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ABSTRACT 
 
Objectives: To provide a framework for simulating low-field proton-density weighted MRI 
acquisitions, which can be used to predict the minimum B0 field strength requirements for MRI 
techniques. This framework may be particularly useful in the evaluation of de-noising and 
constrained reconstruction techniques, and the possibility of translating them to less expensive 
low-field MRI scanners.  
Materials and Methods: Given MRI raw data, lower field MRI acquisitions can be simulated 
based on the signal and noise scaling with field strength. Certain assumptions were imposed for 
the simulation and their validity was discussed. A validation experiment was performed using a 
standard resolution phantoms imaged at 1.5 T, 3 T, and 7 T. This framework was then applied to 
two sample proton-density weighted MRI applications that demonstrated estimation of minimum 
field strength requirements:  real-time airway imaging and liver fat fraction measurement. 
Results: The phantom experiment showed good match between the SNR of the simulated and 
measured images, within 8% in all cases. The predicted minimum field strength requirements for 
the two sample applications were 0.2 T and 0.3 T, respectively. 
Conclusions: Under certain assumptions, low-field MRI acquisitions can be simulated from 
high-field MRI data. This enables prediction of the minimum field strength requirements for a 
broad range of MRI techniques.  
 
Key words:  low field MRI, noise modeling, minimum field strength requirement 
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INTRODUCTION 
 
Magnetic resonance imaging (MRI) is one of the most powerful imaging modalities, and 

has had a significant impact on healthcare (1).  MRI is safe, non-invasive, non-ionizing, and is 
capable of resolving tissues in three dimensions while providing several different types of tissue 
contrast in a single examination. MRI has two notable limitations, cost and speed. These are 
highly relevant in an era where rising healthcare costs (2) have placed greater pressure on 
determining and optimizing the cost-effectiveness of imaging for specific clinical questions. To 
date, standard clinical MRI (1.5 T/3 T) has proven to be cost-prohibitive for many potential 
screening and preventative medicine applications. Even for diagnostic applications, achieving 
better image quality without improving outcomes, at the expense of reducing access due to high 
cost, can be only counterproductive (3). On the other hand, low-field MRI ( ≤ 0.5 T) can be 
much less expensive while still maintaining equivalent diagnostic values for certain applications, 
as demonstrated by Rutt et al. (4). 

Several technological developments have helped to address the speed and temporal 
resolution of MRI scanning. Fast gradients and parallel imaging have had a significant impact 
and are now available on almost all commercial MRI scanners. Constrained reconstruction (5) 
and compressed sensing (6) are emerging techniques that provide the potential added benefit of 
de-noising. These technological advances are typically developed and tested first on high-field 
scanners, defined here as ≥1.5 T.   

The purpose of this work is to provide a framework for determining the minimum field 
strength requirements of novel MRI methods. Due to the difficulties in differentiating different 
species in k-space, the current framework is most appropriate for proton-density weighted (PDw) 
acquisitions. Using this tool, researchers could determine the relevance and applicability of their 
techniques at lower field strengths (e.g. 0.1 to 0.5 T) even if they have only had the opportunities 
to test them at high field strengths (e.g. ≥1.5 T).  When applied to de-noising techniques and 
constrained reconstruction, this could also enable researchers to determine if their techniques 
could enable a reduction in the cost of MRI, should such instruments be designed for their 
applications. In this manuscript, we provide phantom validation of this framework, and provide 
two illustrative examples of how to predict minimum field strength requirements.  

The first example application is real-time upper airway imaging, for the assessment of 
sleep-disordered breathing. The lack of anatomical information is a major limitation for current 
sleep studies, and dynamic MRI has been shown (7–10) to be an promising method to fulfill this 
unmet need. The high cost associated with conventional clinical MRI scans is arguably the 
number one reason that prevents these methods from being applied to routine sleep studies. If the 
scans can be performed on low-field scanners at much lower cost, the option of including MRI in 
sleep studies will be much more realistic. Besides lower cost, reduced Lorentz force experienced 
by the gradient coils and hence lower acoustic noise is another attractive feature of low-field 
MRI, especially for imaging during sleep. 

