators.

In our previous paper [25], we showed that disfluencies have a perceptual impact

on evaluators rating the overall performance of the children. We used a grammar-based

automatic speech recognizer to detect disfluencies in the children’s speech. In addition, we

showed that by combining pronunciation correctness, disfluency features, and temporal

speaking rate features, we could predict the average evaluator’s scores with agreement

that was comparable to human inter-evaluator agreement [23,24]. We improve upon our
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pronunciation verification and disfluency detection methods and train a system using

various feature selection procedures and linear regression techniques. We also extend our

analysis to predict individual evaluator’s scores. The final optimized system was able to

learn both an individual evaluator’s high-level scores and the average evaluators’ scores

with a higher level of agreement with which evaluators agree among themselves [27].

This chapter is organized as follows. Section 2.1 discusses the TBALL Project and

the TBALL Corpus, on which this work is based upon. Section 2.2 describes and an-

alyzes the human evaluations we administered to attain perceptual judgments. Section

2.3 discusses the features we extracted that are correlated with the cues evaluators used

when making high-level judgments. Section 2.4 discusses the general machine learning

methods we studied to predict evaluators’ high-level assessments, and Section 2.5 pro-

vides our results and discussion. We propose one additional machine learning method

that incorporates evaluator variability/uncertainty in Section 2.6. Finally, we provide a

discussion in Section 2.7.

2.2 TBALL Project and Corpus

The Technology-Based Assessment of Language and Literacy (TBALL) Project was

formed to create automatic literacy assessment technology for young children in early

education from multi-lingual backgrounds [2, 147]. The TBALL Project’s main goal was

not to create real-time automated literacy tutors (see [50, 65, 88, 90, 131, 133, 177] for ex-

amples) but rather to provide a technological assessment framework that teachers could

use to inform their teaching and track children’s progress on age/grade-specific reading
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tasks. The reading tasks were designed for and administered to children in actual kinder-

garten to second grade classrooms in Northern and Southern California. About half of

the children were native speakers of American English, with the other half non-native or

bilingual speakers of English from a Mexican-Spanish linguistic background. The young

age of the children and diverse population make this project and resulting corpus unique

from other existing corpora [7, 70,159].

We administered different reading tasks, compared to other automatic literacy as-

sessment projects, to be more geared to preliterate children. These ranged from testing

the production of English letter-names, the sounds corresponding to each letter (“letter-

sounds”), syllable-blending tasks, to reading a list of isolated words [19, 21, 22]. The

resulting speech from a single close-talking headset microphone makes up the TBALL

Corpus [106]. Since the reading tests were administered in actual classrooms, the back-

ground noises included typical classroom sounds, such as other children’s voices and the

teacher’s voice. The children’s demographics (gender, grade, native language) were ob-

tained by forms filled out by assenting parents and were included as part of the corpus

when available.

For this work, we analyzed speech from an adaptation of the Beginning Phonic Skills

Test (BPST), an isolated word-reading task consisting of 55 predetermined words. This

word list was chosen since it evaluates children’s phonemic awareness and decoding skills

[56]. The difficulty of the words is steadily increased throughout the reading task, starting

with monosyllabic words (e.g., map, left, cute), and ending with multisyllabic words (e.g.,

silent, respectfully). When administering the test, each word was displayed on a computer

monitor one at a time, and the children had up to five seconds to say the word aloud
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before the next word was shown. The children had the option to advance to the next word

before this five-second limit by pressing a button. During the data collection process, a

trained research assistant listened beside the child, and if the child mispronounced three

words in a row, the assistant manually stopped the session. This was done to prevent the

children from getting too frustrated and is not the termination criterion from the BPST

as generally administered. As a result, only 11.0% of the children read the full list of 55

words from our sample (M = 21.6 words, SD = 11.2 words). The transition times between

words were automatically recorded, and these times were used to split each child’s audio

into single-word utterances.

Our test set was comprised of the speech from 42 children, each of whom completed at

least the first ten words of the isolated word-reading task. These children were selected

from a total of 100 children’s data to ensure a wide variety of performance levels and

reading styles and to be near balanced with respect to gender and native language. We

chose 42 children to limit the total amount of speech to approximately 30 minutes to pre-

vent evaluator fatigue when manually assessing the speech (described in Section 2.2). To

ensure the words read by each child were of comparable difficulty, we only selected words

that appeared in the top 25 of the word list. In total, the test set had 770 single-word

utterances, an average of 18.3 words per child (SD = 5.07 words). The final demographics

of the 42 children were: gender (female=21, male=21), grade (kindergarten=5, first=22,

second=15), and native language (English=20, Spanish=18, bilingual=4). We also con-

structed a held-out feature development set with 220 children’s speech from the isolated

word-reading task; this set is described in detail in Section 2.3.2. Lastly, we used 19 hours

of held-out speech from word-reading and picture-naming tasks to train 33 monophone
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acoustic models, a word-level filler “garbage” acoustic model on all speech segments,

and a background/silence acoustic model on background segments of the recordings. All

acoustic models were three-state Hidden Markov Models (HMMs) with 16 Gaussian mix-

tures per state. For features, we extracted a 39-dimensional vector, consisting of the first

12 Mel-Frequency Cepstral Coefficients (MFCCs), log energy, and their delta and delta-

delta coefficients, every 10 ms using a 25 ms Hamming window. We applied cepstral-mean

subtraction across each single-word utterance to help make the features more robust to

classroom noise. We used the Hidden Markov Model Toolkit (HTK) [183] for all MFCC

feature extraction, acoustic model training, and decoding.

2.3 Human Evaluations

2.3.1 Evaluation 1: High-level Literacy Assessment

Evaluation 1 was administered to obtain human perceptual judgments of high-level liter-

acy assessments for the 42 children in the test data. Eleven English-speaking volunteers

rated the children on their “overall reading ability.” The evaluators fit into four classes:

three had worked on children’s literacy research for over a year, three were linguists, four

were non-native speakers of American English with an engineering background in speech-

related research, and three were native English-speaking individuals with no linguistics

background or experience with speech or literacy research; the evaluators belonged to only

one of the four classes, except for one linguist who also worked with children’s speech

and a different linguist who was a non-native speaker. While none of the evaluators were

licensed teachers or reading experts, we found in previous work that the inter-evaluator
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agreement between teachers and non-experts was not significant for a pronunciation veri-

fication task [165]. Analysis of the inter-evaluator agreement for the 11 evaluators in this

work will be provided in Section 2.4. The order of the children was randomized for each

evaluator, but the word order within each child’s session was maintained. The evaluators

were provided the word list, so they could follow the children’s progress. A short beeping

sound was inserted between each single-word utterance, so the evaluators knew when

the transitions between words took place. After listening to the speech from a child,

evaluators rated her/his overall reading performance on an integer scale from 1 (“poor”)

to 7 (“excellent”). Examples of a “poor” reader versus an “excellent” reader were not

provided to the evaluators beforehand for two reasons: 1) we did not know in advance

whether all evaluators would agree on what a “poor” versus an “excellent” reader was,

and 2) we wanted evaluators to come up with their own grading criteria for this reading

task. Since evaluators likely needed to listen to a few children before getting comfortable

with their own grading scheme, they were permitted to change previously assigned scores.

After the evaluators rated the 42 children, we asked one open-ended question to find

which criteria evaluators used when grading the children. This was done to get a rough

estimate of the relative importance of various cues people used for this assessment task.

The evaluators’ responses were grouped into three categories: pronunciation correctness

(stated by 10 out of the 11 evaluators), fluency (stated by 9 of 11 evaluators), and speaking

rate (stated by 9 of 11 evaluators). It should be noted that none of the evaluators specified

that they based their judgment on the child’s relative performance at the beginning or

end of the word list or on the number of words spoken by the child. The number of

spoken words was somewhat artificial for this data, since a human evaluator will not be
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present to stop the session if the task were administered by a computer; therefore, we

do not use the number of words the child spoke as a feature for automatic high-level

literacy assessment. While word order and word difficulty most likely had some effect

on human evaluators, we assumed each word was equally important. Coming up with a

quantitative system that takes into account a word’s importance based on its location in

the word list is difficult because these effects are most likely evaluator-dependent. The

fact that children read a variable number of words from the word list further complicates

the matter. Future work could use machine learning algorithms that take into account

word list effects by weighting words differently, as was done in our previous work [162].

Based on the evaluators’ responses, we concentrated on automatically extracting fea-

tures/scores from the audio signal that correlated with pronunciation correctness, fluency,

and speaking rate. There has been a significant amount of research on automatic pro-

nunciation verification (accepting or rejecting the pronunciation of a target word), and

we will employ some of these techniques on the development set in Section 2.3.3. Speak-

ing rate features and other temporal correlates are also straight-forward to extract if the

word pronunciations can be correctly endpointed. However, quantifying fluency is a more

difficult task, since we did not know what made a response “fluent.” To discover this, we

used a second human evaluation, described next.

2.3.2 Evaluation 2: Perceptual Impact of Disfluencies

Evaluation 2 explored the impact of fluency on people’s perception. We noted five main

“disfluencies” in the data: hesitations, sound-outs, elongations of phones, whispering,

and speaking with a questioning intonation (perhaps expressing uncertainty). Here, we
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use the term “disfluency” to describe any speech phenomena that takes away from the

natural flow of the pronunciation of the target word. Typically, the term disfluency is

used in the context of spontaneous speech for events like fillers (e.g., “uh”), repetitions,

repairs, and false starts [161]. However, since this is a reading task and the children

are learning how to read (and some are still learning how to speak English as a second

language), the types of disfluencies are different from those studied in adult spontaneous

speech.

We prescribed a set of conditions necessary for each disfluency type to make the task

of labeling disfluencies more objective. The types of disfluencies that occurred in the

data before the target word pronunciation included hesitations, where the child started

to pronounce the target word, paused, and then said the target word, and sound-outs,

where the child pronounced each phone in the word, pausing between each one, and then

pronounced the target word. Some children whispered when sounding-out and hesitating,

speaking voiced phones in an unvoiced manner. The other two types of disfluencies we

noted took place during the pronunciation of the target word. Some children lengthened

a phone or syllable of the target word, which we call elongations. Lastly, some children’s

pitch rose at the end of a word’s pronunciation, which we refer to as a question intonation.

It should be noted that these disfluency types were not mutually exclusive within an

utterance. For example, a child might hesitate at first, and then say the word with a

question intonation, or a child might use a whispered voice while sounding out the word.

For this evaluation, we selected 13 children’s speech from the test set which displayed

varying levels of the five disfluency types. Since labeling disfluencies is partially subjec-

tive, we had two evaluators (the first and second authors) mark each utterance with the
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presence/absence of each disfluency type. Table 2.1 shows that the percent agreement

between the evaluators was high, so we used Evaluator 1’s labels as the ground-truth for

the remainder of our analysis. We then had 16 evaluators (eight engineers with speech-

related background, four with teaching experience, and four with a linguistics education)

rate for each word utterance the fluency of the speech (on an integer scale from 1 to 5).

The words were grouped by child, so evaluators could adjust to the speaking style of the

children. The resulting fluency scores from the multiple evaluators were transformed to

z-scores by subtracting the mean of each evaluator’s scores and dividing by the standard

deviation. This normalization was done to allow for more meaningful comparisons of

scores between evaluators. We found that the mean normalized fluency score for utter-

ances that contained no disfluencies (M = 0.637, SD = 0.792) was significantly higher

than the mean score for utterances that contained at least one disfluency type (M =

-0.484, SD = 0.854), t(2035) = 30.3, p < .001. This shows that indeed utterances which

were not labeled with any of the five disfluency types were considered more fluent. We

also computed pairwise one-sided t-tests to compare the mean normalized fluency scores

between disfluency types. Table 2.2 shows that the sound-out and hesitation disfluencies

were considered the most disfluent, and utterances with whispers were considered more

disfluent than ones with question intonations or elongations.

To discover the relative contribution of each disfluency type on the perception of

fluency, we also ran a regression analysis. The dependent variable was the vector of nor-

malized fluency scores, and the independent variables were the binary ground-truth labels

of the five disfluency types for each utterance. We found these independent variables were

able to account for a significant portion of the variance in the fluency scores, R2 = .331,
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Disfluency
Frequency Counts (out of 146)

% Agreement
Evaluator 1 Evaluator 2

Sound-out 39 38 97.95
Hesitation 27 29 97.26
Whisper 22 26 97.26
Elongation 13 22 93.84
Question 10 14 95.89

Table 2.1: The number of utterances (out of 146) that each evaluator labeled as contain-
ing each of the five disfluency types and the percentage of utterances in which the two
evaluators agreed.

Disfluency M SD
p-value

Hes Wh Qu El

Sound-out -0.648 0.865 0.154 0.001 < .001 < .001
Hesitation -0.587 0.804 – 0.015 < .001 < .001
Whisper -0.397 0.946 – – 0.011 0.012
Question -0.210 0.714 – – – 0.271
Elongation -0.164 0.672 – – – –

Table 2.2: Statistics of the normalized fluency scores for each of the five disfluency types,
along with the resulting p-values when using pairwise one-sided t-tests to compare the
difference in mean scores.

F (5, 2031) = 201.0, p< .001. As shown in Table 2.3, the coefficient magnitudes for the

sound-out, hesitation, and whisper disfluencies were largest, which suggests their pres-

ence impacts evaluators’ perception of fluency more than the elongation and question

intonation disfluencies.

We conjecture that whispers, hesitations, and sound-outs were considered more dis-

fluent because they occurred in addition to the pronunciation of the target word, thus

breaking up the flow of the speech more than disfluencies that occurred during the pro-

nunciation of the target word. Based on these results, we set out to automatically detect

these three perceptually relevant disfluencies directly from the audio signal. Section 2.3.4
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Disfluency Coefficient Std. Error t(2031) p-value

Sound-out -1.206 0.045 -26.68 < .001
Hesitation -1.047 0.052 -19.99 < .001
Whisper -0.718 0.078 -9.224 < .001
Elongation -0.500 0.072 -6.930 < .001
Question 0.150 0.057 2.645 0.008

Table 2.3: Regression analysis of the five disfluency independent variables when estimat-
ing the evaluators’ normalized fluency scores.

discusses our proposed methods and shows results based on experiments with the devel-

opment set.

2.4 Feature Extraction

We learned in Evaluation 1 (Section 2.2.1) that people considered pronunciation cor-

rectness, fluency, and speaking rate to be critical cues in determining the child’s overall

reading ability. In Evaluation 2 (Section 2.2.2), we learned that the whispering, hesita-

tion, and sound-out disfluencies were considered the most perceptually relevant. In this

section, we concentrated on extracting features correlated with these cues. In Section

2.3.1, we describe the construction of a dictionary for each target word, which we will use

for much of our subsequent analyses. In Section 2.3.2, we describe the development set in

greater detail. In Section 2.3.3 and 2.3.4, we use this development set to experiment with

automatic pronunciation verification and disfluency detection methods, respectively. In

Section 2.3.5, we apply these methods to the test data to extract features for high-level

literacy assessment.
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2.4.1 Dictionary

For each target word, we constructed a dictionary with the help of an expert teacher

and linguist. Acceptable and foreseeable unacceptable phonemic pronunciations were

included in each target word’s dictionary. These unacceptable pronunciations were made

by substituting correct pronunciations with common letter-to-sound errors; for example,

/k ah t/ (“cut”) was augmented to the dictionary as a common reading mistake for /k

y uw t/ (“cute”). Also, due to the large Mexican-American background in the corpus,

we added common Spanish-speaking influenced variants to the dictionary, based on [182].

On average, each target word had 1.20 acceptable pronunciations and 3.03 foreseeable

unacceptable pronunciations in its dictionary. Across all target words, 33 phonemes were

used in these pronunciations. (We trained a monophone HMM for each, as described in

Section 2.1).

2.4.2 Feature Development Set

To test various feature extraction methods, we used the development set, introduced in

Section 2.1; this speech data was not included in either the test set or the acoustic model

training data. Most of the demographic information about the 220 children was unknown,

since the children’s parents did not provide this optional information: gender (female=25,

male=43, unknown=152), grade (kindergarten=5, first=36, second=27, unknown=152),

and native language (English=21, Spanish=38, bilingual=5, unknown=156).

Since we were interested in detecting mispronunciations and disfluencies as relevant

features, we first needed to explicitly label these in the development set. Three evaluators

manually verified the pronunciation of each target word in the development set (binary
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accept/reject) and labeled each single-word utterance with the five disfluency types. All

utterances in which there was excessive background noise or problems during the recording

(e.g., cut-off speech) were marked by the evaluators and ignored. There was no overlap

in evaluations, since this manual labeling process is costly (we saved approximately 20

hours of time by using three evaluators with no overlap) . In total, 2800 single-word

utterances were annotated. 22.95% of the utterances had at least one disfluency type,

and 2.49% had two or more types. Hesitations were marked in 8.93% of the utterances,

sound-outs in 5.94%, elongations in 5.15%, whispering in 3.13%, and question intonations

in 2.13%. 37.1% of the target word pronunciations were rejected. If at least one disfluency

was marked in the utterance, the probability the pronunciation was rejected increased to

0.578. This means that disfluent speech and mispronunciations were positively correlated

events.

2.4.3 Automatic Pronunciation Verification

The purpose of automatic pronunciation verification is to accept or reject a pronuncia-

tion. To characterize the performance of this task, we borrow metrics commonly used

in detection theory and binary classification tasks: precision (2.1), recall (2.2), balanced

F-score (2.3), false-alarm rate (2.4), misdetection rate (2.5), and Matthews correlation

coefficient (2.6). In these equations, a true positive (TP) is correctly detecting a mis-

pronunciation, a false positive (FP) is incorrectly detecting a mispronunciation, a true

negative (TN) is correctly detecting no mispronunciation, and a false negative (FN) is

incorrectly detecting no mispronunciation.
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P =
TP

TP + FP
(2.1)

R =
TP

TP + FN
(2.2)

F =
2 · P ·R
P +R

(2.3)

FA =
FP

TN + FP
(2.4)

MD =
FN

TP + FN
(2.5)

MCC =
TP · TN− FP · FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.6)

In our previous papers [23, 24], we used a simple automatic pronunciation verifica-

tion method, which acts as our baseline method for this work. We ran automatic speech

recognition (ASR) with the dictionary of acceptable and foreseeable unacceptable pro-

nunciations on each single-word utterance in the development set. We tried a number

of different finite-state grammars (FSGs) to endpoint the pronunciation automatically:

allowing for recognition of the background model (BG) vs. the garbage model (GG) at

the start and end of the utterance vs. allowing both to be recognized; requiring the BG or

GG models to be recognized at the start and end of the utterance vs. making it optional;

allowing for repetitions of the BG and GG models at the start and end of the utterance

vs. only allowing them to be recognized once. We found, in general, that allowing for

the GG model to be recognized at the start and end of the utterance resulted in more

false alignments of the target word pronunciation, probably because the GG model was

trained on speech data. Fig. 2.1 shows an example of the FSG that attained the highest

37



F-score. In this FSG, the BG model is recognized (with the option of multiple recogni-

tions) at the start and end of each utterance, and there is one required forced alignment

of either the background model (BG), the garbage model (GG), or one of the acceptable

or unacceptable pronunciations in the dictionary for that target word. A pronunciation

is accepted if and only if an acceptable pronunciation of the target word is recognized;

otherwise, it is rejected. The first row of Table 2.4 shows the performance of this method

(called LEX), with respect to the metrics (2.1)-(2.6).

Figure 2.1: The finite-state grammar (FSG) used for the LEX pronunciation verification
method (for the sample word, “fine”). The pronunciation is accepted if and only if the
correct pronunciation (/f ay n/) is recognized; otherwise, it is rejected.

The second automatic pronunciation verification method we tried was Goodness of

Pronunciation (GOP) scoring [179]. In this method, a forced alignment of acceptable

pronunciation(s) of the target word is first made to the utterance. The resulting output

will contain the phonemes recognized and their corresponding boundaries and acoustic

log-probabilities. An unconstrained phone loop is then decoded across each phone seg-

ment, and a final GOP score for each phone is computed by subtracting the acoustic

log-probability of the phone loop from the log-probability of the forced-aligned phone.

High GOP scores correspond to phones that are more likely to be correctly pronounced,
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and a GOP score threshold can be made to reject phones with GOP scores below the

threshold.

We applied this technique to each utterance in the development set and got the best

results, in terms of maximizing F-score, when we did not threshold on individual phones

within a target word but rather thresholded on the average GOP score across the word

(where each phone is counted equally). Equation (2.7) shows how to compute the GOP

phone score (O is the acoustics, p is the phone, PL is the phone-loop, and N is the number

of frames of phone p). Equation (2.8) shows how to compute the GOP word-level score,

by calculating the mean of the GOP phone scores for the word. Finally, (2.9) shows how

we thresholded the GOP word-level score to ultimately reject or accept the pronunciation.

This threshold, T, can be chosen to attain specific performance characteristics; we chose

the T that maximized F-score, but other popular optimization criteria could be used (e.g.,

equal precision and recall, equal false-alarm and misdetection rates, maximum Matthews

correlation coefficient). Table 2.4 shows the performance of this GOP scoring method for

this optimal value of T.

GOP(p) ≡ 1

N
log

P (O|p)
P (O|PL)

(2.7)

GOP(l) ≡ 1

|p ∈ l|
∑
p∈l

GOP(p) (2.8)

Reject(l) ≡


1, GOP(l) ≤ TGOP(l)

0, GOP(l) > TGOP(l)

(2.9)
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We also tried combining the LEX and GOP methods. The LEX method makes

use of target word knowledge and common letter-to-sound mistakes a child might make

(especially with the influences of Spanish), but this method may be unable to detect errors

if the child produces an unforeseeable realization of the target word. On the other hand,

the GOP method is able to detect errors made that were not foreseeable but might not

be able to tease apart close pronunciations with one phone substitution. We combined

the two methods by first running the LEX method and then using the GOP scoring

method only on pronunciations that were accepted by the LEX method. Table 2.4 shows

results for all three proposed pronunciation verification methods, and Figs. 2.2 and 2.3

show performance as a function of GOP score threshold. We attained the highest F-score

(0.802) and Matthews correlation coefficient (0.680) by using the combined LEX + GOP

scoring method.

System Type R P F MD FA MCC

LEX 0.702 0.826 0.759 0.298 0.087 0.639
GOP 0.785 0.785 0.785 0.216 0.127 0.657
LEX+GOP 0.832 0.775 0.802 0.168 0.143 0.680

Table 2.4: Performance of the pronunciation verification methods: LEX, GOP, and the
combination LEX+GOP, in terms of (2.1)-(2.6). The LEX+GOP method attained the
highest F-score and MCC.

2.4.4 Automatic Disfluency Detection

Since this is a reading assessment task, the target words are known ahead of time. Fur-

thermore, the sounding-out, hesitation, and whispering disfluencies were partial word

manifestations of some pronunciation variant of the current target word. This facilitated

the use of automatic speech recognition using finite-state grammars (FSGs) to detect
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Figure 2.2: Performance of LEX+GOP pronunciation verification method as a function
of the GOP score threshold (all pronunciations with GOP scores lower than this threshold
were rejected).

disfluent speech. We first developed two simple baseline FSGs. The first baseline (Base1)

allowed for repetitions of the target word with optional silence decoded in between. If

two or more target words were recognized, the utterance was deemed disfluent; otherwise,

it was deemed fluent. This baseline was chosen since the disfluencies usually consisted

of phonemes that were present in the target word. The second baseline (Base2) inserted

a phone loop (again with optional silence decoded between phones) prior to a required

forced alignment of the target word. If one or more phones were recognized, the utter-

ance was deemed disfluent; otherwise, it was deemed fluent. This second baseline was

chosen since oftentimes the full target word was not spoken during a disfluency, so a

phone loop allowed for partial words to be recognized. Table 2.5 shows the performance

of these two baselines, in terms of the same six metrics we used before (2.1)-(2.6). Here,

41



a “true positive” is the correct detection of a disfluency. As shown in Table 2.5, Base1

suffered from low recall (high misdetection rate), since the grammar was unable to recog-

nize partial words, while Base2 suffered from low precision (high false-alarm rate), since

its unconstrained phone loop resulted in a high number of false alarms.

To improve upon these baselines, we created a two-stage procedure for detecting

disfluencies that combined both baselines, allowing for partial words to be recognized

using only phones present in the target word. In the first stage, we designed a disfluency-

specialized FSG to ensure a low misdetection rate (high recall). In the second stage,

we rejected some of these detections to reduce the false-alarm rate. The first stage in

the disfluency detection was introduced in [25] and based on work in [87, 89, 91]. We

created target-word specific FSGs to recognize partial words. Since most disfluencies

were partial word manifestations of the target word (or a partial word manifestation of

a common mispronunciation of the target word), we created constrained FSGs that only

allowed phones in the target word to be recognized and only in the order they appear in

the dictionary. We experimented with many FSG designs: an unconstrained phone-loop

consisting only of phones within the target word pronunciation(s) vs. requiring phones to

be recognized in the order they appear in the target word pronunciation(s); allowing for

repetitions and skipping of phones; requiring the first phone to be recognized vs. allowing

it to be skipped; and allowing for optional repetitions of the BG model to be recognized

between phones. All the FSG designs had high recall statistics above 0.94, so we chose

to use the FSG shown in Fig. 2.4, since it had the highest precision statistic (Table 2.5).

Analyzing the errors made in stage 1, we noticed that many of the false-alarms were

due to the recognition of unvoiced phones like stops (/k/, /p/) and fricatives (/f/, /s/).
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These “noise-like” phones were similar to the classroom noise, and therefore, more suscep-

tible to false alarms than vowels and other voiced phones. We tried a number of methods

to reject some of these false alarms while still maintaining a low misdetection rate: 1)

rejecting utterances below a minimum number of partial words recognized, 2) rejecting

partial words that were below a minimum length in time, 3) rejecting partial words that

were below a minimum acoustic model log-likelihood, 4) rejecting partial words that were

below a minimum GOP phone-level score (2.7). We got the best results, in terms of

maximizing F-score, by rejecting recognized partial words that were shorter than a min-

imum time threshold. Figs. 2.5 and 2.6 show how these performance metrics vary as a

function of the threshold, and Table 2.5 shows the performance of the proposed two-stage

disfluency detector when using the threshold that maximized F-score.

Compared with the two baseline methods, we attained the highest F-score (0.783)

and Matthews correlation coefficient (0.737) with this two-stage FSG method. Further

examining the performance of the two-stage FSG method when choosing the threshold

that maximizes the F-score, 94.35% of the hesitations and 93.94% of the sound-outs were

successfully detected. It most likely was unable to detect as many instances of whispering

(58.62%) because of acoustic mismatches with the non-disfluent speech we used to train

the acoustic models. In addition, whispered speech is more likely to be dominated by

background noise.

2.4.5 Feature Extraction on the Test Data

We next applied these pronunciation verification and disfluency detection methods on

the test data to extract scores correlated with evaluators’ perception of the children’s
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System Type R P F MD FA MCC

Base1: Word Reps 0.175 0.965 0.297 0.825 0.001 0.376
Base2: Phone Loop 0.989 0.273 0.428 0.011 0.568 0.336
FSG: Stage 1 0.942 0.611 0.741 0.058 0.129 0.697
FSG: Stage 2 0.885 0.702 0.783 0.115 0.081 0.737

Table 2.5: Performance of the disfluency detection methods: baseline 1 (Base1), base-
line 2 (Base2), and the 2 stages of the target word-specific finite-state grammar (FSG)
procedure. The proposed 2-stage FSG method achieved the highest F-score and MCC.

reading ability. Since this was an isolated word-reading task, we extracted all features

at the word-level. Table 2.6 shows the 48 scores extracted for each word. There are

10 scores based on the pronunciation verification methods, 12 scores based on the dis-

fluency detection methods, and 26 speaking rate and other temporal scores based on

both methods. When applying the pronunciation verification and disfluency detection

methods discussed in Section 2.3.3 and 2.3.4, we used all threshold and parameter values

that maximized the F-score on the development set. Note that we extracted the square

root of all temporal features as an additional feature. This was done since the temporal

features oftentimes had distributions that were skewed because of a small percentage of

long times. The square root helped push the distributions towards a more bell-shaped

distribution, which better fit the distributions assumed in the linear models we applied in

Section 2.4. We found this square root transformation performed empirically well in our

previous work [24]; future work could find a more optimal transform by choosing the root

that makes the distribution most “normal.” We extracted our final set of features for

each child by computing 12 statistics across each word-level score for all the words spoken

by the child: mean, standard deviation, skewness, minimum, minimum location (normal-

ized by number of words spoken by child), maximum, maximum location (normalized),

44



range, lower quartile, median, upper quartile, interquartile range. This produced our final

feature set of 576 features per child. The next section will discuss how we used feature

selection and supervised learning algorithms to properly deal with this over-generation of

potentially useful features.

2.5 Prediction of Children’s Reading Ability

Section 2.3 explained our feature extraction, which resulted in 576 child-level features.

In this section, we used this feature set to predict children’s reading ability, as rated by

the 11 evaluators (see Section 2.2.1). Since there were 11 evaluators, there were many

ways to pose this learning problem. We first analyzed the inter-evaluator agreement of the

evaluators using Pearson’s correlation coefficient. Equation (2.10) is Pearson’s correlation

between two vectors of scores, y1 and y2, where yj =
[
(y1

j . . . y
42
j

]T
, and µyj is the mean

score for yj . Note that the “42” in this equation refers to the total number of children

we are assessing.

Corr(y1, y2) ≡
∑42

i=1 (yi1 − µy1)(yi2 − µy2)√∑42
i=1 (yi1 − µy1)2

∑42
i=1 (yi2 − µy2)2

(2.10)

Table 2.7 shows the pairwise inter-evaluator agreement using (2.10) and also displays

four sets of average agreement for each evaluator. All 11 evaluators’ scores had higher cor-

relations with ground-truth scores (computed by averaging the other evaluators’ scores),

as compared to the mean pairwise correlation with the other evaluators. This means that

the ground-truth scores are representative of the “average” evaluators’ perception. In

addition, for 9 of the 11 evaluators, agreement was higher when using all evaluators to
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compute ground-truth scores, as compared to using just evaluators within the evaluators’

background(s). While Table 2.7 shows that the “experts” had higher average correla-

tions, none of the correlation coefficients were significantly different (all p > 0.1), using a

difference in correlation coefficients test that transformed the coefficients with the Fisher

Z-transform. As a result, we considered all evaluators.

We chose three different learning problems, meant to show how well the system could

do in three typical scenarios. In all scenarios, we trained and tested the system using

leave-one-child-out cross-validation, i.e., trained the system on 41 children and tested it

on the held-out child, and repeated this process for all 42 children. In the first scenario, we

trained the system on an individual evaluator’s scores and tested on the same evaluator’s

held-out score. Scenario 1 is a test for how well the system can predict a single evaluator’s

scores if trained on that evaluator. In scenario two, we predicted individual evaluator’s

scores using ground-truth scores to train the system. In this scenario, we computed

a ground-truth score for each child by taking the mean score across the 10 held-out

evaluators. Scenario 2 is a test for how well the system can predict single evaluator’s

scores if trained on a bank of held-out evaluators; scenario 2 is analogous to testing

how much an evaluator agrees with “off-the-shelf” assessment tools trained on a group

of different evaluators. In the third scenario (and the only one we did in our previous

work [23,24]), we predicted ground-truth scores using these ground-truth scores to train

the system. Therefore, scenario 3 is a test for how well the system can predict a bank of

evaluators if that same bank of evaluators trains the system.

To validate our results, we chose three metrics. Pearson’s correlation coefficient (2.10)

is the primary metric. Equation (2.11) is the mean absolute error between vectors of
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scores, y1 and y2. Equation (2.12) is the maximum absolute error between the two

vectors of scores, y1 and y2.

Emean(y1, y2) ≡ 1

42

42∑
i=1

∣∣yi1 − yi2∣∣ (2.11)

Emax(y1, y2) ≡ max
(∣∣y1

1 − y1
2

∣∣ , · · · , ∣∣y42
1 − y42

2

∣∣) (2.12)

Before running experiments, we calculated human agreement statistics for all three

metrics. Table 2.8 shows the human agreement statistics between the 11 evaluators,

calculated in two ways: 1) using pairwise comparisons between individual evaluators and

2) comparing individual evaluators to the ground-truth scores of the other 10 evaluators.

The pairwise comparisons had lower agreement than the ground-truth comparisons for

all three metrics (lower correlation, higher mean absolute error, and higher maximum

absolute error).

For all three scenarios, we chose to use linear regression techniques because of their

simplicity and interpretability. The choice of function estimation methods made particu-

lar sense for scenarios 2 and 3, where the trained dependent variable was quasi-continuous.

We also chose to use regression techniques for scenario 1, even though the dependent vari-

able is ordinal, in order to ensure the results across the three scenarios are comparable.

We did not z-normalize the dependent variable in any of the three scenarios since it had

no impact on performance and since knowledge of the mean and standard deviation of

the evaluator’s scores in a real-life scenario is not always practical to attain.

For all experiments, we used leave-one-child-out cross-validation to separate train

and test sets. Optimal learning parameters and feature subsets (when applicable) were
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computed on each cross-validation train set separately by using leave-one-child-out cross-

validation; we chose the parameter settings (feature subsets) that maximized correlation

between the automatic predictions and the evaluators’ scores. This cross-validation ap-

proach effectively made use of all labeled data and simultaneously ensured that we were

testing the true predictive power of our features/methods.

We developed two baseline systems, based on token-level pronunciation assessment

research, where pronunciation correctness is often solely considered. Both baselines use

simple linear regression with single features. The first uses the mean of feature VER1,

and the second uses the mean of feature VER8 (Table 2.6). These two features represent

the fraction of words mispronounced by the child, as determined by the LEX and GOP

pronunciation verification methods, respectively (Section 2.3.5). Therefore, the baseline

methods test whether one-dimensional token-level assessments can be extended to high-

level assessments by simply computing an average over the token-level assessments.

A logical extension to these baseline systems would be to use multiple linear regression

with the full set of 576 child-level features. Equation (2.13) shows this linear model, where

y is the centered (mean subtracted) vector of human scores, X is the matrix of child-level

features, w is the vector of coefficient weights, and ε is a zero mean Gaussian random

variable. The objective function J in this case is (2.14), and (2.15) is the analytical

solution which minimizes J .

y = Xw + ε (2.13)

J = ‖y −Xw‖2 ≡ (y −Xw)T (y −Xw) (2.14)
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w = (XTX)−1XT y (2.15)

Due to multicollinearity in the feature set, the solution to the inverse in (2.15) would

be numerically unstable. We addressed this problem by trying various feature selection

methods that model the dependent variable as a linear combination of a sparse set of

independent variables. Choosing a subset of the features implicitly filters out redundant,

irrelevant, and/or noisy features and makes the model easier to interpret. To show the

relative merits of each feature, we ran simple linear regression (SLR) with each child-level

feature individually.

We next tried three feature selection methods within the linear regression framework:

a forward selection method, stepwise linear regression, and the “lasso” (least absolute

shrinkage and selection operator) [166]. Forward selection iteratively adds features that

optimize Pearson’s correlation coefficient (2.10). Stepwise regression is less greedy in

that it can remove entered features if their coefficient’s p-values become too large. The

lasso algorithm finds a solution to the least-squares error minimization when adding a

λ-weighted L1 regularization term to the objective function, as shown in (2.16). This

penalizes solutions with large weight coefficients (which often occurs when features are

correlated) and promotes sparse models. Thus, many of the weight coefficients will be

identically zero. We implemented the lasso using the least angle regression (LARS)

algorithm, since there is no analytical solution to the lasso objective function [61, 66].

Note that we must standardize the features to ensure the regularization term is applied

equally to all features. We accomplished this by centering the feature matrix X and

49



dividing by the standard deviation of each feature; this normalization is denoted in (16)

as X̃.

J =
∥∥∥y − X̃w∥∥∥2

+ λ ‖w‖ (2.16)

2.6 Results and Discussion

Table 2.9 shows the performance for the two aforementioned baseline methods, the perfor-

mance of the best SLR features for each of the three feature types, and the performance

for the three feature selection methods. Table 2.10 provides coefficient statistics and lists

which features were selected in at least 20% of the 42 cross-validations for the best per-

forming feature selection method in each of the three train/test scenarios. We see from

these results that scenario 1 (training and testing on individual scores) is the hardest,

followed by scenario 2 (training on ground-truth scores and testing on a held-out evalua-

tor), followed by scenario 3 (training and testing on ground-truth scores). We can explain

the relative difficulty of the three scenarios using the following high-level description. In-

dividual evaluators’ scores can be viewed as “noisy,” due to the subjective nature of the

assessment task. Averaging the evaluators’ scores can be seen as a method to “de-noise”

individual evaluators’ scores. We get the best results in scenario 1, where we train and

test on ground-truth (“de-noised”) scores and the worst results when we train and test

on individual (“noisy”) evaluators’ scores.

In Table 2.10, we see that the baseline methods (that used the means of VER1 and

VER8), did not use the best features, since the mean of VER10 proved to be a better
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predictor of the children’s overall reading ability in all three learning scenarios. VER10

combines VER1 and VER8 into one trinary verification feature (Table 2.6). When limited

to one feature, this single verification feature achieved the best results in terms of all three

metrics and for all three scenarios, compared with using a single fluency or speaking rate

feature (Table 2.9).

Within each scenario, the automatic methods that used multiple features outper-

formed the single feature methods (including the two baselines) for all three metrics. For

scenario 1, we achieved the best results in terms of correlation (2.10) and mean absolute

error (2.11) using the lasso regression as a pre-processing feature selection algorithm and

then training the coefficient weights using multiple linear regression; we achieved the best

results in terms of maximum absolute error (2.12) using the lasso method to select features

and train the weights. For scenario 2, we achieved the best results for all three metrics

using forward feature selection. For scenario 3, we got equally good results with both the

forward selection and stepwise linear regression methods. Forward linear regression most

likely achieved the best results for Scenarios 2 and 3 because the resulting feature set

included only two features, so a greedy forward selection process was sufficient and out-

performed more complicated feature selection methods. On the other hand, for Scenario

1, the lasso algorithm provided a more robust objective function for the more difficult

learning problem, and the average number of features selected at each cross-validation

was much higher at 5.6. Thus, in this case, the forward selection algorithm was unable

to robustly select this higher number of features. The stepwise linear regression method

can be viewed as the middle ground, which explains why its performance generally fell
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between that of the forward selection and the lasso. Table 2.10 also shows that for sce-

narios 2 and 3, the forward selection algorithm chose the top performing verification and

fluency features for almost all of the cross-validation folds. However, for scenario 1, the

lasso algorithm selected a variety of features, depending on the evaluator.

Scenario 3 was the only one in which we achieved a significantly higher correlation

coefficient, compared to the best baseline system (z = 2.78, p = .005). Fig. 2.7 shows

performance (in terms of correlation) of the different automatic feature selection methods

for all three learning scenarios, compared to the human agreement statistics computed

earlier. For the human agreement in this plot, we show the pairwise inter-evaluator

correlations in scenario 1, and the ground-truth correlations in scenarios 2 and 3. We

see from this plot that we were able to achieve a comparable level of human agreement

for scenario 1 with the lasso and linear regression learning method. The mean automatic

performance correlation of 0.828 was actually higher than the average pairwise human

evaluator correlation of 0.827, although this difference was not significant (z = 0.014,

p = 0.989). This means that the system trained on a particular evaluator will agree

with that evaluator about as much as other evaluators will agree with that evaluator.

In scenario 2, the automatic performance improved, benefiting from being trained on

the perceptions of multiple evaluators, but its average performance was less than human

agreement in this scenario, since the scores being predicted were from a held-out evaluator

(resulting in a mismatched train/test condition). For scenario 2, the human evaluators’

scores were correlated with ground-truth scores with 0.899 correlation, which was not

significantly higher than automatic correlation of 0.869 (z = 0.609, p = 0.542). In scenario

3, the automatic performance is greater than average human agreement, although not
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significantly (z = 1.44, p = 0.151). In this scenario, the automatic system had the

benefit of having multiple evaluators to train the system and also a matched test set

composed of the same evaluators.

Fig. 2.8 shows the automatic predictions for the best automatic system in scenario 3.

The automatic predictions were inside the mean human errors for 34 out of 42 (81%) of

the children. We ran a final experiment by re-running scenario 3 using random subsets

of evaluators (ranging from 2 to 10 evaluators). Fig. 2.9 shows these results when using

the forward selection and lasso/linear regression methods. Again, for this plot, we also

show agreement between the human evaluators (comparing individual evaluators to the

ground-truth scores of the other selected evaluators). We chose 10 random subsets of

evaluators for each value of the number of evaluators chosen. We see from this plot that

human agreement and automatic performance both improve as a function of the number

of evaluators. More importantly, we see that automatic performance is relatively high,

even when using multiple evaluators with just two evaluators. This shows that the system

benefits from the joint modeling of evaluators with as few as two evaluators.

2.7 Incorporating Evaluator Variability

One weakness to our proposed approach in Section 2.4 was that we did not take into

account the fact that the variability in ratings across evaluators was not constant for all

children; evaluators were in complete agreement for some children and disagreed more

for other children. This variable level of evaluator uncertainty could potentially be in-

corporated during model training. In addition, we will show that this heteroscedasticity
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in evaluators’ subjective judgments (having a non-constant variance) violates an assump-

tion of the least squares linear regression techniques proposed in [16]. We addressed this

weakness in this section by employing generalized least squares linear regression methods

that account for this “variable variability” in evaluators’ scores across children [20].

Figure 2.10 is a plot of the mean and standard deviation in the overall reading ability

scores assigned to each child, computed across all evaluators. We see from this figure

that the mean scores ranged from 1.55 to 7, and the standard deviations ranged from 0

(all evaluators agreed for 2 of the 42 children) to 1.29. The lowest standard deviations

occurred for the children with higher mean scores. This makes numerical sense for the

children with mean scores greater than 6.5 because all evaluators assigned scores of 6 or

7. However, it can also be argued that these children are objectively easier to grade,

since they spoke most of the words correctly and had few disfluencies.

On the other hand, evaluators tended to agree less for the children with more pro-

nunciation errors and more disfluencies; these cues may have impacted the evaluators to

differing degrees. Thus, it can be argued that it is more subjective to grade the children

with the higher standard deviations. In particular, the child with the highest standard

deviation (who was assigned scores that ranged from 2 to 7) pronounced almost all of the

words correctly but sounded out each word beforehand; it is possible that some evaluators

largely ignored these sound-out disfluencies, while others felt it was strong evidence that

the child was not (yet) the most skilled reader.

While Figure 2.10 provides visual evidence that the evaluators’ level of agreement

varied across children, we also employed two statistical hypothesis tests for heteroscedas-

ticity: Levene’s test [116] and the Brown-Forsythe test [30]. For both tests, we could
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reject the null hypothesis of homoscedasticity in the evaluators’ scores at the 5% signifi-

cance level (Levene’s: p < 0.001, Brown-Forsythe: p < 0.05). This validates our decision

in this work to pursue generalized least squares linear regression methods, which do not

assume the evaluators’ overall scores have equal variance for each child.

Our goal in this section is to predict the overall reading ability scores from the mean

evaluator (Figure 2.10) using the same features discussed in Section 2.3. We explain

the baseline system in Section 2.7.1 and our proposed methods in Section 2.7.2. For

all methods, we used leave-one-out cross-validation to separate training data (41 chil-

dren) from the test child. We optimized all regression parameters (e.g., selected features,

smoothing/tuning parameters) using another stage of leave-one-out cross-validation on

each train set separately.