The second example application is the measurement of liver fat fraction. Conventional 
high-field MRI has proven to be a powerful tool for body and organ fat distribution assessment 
(11,12) and for tissue fat fraction quantification (13). It has the ability to resolve all fat depots 
and to measure organ fat. As obesity prevalence continues to rise, there is increasing need of 
accurate and low cost tools for assessing and quantifying body fat distribution including organ 
fat. If fat-water separated MRI can be performed at a much lower per-scan-cost, it could become 
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the most cost-effective technique to address body composition assessment in preventative 
medicine. 

 
 

MATERIALS AND METHODS 
 
Modeling Assumptions 

To simulate low-field acquisition from data acquired at high field strength, we make six 
assumptions, listed in Table 1, and explained below. 

(1) Body noise dominance. We assume that body thermal noise is the dominant noise 
source at all field strengths under investigation (0.1 – 3.0 T).  The validity of this assumption 
depends on field strength, imaging volume and the receiver coil. It has been shown that body 
noise dominance can be achieved at frequencies as low as 4 MHz in system sizes compatible 
with human extremity (14,15), suggesting the feasibility of performing most human scans with 
body noise dominance at 0.1 T or above. 

(2) Consistent 𝐵!! field. We assume that the uniformity of RF transmission is consistent 
across field strengths.  Since the RF operating frequencies go down at low field, the flip angle 
variation is expected to be smaller in real low-field imaging compared to our simulation. 

(3) Consistent 𝐵!! field. We assume that the receiver coils have the same geometry and 
noise covariance at different field strengths. In order to simulate arbitrary B!! field, it would 
require accurate coil maps and noise covariance at both acquired and simulated fields, which one 
may not have. 

(4) Consistent B0 homogeneity. We assume the same off-resonance in parts-per-million 
(ppm) at different field strengths. This results in less off-resonance in Hz at lower field. 

(5) Single species dominance or PDw. We use a single global relaxation correction 
function to account for the signal change at different field strengths. Because it is difficult to 
separate different species from k-space data, this assumption requires similar relaxation patterns 
at different field strengths for anything that contributes a significant portion to the signal in the 
region of interest. Although it may be unrealistic for some applications, this restriction can be 
relaxed in certain cases. For PDw imaging, the simulation is still valid when multiple major 
species are present (see Appendix for details). 

(6) Steady state acquisition. If the signals are not acquired at steady state, the 
magnetization relaxation will be determined not only by the sequence parameters but also by the 
initial state. As a result, a single global relaxation correction cannot be applied and a more 
complicate time-depend function would need to be calculated. 

  
Simulation of Low Field Acquisition 

The process for simulating low-field data from high-field acquired data is illustrated in 
Figure 1, and described here.  The acquired high-field k-space data can be written as:  

𝑦! =    𝑠! + 𝑛!      [1]  
where 𝑠! and 𝑛! are pure signal and noise respectively. Under body noise dominance, both the 
real and imaginary parts of the k-space noise 𝑛!  can be modeled as multivariate normal 
distributions: 

      𝑅𝑒{𝑛!}  ~  𝑁(0,𝛴),   𝐼𝑚{𝑛!}  ~  𝑁(0,𝛴)     [2]  
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where Σ ∈ ℝ!×!  is the noise covariance matrix for a k-channel receiver coil and is easily 
measured by data acquisition with RF turned off. Since the thermal noise variance is proportional 
to B0

2 and readout bandwidth BW, the simulated noise 𝑛! at low field becomes: 
𝑅𝑒{𝑛!}  ~  𝑁(0,𝑎!𝑏𝛴),   𝐼𝑚{𝑛!}  ~  𝑁(0,𝑎!𝑏𝛴),𝑎 =

!!,!
!!,!

, 𝑏 = !"!
!"!