2.7.1 Least squares linear regression

The baseline learning method, least squares (LS) linear regression, was based on our

previous work [16]. The problem is defined as:

y = Xβ + ε, (2.17)

where y is the n × 1 vector comprised of the mean evaluator scores for each child, X is

the noiseless n×m feature matrix (with a n× 1 ones vector appended to account for the

intercept/offset term), β is the m× 1 linear weight vector, and the n× 1 residual vector
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ε is assumed to be homoscedastic. The optimal linear weights β̂ that minimize the sum

of the squared residual, ||y −Xβ̂||2, are:

β̂ls =
(
XTX

)−1
XTy (2.18)

Due to dimensionality issues and multicollinearity effects, we did not use all 576

features in X. Instead, we used sequential forward feature selection to iteratively select

features and construct X that maximized Pearson’s correlation between y and Xβ̂ on

the train set. Two or three features were selected, depending on the cross-validation fold

(m = {2, 3}). Therefore, n > m, and we never had the problem of an under-determined

system.

2.7.2 Generalized least squares linear regression

The least squares solution shown in Equation 2.18 is only optimal when the assumption

of homoscedasticity in ε holds. However, since we showed that y is heteroscedastic,

we see in Equation 2.17 that ε too will be heteroscedastic. This led us to employing

generalized least squares linear regression methods [39]. In this formulation, the optimal

linear weights, in the least squares sense, are:

β̂ =
(
XTΩX

)−1
XTΩy, (2.19)

where Ω is a diagonal matrix, with diagonal elements Ωjj = 1/σ2
j , where σj is the “true”

standard deviation in the overall reading ability of child j; see [39] for a derivation. In

this section, we estimated Ω in two ways: 1) by using the scores provided by the 11
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evaluators, and 2) by iteratively estimating Ω from the prediction residuals. We refer to

the former method as weighted least squares (WLS) and the latter method as feasible

generalized least squares (FGLS)2.

Equation 2.20 shows how we computed the WLS estimate of Ω, where σ̃j is the

estimated standard deviation in the overall reading ability of child j, computed from the

evaluators’ scores (Figure 2.10), and Cw is a positive smoothing parameter:

Ωwls = diag

(
1

σ̃2
1 + Cw

, · · · , 1

σ̃2
n + Cw

)
, Cw > 0 (2.20)

The WLS method has the benefit of requiring only one additional parameter, Cw, which

is needed to avoid numerical problems for the case when all evaluators agree (σ̃j = 0).

Cw can also be viewed as a tuning parameter; as Cw is increased, the solution to β̂wls

(Equation 2.19) tends to β̂ls (Equation 2.18). Figure 2.11 demonstrates the effectiveness

of the WLS method in predicting the mean evaluator’s overall reading ability scores for

a large range of Cw values.

For the FGLS method, we iteratively estimated Ω. See Algorithm 1 for pseudocode

of our implementation, which was based on [39]. We first found the WLS solution on the

training data and computed the prediction residual vector, which were used to initialize

the FGLS iteration process. At each FGLS iteration i, the residual vector was used to

construct a new FGLS diagonal matrix Ωi (step 8). The form of Ωi is very similar to Ωwls

(Equation 2.20), except Ωi is determined analytically from the trained model, while Ωwls

is computed from the evaluators’ scores. The FGLS smoothing parameter, Cf , in step 8 of

2FGLS is also commonly known as iteratively reweighted least squares.

57



Algorithm 1 Feasible generalized least squares (FGLS)

Require: Training data (feature matrix: X, dependent variable: y)

1: Compute weighted least square (WLS) solution: β̂wls
2: Compute WLS residual column vector: εwls = y −Xβ̂wls
3: Compute sum of squared residual: Ewls = εTwlsεwls
4: Initialize FGLS: β̂0 ← β̂wls, ε0 ← εwls, E0 ← Ewls
5: Initialize FGLS iteration counter: i← 0
6: repeat
7: Increment FGLS iteration counter: i← i+ 1
8: Compute diagonal FGLS matrix:

Ωi = diag
(

1
ε2i−1,1+Cf

, · · · , 1
ε2i−1,n+Cf

)
, Cf > 0

9: Compute FGLS coefficients: β̂i = (XTΩiX)−1XTΩiy

10: Compute FGLS residual column vector: εi = y −Xβ̂i
11: Compute FGLS sum of squared residual: Ei = εTi εi
12: until Ei ≥ Ei−1

the algorithm is analogous to the Cw term in Equation 2.20. We selected Cf using a grid

search, choosing the value that maximized the Pearson’s correlation between the diagonal

entries of Ωi and Ωwls; this tuning method was used to avoid over-training and numerical

issues. In steps 9 and 10 of Algorithm 1, new estimates for the FGLS linear weights

β̂i were computed and a new residual vector was calculated. This iterative process was

repeated until the sum of the squared residuals no longer decreased on the training data.

After convergence, the trained model was then applied to the test data. We found the

FGLS algorithm converged in 3 to 12 iterations, depending on the cross-validation fold.

For illustrative purposes, Figure 2.12 shows the performance of the FGLS method

in predicting the mean evaluator’s overall reading ability scores, as a function of the

FGLS iteration. While we only attained a small gain in performance over WLS with

respect to Pearson’s correlation, we do get a larger relative boost in performance for the

two secondary metrics used in [16] and listed in Section 2.4: the mean absolute error in

predictions and the maximum absolute error in predictions (out of the 42 children). This

suggests that the FGLS method helps improve the robustness in estimating the linear
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weight coefficients β̂ by starting from the WLS solution and iteratively incorporating

uncertainty in the trained model.

2.7.3 Results and Discussion

Comparable results for the three learning methods, attained by selecting features and

optimizing all learning parameters using cross-validation, are shown in Table 2.11. We

see that both proposed methods (WLS and FGLS) equaled or outperformed the baseline

LS method for all three performance metrics. While there were no significant differences in

the correlation coefficients of the three methods, the incremental improvements achieved

with the WLS and FGLS methods made their correlations significantly higher than the

mean inter-evaluator agreement of 0.899 (Table 2.7), with both p < 0.05.

The WLS method, which directly modeled evaluators’ variability across children,

achieved a Pearson’s correlation coefficient of 0.951 between the predicted scores and

the mean evaluator’s scores, a relative improvement of 0.53% over baseline LS linear

regression. The best overall system for all three performance metrics was FGLS linear

regression, with relative improvements over baseline LS linear regression of 0.63%, 2.5%,

and 1.4% for the correlation, average absolute error, and maximum absolute error per-

formance metrics, respectively. The FGLS method has the benefit of being initialized

with the WLS solution and making further changes based on the heteroscedasticity of

the residual from the trained model.
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2.8 Conclusions

This chapter addresses the need for automatic literacy assessments by predicting high-

level ratings of children’s overall reading ability, based on their performance reading a

list of words aloud. We chose to use a modeling scheme that linearly combined a sparse

set of features that spanned the ones actual human evaluators said they used (pronun-

ciation correctness, fluency, and speaking rate). The resulting multi-dimensional models

implicitly weight the importance of the selected features and offer a more interpretive

assessment than the more common token-level assessments. As part of this work, we

developed methods to automatically detect mispronunciations and disfluencies on a de-

velopment training set, using grammar-based automatic speech recognition.

The automatic models performed best when trained on a bank of evaluators and when

the train and test set were matched. We showed we could improve the predictive power by

incorporating variability in evaluators’ uncertainty across children using generalized least

squares linear regression. We hope the techniques proposed in this thesis can be applied

to other learning problems that involve modeling the perceptions of multiple evaluators.

One area of future work is to take into account evaluator reliability, as opposed to

treating each evaluator equally; this has been shown to be advantageous in the context of

emotion classification [6]. The inter-evaluator agreement statistics listed in Table 2.7 vary

for the 11 evaluators, so it is possible that some evaluators are more reliable than others.

We may be able to predict the evaluators’ scores better if we weighted the scores of the

more reliable evaluators higher. Unfortunately, initial experiments that used evaluator

reliability-weighted linear combinations of the scores (using the agreement statistics in
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Table 2.7 as a measure of reliability) did not increase automatic prediction performance.

Future research will experiment with other reliability metrics to find more robust ways

of combining multiple evaluators’ perspectives (e.g., by using data-dependent evaluator

modeling as in [5]).

This type of automatic processing could be especially useful in a classroom environ-

ment, where the teacher or a number of teachers could train the system to mimic their

grading trends. High-level assessments could then be used by teachers to ensure the chil-

dren are learning at an appropriate rate and to help inform their lessons. This type of

collaboration between technology and teachers could transform the classroom.

In the future, we would like to incorporate both audio and video information for

a more realistic scoring scenario. We would also like to extend this high-level literacy

assessment to other reading tasks. We imagine applying it within a framework that

examines children’s skills across various reading tasks, so as to provide teachers with

analysis on areas in which a child might be excelling versus an area in which he/she may

need more practice or instruction.
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Figure 2.3: Performance of the three pronunciation verification methods (LEX, GOP,
LEX+GOP). The GOP method performances are shown as the GOP score threshold is
varied from -10 to 0. EER is the equal error rate for the displayed metrics.
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Figure 2.4: The stage 1 disfluency detection finite-state grammar (FSG) for the sample
word, “fine,” which has two entries in the dictionary (/f ay n/, /f ih n/). The FSG
allows partial word manifestations of the target word to be recognized before a required
forced-alignment of the entire target word. (BG is the background acoustic model.)

Figure 2.5: The performance of the stage 2 finite-state grammar (FSG) method as a
function of the partial word length threshold (below which all partial words were rejected).
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Figure 2.6: Performance of the two baseline systems (Base1 and Base2) and target word-
specific finite-state grammar (FSG) procedure (stages 1 and 2). The FSG stage 2 per-
formance is shown as the minimum partial word length threshold is varied from 0 to 2
seconds. EER is the equal error rate for the displayed metrics.
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Name Description Domain

VER1 Was unacceptable pronunciation recognized? {0, 1}
VER2 Was common reading error recognized? {0, 1}
VER3 Was Spanish-related error recognized? {0, 1}
VER4 Was garbage (GG) recognized? {0, 1}
VER5 Was background/silence (BG) recognized? {0, 1}
VER6 Log-likelihood of acceptable pronunciation (−∞, 0]
VER7 GOP(w) - see (2.7) (−∞, 0]
VER8 Reject(w) - see (2.8) {0, 1}
VER9 2-stage verification method - see Section 2.3.3 {0, 1}
VER10 VER1 + VER8 {0, 1, 2}

FL1 Number of recognized partial words {0, 1, . . .}
FL2 Was at least one partial word recognized? {0, 1}
FL3 Length of recognized partial words [s] [0, 5)
FL4 Length of silence between partial words [s] [0, 5)
FL5 Length of all silence recognized [s] [0, 5)
FL6 FL3 + FL4 [0, 5)
FL7 FL3 + FL5 [0, 5)

FL8:FL12 Square root of FL3 through FL7 [0,
√

5)

SR1 Utterance length [s] (0, 5]
SR2 Target word start time [s] [0, 5)
SR3 Target word end time [s] (0, 5]
SR4 Number of syllables spoken / (SR3 - SR2) (0,∞)
SR5 (SR3 - SR2) / Number of syllables spoken (0, 5]
SR6 Number of phones spoken / (SR3 - SR2) (0,∞)
SR7 (SR3 - SR2) / Number of phones spoken (0, 5]
SR8 Speech start time (partial word or target word) [0, 5)
SR9 Speech end time (0, 5]
SR10 Number of syllables spoken / (SR9 - SR8) (0,∞)
SR11 (SR9 - SR8) / Number of syllables spoken (0, 5]
SR12 Number of phones spoken / (SR9 - SR8) (0,∞)
SR13 (SR9 - SR8) / Number of phones spoken (0, 5]
SR14:SR26 Square root of SR1 through SR13 –

Table 2.6: Features extracted for each word in the test data (VER = verification, FL =
fluency, SR = speaking rate). The temporal features have an upper bound of 5 seconds
since this was the maximum time allotted per word. All GOP scores in this study were
finite, since all phone probabilities were non-zero.
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Evaluator Pairwise Evaluator Correlation Avg. Correlations

(Background) 1 2 3 4 5 6 7 8 9 10
mean ground-truth

intra all intra all

1 (Näıve) 0.776 0.770 0.810 0.833

2 (Näıve) 0.70 0.767 0.803 0.808 0.874
3 (Näıve) 0.85 0.83 0.843 0.860 0.909 0.940

4 (Non-native) 0.72 0.70 0.84 0.813 0.780 0.850 0.844

5 (Non-native) 0.76 0.85 0.86 0.84 0.857 0.848 0.913 0.928
6 (Non-native) 0.82 0.84 0.89 0.86 0.91 0.880 0.868 0.944 0.949

7 (Non-nat., Ling.) 0.82 0.79 0.88 0.74 0.82 0.87 0.810 0.816 0.866 0.886
8 (Linguist) 0.69 0.86 0.84 0.73 0.87 0.86 0.73 0.777 0.814 0.801 0.888

9 (Linguist, Expert) 0.79 0.82 0.88 0.76 0.83 0.83 0.88 0.83 0.860 0.840 0.923 0.916

10 (Expert) 0.77 0.80 0.86 0.79 0.86 0.86 0.81 0.87 0.86 0.857 0.837 0.886 0.913
11 (Expert) 0.78 0.84 0.87 0.82 0.88 0.88 0.82 0.86 0.87 0.86 0.863 0.844 0.895 0.922

Avg: 0.828 0.827 0.873 0.899

Table 2.7: Pairwise evaluator correlations between the 11 evaluators (Näıve = native
English speakers with no background in linguistics or children’s literacy, Non-Native =
non-native English speakers with an engineering background in speech-related research,
Linguist = taken at least two graduate-level linguistics courses, Experts = more than
a year working on children’s literacy research). Average correlations were computed
two different ways (“mean” and “ground-truth”) and across two different groupings of
evaluators (“intra” and “all”). “Mean” is the average pairwise evaluator correlation,
and “ground-truth” is the correlation between an evaluator’s scores and the averaged
scores of the other evaluators. “Intra” calculations compare evaluators with the same
background(s), while “all” calculations compare all evaluators’ scores.

Evaluator Domain
Mean (Standard Deviation)

Corr Emean Emax

Pairwise 0.827 (0.032) 0.810 (0.180) 2.800 (0.701)
Ground-Truth 0.899 (0.038) 0.624 (0.137) 2.227 (0.388)

Table 2.8: Human agreement statistics for the 3 metrics (2.10)-(2.12).

66



Scenario:Method
Mean (Standard Deviation when applicable)

Corr Emean Emax

1:Base1 (VER1) 0.734 (0.062) 0.914 (0.106) 2.880 (0.358)
1:Base2 (VER8) 0.746 (0.048) 0.930 (0.121) 2.682 (0.475)
1:SLR (best VER) 0.769 (0.065) 0.882 (0.072) 2.610 (0.632)
1:SLR (best FL) 0.748 (0.054) 0.895 (0.139) 3.041 (0.480)
1:SLR (best SR) 0.705 (0.105) 0.924 (0.197) 3.385 (0.799)
1:Forward LR 0.792 (0.074) 0.815 (0.160) 2.659 (0.700)
1:Stepwise LR 0.805 (0.055) 0.786 (0.143) 2.852 (0.722)
1:Lasso 0.807 (0.087) 0.814 (0.223) 2.467 (0.565)
1:Lasso, then LR 0.828 (0.070) 0.721 (0.153) 2.549 (0.560)

2:Base1 (VER1) 0.741 (0.053) 0.968 (0.111) 3.044 (0.376)
2:Base2 (VER8) 0.756 (0.044) 0.970 (0.107) 2.763 (0.687)
2:SLR (best VER) 0.812 (0.041) 0.856 (0.084) 2.510 (0.643)
2:SLR (best FL) 0.731 (0.051) 0.979 (0.137) 3.345 (0.505)
2:SLR (best SR) 0.724 (0.062) 0.975 (0.175) 3.374 (0.554)
2:Forward LR 0.869 (0.038) 0.712 (0.138) 2.407 (0.520)
2:Stepwise LR 0.861 (0.035) 0.730 (0.133) 2.589 (0.703)
2:Lasso 0.851 (0.041) 0.846 (0.139) 2.544 (0.552)
2:Lasso, then LR 0.854 (0.037) 0.753 (0.125) 2.526 (0.495)

3:Base1 (VER1) 0.809 0.735 2.405
3:Base2 (VER8) 0.822 0.743 1.909
3:SLR (best VER) 0.888 0.596 1.601
3:SLR (best FL) 0.799 0.759 2.762
3:SLR (best SR) 0.783 0.789 2.858
3:Forward LR 0.946 0.365 1.594
3:Stepwise LR 0.946 0.365 1.594
3:Lasso 0.925 0.535 1.837
3:Lasso, then LR 0.940 0.414 1.636

Table 2.9: Automatic performance for the three scenarios described in Section 2.4. The
methods above the dotted line use single features, and the ones below use multiple fea-
tures. The numbers in red are the best performance achieved for the three scenarios.
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Scenario:Method Feature % Folds
Coefficient stats

M SD

1:Base1 (VER1) Mean(VER1) – -0.755 0.051
1:Base2 (VER8) Mean(VER8) – -0.771 0.042
1:SLR (best VER) Mean(VER10) – -0.851 0.012
1:SLR (best FL) Uquart(FL12) – -0.801 0.036
1:SLR (best SR) Uquart(SR14) – -0.771 0.055

1:Lasso, then LR

Range(VER7) 50.9 0.140 0.129
Mean(VER7) 44.4 0.258 0.267
Iquart(SR2) 38.1 -0.314 0.203

Uquart(FL12) 31.2 -0.142 0.116
Mean(VER6) 27.9 0.199 0.149
Lquart(FL2) 21.3 -0.276 0.147

2:Base1 (VER1) Mean(VER1) – -0.824 0.009
2:Base2 (VER8) Mean(VER8) – -0.839 0.007
2:SLR (best VER) Mean(VER10) – -0.898 0.005
2:SLR (best FL) Uquart(FL12) – -0.852 0.006
2:SLR (best SR) Uquart(SR14) – -0.829 0.009

2:Forward LR
Mean(VER10) 99.1 -0.604 0.017
Uquart(FL12) 97.0 -0.442 0.019

3: Base1 (VER1) Mean(VER1) – -0.825 0.007
3: Base2 (VER8) Mean(VER8) – -0.840 0.006
3: SLR (best VER) Mean(VER10) – 0.899 0.004
3: SLR (best FL) Uquart(FL12) – -0.852 0.005
3: SLR (best SR) Uquart(SR14) – -0.829 0.006

3:Forward LR
Mean(VER10) 100.0 -0.605 0.012
Uquart(FL12) 97.6 -0.442 0.013

Table 2.10: Statistics of the standardized coefficients for the baseline, single feature, and
best performing feature selection methods.

System
Performance metric

Corr |E|avg |E|max

Least Squares (LS) – Baseline 0.946 0.365 1.601
Weighted Least Squares (WLS) 0.951 0.364 1.601
Feasible Generalized LS (FGLS) 0.952 0.356 1.579

Table 2.11: Performance, in terms of the 3 metrics, of the 3 proposed systems: baseline
least squares (LS), weighted least squares (WLS), and feasible generalized least squares
(FGLS).
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Figure 2.7: Mean and standard deviation of human evaluator agreement compared to
the automatic performance for the three feature selection methods: forward selection,
stepwise regression, and the lasso followed by linear regression.
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Figure 2.8: Linear regression results when using features selected using forward selection
for scenario 3. “Human error” is the mean absolute difference from the ground-truth
(GT) to held-out evaluators’ scores.
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Figure 2.9: Correlation between predictions and evaluators’ scores for learning scenario
3 as a function of the number of evaluators used to compute the ground-truth scores. It
shows that both human agreement and automatic performance increase as the number of
evaluators increases. Automatic performance with nine or more evaluators is significantly
higher than with two evaluators (z = 1.94, p = 0.048).
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Figure 2.10: The mean and standard deviation in the overall scores assigned to each child,
computed across all 11 evaluators.
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Figure 2.11: Performance, in terms of Pearson’s correlation, in predicting the children’s
overall reading ability using the weighted least squares (WLS) method, as a function of
the tuning parameter Cw.
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Figure 2.12: Performance, in terms of the 3 metrics, of the 3 proposed systems: baseline
least squares (LS), weighted least squares (WLS), and 12 iterations of feasible generalized
least squares (FGLS).
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Chapter 3

Couples Therapy Research

3.1 Introduction

1 In psychology and psychiatry, behavioral observation is essential for diagnosis for chil-

dren and adults, and it is also a means for monitoring change during psychotherapy, where

both therapist and client engage in, and respond to, continuous, albeit usually unsystem-

atic, behavioral observation. The importance of observable behavior for researchers and

therapists is borne of the fact that behavior is typically the best objective measure of

psychologically relevant phenomena available. Self-reports of even obvious behaviors can

be notoriously unreliable [140].

Although most observation in psychological and psychiatric practice has been unsys-

tematic, systematic observational research has been central to numerous intra- and inter-

personal psychological problem domains including depression [9], bi-polar disorder [75],

anxiety [12], schizophrenia [31], autism [107], alcoholism [160], domestic aggression [119],

and marital distress [96]. In each of these areas, observational research has identified

1This research was supported in part by the National Science Foundation and the Viterbi Research
Innovation Fund. Special thanks to the Couple Therapy research staff for collecting, transcribing, coding,
and sharing the data.
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behaviors exhibited by individuals who suffer from such problems (and behaviors exhib-

ited by family members and loved ones of afflicted individuals) that are associated with

increased symptomatology and reoccurrence of disorders.

Behavioral observation has been used with considerable success in the study and treat-

ment of intimate relationships. Current theory suggests, and recent empirical findings

validate [81, 103], that spouses’ behavior is a central and defining aspect of intimate re-

lationships that links broad cultural factors, longstanding life experiences, and current

stressors to the stability and quality of marital relationships.

However, the methods used in behavioral observation do present some challenges. To

test research hypotheses, psychology and other fields in the behavioral sciences often-

times rely heavily upon observational coding of audio-video data; for example, in family

studies research, psychologists use a variety of established coding standards describing

characterizations of specific behavior patterns of interest that guide human annotation

of data [120]. This manual coding is a costly and challenging process. First, a detailed

coding manual must be designed, which can be a complex iterative task [108].

After the creation of an appropriate coding manual, multiple coders, each with his/her

own biases and limitations, must be trained in a consistent manner on held-out but

representative data. In some cases, coders must meet a predetermined minimum level of

agreement with a “gold-standard” coder on training data before they can code real data.

To avoid coder drift, some coding protocols require coders to be evaluated periodically

and retrained if necessary [108]. In addition, for longitudinal studies lasting several years,

it is usually only feasible to have disjoint sets of coders, which adds another source of

variability to the resulting coded data.
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The actual coding process can be mentally straining and inefficient. Multiple coders

oftentimes code the same data to allow for the computation of both code reliability and

inter-rater reliability. Each coder observes the audio-video data and marks relevant behav-

ioral phenomena according to the coding manual (e.g., in continuous time, in quantized

time intervals, at the session-level). The complexity of the coding process determines the

speed at which data can be coded, with more complex protocols taking orders of mag-

nitude longer than real-time (e.g., [97]). To prevent evaluator fatigue, coders are often

limited to coding for short periods of time in one sitting. Overall, the coding process is

limited by the inherent subjective and qualitative nature of human descriptions on human

behavior.

Technology has the potential to aid in coding human behavioral data. Computers are

better suited to track and quantify certain behavioral phenomena that may be challenging,

or even impossible, for humans to do. For example, whereas a human observer might have

a qualitative idea of how a speaker’s pitch may be changing, engineering algorithms can

estimate and track the pitch of a speaker using quantitative methods at fine temporal

granularities. Pitch, and other low-level descriptors (LLDs) of human behaviors [152],

can be extracted using well-developed signal processing methods, which in turn can be

mapped to relevant high-level human behavior via machine learning algorithms.

Computer technology has the advantage of automatically analyzing data in a con-

sistent, repeatable manner. In addition, computational algorithms can be incrementally

improved, benefiting from more data and improved methodologies. Another obvious ad-

vantage of computer technology is that it will not fatigue. Finally, whereas current human

behavioral methods are not scalable to coding large amounts of data over long periods of
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time, computer technology is highly scalable. Technology can also be modularized, with

separate algorithms specializing in modeling specific human behaviors, which could make

the technology adaptable from one domain of research to another distinct but overlapping

domain.

Our aim in this chapter is to augment the observational power of the researcher and

therapist with novel computational tools and techniques. Specifically, we explore the

power of objective signal-based measures (speech-derived audio cues), extracted during

real marital discussions, in predicting perceptual observations made by evaluators trained

on a manual human behavioral coding system. Thus, our goal is to emulate human

evaluators observing human behavior.

This research is part of a growing field, behavioral signal processing (BSP), aimed

at better connecting the behavioral sciences with signal processing methods. Traditional

signal processing research (e.g., speech recognition, face/hand tracking) concentrated on

modeling more objective human behaviors (e.g., “what was spoken?”). BSP builds upon

traditional engineering tools and methods to model more abstract human behaviors in

realistic scenarios that are especially relevant in psychology and related fields (e.g., the

question “is one spouse blaming the other?” in a marital therapy session).

Significant work related to BSP has concentrated on extracting human-centered infor-

mation from audio-video signals, including social cues [174], affect and emotions [86,113,

153, 181], and intent [100]. The increased push to analyze realistic human interactions

and naturalistic data (as opposed to acted or artificially constrained data) is most evident

in the affective computing and emotion recognition communities [33,38,57,58,62,63].
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In this chapter, we apply the basic ideas of BSP using the Couple Therapy corpus [45],

discussed in detail in Section 3.2 [17]. This corpus consists of recordings of a husband

and wife spontaneously discussing a problem in their relationship. Each spouse’s behavior

was manually coded with a number of session-level codes (e.g., level of blame expressed,

global positive affect). In [18], we showed that we could extract speech acoustic features

that separated spouses’ extreme behaviors significantly better than chance for three of the

six behavioral codes we analyzed. In [109], we developed quantitative methods to model

prosodic entrainment behavior between the spouses; couples rated as behaving more

positive were found to have significantly higher levels of prosodic entrainment compared

to couples rated as being more negative. In addition, the entrainment features were able

to discriminate positively rated interactions from negatively rated ones.

This chapter represents an extension of [18], in which we analyze the same corpus. In

this chapter, we improved upon our speaker segmentation method, which allowed us to

analyze a larger percentage of the data in the corpus. We also took greater care in normal-

izing feature streams to combat variable acoustic conditions and speaker-dependencies.

In addition, we experimented with new acoustic feature types and new techniques to

map these features from the frame-level to the session-level. Finally, we compared var-

ious machine learning techniques to automatically predict the behavioral codes for the

spouses. These extensions produced an absolute improvement of 3.95% in classifying the

six behavioral codes, compared to the best results reported in [18].

Section 3.2 describes the Couple Therapy corpus, and Section 3.3 provides a method-

ological overview. We explain how we pre-processed the data in Section 3.4. Section 3.5
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discusses the acoustic features we extracted to model the spouses’ behavior, while Sec-

tion 3.6 describes the learning methods and algorithms used to predict the spouses’

behavioral codes. The results are presented and discussed in Section 3.7, with fusion

experiments and results discussed in Section 3.8, and the conclusions and intended future

work are provided in Section 3.9.

3.2 Couple Therapy corpus

The original study that produced the data we refer to as the Couple Therapy corpus

was a multi-year, multi-university collaboration between researchers in the department

of psychology at the University of California, Los Angeles and the University of Wash-

ington [45]. The main purpose was to test the efficacy of integrative behavioral couple

therapy (IBCT) [47] versus traditional behavioral couple therapy (e.g., [11]) for treating

severely and stably distressed couples who were not likely to benefit from other forms of

couple therapy. This study became the largest longitudinal, randomized control trial of

psychotherapy for severely and stably distressed couples and led to a number of psychol-

ogy publications [10,43–45]. Based in large part on the success of IBCT as documented in

these publications, IBCT is currently one of only four empirically supported interventions

for relationship distress.

One hundred and thirty-four seriously and chronically distressed couples (all male-

female pairs) were recruited in Los Angeles, California (71 couples) and Seattle, Wash-

ington (63 couples) and randomly split between the two couple therapy conditions. The
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recruitment inclusion criteria included: the couples being legally married and living to-

gether, both spouses speaking fluent English, being between the ages of 18 and 65, and

having at least a high school education or its equivalent.

Recruited couples were married a mean of 10.0 years (SD = 7.60) at the beginning of

the study. The mean age of the recruited wives was 41.6 years (SD = 8.59), and the mean

age of the husbands was 43.5 years (SD = 8.74). The mean number of years of education

was 17.0 for both the wives and husbands (SD = 3.23 for wives, SD = 3.17 for husbands).

The majority of the participants were Caucasian (wives: 76.1%, husbands: 79.1%); other

well-represented ethnicities included African American (wives: 8.2%, husbands: 6.7%),

Asian or Pacific Islander (wives: 4.5%, husbands: 6.0%), and Latina/Latino (wives: 5.2%,

husbands: 5.2%).

Each couple received up to 26 sessions of therapy over the course of one year. As part

of the study, research staff had couples select two current, serious relationship problems,

one chosen by each partner, and then had them engage in two dyadic discussions in

which they were instructed to try to understand and resolve these respective relationship

problems. There was no therapist or research staff present during these sessions, and the

couple interacted for ten minutes about the wife’s chosen topic and ten minutes about

the husband’s chosen topic; these two ten-minute sessions were considered separate and

analyzed separately.

The problem-solving interactions were recorded at three points in time across the

study: pre-therapy, the 26-week assessment, and the two-year post-therapy assessment.

The audio-video data consist of a split-screen video (704x480 pixels, 29.97 fps) and a

single channel of far-field audio recorded from the videocamera microphone (16 kHz,
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Manual Codes

SSIRS

global positive affect, global negative affect, use of humor,
sadness, anger/frustration, belligerence/domineering,
contempt/disgust, tension/anxiety, defensiveness, affection,
satisfaction, solicits partner’s suggestions, instrumental
support offered, emotional support offered, submissive or
dominant, topic a relationship issue, topic a personal issue,
discussion about husband, discussion about wife

CIRS

acceptance of other, blame, responsibility for self, solicits
partner’s perspective, states external origins, discussion,
clearly defines problem, offers solutions, negotiates, makes
agreements, pressures for change, withdraws, avoidance

Table 3.1: A list of the 32 codes in the two human behavioral coding systems: Social Sup-
port Interaction Rating System (SSIRS) and Couples Interaction Rating System (CIRS).

16-bit). Since the data were originally only intended for manual coding, the recording

conditions were not ideal for automatic analysis; the video angles, microphone placement,

and background noise varied across couples and across sessions.

The audio-video recordings in the original study were used to manually code each

spouse with relevant high-level behavioral information. Two separate rating systems

(“coding manuals”) were developed and used. Both were designed for use by näıve

raters who were fluent in English and have a layperson’s understanding of human in-

teraction [157]. The Social Support Interaction Rating System (SSIRS) measured both

the emotional content of the interaction as well as the topic of conversation [99]. It con-

sisted of 19 questions (“codes”) across four categories: affectivity, dominance/submission,

features of the interaction, and topic definition. The Couples Interaction Rating System

(CIRS) consisted of 13 codes and was specifically designed for coding problem-solving

discussions [93]. All 32 codes had written guidelines and were on an integer scale from 1

(“none/not at all”) to 9 (“a lot”). Table 3.1 lists the 32 codes in the two coding manuals.
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Multiple coders rated each session (one set of 32 codes for each spouse) after watching

the video at most two times. The number of coders per session ranged from 2 to 12, with

91.1% of the sessions being rated by 3 or 4 evaluators. Evaluator judgments were based

on observation of the entire interaction and were at the session-level; no finer-grained

codes were attained (e.g., utterance-level, turn-level). Evaluators were told to focus on

one spouse (the “target spouse”) when observing each interaction. They were encouraged

to use information in both verbal and nonverbal channels when rating the spouse and to

take into account both the frequency and intensity of particular behaviors, as well as the

context in which they occur.

All coders were undergraduate students at the University of California, Los Angeles.

They each underwent a training period to give them a sense for what was typical behavior

and to help standardize the coding process. First, the coders rated acted videos of couples

that exemplified low and high ratings of the codes. Then, coders compared their ratings

with those of expert psychologists and discussed the differences. Evaluators began coding

the real data once they demonstrated a reasonable level of reliability with the expert’s

ratings; inter-rater reliability varied depending on the code, as exemplified in Table 3.2

and explained in further detail in [158]. Typically the training process took approximately

15 hours. Evaluators continued to attend weekly two-hour training meetings to prevent

drift and to ensure high reliability [157]. In total, 37 individual coders were trained across

the two coding systems. It should be noted that disjoint sets of coders were used for the

two coding manuals (a coder was only trained to rate the SSIRS or the CIRS), but coders

rated couples across time periods.
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As part of the original study, the sessions were manually transcribed for the purpose

of analyzing the language use of each spouse [4, 10, 178]. They used the IBM ViaVoice

speech transcription software, and the data took, on average, three to six times real-

time to transcribe. The resulting word-level transcriptions were chronological, with the

speaker explicitly labeled for each word (husband or wife). Nonverbal communication

was marked in the transcriptions (e.g., laugh, sigh, throat clear, long pause). Spoken

names and other proper nouns were de-identified in the transcriptions for privacy reasons,

and transcribers also marked regions in which they could not understand the speech; in

total, 0.98 percent of the words were either de-identified or unknown. In portions with

overlapping speech, transcribers attempted to separate out words from each speaker, but

regions of speech overlap were not explicitly marked. No timing information was provided

in the transcriptions.

There are 574 ten-minute sessions with corresponding transcriptions in the Couple

Therapy corpus. Five of these sessions were missing the codes from the two psychology

rating systems. This left 569 coded sessions, totaling 95.8 hours of data across 117 unique

couples.

3.3 Methodology overview

The Couple Therapy corpus provides a unique opportunity to test BSP methods and

algorithms on data collected in an ecologically valid setting that meets the stringent

standards used in behavioral science research. In addition, the size of the corpus makes it
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appealing for exploring data-driven BSP methods. Although the data quality is not opti-

mal for automated processing, repeating the study to attain higher quality recordings of

couples’ interactions would entail a multi-year effort (for recruiting, subject scheduling,

etc.). Furthermore, while the high variability in the recording conditions are a source

of exaggerated noise, data quality variability is still present even in corpora collected

with high-quality recording equipment, consistent sensor locations, and controlled acous-

tic/visual environmental conditions (e.g., [151]). We believe that analyzing this existing

large corpus offers a veritable testbed for this domain of BSP research.

In this thesis, our goal was to provide analysis toward automatically learning a subset

of the 32 codes using features derived from the audio signal. The following subsections

explain the various design decisions we made. Section 3.3.1 describes the subset of codes

we analyzed, and Section 3.3.2 explains the classification set-up for all experiments. Sec-

tion 3.3.3 provides an overview of our methodology: data pre-processing, acoustic feature

extraction, and supervised learning of the behavioral codes. Sections 3.4-3.6 provide more

detailed descriptions of these three components, respectively.

3.3.1 Codes of interest

For clarity and to make the results comparable to our previous work [18], we chose to

only analyze the following six codes with the highest inter-evaluator agreement: level of

acceptance toward the other spouse (abbreviated “acc”), level of blame (“bla”), global

positive affect (“pos”), global negative affect (“neg”), level of sadness (“sad”), and use

of humor (“hum”). The Appendix provides the written guidelines for the six codes. It

should be noted that each code measures how much that particular code occurred, not
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Code Code Correlation Spouse Agreement
acc bla pos neg sad Correlation

acc 0.647 0.751
bla -0.80 0.470 0.788
pos 0.67 -0.54 0.667 0.740
neg -0.77 0.72 -0.69 0.690 0.798
sad -0.18 0.19 -0.18 0.36 0.315 0.722
hum 0.33 -0.20 0.47 -0.29 -0.15 0.787 0.755

Table 3.2: Correlation between each of the six codes, as well as the correlation between
spouses’ ratings and the inter-evaluator agreement for each of the codes. Pearson’s cor-
relation was the chosen metric.

how much the opposite of the code occurred. Therefore, it is possible for a spouse to

receive high scores for both global positive affect and global negative affect.

Table 3.2 shows how the six codes are correlated, as well as the correlation between

spouses’ ratings and the inter-evaluator agreement for each of the six codes; Pearson’s

correlation coefficient was the chosen metric for all three computations. When comput-

ing the inter-code and spouse correlations, we used the mean evaluator scores for each

instance. The agreement statistics were computed as the correlation between individual

evaluator’s scores and the mean scores of the other evaluators. All six selected codes

had inter-evaluator agreement greater than 0.7; the remaining codes not analyzed in this

dissertation had inter-evaluator agreement that ranged from 0.4 to 0.7.

We see in Table 3.2 that the positive codes (acc, pos, hum) were all positively corre-

lated with each other, the negative codes (bla, neg, sad) were all positively correlated with

each other, and the positive codes were negatively correlated with the negative codes; this

agrees with intuition. We also see in Table 3.2 that the two spouses’ behaviors were pos-

itively correlated for all six codes; this suggests that, on average, the interacting spouses

displayed similar behaviors.
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Figure 3.1: Normalized histograms of the extreme code scores for the wife (top) and
husband (bottom). The “low” scores are in the bottom 20%, and the “high” scores are in
the top 20%. The decision boundary was used to compute an upper-bound for automatic
performance.

3.3.2 Classification task formulation

As described in Section 3.2, multiple coders rated each session (both spouses) for each

behavioral code on a scale from 1 to 9. Thus, there are multiple ways to pose this learning

problem for automatically predicting the behavioral code scores. Since there were disjoint

sets of coders used, we ignored individual evaluator effects and treated each evaluator in

the same manner.

Furthermore, we simplified the code learning problem by posing it as a binary clas-

sification problem, with equal-sized classes. We only analyzed sessions that had mean

evaluator scores that fell in the top 20% (“high”) and bottom 20% (“low”) of the code

range for both genders; see Figure 3.1. Therefore, our goal was to separate the extreme

couples’ behavior ratings for the six codes. A similar data-separating procedure was used

in our previous paper [18] and in related work [100,148]. This is a good starting point in

trying to learn these subtle high-level behavioral codes.
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Gender acc bla pos neg sad hum AVG
Wife 96.7 99.6 98.5 98.6 93.9 96.5 97.3
Husband 96.7 98.1 97.4 98.0 84.9 97.1 95.4

Table 3.3: Upper-bound for automatic performance, computed as the percentage of indi-
vidual coder scores that were within the decision boundary between the “low” and “high”
code score groupings.

As shown in Figure 3.1, the “low” and “high” mean scores for the six codes are sep-

arable, i.e., the average coder scores for these extreme sessions do not overlap. However,

this does not mean that individual coder scores were separable for this artificially created

subset of the data. We produced an “upper-bound” for automatic performance by com-

puting the level of individual human agreement with these low and high average score

groupings. This was done by computing the percentage of individual evaluator scores

(for the sessions in the top/bottom 20% of the code range) that fell within a code-specific

decision boundary, which was placed halfway between the maximum “low” code score and

the minimum “high” code score. These decision boundaries are shown in Figure 3.1, and

the upper-bounds in code performance for the wife and husband are listed in Table 3.3.

We see in this table that all of the upper-bounds were between 96% and 100%, except

for level of sadness, which dipped as low as 84.9% for the husband; this is due to the fact

that there is less separation between the extreme code scores (see Figure 3.1).

3.3.3 Classification system overview

See Figure 3.2 for a high-level system block diagram, which depicts the basic components

of our methodology. First, we pre-processed the corpus by: 1) eliminating sessions that

were too noisy, 2) automatically segmenting the sessions into single speaker regions, and

3) eliminating sessions for which we could not attain reliable speaker segmentation. These
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Figure 3.2: A system block diagram, illustrating the methodology taken in this thesis,
from pre-processing the data and extracting acoustic features to classifying extreme in-
stances of a particular code as low/high.

pre-processing steps were taken to eliminate sessions that were too noisy for the purpose

of acoustic pattern recognition and to facilitate the extraction of spouse-specific acoustic

features.

We estimated each session’s average signal-to-noise ratio (SNR) and eliminated noisy

sessions with an SNR less than 5 dB. To segment the corpus into single speaker regions,

we used the available word-level transcriptions with speaker labels and SailAlign [104],

software that implements a recursive speech-text alignment algorithm. To ensure we had

at least a majority of the speech segmented for both spouses, we ignored all sessions for

which we were unable to segment at least 55% of both the wife’s and husband’s words.

We extracted a set of low-level descriptors motivated by related work in both psy-

chology and engineering, that along with their functionals resulted in a large set of over

40,000 features. This feature set was used to learn all six codes; code-specific features
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were not extracted. The features were static functionals (e.g., mean) of low-level descrip-

tors (LLDs, e.g., intensity), computed over each speaker domain (e.g., wife regions) and

at various temporal granularities (e.g., 0.5 s windows). Therefore, this feature extrac-

tion process mapped frame-level LLDs to session-level features that represented various

acoustic properties of the spouses/interaction.

We extracted prosodic, spectral, and voice quality LLDs. The prosodic LLDs in-

cluded: voice activity detector (VAD) estimates, speaking rate, fundamental frequency

(f0), and intensity. The spectrum-based LLDs included Mel-frequency cepstral coef-

ficients (MFCCs) and log Mel-frequency bands (MFBs), and the voice quality (V.Q.)

LLDs included jitter and shimmer. We normalized the raw LLD streams by speaker,

since our goal was to train speaker-independent models for each of the behavioral codes.

We trained separate binary classifiers for each code. We experimented with two

popular linear classifiers: support vector machines (SVM) with linear kernel and logistic

regression (LR), and two types of regularization: l2 and l1. Regularization was applied to

make the estimation of the feature linear weight coefficients more robust. In the case of

l1 regularization, a sparse solution is found, which facilitated an analysis on the relative

importance of the features.

We used leave-one-couple-out cross-validation to separate training and test data; this

was done to ensure that the reported results were representative of practical training con-

ditions in which data from a couple would typically not be available. Note that we did not

use leave-one-session-out cross-validation because some couples had more than one session

in the top/bottom 20% for a particular code. All classifier parameters were optimized at

each train/test fold using a second stage of 5-fold couple-disjoint cross-validation on the
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training data. To evaluate classifier performance, we pooled all the test class hypothe-

ses and computed the percentage of correctly classified instances (“accuracy”). Chance

baseline accuracy was 50%, since we have equal-sized classes.

We trained gender-specific and gender-independent models and compared perfor-

mance. The gender-specific models may generalize better, since it is well-documented that

there are inherent gender differences in how distressed couples express themselves [46].

However, the gender-independent models may benefit from having twice as much training

data, since the gender-specific models are only trained on the instances of a single gender.

3.4 Data pre-processing

3.4.1 SNR estimation

Due to the variable acoustic nature of the Couple Therapy corpus, we first set out to

estimate the signal-to-noise ratio (SNR) of each session, so we could disregard sessions

that were too noisy to analyze. For each session’s audio file, we ran a voice activity de-

tector (VAD) that hypothesized whether each 10 ms interval was speech or non-speech.

This VAD used a novel long-term signal variability measure, which describes the de-

gree of non-stationarity of the signal, to robustly discriminate speech from silence and

background noise [77]. It was specifically designed as a front-end for automatic speech

recognition (ASR) and was optimized to detect regions of non-speech longer than 300

ms. We trained the VAD on a 60 s audio clip from one of the held-out sessions with the

missing psychology codes (see Section 3.2).

89



0 5 10 15 20 25
0

10

20

30

40

50

60

H
is

to
g

ra
m

SNR (dB)

Figure 3.3: A histogram of the estimated average signal-to-noise ratio (SNR) for each of
the 569 coded sessions, computed using Equation 3.1.

We used the VAD output to estimate the average SNR of each session’s audio file

using Equation 3.1, where {Ai} ∈ S is the set of amplitudes endpointed within the

speech regions (according to the VAD), and {Ai} /∈ S is the complement set of amplitudes

(deemed to be non-speech by the VAD):

SNR (dB) = 10 log10

1
|i∈S|

∑
i∈S

A2
i

1
|i/∈S|

∑
i/∈S

A2
i

(3.1)

Figure 3.3 shows a histogram of the estimated average SNR for the 569 coded sessions.

We heuristically decided to only analyze sessions with an average SNR greater than 5

dB. This was done to ensure that the audio features could be reliably extracted. Of the

569 coded sessions, 415 had an average SNR greater than the chosen threshold of 5 dB

(72.9%). The other 154 sessions were deemed too noisy for the present work.

90



3.4.2 Speaker segmentation

Since the Couple Therapy corpus consists of dyadic conversations, we set out to segment

the sessions by speaker. This would then allow us to model the interaction appropriately

and extract meaningful features for each spouse. In many pattern recognition research

involving realistic and complex multi-person interactions, it is common practice to man-

ually segment the data into speaker turns as a pre-processing step. This is typically done

for a number of reasons: it ensures that system errors are due to other design factors

(e.g., features, learning algorithm); it circumvents the added overhead of implementing

automatic segmentation; achieving sufficient performance using automatic methods may

be too challenging due to inherent data limitations (e.g., far-field sensors, variable acous-

tic conditions). However, manually segmenting a corpus of this size was not practical and

is not scalable.

In this thesis and in our previous work [18, 109], we took a unique “hybrid” man-

ual/automatic speaker segmentation approach that exploited the available transcrip-

tions with speaker labels. We implemented a recursive automatic speech recognition

(ASR)-based procedure to align the transcription with the corresponding audio using

SailAlign [104], open-source software we developed as part of this work. The iterative

algorithm was based on the work by [130], with the extension that aligned portions of

the audio were used to adapt the acoustic models at each iteration.

Figure 3.4 is a block diagram of the procedure, showing the flow from the required

inputs to the desired output of speaker-segmented audio. Generic acoustic models (AM)

and session-specific language models (LM) were used to run ASR on the audio file, aided
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Figure 3.4: Block diagram of the “hybrid” manual/automatic speaker segmentation pro-
cedure, implemented using SailAlign. See Section 3.4.2 and [104] for details.

by the VAD that split the MFCC feature vector into 15 s chunks. Anchor regions were

accepted if aligned portions between the reference transcript (REF) and ASR transcript

(HYP) contained at least three consecutive words. The process was then iterated between

anchor regions, with AM adaptation at each iteration. Please see [104] for full details on

the algorithm.

After SailAlign converged, the session was split into wife and husband speaker ho-

mogeneous regions and unknown regions in which speech-text alignment could not be

achieved (due to multiple factors, including: noisy audio, speaker overlap, and transcrip-

tion errors). Note that unknown regions that occurred in the middle of a speaker’s turn

could be merged with the neighboring speaker-homogeneous regions. Figure 3.5 shows

that this interpolation-like procedure allowed us to segment 8.7% more words per session,

on average, into speaker-homogeneous regions. This figure also shows that we were still

not able to align or segment a large percentage of the words in the transcription for some

of the 415 sessions that met the 5 dB SNR threshold. For this dissertation, we ignored
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Figure 3.5: The percentage of words aligned using SailAlign and the percentage of words
that were subsequently segmented into single speaker regions for the 415 sessions with
SNR greater than 5 dB.

the 43 sessions in which we could not segment at least 55% of both the wife’s and hus-

band’s transcribed words into speaker-homogeneous regions. This left 372 sessions that

met both the SNR and speaker segmentation criteria; counting only these sessions, an

average of 90.7% of the wives’ words and 89.9% of the husbands’ words were segmented

into speaker-homogeneous regions.

This speaker segmentation procedure provided us hypotheses on when each spouse

was speaking, but since we did not have access to the ground-truth times for these speaker

turns, we did not have an easy way to evaluate the speaker segmentation performance.

One way would be to randomly sample speaker-homogeneous regions and manually verify

the speaker. Rather than relying on this laborious method, we instead devised a procedure

that exploited the female-male nature of the dyadic interaction participants in this corpus.

The average adult female’s speech has a mean fundamental frequency (f0) of about

210 Hz, while for adult male’s speech, it is about 120 Hz [168]. We estimated f0 for each

93



Speaker Mean f0 (Hz) Mean SD of f0 (semitones)

CT corpus Traunmüller CT corpus Traunmüller
Wife 194 211 3.5 3.4
Husband 121 119 4.0 3.4
Unknown 166 – 5.8 –

Table 3.4: f0 statistics for the Couple Therapy (CT) corpus, computed across the 3
speaker regions of the 372 sessions, and compared to the female/male statistics listed
in [168].

session (see Section 3.5) and computed f0 statistics for the husband and wife across the

speaker-homogeneous regions.

Figure 3.6 shows that there is a clear separation between the mean f0 values of the

wives and husbands (73 Hz on average). In addition, Table 3.4 shows that the average

f0 statistics are similar to the ones reported in [168], computed from hundreds of adult

speakers of European languages. This f0 “sanity check” implies that the speaker segmen-

tation procedure successfully separated the female and male speakers. Importantly, since

f0 is a relatively difficult acoustic cue to track, it also implies that the data quality of the

372 sessions was adequate to robustly extract speech-related audio cues.

In our previous work, in which we used a speech-text alignment procedure without

acoustic model adaptation [18], we were only able to achieve a similar level of speaker

segmentation performance for 293 sessions. Thus, SailAlign enabled us to use 79 more

sessions, a relative increase of 27.0%. In total, these 372 sessions are 65.4% of the original

569 coded sessions and total 62.8 hours of data across 104 unique couples.
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3.5 Audio feature extraction

With the 372 sessions segmented by speaker, we are now able to extract acoustic features

that can be used to predict the six behavioral codes. Spoken cues (e.g., prosody) have been

shown to be relevant indicators of a variety of behaviors in the psychology literature (e.g.,

[51,101]), including in those related to marital interactions [10,83,84]. Affect/emotion are

discussed as critical components to communication and are oftentimes conveyed vocally.

In our previous paper [18], we extracted a number of common prosodic/spectral fea-

tures that have been used in a variety of human-centered engineering tasks, including

affect/emotion recognition [86,111,113,148,152,153,181].

We examined an expanded set of features in this thesis by taking an overgenerative

approach to feature extraction. This was done for three main reasons: 1) while there

is considerable insight in psychology literature on cues that are informative in marital

discussions, it is difficult to come up with mappings from these semantic cues to corre-

sponding signal cues, 2) in addition to being informed by psychology, we can also learn

from our findings (see Section 3.7, Figure 3.8), and 3) this work represents the first at-

tempt to automatically learn high-level behavioral codes with acoustic features for this

corpus. Thus, we explored many common feature types, so a comparison could be made

and improved upon in subsequent studies.

In total, we extracted 40,479 session-level features for the gender-specific models and

67,465 session-level features for the gender-independent models. We refer to these as

session-level because they describe some aspect of the spouses’ behaviors across the en-

tire session. As introduced in Section 3.3.3, the session-level features were computed
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Component Sub-component

speaking rate, inter-turn pauses, speech/non-speech
LLD (VAD), f0, intensity, 15 MFCCs, 8 MFBs, jitter,

jitter-of-jitter, shimmer

Speaker rated spouse only, partner of rated spouse only,
full session, wife only†, husband only†

Granularity global, halves, hierarchical (hier.) with window
durations: 0.1 s, 0.5 s, 1 s, 5 s, 10 s

Functional

mean*, median*, standard deviation*, 1st

percentile*, 99th percentile*, 99th − 1st percentile*,
skewness, kurtosis, minimum position, maximum
position, lower quartile, upper quartile,
interquartile range, linear approximation slope

Table 3.5: A list of the four components (with sub-components) that make up the session-
level features. The starred (*) functionals are the six “basic” functionals. The speaker
domains marked with a † are only applicable to the gender-independent models.

as static functionals of low-level descriptors at various temporal granularities over each

speaker domain of the session. Therefore, each session-level feature is described by four

components: 1) LLD, 2) speaker domain, 3) temporal granularity, and 4) functional.

Table 3.5 lists each of these components and Sections 3.5.1-3.5.4 provide further details.

3.5.1 Low-level descriptors

We refer to low-level descriptors (LLDs) as feature streams that are estimated/extracted

at fine temporal resolutions (e.g., every 10 ms). Table 3.5 lists each of the LLDs we

selected for this dissertation, based on our previous work [18] and on the 2009 Interspeech

Emotion Challenge [153] and 2010 Interspeech Paralinguistic Challenge [154].

We computed the mean syllable speaking rate for each aligned word directly from the

automatic word alignment results with the help of a syllabified pronunciation dictionary.2

Therefore, this speaking rate LLD was at the word-level and only applicable to words that

were aligned with SailAlign (see Section 3.4.2). Another LLD we extracted directly from

2http://www.haskins.yale.edu/tada download/index.php

96



the alignment results (when available) were the inter-turn durations, measured as the

time in seconds from the end of one speaker’s turn to the beginning of the next speaker’s

turn.

We used the VAD speech/non-speech hypotheses to create two LLD vectors: one with

the durations of all the speech regions (when the VAD deemed the audio to be speech for

consecutive frames), and another with the durations of all the non-speech regions.

We next extracted the following LLDs across each speech region every 10 ms using

a 25 ms Hamming window: fundamental frequency (f0), intensity, 15 Mel-frequency

cepstral coefficients (MFCCs), 8 log Mel-frequency bands (MFBs), local jitter, jitter-of-

jitter (delta jitter), and local shimmer. f0 and intensity were extracted with Praat [29],

and the other LLDs were extracted with openSMILE [72]. The following paragraphs will

describe how we computed and normalized these various LLDs, with specific attention

paid to f0 due to the unique characteristics of the Couple Therapy corpus.

Pitch has been shown to be important in affective speech production [101] and emotion

recognition research [32,36,37,86,111,181]. f0 can be estimated from audio and is related

to pitch perception. Unfortunately, f0 is relatively difficult to estimate from speech, since

it involves the computation of periodicity from a non-stationary quasi-periodic signal. We

used Praat’s state-of-the-art autocorrelation function-based f0 estimator in this research

[29]. However, since this is a time-domain approach, it is still susceptible to many common

errors.

One of the major types of errors for autocorrelation-based f0 estimators is pitch

halving/doubling [42, 52, 136]. We attempted to minimize these f0 errors by exploiting

the speaker segmentation and using region-specific f0 range heuristics: 100-400 Hz during
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wife regions, 70-300 Hz during husband regions, and 70-400 Hz during unknown regions.

Therefore, we estimated the f0 of each session three separate times with the three region-

specific ranges and chose the appropriate f0 estimate based on the speaker segmentation

results. The resulting f0 signal was then passed through an algorithm that attempted

to fix instances of pitch halving/doubling by detecting large jumps in the f0 difference

vector.

The f0 signal was further processed by zeroing it during regions deemed by the VAD

to be non-speech and interpolating across unvoiced regions with duration less than 300

ms (using piecewise-cubic Hermite interpolation). We did not interpolate across non-

speech regions (according to the VAD) or speaker-change points. Finally, the f0 signal

was median-filtered (with a window of length 5) to smooth out any spurious noise; see

Figure 3.7 for an example.

Normalization of the raw LLD streams is important, since the final session-level fea-

tures will be used to train speaker-independent models. We produced two normalized f0

signals to account for inter-person variations in the mean pitch. The first normalization

method, Equation 3.2, subtracts the mean f0 (µf0) of the speaker (wife, husband, or

unknown) for each frame. The second method, Equation 3.3, performs a similar trans-

formation on a logarithmic scale, since this may be more perceptually motivated [55].
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The µf0 values were computed across the whole session using the speaker segmentation

results; unknown speaker regions were treated as coming from one “unknown speaker.”

f̄0lin = f0 − µf0 (3.2)

f̄0log = log2

(
f0

µf0

)
(3.3)

The computation of intensity for an audio signal is more straight-forward than esti-

mating f0. We normalized the intensity LLD to account for differences in microphone

levels (caused by variable distances from the microphone to the speakers). Equation 3.4

shows how we normalized each frame-level intensity value, where the µint values were the

mean intensity of the speaker during speech regions, computed across the whole session:

intn =
int

µint

(3.4)

We used openSMILE to extract spectral and voice quality features using the same

parameter settings as the 2010 Interspeech Paralinguistic Challenge [154]. Short-term

spectral features have been successfully used widely in speech processing. We extracted

the first 15 MFCCs, computed using the standard bank of 26 triangular filters that

were evenly centered along the Mel-frequency scale from 20 Hz to 8000 Hz. To account

for environmental and speaker variability, all MFCCs were normalized by performing

cepstral-mean subtraction, using Equation 3.5, where the µMFCC[i] values were the mean

MFCC of the ith coefficient of the speaker, computed across the whole session:

MFCCn [i] = MFCC [i]− µMFCC[i], i = 0, . . . , 14 (3.5)
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In addition to these normalized MFCCs, we also filtered the audio with a coarser bank

of only 8 triangular filters and computed the log energies at the output. These are the

so-called MFB features that are expected to capture coarser spectral characteristics. The

filters were evenly centered along the Mel-frequency scale from 20 Hz to 6500 Hz.

Finally, we extracted three voice quality LLDs: local jitter, jitter-of-jitter (delta jitter),

and local shimmer. Voice quality attributes have been shown to play a significant role

in communicating emotions [79], although most engineering studies have found they are

often less discriminative than the more traditional prosodic and spectral features (e.g.,

[156]), most likely because the uncertainty in estimating the voice quality attributes can

overpower the discriminative information they convey.

All three voice quality LLDs are based on the f0 estimates. Local jitter quantifies

period length variations in f0 and is computed as the average absolute difference between

consecutive periods, divided by the average period length of all periods in the frame.

Jitter-of-jitter is computed as the average absolute difference between consecutive differ-

ences between consecutive periods, divided by the average period length of all periods in

the frame. Local shimmer quantifies amplitude variations and is computed as the aver-

age absolute difference between the interpolated peak amplitudes of consecutive periods,

divided by the average peak amplitude of all periods in the frame [72].
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3.5.2 Speaker domains

For all the LLDs described in Section 3.5.1, we extracted features across three separate

speaker domains for the gender-specific models and five speaker domains for the gender-

independent models. See Table 3.6 for a depiction on which speech regions (wife and/or

husband) were included in the various speaker domains.

For the gender-specific models, the three speaker domains were: 1) during speaker-

homogeneous regions (according to the speaker segmentation results) where the spouse

being rated was the speaker (i.e., for the wife-specific models in which the wife was

always being rated, the rated speaker domain consisted of all the wife speech regions);

2) during speaker-homogeneous regions where the partner of the spouse being rated was

the speaker; and 3) across the entire session (regardless of speaker).

For the speaker-independent models, we extracted features across five speaker do-

mains: 1) during speaker-homogeneous regions where the spouse being rated was the

speaker (i.e., for the wife instances, the rated speaker domain consisted of the wife speech

regions, whereas for the husband instances, the rated speaker domain consisted of the

husband speech regions); 2) during speaker-homogeneous regions where the partner of

the spouse being rated was the speaker; 3) across the entire session, regardless of who was

speaking or who was being rated; 4) during speaker-homogeneous regions where the wife

was speaking, regardless of who was being rated; and 5) during speaker-homogeneous

regions where the husband was speaking, regardless of who was being rated. These final

two speaker domain sets were not included for the gender-specific models because they

would be identical to the rated/partner feature sets and therefore add no information.
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Rated Spouse Speaker Domain Speech in domain?

Wife Husband

Wife

Rated spouse X
Partner X
Full session X X
Wife only X
Husband only X

Husband

Rated spouse X
Partner X
Full session X X
Wife only X
Husband only X

Table 3.6: A depiction of which speech regions were included in the five speaker domains,
depending on which spouse was being rated.

For example, for the wife-specific models (in which the wife was always being rated for all

instances), the “rated” speaker regions are always the same as the “wife” speaker regions,

and the “partner” speaker regions are always the same as the “husband” speaker regions;

see Table 3.6.

Extracting features for these various speaker domains allowed us to model the be-

haviors of each spouse and the overall interaction. Modeling individual spouse behavior

is particularly important since each spouse was rated separately. However, as shown in

Table 3.2, extracting features along the entire session may be just as meaningful, since

the two spouse’s coded behavior within a given session is often positively correlated.

3.5.3 Temporal granularities

The temporal granularity component of the session-level features refers to the time-scale

at which we processed the individual LLDs: 1) global, 2) halves, and 3) hierarchical. The

global temporal granularity looks at the interaction for a particular speaker domain as a

whole entity. Thus, we are viewing each LLD as a representative sample of data, from
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which we can extract useful “global” features about the speaker/interaction. We only

extracted global features in our previous paper [18].

For the halves granularity, we split each LLD stream into two halves and computed

the difference in functionals (see Section 3.5.4) across the two halves. This temporal gran-

ularity attempts to capture gradual changes that may occur as the discussion progresses.

The hierarchical temporal granularity splits each LLD stream into disjoint windows of

equal duration. Functionals are then computed across each window, and the session-level

features are then produced by computing functionals of the functionals; more details are

provided in Section 3.5.4. The hierarchical temporal granularity was based on the work

by [155] and attempts to capture the variable moment-to-moment changes during the

interaction. For this research, we tried window durations of 0.1 s, 0.5 s, 1 s, 5 s, and 10 s.

Note that we did not compute hierarchical features for the speaking rate LLD, inter-turn

pause LLD, or the two VAD-derived speech/non-speech LLDs, since these LLDs occurred

at a longer time scale, which would have resulted in very few samples within each window.

3.5.4 Functionals

For each combination of LLD, speaker domain, and temporal granularity, we produced

the final session-level features by computing a series of static functionals. See Table 3.5

for the full list of 14 functionals that we selected. Note that the 1st percentile, 99th

percentile, and 99th − 1st percentile represent outlier-robust minimum, maximum, and

range statistics, respectively. We chose to use these percentiles to account for cases when

the functionals were computed over a long period of time, which is particularly relevant

for the global features.
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We only computed functionals of prosodic and spectral LLDs over speech regions

(according to the VAD), and we disregarded all zero values (unvoiced regions) when

computing the f0 and voice quality functionals.

For the computation of the hierarchical session-level features, we computed the full 14

functionals over each window. However, to avoid producing an enormous set of session-

level features, we only computed six “basic” functionals when computing the functionals-

of-functionals; a similar procedure was followed in [155]. These six basic functionals are

starred (*) in Table 3.5. In addition, since there was only a limited number of aligned

speaker-change points in a session (35.6, on average), we only extracted the six basic

functionals for the inter-turn pause LLD.

We also extracted a few dynamic features. For the speech/non-speech (VAD) LLD, we

exploited the binary nature of the signal to extract three more session-level features. The

first was the probability that a frame was non-speech. We also computed two features

based on first-order Markov chain statistics: 1) the probability a frame is non-speech,

given that the previous frame was non-speech, and 2) the probability a frame is non-

speech, given that the previous frame was speech.

3.6 Prediction of six behavioral codes

Given that there were 372 sessions that were deemed acceptable after pre-processing the

corpus (see Section 3.4) and we were only analyzing the top/bottom 20% of the sessions

for each spouse/code, we selected the top/bottom 70 sessions for our experiments; the
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number of unique couples in these 140 selected sessions varied from 68 to 77, depend-

ing on the code and rated spouse. With over 40,000 features and only 140 instances

for the gender-specific models and over 67,000 features and only 280 instances for the

gender-independent models, we became concerned about issues related to dimensionality.

However, this type of underdetermined learning scenario (having many more features than

instances) is commonplace in genomics and natural language processing problems [98] and

emotion recognition [8].

In our previous paper [18], we compared two classifiers: a support vector machine

(SVM) with linear kernel, and Fisher’s linear discriminant analysis (LDA) with sequential

forward feature selection. In this thesis, our initial experiments showed that the LDA did

not perform as well, most likely due to the high dimensionality of the feature space and

the greedy feature selection method.

In this thesis, we again used linear classifiers since the dimensionality of the feature

space (40,000+) was orders of magnitude greater than the number of instances (140-280).

We compared four binary linear classifiers: l2-regularized SVM with linear kernel (SVM-

l2), l1-regularized SVM with linear kernel (SVM-l1), l2-regularized logistic regression

(LR-l2), and l1-regularized logistic regression (LR-l1).

The loss functions of the four classifiers, used to find the optimal weight coefficients,

are written in Equations 3.6-3.9, where m is the number of training instances, yi ∈ {−1, 1}

is the class label (low/high) for instance i, xi ∈ Rn is the corresponding n-dimensional

feature vector, w ∈ Rn is the linear weight vector, ‖w‖
1

is the l1-norm of w, and C is a

tuning penalty parameter (C > 0).
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While the l2-regularized versions of the classifiers (Equations 3.6 and 3.8) are more

commonly used, the l1-regularized classifiers (Equations 3.7 and 3.9) are appealing since

they find a sparse solution (some of the weight coefficients will be identically zero). This

may be advantageous for two reasons: 1) there are potentially many irrelevant and re-

dundant features due to the overgenerative nature of the feature extraction process (see

Section 3.5), so dimensionality reduction via sparse solutions may lead to more robust

estimates of the weight coefficients and improved classification, and 2) sparse solutions

are more interpretable and provide a means to determine the relative importance of the

features.

ŵSVM-l2 = min
w

(
1
2w

Tw + C
m∑
i=1

max
(
0, 1−yiwTxi

)2)
(3.6)

ŵSVM-l1 = min
w

(
‖w‖

1
+ C

m∑
i=1

max
(
0, 1−yiwTxi

)2)
(3.7)

ŵLR-l2 = min
w

(
1
2w

Tw + C

m∑
i=1

log
(

1+e−yiw
Txi

))
(3.8)

ŵLR-l1 = min
w

(
‖w‖

1
+ C

m∑
i=1

log
(

1+e−yiw
Txi

))
(3.9)

We used the implementations in LIBLINEAR for all four classifiers [73]. Note that

the primal forms of the loss functions are written in Equations 3.6-3.9 for clarity. In

practice, the dual forms were faster to train; see [73] for details.

Prior to training the classifiers, we z -normalized all features at each cross-validation

fold by subtracting the mean value in the training set and dividing by the standard

deviation. This feature scaling was done to ensure that the regularization would be

applied evenly to all features. As mentioned in Section 3.3.3, the tuning parameter C
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was optimized for each classifier at each train/test cross-validation fold by using a grid

search and choosing the value with the highest average classification accuracy on the

training set using 5-fold couple-disjoint cross-validation.

For all four classifier implementations, we generated a class hypothesis (ŷ) on a test

instance by taking the sign of the inner product between the optimal weight vector (ŵ)

and the feature vector (x) of the test instance:

ŷ = sgn
(
ŵTx

)
(3.10)

3.7 Results and Discussion

Table 3.7 displays the results for the wife and husband instances for all six codes, both

model types (gender-specific and gender-independent), and all four classification methods

(SVM-l2, SVM-l1, LR-l2, and LR-l1). These results are compared to the baseline chance

performance of 50% accuracy and the upper-bound in performance as computed from

the individual human evaluator scores (Table 3.3). We see from Table 3.7 that the

classification performance ranged from below chance accuracy (49.3% for the husband-

specific SVM-l1 classifier for sadness) to as high as 85.7% (for husband’s global negative

affect). Performance varied greatly as a function of the various factors (spouse being

rated, model type, classifier, and code). In this section, we provide statistical analyses to

compare these various factors; Section 3.9 discusses ongoing and future work to improve

upon the results achieved in this thesis.
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Model Classifier acc bla pos neg sad hum AVG

Wife is the spouse being rated (140 instances total)
Baseline Chance 50.0 50.0 50.0 50.0 50.0 50.0 50.0

SVM-l2 75.0 85.0 74.3 79.3 67.9 67.1 74.8
Gender- SVM-l1 75.7 81.4 73.6 75.7 56.4 57.9 70.1
Specific LR-l2 77.9 84.3 74.3 80.0 66.4 67.1 75.0

LR-l1 72.9 80.7 77.9 77.9 55.7 59.3 70.7

SVM-l2 75.0 82.9 74.3 78.6 63.6 64.3 73.1
Gender- SVM-l1 75.0 80.7 72.9 76.4 52.9 52.1 68.3
Indep. LR-l2 77.9 82.1 75.7 80.0 62.9 65.0 73.9

LR-l1 76.4 80.7 72.1 77.1 60.0 57.9 70.7
Up-Bound Human 96.7 99.6 98.5 98.6 93.9 96.5 97.3

Husband is the spouse being rated (140 instances total)
Baseline Chance 50.0 50.0 50.0 50.0 50.0 50.0 50.0

SVM-l2 78.6 72.9 72.1 84.3 57.9 69.3 72.5
Gender- SVM-l1 67.1 73.6 67.9 85.7 49.3 63.6 67.9
Specific LR-l2 78.6 72.9 72.1 84.3 60.0 71.4 73.2

LR-l1 77.1 75.0 71.4 85.0 52.9 64.3 71.0

SVM-l2 78.6 75.7 72.9 85.7 60.0 63.6 72.7
Gender- SVM-l1 72.1 80.7 69.3 81.4 57.9 56.4 69.6
Indep. LR-l2 77.1 75.7 72.1 85.0 59.3 68.6 73.0

LR-l1 75.7 77.9 67.9 83.6 57.9 65.0 71.3
Up-Bound Human 96.7 98.1 97.4 98.0 84.9 97.1 95.4

Table 3.7: Percentage of correctly classified instances for the wives and husbands, 6 codes,
2 model types (gender-specific and gender-independent), and 4 classifiers: support vector
machine (SVM) and logistic regression (LR), with l2 and l1 regularization (Equations 3.6-
3.9). Baseline chance performance was 50%, and an upper-bound was estimated using
individual human evaluator scores (Section 3.3.2).

We used two statistical tests to determine if the differences in performance were

statistically significant: a one-sided McNemar’s test for “paired” instances [122], which

occurred when comparing results from the same code and same rated spouse gender

(wife or husband); and a one-sided difference in binomial proportions test for non-paired

instances [123], which occurred when comparing different codes or different rated spouse

genders.
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All results shown in Table 3.7 were significantly better than the chance baseline at

the 5% significance level, except the following: all l1-regularized classifiers for wife’s sad-

ness and use of humor, all classifiers for husband’s sadness, and the gender-independent

l1-regularized SVM classifier for husband’s use of humor. All classifiers performed signif-

icantly worse than the estimated upper-bounds (all p<0.001).

In our previous paper [18], in which we only used “global” features and analyzed 100

wife and husband instances per code, we achieved an average classification accuracy of

70.15% (averaging across the six codes and both rated spouse genders). In this disserta-

tion, we analyzed 140 wife and husband instances per code, and the average classification

accuracy for the best overall system (gender-specific LR-l2) was 74.1%, an absolute im-

provement of 3.95% and a relative improvement of 5.63%. This difference in performance

is significant (p<0.01), so this extended research effort has helped reduce the gap between

automatic and human coders for this particular behavioral coding problem.

We see from Table 3.7 that for most cases, the gender-specific models outperformed the

gender-independent models, the l2 classifiers outperformed the l1 classifiers, and logistic

regression outperformed the SVM classifiers. For both the husband and wife instances,

the best overall system with the highest average code performance was trained in a

gender-specific manner with l2-regularized logistic regression. For the wife instances, this

best average code performance (75.0%) was significantly higher than all four l1 classifiers

(all p < 0.05) but was not significantly higher than the other three l2 classifiers. For

the husband instances, this best average code performance (73.2%) was only significantly

higher than the gender-specific SVM-l1 classifier (p<0.01).
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Feature Subset (f) Nf Nf,sel Nf,sel/Nsel Nf,sel/Nf

component sub-comp. W&H I W H I W H I W H I

(all) (all) 40479 67465 896.8 1051 1322 1.000 1.000 1.000 0.022 0.026 0.020

LLD

rate 48 80 2.838 3.218 3.512 0.003 0.003 0.006 0.059 0.067 0.044
VAD/turn 111 185 10.00 9.275 12.79 0.012 0.009 0.018 0.090 0.084 0.069
f0 4032 6720 114.2 116.3 151.0 0.160 0.125 0.165 0.028 0.029 0.023
intn 1344 2240 25.34 29.68 38.13 0.024 0.027 0.021 0.019 0.022 0.017
MFCCn 20160 33600 450.4 543.7 678.4 0.493 0.519 0.496 0.022 0.027 0.020
MFB 10752 17920 192.2 214.5 282.8 0.210 0.192 0.194 0.018 0.020 0.016
V.Q. 4032 6720 101.8 134.5 155.0 0.098 0.124 0.101 0.025 0.033 0.023

Speaker

rated 13493 13493 310.0 399.7 303.2 0.351 0.392 0.219 0.023 0.030 0.023
partner 13493 13493 291.4 333.6 273.4 0.315 0.306 0.169 0.022 0.025 0.020
both 13493 13493 295.5 317.9 296.2 0.334 0.302 0.229 0.022 0.024 0.022
wife — 13493 — — 223.8 — — 0.173 — — 0.017
husband — 13493 — — 225.1 — — 0.210 — — 0.017

Granularity

global 1419 2365 38.71 41.31 52.68 0.046 0.039 0.056 0.027 0.029 0.022
halves 1260 2100 36.75 43.86 52.75 0.044 0.052 0.047 0.029 0.035 0.025
hier.–all 37800 63000 821.3 966.1 1216 0.910 0.909 0.897 0.022 0.026 0.019
hier.–0.1s 7560 12600 132.4 164.5 206.7 0.154 0.169 0.162 0.018 0.022 0.016
hier.–0.5s 7560 12600 147.7 170.2 220.8 0.154 0.152 0.156 0.020 0.023 0.018
hier.–1s 7560 12600 165.0 197.6 251.1 0.179 0.189 0.188 0.022 0.026 0.020
hier.–5s 7560 12600 188.4 218.5 271.5 0.215 0.198 0.202 0.025 0.029 0.022
hier.–10s 7560 12600 187.8 215.2 266.1 0.208 0.201 0.189 0.025 0.029 0.021

Table 3.8: For each feature subset (f), we show the total number of features (Nf ), the
number of selected features (Nf,sel), the fraction of the selected features that were from
a given feature subset (Nf,sel/Nsel), and the probability of a feature being selected for a
particular feature subset (Nf,sel/Nf ). For clarity, we only displayed mean results for the
l1-regularized logistic regression classifier, averaged across all codes and cross-validations.
Results are shown for the wife-specific (W), husband-specific (H), and gender-independent
(I) models. Note that the “wife” and “husband” speaker domain feature subsets were not
included in the gender-specific models (see Section 3.5.2).

Overall, the advantages of using the l1 classifiers (sparse solutions that are easier to

interpret) did not lead to higher classification performance. One possible explanation

for the relatively poor performance for many of the l1-regularized classifiers may be that

the selected features did not generalize well. Also, the l1 cost functions (Equations 3.7

and 3.9) may be more difficult to optimize, with classification performance being more

sensitive to the selection of the tuning parameter (C).

While most of the performance differences between the logistic regression and SVM

classifiers were not significant, the logistic regression models had higher overall code
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performance. While SVMs are considered to be a state-of-the-art binary classifier, logistic

regression has the advantage of being a simpler model to train.

There were few significant differences between the gender-specific and gender inde-

pendent models, with the gender-specific models performing better on average for both

the wife and husband instances. One possible explanation for this difference can be ex-

plained in the psychology literature, which says that women and men express themselves

differently [46]; this implies that gender-specific classifiers are more appropriate. We can

also provide a more data-driven explanation: the advantage of having twice as much

training data for the gender-independent models was not as important as the advantage

of having features that were gender-matched (as in the gender-specific models). The

gender-independent models could most likely be improved in the future by normalizing

the acoustic features by speaker and gender.

Comparing between codes (for the best performing classifiers/models only), we found

for the wife instances: performance in classifying sadness and humor was significantly

lower than classifying acceptance (both p<0.05), blame (both p<0.001), global positive

affect (both p < 0.05), and global negative affect (both p < 0.01). For the husband

instances, classification performance for sadness was significantly worse than all other

codes (all p < 0.05). In addition, performance in classifying blame was significantly

higher than humor (p < 0.05), and global negative affect was significantly higher than

global positive affect and humor (both p < 0.005). The large range in classification

performance may be due in part to the fact that some codes are inherently more difficult

to separate; see Figure 3.1, where small separations between low/high code scores (e.g.,

husband’s sadness) implies that the extreme behaviors are perceptually closer.
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There were no significant differences when comparing the classification performance

for the wife instances versus the husband instances for the 6 codes or the average code

performance (using the best performing classifiers/models). The higher average code

performance for the wife instances over the husband instances for the gender-specific

LR-l2 classifier (1.8% difference) may be partially explained by the upper-bounds in

automatic performance. We see in Table 3.3 that the average upper-bound performance

for the wife instances (97.3%) was 1.9% higher than the average upper-bound performance

for the husband instances (95.4%). This indicates that the human evaluators tended to

agree more often when rating the wive’s behaviors for the six codes, which suggests that

automatically classifying the husband’s behavior may be more difficult for this subset of

data.

To compare the relative importance of the various features, we analyzed which features

had non-zero weight coefficients for the l1-regularized logistic regression classifiers at each

train/test fold. We refer to these features as the “selected features.” Table 3.8 provides

details on the number and fraction of selected features for the various feature components

and sub-components (“subsets”) proposed in this dissertation (see Section 3.5).

In the first row of Table 3.8, we see that on average, approximately 1090 features were

selected by the LR-l1 classifiers at each train/test fold. This represents about 2.3% of the

full feature set, which is a significant reduction in the dimensionality of the feature space.

We also see in Table 3.8 that the number of selected features for a given feature subset

was proportional to the dimensionality of the subset, as demonstrated in the Nf,sel/Nsel

columns; for example, only approximately 0.3% of the selected features were rate LLD
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features, whereas approximately 91% of the selected features were hierarchical temporal

granularity features.

An interesting finding is in the Nf,sel/Nf columns of Table 3.8, which show the prob-

ability that a feature is selected for a given feature subset. With the exception of the rate

and VAD/turn LLD subsets (which have a relatively low dimensionality), all proposed

feature subsets had a similar probability (ranging from 0.018-0.035 for the gender-specific

models and 0.016-0.025 for the gender-independent models). This implies that all pro-

posed feature subsets contain relevant information for learning the behavioral codes but

that this information may be spread across a larger number of features for the higher

dimensional feature subsets. For the rate and VAD/turn LLD subsets, the relatively

large probability of a feature being selected may be due to the fact that there is less

redundancy in these low-dimensional feature subsets.

We ran a second set of classification experiments using single feature subsets, so we

could empirically compare their relative performance in predicting the behavioral codes.

For these experiments, we only trained gender-specific models using l2-regularized logistic

regression. Figure 3.8 is a bar plot of these results, where we also show the performance

for the case when we trained the classifier on all features.

We see in Figure 3.8 that all feature subsets performed better than chance (50%).

Also, we achieved the best average code classification performance with single feature

subsets using the MFCC and f0 LLDs, the rated and both speaker domains, and the

global and hierarchical temporal granularities. This suggests that these features may be

the most relevant for this automatic behavioral coding problem.
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Importantly, we attained the highest average code classification performance when

using all features, with one exception: for the husband instances, we achieved the highest

accuracy when using only rated speaker domain features. This means that for the hus-

band instances, the partner and both speaker domain features did not help improve the

average code classification performance. This is not an unreasonable finding since the

husband was the person being rated, and it suggests that the husband’s speech regions

are most informative for predicting the husband’s behavioral code scores. On the other

hand, for the wife instances, we found that the both speaker domain features were best,

which implies that features derived from the entire interaction were most informative for

classifying the wife’s behaviors.

The previous experiments demonstrated the utility of the proposed acoustic features

and classifiers in discriminating extreme behaviors (top/bottom 20%) from the spouses.

However, quantifying the less extreme instances that fall in the middle 60% of the code

range is also crucial to automate a behavioral coding system. To provide insight into how

well we can quantify these middle instances, we performed one final experiment.

We first trained the binary gender-specific l2-regularized logistic regression classifier

as before, in a leave-one-couple-out manner using the top/bottom 20% of the data. We

then applied the trained model to the remaining 60% of the data to attain posterior

probability estimates (i.e., the probability of belonging to the “high” code class and the

“low” code class). Our hypothesis is that instances with higher evaluator code scores will

have higher “high” code posteriors than instances with lower evaluator code scores. To

test this hypothesis, we computed the Spearman’s rank correlation coefficient between

the “high” code posteriors and the mean evaluator scores. Spearman’s correlation was
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Rated-System acc bla pos neg sad hum AVG
Wife-auto 0.24 0.21 0.34 0.36 0.35 0.16 0.28
Wife-eval 0.36 0.45 0.28 0.41 0.10 0.40 0.33
Husband-auto 0.12 0.14 0.28 0.22 0.22 0.10 0.18
Husband-eval 0.19 0.38 0.26 0.32 0.03 0.40 0.26

Table 3.9: Performance in ranking the instances of the middle 60% of the six behavioral
codes for the automatic (auto) system, as compared to inter-evaluator agreement (eval).
Shown here is the mean Spearman’s correlation, with the bold numbers significant at the
5% level.

the chosen metric because it compares the relative order of the instances, not the actual

values themselves.

To establish how difficult it is for humans to rank these middle instances, we computed

inter-evaluator agreement for the middle 60% of the code range by randomly sampling

individual evaluator’s scores from each instance and computing the Spearman’s correla-

tion with the mean scores of the other evaluators. We repeated this random sampling

procedure 10,000 times.

Table 3.9 and Figure 3.9 show the results from this final experiment for all six codes

and both spouses. We see from Table 3.9 that the mean correlations for the automatic

system were all positive, which means the binary classifiers trained on the extreme in-

stances were able to rank the middle 60% of the instances better than chance (correlation

= 0). The relatively low correlation values for both the automatic system and the eval-

uators demonstrate the inherent difficulty in quantifying these more neutral/ambiguous

behavioral displays of the spouses.

The automatic system performed better at ranking the wife’s middle 60%, as opposed

to the husband’s, a trend also seen with the human evaluators. This implies that men’s
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less extreme behavior may have a relatively higher degree of variability and/or ambiguity,

as compared to women’s.

We also see in Table 3.9 and Figure 3.9 that, on average, the inter-evaluator correla-

tion was higher than the automatic performance, which was expected; 11 out of the 14

evaluator correlations listed in Table 3.9 were significant at the 5% level, while only 5 out

of the 14 automatic correlations were significant. However, there were cases when the au-

tomatic system ranked the instances better than held-out evaluators (e.g., sadness). This

suggests that the automatic system was able to model the average evaluator perception,

despite a large degree of individual evaluator variability.

3.8 Fusion of speech and language information

One of the weaknesses with the proposed method in Section 3.6 is that it ignores important

lexical cues. In this section, we concentrate on predicting a single code, the spouse’s,

“level of blame,” by fusing automatically-derived speech and language information [16].

The coding manual used to rate blame says that, “explicit blaming statements (e.g., ‘you

made me do it’) warrant a high blame score [93],” and the acoustic features we extracted

in Section 3.6 were not able to capture these types of spoken phenomena. Blame is

particularly relevant for this domain of data and is oftentimes targeted in couple therapy,

since blaming behavior can lead to an escalation of negative affect and resentment between

the spouses [60].

In this section, we introduce an ASR-derived classification method that incorporates

lexical information through the use of two competitive maximum likelihood language
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models (one trained on “low blame” text and the other trained on “high blame” text).

We show that even with noisy ASR, this method is able to capture discriminative aspects

of blame behaviors. Moreover, we show that we can attain the highest classification

performance by combining the complementary acoustic and language information sources

through score-level fusion of the two classification methods. As part of this work, we also

provide an upper bound on performance by running an oracle experiment for the case

when we have access to perfect word-level transcriptions.

We used the same binary classification set-up as before by partitioning the data into

two classes: high blame and low blame. The high blame partition consisted of the 70

sessions (approximately 20% of the 372 sessions) with the highest average blame score for

the wife and the 70 sessions with the highest average blame score for the husband. The

low blame partitions consisted of the 140 sessions with the lowest average blame score:

70 for the wife and 70 for the husband. The blame scores for the two classes ranged from

1.0-1.5 for low blame and 5.0-9.0 for high blame, so they were separable to the human

evaluators.

In this section, we chose to train gender-independent models, thus effectively doubling

the amount of training data. We chose accuracy to be the performance metric, defined as

the percentage of correctly classified test sessions (out of 280); baseline chance accuracy is

50%. To ensure that the reported results were not overstated, we used leave-one-couple-

out cross-validation to separate training and test data, and we optimized all classifier

parameters at each train/test fold by using leave-two-couples-out cross-validation on the

training data. Therefore, there was no “contamination” of the test couple during the

training stages.
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Section 3.8.1 discusses the acoustic feature extraction process for this fusion work.

Sections 3.8.2-3.8.5 describe the static acoustic, ASR-derived lexical, oracle lexical, and

fusion classifiers, respectively. Figure 3.10 is a block diagram for the signal-driven classi-

fication methods.

3.8.1 Acoustic Feature Extraction

For the acoustic classifier, we used the same acoustic speech features listed in Table 3.5.

The lexical classification method we implemented (Section 3.8.3) is based on ASR within

the hidden Markov model framework. We used the standard frame-level 39-dimensional

vector: the first 13 mean-subtracted Mel-frequency cepstral coefficients (MFCCs) and

their first-order derivative (∆) and acceleration (∆∆) coefficients.

3.8.2 Static Acoustic Classifier

The static acoustic classifier is very similar to the one proposed in Section 3.6. It finds a

mapping from the high-dimensional static acoustic feature space, which represent various

properties of the spouses’ speech, to the binary blame class labels. We used the support

vector machine (SVM) implementation in LIBSVM [41]. Since there were orders of mag-

nitude more features (50,000+) than instances (280), we used a linear kernel. All features

were z -normalized by subtracting the mean value in the training data and dividing by

the standard deviation.
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3.8.3 ASR-derived Lexical Classifier

The main problem in using ASR to derive lexical information is the resulting “noisy” word

hypotheses, due to numerous factors (e.g., noisy audio, mismatched acoustic/language

models). We partially circumvented this noisy ASR problem by implementing an ASR-

derived lexical classifier, which incorporated differences in language use between low and

high blame spouses via competitive language models. We derive the equation for this

classifier in Equations 3.11-3.17, based on [71].

[B∗,W ∗] = argmax
B,W

P (B,W |O), B ∈ {−1, 1} (3.11)

≈ argmax
B,W

∏
t

P (B,Wt|Ot) (3.12)

= argmax
B,W

∏
t

P (Ot|Wt, B)P (Wt|B) (3.13)

≈ argmax
B,W

∏
t

P (Ot|Wt)P̃ (Wt|B) (3.14)

Equation 3.11 states to choose the most probable blame class B ∈ {−1, 1} (low/high

blame) and most likely word sequence W , given the acoustic observations O of the rated

spouse’s speech; we disregard the speech regions of the rated spouse’s partner for this

classification implementation. For computational reasons, we assume in Equation 3.12

that each speaker turn is independent, and we denote the acoustic observations and word

sequence of turn t as Ot and Wt, respectively. We attain Equation 3.13 by applying Bayes’

theorem and dropping the B prior, since both blame classes are equally represented in

our experiments. Equation 3.13 is a variation of the fundamental equation for ASR,
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where P (Ot|Wt, B) corresponds to the “blame class”-specific acoustic model (AM), and

P (Wt|B) corresponds to the “blame class”-specific language model (LM).

For this initial work, we did not train AMs for both blame classes and instead used

generic AMs; thus, we assumed that the acoustic observations were independent from

B, as shown in Equation 3.14. We trained the “blame class”-specific LMs using the

transcriptions of spouses in the training data at each cross-validation fold: a “high blame”

LM on the text from spouses rated as having high blame and a “low blame” LM on the text

from spouses rated as having low blame. We trained the LMs on unigram word frequency

counts for simplicity and to avoid more complex smoothing procedures and data sparsity

issues. Both LMs were smoothed via interpolation with a λ-weighted background (BG)

LM trained on out-of-domain text:

P̃ (Wt|B) = (1− λ)P (Wt|B) + λP (Wt|BG), 0 < λ < 1 (3.15)

Since estimating the probability of the most likely path through the ASR word lattice

may not be robust, we incorporated the probabilities of the 100 most likely (“N-best”)

paths through the lattice for each speaker turn. We assumed in our implementation that

the N-best hypotheses were independent; see Equation 3.16, where the n subscript refers

to the nth most likely path. In practice, we applied Equation 3.17 for numerical reasons.

See Figure 3.10 for a depiction of the ASR-derived lexical classifier, where we denote the

smoothed LMs for low and high blame as LMlo and LMhi, respectively.
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B∗ = argmax
B,W

∏
n

∏
t

P (Ot|Wt,n)P̃ (Wt,n|B) (3.16)

= argmax
B,W

∑
n

∑
t

logP (Ot|Wt,n)P̃ (Wt,n|B) (3.17)

3.8.4 Oracle Lexical Classifier

To find an upper bound on the performance of the proposed ASR-derived lexical classifier,

we ran an oracle experiment that assumed we had perfect word recognition rate (i.e., we

used the manual transcription). This oracle classifier is shown in Equation 3.18, where

W is the sequence of transcribed words across the session for the rated spouse, and we

used the same smoothed LMs as in Section 3.8.3 to compute P̃ (W |B).

B∗ = argmax
B

P̃ (W |B), B ∈ {−1, 1} (3.18)

3.8.5 Fusion Classifier

Fusion of multimodal information has been advantageously applied in many engineering

research domains. For example, improved emotion recognition has been reported when

fusing audio/language/discourse features [113] and audio/video features [180]. Fusion

typically takes place at the feature-level (e.g., by combining features at the input of a

classifier), score-level (e.g., by combining output confidence scores from many classifiers),

or decision-level (e.g., by voting on multiple classifier decisions). For our experiments,
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fusion at the score-level was most applicable, given the high dimensionality of the static

acoustic classifier (not ideal for feature-level fusion) and since we only had two classifiers

(not ideal for decision-level fusion).

The fusion features FF were computed using Equation 3.19, where confc is a non-

negative confidence score for classifier c:

FFc = (confc)(B
∗
c ), B∗ ∈ {−1, 1} , conf ≥ 0 (3.19)

For the ASR-derived and oracle lexical classifiers, the magnitude of the difference in log-

probabilities between the competing LMs served as the confidence score. For the static

acoustic SVM classifier, class probability estimates (made by LIBSVM using internal

cross-validation on the training data) were the confidence scores [41].

We again used LIBSVM’s SVM for the fusion classifier and z -normalized the fusion

features, so they were on a comparable scale. We tried three pairs of classifier combi-

nations: fusing the static acoustic and ASR-derived lexical classifiers (see Figure 3.10),

fusing the static acoustic and oracle lexical classifiers, and fusing the two lexical classifiers.

3.8.6 Results

Table 3.10 shows the performance of the various classifiers on the 280 instances. Using

a difference in binomial proportions statistical test, we see that all proposed classifiers

had significantly higher accuracy than chance accuracy of 50% (all p < 0.01). All oracle

classifiers had significantly higher accuracy than all non-oracle classifiers (all p < 0.01),

with no statistical difference between any of the oracle classifiers (all p > 0.05). There

was no statistically significant difference between any of the non-oracle classifiers (p >
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0.05), except the acoustic and ASR-derived lexical fusion classifier had significantly higher

accuracy than the ASR-derived lexical classifier alone (p < 0.05).

In isolation, the oracle lexical classifier (which uses the perfect transcription) per-

formed best, which suggests that lexical information is critical for classifying blame be-

haviors; this agrees with both intuition and the coding manual [93]. Even though the

static acoustic classifier ignores these important lexical cues, it outperformed the ASR-

derived lexical classifier, although not significantly (p > 0.05). Achieving 75% classifi-

cation accuracy with the ASR-derived lexical classifier is a promising result, especially

considering the noisy acoustic conditions and spontaneous nature of the corpus.

The significant difference between the ASR-derived and oracle lexical classifiers can

most likely be attributed to the quality of the ASR word lattices. We found the ASR

word error rate ranged from 40%-90% across the sessions (using standard metrics on the

most likely word hypothesis). For less noisy data, we would expect the quality of the

ASR lattices to improve and the classification performance to increase.

We see from the fusion experiments that performance decreased when we fused the

two lexical classifiers, most likely because both of these classifiers model the language use

of the spouses. We got a 0.7% absolute (0.8% relative) improvement when we fused the

static acoustic classifier with the oracle lexical classifier. Although this difference is not

significant, it suggests that the system was able to incorporate complementary acoustic

information from the spouses’ speech.

Although it is not a statistically significant difference in performance (p > 0.05),

we saw a 2.5% absolute (3.1% relative) boost in performance when we fused the static
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System Classifier Acc (%)

Baseline Chance 50.0

Unimodal
Acoustic 79.6
Lexical/ASR 75.4
Lexical/Oracle 91.1

Fusion
Acoustic + Lexical/ASR 82.1
Acoustic + Lexical/Oracle 91.8
Lexical/ASR + Lexical/Oracle 87.5

Table 3.10: The accuracy of the proposed classification methods.

acoustic and ASR-derived lexical classifiers. This fusion classifier advantageously com-

bined automatically derived blaming cues from the spouses’ speech and language. It also

has the benefit of incorporating confidence scores, which can be interpreted to determine

the relative importance of “what the spouse said” versus “how the spouse spoke,” with

respect to the perception of blame.

3.9 Conclusions

In this chapter, we proposed an engineering methodology toward automating a manual

human behavioral coding system for marital problem-solving discussions using acoustic

speech features. One of the unique aspects of this research is that we used interaction data

from real couples, collected as part of a longitudinal psychology study on couple therapy,

and coded with the guidance of expert psychologists. While automatically predicting the

spouses’ behavioral codes is a challenging problem, developing tools and algorithms that

can model complex human behaviors during realistic interactions are one of the main

goals in behavioral signal processing (BSP).

After eliminating a third of the audio data because of extreme noise conditions or poor

speaker segmentation, we extracted multiple acoustic low-level descriptors and computed
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static functionals at various temporal granularities to capture global speech properties for

both spouses. The resulting high-dimensional feature set was then used to automatically

classify the top/bottom 20% of the instances for six selected behavioral codes.

We attained the highest average code classification performance (75% accuracy for

the instances when the wife was being rated and 73% accuracy for the instances when

the husband was being rated) using l2-regularized logistic regression; these best models

were trained in a gender-specific fashion, with the wife and husband models trained

separately. The best code classification performance for the wife instances ranged from

67% for humor to 85% for blame, while the best code classification performance for the

husband instances ranged from 60% for sadness to 86% for negativity.

As part of this work, we provided analysis about the relative importance of the various

feature subsets we extracted, based on the gender-specific l1-regularized logistic regres-

sion models. We showed that while the higher-dimensional feature subsets made up a

larger portion of the “selected” features (features with non-zero weight coefficients), the

probability that a feature was selected was similar across all proposed feature subsets.

Future work will further investigate dimensionality reduction and feature selection tech-

niques (e.g., [8]) to help find a lower-dimensional and code-specific feature space that can

discriminate between the low and high behavioral code scores.

This initial study has led to a number of ongoing research efforts. In addition to

computing static functionals across various temporal granularities within the session, we

are also experimenting with ways to dynamically model the interaction. Our related

and current work has modeled the trajectories of prosodic features to quantify acoustic

entrainment effects between the two spouses [109,110].
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We also showed we could successfully separate 82% of the extreme instances of blam-

ing behavior conveyed by the spouses through fusion of automatically derived speech and

language information [16]. In the future, we will work to improve: the static acoustic

classifier (e.g., by implementing feature selection techniques); ASR-based lexical classifier

(e.g., by training “blame class”-dependent acoustic models and experimenting with other

procedures to merge N-best hypotheses); and fusion classifier (e.g., by experimenting

with new confidence score estimation schemes). See [76] for more related work on us-

ing both the manual transcriptions and automatically-generated transcriptions (through

automatic speech recognition) to predict the session-level behavioral codes. Alternative

acoustic/lexical fusion methods were also considered in [105]. As part of our future work,

we also plan to extend these fusion experiments to other behavioral codes.

In addition, since certain portions of the ten-minute discussions may be more relevant

than others, we are working on detecting code-specific salient regions. Concurrent work

has viewed the automatic classification of the behavioral codes as a multiple instance

learning problem. Initial classification experiments that applied the Diverse Density

Support Vector Machine framework with both transcription and acoustic features have

been promising and allow for the estimation of salient regions during the interaction

[78,105].

We are currently in the process of coding a subset of the Couple Therapy corpus at

a finer-grained (continuous) level. This will enable us to use supervised learning tech-

niques to automatically locate the more relevant temporal regions of the interaction. We

believe that incorporating saliency detection in an informed manner could allow us to
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automatically model the interactions in a fashion that more closely resembles trained

human evaluators.

One area of future work involves the extraction of code-specific features. One simple

way to begin this process would be to learn from the coding manuals themselves. For

example, the SSIRS states that “sighs” are a relevant cue for a spouse’s level of sadness

(Appendix). Therefore, we could train a detector to automatically recognize instances of

sighs from the audio signal, which could then act as one informative feature for predicting

sadness. In addition to learning from the coding manuals, we also want to incorporate

greater insight from expert psychologists into the computational modeling framework for

each of the behavioral codes.

Other future plans include incorporating spouse and code correlations (see Table 3.2)

in the modeling framework by jointly predicting the codes, rather than treating each

independently. One possible direction is to use graphical models (e.g., Bayesian networks)

that directly model inter-code and spouse dependencies. Another option is to develop

a two-stage classification scheme; the first stage would classify each code independently,

and the second stage would combine the output hypotheses to exploit the code and spouse

correlations.

While we performed one experiment that analyzed the more “ambiguous” instances

that fell in the middle 60% of the code range, the focus of this chapter was on classifying

the extreme instances. Our future work will move away from this binary classification

problem and concentrate on modeling and predicting all the instances. Toward this goal,

we will experiment with regression techniques (that treat the code scores in a continuous

manner) and ordinal regression techniques, which treat the code scores in an ordinal
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manner (e.g., [150]). This future work will also model and predict individual evaluator

code scores, as opposed to using only the average scores across all evaluators.

While the availability of transcriptions enabled us to employ speech-text alignment to

segment the corpus by speaker, we also plan to experiment with fully automatic ways to

pre-process the Couple Therapy corpus. State-of-the-art automatic speaker diarization

algorithms will be used to segment the audio into speaker-specific regions (e.g., [92,167]).

In addition, source separation techniques may prove useful in detecting regions of over-

lapped speech, which may be another relevant cue/feature for predicting the behavioral

codes.

We also hope to adopt a more multimodal approach to predicting the behavioral codes.

As seen in the Appendix, the evaluators are trained to look for a variety of visual gestural

cues (e.g., eye gaze, head orientation, facial expressions such as smiling and scowling,

bodily expressions such as arms crossing). Thus, it is important to sense, model, and

analyze relevant video information if we are to accurately code behavioral data. While

the Couple Therapy corpus may not be ideal for this research due to the low data quality

of the videos (see Section 3.2), we are in the process of collecting multimodal data of

dyadic discussions in a “smart room” outfitted with multiple high-quality audio-video

sensors [151].

The results of the current study open new avenues for exploration in couples research

as well as new possibilities for intervention that would not otherwise be possible. For

example, co-author Christensen is a member of a research effort that is evaluating the

efficacy of IBCT delivered via the web. A primary aim of the project is to make IBCT

broadly available to couples who may otherwise have difficulty or be hesitant about
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seeking couple therapy. Our goal is to apply and extend the findings and methods of the

current study to enable couples receiving IBCT over the web to get automated feedback

about their own behavior by submitting a recorded sample of behavior over the web.

We are also considering extending the methods and findings of the current study to

providing near real-time feedback and intervention to couples who engage in moderate

levels of intimate partner aggression. Though conflict is one of the most well replicated

predictors of intimate partner aggression, couples frequently have difficulty recognizing

when they are exhibiting conflict-instigating behaviors that increase risk for aggression.

The methods and findings of the current study could be used to provide feedback to ag-

gressive couples using smart phones or other mobile devices that allow for audio sampling.

We are also working with psychologists on a number of other BSP application do-

mains: autism, depression, addiction, and post traumatic stress disorder. Collaborating

at an earlier stage in the research has enabled us to develop hypotheses and design ex-

periments that benefit both psychology and engineering. We hope that these ongoing

and future BSP endeavors will promote synergistic collaborations between engineers and

psychologists and ultimately push both fields forward.

3.10 Appendix: Coding manual written guidelines

Below we provide the written guidelines of the six codes analyzed in this dissertation,

copied from the two coding manuals. “Acceptance of other” and “blame” were from the

Couples Interaction Rating System (CIRS) [93], and “global positive,” “global negative,”
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“sadness,” and “use of humor” were from the Social Support Interaction Rating System

(SSIRS) [99].

Acceptance of Other Indicates understanding and acceptance of partner’s views, feel-

ings, and behaviors. Listens to partner with an open mind and positive attitude.

May paraphrase partner’s statements. Subject need not agree with the partner’s

views, but respects these views. Anger and criticism imply low acceptance, but

high acceptance (scores of 8,9) goes beyond a lack of criticism and includes warmth

toward partner. Resignation (i.e., settling unenthusiastically for a situation that

you don’t believe will change) should not be considered acceptance.

Blame Blames, accuses, or criticizes the partner, uses critical sarcasm; makes character

assassinations such as, “you’re a real jackass,” “all you do is eat,” or “why are you

such a jerk about it?” Explicit blaming statements (e.g., “you made me do it,” or

“you prevent me from doing it”), in which the spouse is the causal agent for the

problem or the subject’s reactions, warrant a high score.

Global Positive An overall rating of the positive affect the target spouse showed during

the interaction. Examples of positive behavior include overt expressions of warmth,

support, acceptance, affection, positive negotiation, and compromise. Positivity

can also be expressed through facial and bodily expressions, such as smiling and

looking happy, talking easily, looking comfortable and relaxed, and showing interest

in the conversation.

Global Negative An overall rating of the negative affect the target spouse shows dur-

ing the interaction. Examples of negative behavior include overt expressions of
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rejection, defensiveness, blaming, and anger. It can also include facial and bodily

expressions of negativity such as scowling, crying, crossing arms, turning away from

the spouse, or showing a lack of interest in the conversation. Also factor in degree

of negativity based on severity (e.g., a higher score for contempt than apathy).

Sadness Expression of sorrow and grief or resignation. Sadness is most apparent from

behavioral cues, such as tearing or crying, looking down and dejected, sighing,

speaking in a soft or low tone, and holding the head down. Verbalizations can

involve expressing low spirits, unhappiness, and disappointment.

Use of Humor Measures the use of positive, non-derisive humor to lighten the mood

during the interaction for both the target and non-target spouse. This can include

jokingly making fun of the self, lightly teasing the spouse, or making a reference

to a mutually shared joke. This category would not include making a joke at the

expense of the self or spouse, mocking, or being sarcastic. If the target spouse does

not initiate the humor but reacts positively to the other spouse’s humor, code a low

score.
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segmented due to overlapped speech (the husband was laughing while the wife was speak-
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Figure 3.9: Performance in ranking the instances of the middle 60% of the six behavioral
codes for the automatic (auto) system, as compared to inter-evaluator agreement (eval).
Each plot shows the mean and standard deviation in the Spearman’s correlation.
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Chapter 4

Autism Diagnosis

4.1 Introduction

1 Autism spectrum disorders (ASD) are highly heritable neurodevelopmental disorders

characterized by a triad of core deficits, including impaired social behaviors, communi-

cation, and restricted/repetitive behaviors [3]. ASD is considered a “spectrum” disorder

because symptomatology severity in each of the core domains can vary greatly. There

have been increased research efforts in ASD, as recent prevalence studies indicate that as

many as 1 in 110 children are diagnosed with ASD [138]. Studies have shown that early

diagnosis and intensive early intervention can lead to improved social and communication

skills in autistic children [54].

Psychologists in both research and in practice rely heavily upon observational meth-

ods for the assessment of social and communicative abilities. The Autism Diagnostic

Observation Schedule (ADOS) is one of the most widely used clinical research instru-

ments for the assessment and diagnosis of ASD and is appropriate for individuals with

1This research was supported in part by the National Institute of Child Health and Human Develop-
ment, the National Science Foundation, Autism Speaks, and the Marino Autism Research Institute.
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varying ages and verbal abilities [82, 118]. The semi-structured 30-60 minute interaction

provides a trained psychologist with behavioral evidence that can be evaluated along di-

mensions important in diagnosing autism. Because of the qualitative descriptions of the

assessments and the lack of continuous quantitative measures, one challenge in using the

ADOS (and with observational methods in general) is the subjective nature inherent to

the rating system.

Technology can assist with this process in a number of ways. Audio-video sensors can

record the child-clinician interaction in a consistent fashion, and state-of-the-art signal

processing methods can facilitate quantitative analyses and modeling using the audio-

video data. Computational methods may be better suited than human observers in quan-

titatively tracking certain human behavioral cues (e.g., speech prosody, hand gestures).

In recent years, there have been new emerging fields (e.g., social signal processing [174],

behavioral signal processing [18]) concentrating on robustly measuring high-level human

behaviors during realistic interactions using audio-video data. These data-driven signal

cues could provide researchers and clinicians with a quantitatively dynamic source of in-

formation. We wish to emphasize that the clinical acumen of experienced psychologists

is invaluable in evaluating and diagnosing children with ASD, and that we anticipate our

work with this corpus will augment, rather than supplant, an expert clinician.

The collection of realistic corpora is a critical step in many data-driven engineering

pattern analysis and recognition realms. Example domains include automatic speech

recognition [80, 159], affect/emotion recognition [34], and automatic literacy assessment

[106]. In recent years, there has been significant engineering-related work on analyzing

the speech and language of children with ASD; the experiments have occurred in a variety
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Module Subject Interaction subtasks

1
free play, response to name, response to joint attention, bubble play,

< phrase anticipation of routine with objects, responsive social smile,
speech anticipation of social routine, functional and symbolic imitation,

birthday party, snack

2
construction task, response to name, make-believe play, joint interactive

phrase play, conversation, response to joint attention, demonstration task,
speech description of picture, telling story from book, free play, birthday

party, snack, anticipation of routine with objects, bubble play

3
construction task, make-believe play, joint interactive play,

fluent demonstration task, description of picture, telling story from book,
children cartoons, emotions, social difficulties/annoyance, friends and marriage,

loneliness, creating a story

4
construction task, description of picture, telling story from book, cartoons,

fluent emotions, social difficulties/annoyance, friends and marriage, loneliness,
teens/adults creating a story, daily living, current work/school, plans and hopes

Table 4.1: A list of the interaction subtasks for each ADOS module [118], along with the
intended language level and/or age of the subject.

of social contexts, ranging from isolated speaking tasks [171, 172] and structured clinical

assessments [94] to unconstrained home environments [142]. However, since ASD affects

vocal, linguistic, and gestural social behavioral patterns, there is a need for multimodal

data of children with ASD.

Towards this end, we introduce the USC CARE Corpus [26], comprised of real, spon-

taneous child-psychologist interactions, recorded in a controlled clinical environment in

the context of the ADOS. The collection of this corpus is the necessary first step in ana-

lyzing complex social interactions between expert psychologists and children with ASD.

We plan to use the audio-video data for a number of multimodal signal processing re-

search projects, ranging from improved modeling of children’s spontaneous speech to the

analysis of atypical communication patterns and the study of dialogs in clinical settings.

In addition to offering a new problem domain for engineering, this unique corpus

has important potential contributions to the ASD community. Ultimately, this research

could help support ASD diagnoses with quantifiable and adaptable metrics, provide more
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accurate stratification of subgroups for targeted interventions, and automatically track

children’s progress during the treatment. Section 4.2 discusses the ADOS interaction

paradigm in more detail. We describe the USC CARE Corpus (an ongoing data collection)

in Section 4.3, and we explain our initial analyses and future intended work in Section 4.4.

Related work and efforts are discussed in Section 4.5, and we conclude in Section 4.6.

4.2 ADOS Interaction Paradigm

The ADOS is a “gold-standard” research tool for the assessment of the triad of behaviors

that together are diagnostic for ASD [82, 118]. There are four modules; the psychologist

determines which one to administer, depending on the subject’s expressive language level

and chronological age (see Table 4.1).

During the ADOS, the subject interacts spontaneously with a psychologist (and a

parent for modules 1 and 2) for approximately 30 to 60 minutes. To ensure that the

interaction is standardized, the psychologist follows a predetermined semi-structured set

of subtasks. Table 4.1 lists the interaction subtasks for each ADOS module. This table

shows that there is significant subtask overlap between the four modules, with more

conversational and interview-style subtasks for the fluent-speaking subjects in modules

3 and 4. Modules 3 and 4 are typically administered at a table, while modules 1 and 2

require the child (and parent) to move around the room.

The ADOS was designed for psychologists to make assessments on the subject’s pro-

ficiency for a number of communication and social interaction skills. Observations are

noted by the psychologist in real-time during the interaction, and the psychologist rates

138



the subject’s behavior immediately after the session according to the module-specific

ADOS coding manual. Each coding manual consists of approximately 28 codes, which are

broken down into five main groupings (e.g., communication, reciprocal social interaction,

play/imagination/creativity, stereotyped behaviors/restricted interests, and other abnor-

mal behaviors). The codes assess speech (e.g., speech abnormalities/atypical prosody),

language (e.g., stereotyped/idiosyncratic use of words/phrases), nonverbal communica-

tion (e.g., directed facial expressions, eye contact, use of gestures), and other behaviors

(e.g., imagination/creativity, overall quality of rapport).

Each code has a written description, and the psychologist chooses the value that best

describes the subject’s behavior; while in some cases codes are based on single subtasks,

most codes consider overall behavior throughout the evaluation. The summary ADOS

algorithm includes those codes that were shown in the standardization research to best

predict an autism diagnosis. The algorithm codes are summed to attain communication

and social interaction subtotals (each with predetermined autism and ASD cut-offs),

and a total score is computed for a final ADOS classification. In addition, the clinician

administering the test is asked to give an overall diagnosis of autism/ASD, based on the

ADOS scores as well as other information that may influence the validity or interpretation

of the scores [118].

Psychologists are trained to administer and code the ADOS using a stringent training

protocol that includes reaching agreement on multiple ADOS protocols with an expert

evaluator. This training process is time-consuming and challenging. One of the main

challenges is due to the qualitative nature for some of the codes in the ADOS coding

manuals. For example, in modules 2-4, speech abnormalities (i.e., atypical prosody) are
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coded based on descriptions such as, “Little variation in pitch and tone; rather flat or

exaggerated intonation, but not obviously peculiar, or slightly unusual volume, and/or

speech that tends to be somewhat unusually slow, fast, or jerky.” From this qualitative

description, it is clear that coding for prosodic abnormalities requires knowledge of nor-

mative prosody and the range of atypicalities associated with ASD. Thus, it takes a great

deal of specialized training to learn to reliably score the ADOS. Moreover, the scoring is

categorical and does not provide continuous measures that can be utilized for population

stratification.

Our goal is to contribute to overcoming some of these limitations through the develop-

ment of engineering algorithms and tools that are based on the analysis of a large corpus

of ADOS sessions. Incorporating engineering methods that quantitatively assess com-

munication/social interaction behaviors could help support scalability and the analysis

and decision capabilities of psychologists. In addition, it has the potential to contribute

to research aimed at better understanding variations in the communication and social

patterns of children with ASD.

4.3 The USC CARE Corpus

4.3.1 Background

The Center for Autism Research in Engineering (CARE) was established in 2009 at the

University of Southern California (USC), with the goal to better incorporate engineer-

ing and computer science methodologies into autism research through interdisciplinary

collaborations. Early and ongoing work between the Signal Analysis and Interpretation

140



Laboratory (SAIL) at USC and the USC University Center for Excellence in Develop-

mental Disabilities at Children’s Hospital Los Angeles (CHLA) experimented with child-

computer interaction applications [15,134].

More recently, we have teamed up with researchers at the Zilkha Neurogenetic In-

stitute and the Boone Fetter Clinic (BFC) at CHLA to record ADOS evaluations for

an ongoing prospective clinical and genetics study on the relationship between ASD and

gastrointestinal dysfunction (GID). The subsequent ADOS sessions from the Los Angeles-

based families who agreed to be recorded for the study make up the USC CARE Corpus.

4.3.2 Recruited Subjects

All recruited subjects with a prior clinical diagnosis of ASD were administered the ADOS

(to verify the diagnosis). The subjects were required to be between 5 and 18 years of

age to participate in the study. In addition, all participating families were required to be

native speakers of either English or Spanish. As part of the study, the parents filled out

a number of standardized questionnaires (e.g., on their child’s verbal abilities and social

functioning), which are included as part of the corpus.

We began recording the ADOS evaluations in April, 2010. As of March, 2011, we have

collected data from 70 subjects; our goal is to record 100 subjects. Table 4.2 provides

statistics on the participants whose demographics have been uploaded to the database.

The majority of the recruited families were native speakers of Spanish because the exper-

iments took place in Los Angeles, California. Note that the gender imbalance in recruited

subjects is due to the fact that males are four to five times more likely than females to

be diagnosed with ASD [138].
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Category Count/Statistic

Age (years) mean: 9.3, std. dev.: 3.1, range: 5.2-17.0
Gender male: 49, female: 11
Native language Spanish: 38, English: 22
Ethnicity Hispanic/Latino: 34, White: 9, Other : 8, unk : 9
ADOS module #1 : 17, #2 : 13, #3 : 28, #4 : 2
ADOS diagnosis autism: 37, ASD : 9, no ASD : 8, unk : 6

Table 4.2: Demographic statistics of the 70 recorded subjects administered the ADOS (as
of March, 2011). The unknown (“unk”) entries have not been uploaded to the database
yet.

4.3.3 ADOS Codes

Three research-certified psychologists administered the ADOS evaluations; co-author M.

E. Williams was the lead psychologist, and she oversaw the training of the other two

psychologists. The administering psychologist coded the subject according to the module-

specific ADOS manual (Section 4.2). The resulting code scores are a critical part of the

USC CARE Corpus, since they represent standardized expert coding of ASD-relevant

behaviors. We also have the final ADOS diagnosis from the psychologist; most of the

subjects met the autism or ASD cut-offs (Table 4.2).

Some of our intended future work will make use of these code scores and final ADOS

classification. This information can be used to cluster children with similar characteristics

and/or to facilitate the use of supervised learning techniques to automatically categorize

typical from atypical behavior. As part of our future work, we may also collect similar

ADOS data from typically developing children, which would allow us to train normative

behavioral models.

4.3.4 Multimodal Data Collection

All ADOS evaluations took place in the BFC at CHLA, with floor dimensions of 3.3m x

2.3m and ceiling height of 2.6m. The BFC is a shared multi-use clinical space, so we used
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a portable smart-room solution with multiple audio-video sensors to unobtrusively record

the interaction. All of the sensors operated in the far-field to ensure that they were not

disruptive to the natural flow of the interaction and to maximize the ecological validity

of the experiments. In addition, we did not place any sensors directly on the subject or

the subject’s clothing, to minimize the possibility of exacerbating anxiety states (many

individuals with ASD have anxiety and sensory sensitivities [138]).

Two Sony HDR-SR12 HD Handycam Camcorders were mounted on tripods approx-

imately 1m off the floor and 2m from the subject. They operated in the corners of the

room opposite to the child to capture the child’s body and face while seated at the table.

See Figure 4.1 for the layout of the clinical room. We used the highest quality video

settings: 1080i resolution with a 16:9 widescreen aspect ratio (1920x1080 pixels, 59.94

interlaced frames per second, H.264/MPEG-4 AVC compression).

We recorded stereo audio signals from each camcorder’s internal microphones (48

kHz, 16-bit). In addition, we recorded audio from two high-quality directional shotgun

microphones (SCHOEPS CMIT 5 U), which were mounted next to the camcorders. We

used the Edirol R-4 Pro recorder to capture the uncompressed audio (48 kHz, 24-bit).

The audio-video equipment takes approximately ten minutes to set up and five minutes

to dismantle. All audio-video signals were synchronized to the nearest frame of video by

clapping before and after the sessions and manually marking these clap times in each of

the audio-video signals. We currently have 50 hours of data (for each of the two channels

of video and six channels of audio); the average session duration is 49.5 minutes.
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Figure 4.1: The layout of the clinical room, showing the location of the participants and
the placement of the camcorders and microphones.

4.4 Initial Analyses & Future Work

4.4.1 Manual Transcription & Language Processing

We are in the process of manually transcribing and segmenting the USC CARE Cor-

pus into individual speaker turns; these transcribers are blinded to the code scores and

final ADOS classification. The resulting transcriptions will provide us reference land-

marks indicating when each person was speaking, the word-level lexical content of the

speech, and enriched transcription of: partial-words, stuttering, disfluencies, nonverbal

communication (e.g., laughs, sighs), nonverbal vocalizations (e.g., grunts, babbles), mis-

pronunciations, and neologisms. In addition, each utterance is labeled as a question,

fragment, interruption, and/or complete thought. The transcription manual we devised
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was adapted from the SALT transcription guidelines [127], used in many ASD-related

studies.

We plan to use these transcriptions to analyze the children’s language use, turn-taking

trends, and other surface behaviors, as was done in [94]. Importantly, the transcriptions

can also be used to train a number of speech-related signal processing tools (voice activity

detector, acoustic models, language models) for the specific environmental conditions and

speaker demographics of the corpus.

4.4.2 Speech Signal Processing

Speech is one modality in which state-of-the-art signal processing can make a profound

impact. As highlighted in Section 4.2, the assessment of children’s speech is one impor-

tant aspect of the ADOS. There are a variety of atypicalities associated with the prosody

of verbal autistic children. Studies have suggested that individuals with ASD have prob-

lems with lexical stress and pragmatic prosody [121]. Others have reported durational

abnormalities, with the speech either too fast or slow [59]. Consistent with Kanner’s de-

scription more than 60 years ago [102], current listeners often report a “bizarre” quality

to the speech (e.g., monotonous intonation) [74,121].

One of our future goals with this corpus is to develop automated methods to assess the

various dimensions of prosody (e.g., rate, intonation, volume) within the context of the

ADOS. While significant work has been done on assessment of prosody during children’s

constrained speaking tasks [171, 172], the USC CARE Corpus presents new challenges

and opportunities due to the spontaneous nature of the speech. As part of this future
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work, we will also have to account for the rich linguistic diversity of the recruited subjects

(Table 4.2).

We also plan to develop methods to automatically detect nonverbal vocalizations

(e.g., grunts, shrieks, babbles) during the ADOS. It was found that these non-lexical

vocalizations were a key feature in automatically separating typically developing children

from those diagnosed with ASD [142]. This is a challenging learning problem, since these

behaviors are idiosyncratic and can be rarely occurring events.

4.4.3 Multimodal Signal Processing

One of the unique aspects of the USC CARE Corpus is the multiple channels of synchro-

nized audio and video. As discussed in Section 4.2, the assessments for the ADOS, and

the social communication impairments for ASD, are inherently multimodal. In fact, some

of the behavioral abnormalities are due to atypical synchrony between expressive modal-

ities. Therefore, multimodal signal processing techniques are needed to fully capture the

unique differences in communication of children with ASD.

Our initial plans will concentrate on processing specific subtasks within the ADOS

interaction (Table 4.1). We will first consult with the psychologists to discover the cues

most relevant for the subtasks. This will help inform the multimodal feature extraction

and an appropriate automatic learning method. We can validate our methods using the

psychologists’ codes (Section 4.3.3). In some cases, we will manually code events at a

finer-grained temporal scale, which we can use to train (and evaluate) specific behav-

ioral detectors/classifiers. Combining data-driven and expert-inspired knowledge in a

multimodal signal processing framework also is an area of future work.
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4.5 Related Work

There has been some work in recent years on the use of computational methods to study

autistic children’s speaking patterns and prosody. For example, van Santen and his col-

leagues have worked on automatic assessment of affective prosody through a comparative

study of within-speaker productions of minimal pairs. A minimal pair is a word like,

“present,” where there are two different lexical stress syllables (pre’sent or ’present), but

the underlying phonetic transcription of the two are identical. In this research, children

diagnosed with ASD and typically developing children were recording speaking a number

of minimal pairs by imitating pronunciations or by correcting an incorrectly read min-

imal pair (based on word context). It was shown that by using prosodic features and

a dynamic time warping method, the prosodic differences between these minimal pair

pronunciations could be quantified. Their studies revealed that children with ASD did,

in fact, pronounce the minimal pairs differently, but that their pronunciations differed

from those pronounced by the typically developing children. Specifically, it was shown

that the two populations of children differed in their balance between the various prosodic

cues [171, 172]. One limitation of these studies is the non-spontaneous elicitation of the

prosodic patterns. This may have caused the speech samples to be less representative of

the real manner in which the children communicate.

There has also been significant work on speech analysis of autistic children from

the LENA Foundation, where researchers have taken a more unsupervised approach to

the problem [142]. In this work, children are outfitted with a microphone they wear

in their clothes, which records their voice and all other sounds (including background
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noises and the speech of other people) in the child’s natural home environment. Each

child is recorded for a period of weeks to months. The child’s speech is automatically seg-

mented from the rest of the audio recording, resulting in a large-scale sample of the child’s

speech. A 12-dimensional feature set, representing various high-level characteristics of the

children’s voice (e.g., frequency of “growl”-like vocalizations) are then used to separate

children diagnosed with autism to ones with language delay only (and a negative diagno-

sis of autism) and ones with neither (which were considered typically-developing in this

study). While this research holds great promise toward the ability to collect affordable

and natural speech over a long period of time, it does not benefit from the constrained

interactions that occur in a clinic. Psychological methods have been devised to constrain

a situation to extract relevant information about the child’s social communication, and

these situations are not applied in an unsupervised scenario like a child’s home.

4.6 Conclusions

In this chapter, we introduced the USC CARE Corpus, a large multimodal corpus of

ADOS evaluations. This data is important to facilitate the analysis of complex interac-

tions involving children with ASD while in a controlled clinical environment. In addition

to describing the unique elements of the ADOS and the multimodal recording set-up,

we also provided an outline for future work in speech, language, and multimodal signal

processing with this novel corpus.
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We believe that the collection of the USC CARE Corpus represents a key step towards

better incorporating engineering methodologies into the behavioral sciences and health-

care related domains, including neurodevelopmental disorders. This is a primary goal of

behavioral signal processing.

The BSP framework fits nicely with this problem, since it can help quantify these

difficult-to-describe symptoms of autism using objective signal-based cues within the con-

text of the ADOS. Psychologists can make use of these tools to inform their decisions

regarding the diagnosis and treatment of social disorders. Our specific goal is to automate

aspects of the ADOS coding (e.g., atypical prosody) using data-driven methods trained

on the novel corpus we are currently collecting. Incorporating quantitative methods and

models could lead to a more consistent grading scheme across subjects and over time.

The technology could potentially be scalable to large populations of children.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis describes completed research, centered around the quantification and predic-

tion of human subjective judgments on various aspects of human behavior. Specifically,

we examined this research problem in the context of three real-life applications: literacy

assessment, couple therapy research, and autism diagnosis.

Automatic literacy assessment technology can help children acquire reading skills by

providing teachers valuable feedback in a repeatable, consistent manner. There is a need

for more high-level automatic assessments that capture the overall performance of the

children. These high-level assessments can be viewed as an interpretive extension to

lower-level assessments, and may be more perceptually relevant to teachers and helpful

in tracking performance over time. In this thesis, we modeled and predicted the overall

reading ability of young children reading a list of English words aloud. This research

was broken into two main parts. The first part was a user study, in which 11 human

evaluators rated the children on their overall reading ability based on the audio recordings.
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In the second part, we ran machine learning experiments to predict evaluators’ scores

using features automatically extracted from the audio. The features were human-inspired

and correlated with cues human evaluators stated they used: pronunciation correctness,

speaking rate, and fluency. We investigated various automated methods to verify the

correctness of the word pronunciations and to detect disfluencies in the children’s speech

using held-out annotated data. Using linear regression techniques and by incorporating

evaluator variability, we automatically predicted individual evaluators’ high-level scores

with a mean Pearson correlation coefficient of 0.828, and we predicted average evaluator’s

scores with correlation 0.952. Both these human-machine agreement statistics exceeded

the mean inter-evaluator agreement statistics.

One of the goals of behavioral signal processing is the automatic prediction of relevant

high-level human behaviors from complex, realistic interactions. Observational methods

are fundamental to the study of human behavior in the behavioral sciences. For exam-

ple, in the context of research on intimate relationships, psychologists’ hypotheses are

often empirically tested by video recording interactions of couples and manually coding

relevant behaviors using standardized coding systems. This coding process can be time-

consuming, and the resulting coded data may have a high degree of variability because of

a number of factors (e.g., inter-evaluator differences). These challenges provide an oppor-

tunity to employ engineering methods to aid in automatically coding human behavioral

data. In the second case study of this thesis, we analyzed a large corpus of married

couples’ problem-solving interactions. Each spouse was manually coded with multiple

session-level behavioral observations (e.g., level of blame toward other spouse), and we

used acoustic speech features to automatically classify extreme instances for six selected
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codes (e.g., “low” vs. “high” blame). Specifically, we extracted prosodic, spectral, and

voice quality features to capture global acoustic properties for each spouse and trained

gender-specific and gender-independent classifiers. The best overall automatic system

correctly classified 74.1% of the instances across the six selected codes. In addition,

since many important behaviors can be conveyed through various communicative chan-

nels (e.g., speech, language, gestures), we compared two different classification methods

with the “blame” code: the first classifier was trained with the conventional static acous-

tic features and modeled “how” the spouses spoke, and the second was a novel automatic

speech recognition-derived classifier, which modeled “what” the spouses said. We got

the best classification performance on the “blame” code (82% accuracy) by exploiting

the complementarity of these acoustic and lexical information sources through score-level

fusion of the two classification methods.

Finally, in the third case study examined in this thesis, we introduced the USC CARE

Corpus, comprised of spontaneous and standardized child-psychologist interactions of chil-

dren with a diagnosis of an autism spectrum disorder (ASD). The audio-video data was

collected in the context of the Autism Diagnostic Observation Schedule (ADOS), which

is a tool used by psychologists for a research-level diagnosis of ASD for children. The

interaction consists of developmentally appropriate semi-structured social activities, pro-

viding the psychologist with a sample of behavior used to rate the child on a series of

autism-relevant symptoms. Our future goal with this multimodal corpus is to investigate

how analytical technology (e.g., speech and language processing) can enhance this obser-

vational rating task and provide greater insight into social behavior and communication.

In Chapter 4, we provided demographic statistics on the recruited children (70 to date),
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described the multimodal recording set-up, and discussed current and future work for

this novel corpus.

This dissertation contributes to a large framework, behavioral signal processing, which

attempts to understand human behavior by modeling both the internal state of a person

and observational processes and help support human experts’ decision capabilities with

new quantitative tools and measures.

5.2 Open Problems and Future Work

There are numerous technological challenges, as outlined in Chapter 1, with automatically

quantifying and predicting subjective judgments made on human behavior. In addition,

there are a number of open problems in the emerging area of behavioral signal processing.

These challenges and open problems include the modeling of multiple sources of variabil-

ity: heterogeneity in the displays of human behavior (“production”) and subjectivity in

the judgments of human behavior (“perception”). In addition, there is information across

multiple modalities and cues, which can be distributed across various signals (e.g., acous-

tics, language, gestures), and it is not always clear how humans leverage this information

to ultimately make holistic judgments. Finally, there is always the issue of realistic noisy

data. This provides many future research opportunities in the development of robust

signal processing and machine learning methodologies to model these complex subjective

observational processes.

We tackled many of these challenges in this thesis through the analysis of specific

problem domains in education, family studies, and health. We discuss future work for
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each of the three application domains at the ends of Chapter 2 (automatic literacy as-

sessment), Chapter 3 (couples therapy research), and Chapter 4 (autism diagnosis). If

we can continue to successfully address and overcome some of these challenges and open

problems, this automatic framework has many tantalizing possibilities for society. For

example, automatic literacy assessment tutors could revolutionize the classroom dynamic;

smart-room sensing could interpret the communication patterns of multi-person interac-

tions to help psychologists test hypotheses that would otherwise be infeasible to test; and

objective, signal-based behavioral markers for developmental disorders like autism could

be devised.

Moving forward, it is vital to continue to collect and analyze naturally-occurring

human behaviors from multimodal data recorded in ecologically valid settings. One fo-

cus should be on developing computational methods that learn from experts in other

fields; this is a challenging problem, since it is non-trivial to define optimal ways to

transfer knowledge from experts (human observers with potentially years of training and

experience) to machines. Humans and computers have different skill sets and can offer

complementary information, so in some cases, it may be essential to develop technologies

that collaboratively assist humans in enhancing their analysis capability and capacity.

Ultimately, these technologies should be embraced by people and be considered useful,

so incorporating people in the design process becomes critical. Future human-in-the-

loop experiments can study ways in which computers can iteratively learn from experts

and pinpoint where difficulties and limitations arise. Hopefully these models can exploit

people’s and machine’s mutual strengths in processing behavioral data.
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In addition to creating computational solutions in realistic experimental settings, fu-

ture research efforts must also be centered on the critical step of incorporating these

automated methods for use in real-life, societally-significant applications. One poten-

tial application of this work is providing psychologists and clinicians with near real-time

feedback of important behavioral analytics of their subjects/patients. Having objective,

quantitative cues at their disposal could transform the way human behavior is analyzed

and provide psychologists/clinicians with a set of tools that was not possible before (or

was possible only after processing the data manually). Another application is in enrich-

ing human-machine interactions, which are becoming more prevalent due to the increased

usage of computers and portable electronic devices. Enabling computers to detect and

appropriately respond to important human behaviors (e.g., confusion, frustration, uncer-

tainty) could improve the naturalness and effectiveness of human-machine interactions.

BSP solutions could be employed for widespread use in various technologies (e.g., user

interfaces, interactive voice response systems), providing an invaluable link for human

interlocutors.

The emerging field of behavioral signal processing (BSP) promises to be an important

step in creating new possibilities for human-centered engineering. It is my hope that this

dissertation provides a solid automatic framework and computational foundation, upon

which future research can build.
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