   [3]  
where l and h stand for low and high field respectively. The pure k-space signal at low field can 
be modeled as: 

 𝑠! =   𝑎!𝑓𝑠!       [4] 
where 𝑓 is a function that represents the signal change due to different relaxation behaviors at 
different fields.  This can be determined with knowledge of the sequence parameters and the 
dominant species’ relaxation times. The details of calculating 𝑓 for common sequences are 
provided in the Appendix. Given 𝑓, the simulated low field k-space data can be written as: 

𝑦! =    𝑠! + 𝑛! =   𝑎!𝑓𝑠! + 𝑛!     [5] 
we can rewrite it as: 

𝑦! = 𝑎!𝑓𝑦! + 𝑛!""             [6] 
where 𝑛! = 𝑛!"" + 𝑎!𝑓𝑛!, and from Eqs. [2] & [3], we have  

      𝑅𝑒{𝑛!""}  ~  𝑁(0, (𝑎!𝑏 − 𝑎!𝑓!)𝛴),   𝐼𝑚{𝑛!""}  ~  𝑁(0, (𝑎!𝑏 − 𝑎!𝑓!)𝛴)           [7] 
 A MATLAB implementation based on the process above as well the examples in this 
article are available at http://mrel.usc.edu/share.html. 
 
Phantom Validation 

To validate the proposed framework, a standard resolution phantom was scanned using a 
product sequence on 1.5T, 3T, and 7T whole body scanners, all from the same manufacturer 
(General Electric, Waukesha, WI). T/R birdcage head coils (30cm diameter) were used at all 
field strengths. The 1.5T and 3T coils were single-channel. The 7T coil has two receive channels 
with nearly identical sensitivities; data from only one channel was used. The same acquisition 
parameters were used on all three scanners: 2D FSPGR with 62.5% partial k-space acquisition; 
FA 10˚; TE/TR 3.1/10 ms; BW 31.25 KHz; FOV 25.6 cm; matrix size 256x160; thickness 5 mm. 
T1 and T2 values were measured using inversion recovery SE and SE sequence respectively. 
Homodyne reconstruction (16) was performed for all images. 

 
Real-time Upper Airway Imaging in Sleep Apnea 

For sleep apnea patients, airway compliance is measure of muscle collapsibility. This 
involves ultrafast 2D axial imaging of the airway and simultaneous airway pressure measurement 
(8). During the process, negative pressure is generated by briefly blocking inspiration for one to 
three breaths. Under these circumstances, airway motion is extremely rapid, requiring about 10 
frames per second and millimeter resolution. A custom sequence using 2D golden-angle radial 
FLASH (8)(7)was implemented on the 3T scanner to acquire an oropharyngeal axial slice of one 
sleep apnea patient with a 6-channel carotid coil. Imaging parameters: 5° flip angle, 6 mm slice 
thickness, 1 mm2 resolution, TE/TR 2.6/4.6 ms, BW 62.5 KHz. A separate scan with RF turned 
off was performed to calculate the noise covariance. Acquisitions at various low field strengths 
were simulated using the same imaging parameters. 

Twenty-one spokes were used to reconstruct each temporal frame. Conventional gridding 
(17) was performed on the acquired 3T data and all simulated low-field data. CG-SENSE (18) 
was also performed with a temporal finite difference sparsity constraint (19). The NUFFT 
toolbox (20) was used during algorithm implementation. 
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Fat-Water Separation 

Fully sampled k-space data were collected using an investigational IDEAL sequence. An 
8-channel cardiac receiver coil was used to scan one adult volunteer at 3 T. Slice thickness 5 mm, 
TE 1.4/2.3/3.2 ms, TR 9 ms, flip angle 3˚, BW 62.5KHz. To achieve the same phase shift 
between fat and water, the product of B0 and TE needs to remain the same. Therefore TE’s were 
set to be (𝐵!,!/𝐵!,!) times longer when simulated at low fields. Bandwidths were also set to 
(𝐵!,!/𝐵!,!) times shorter, enabled by longer TE’s. Images were reconstructed using the graph cut 
field-map estimation method (21) from the ISMRM fat-water toolbox (22).  
 
 
RESULTS 
 
Phantom validation 

Figure 2 compares the image acquired at 1.5 T and 3 T, and simulated from 3 T and 7 T. 
SNR were measured in all cases. For simulated images, the mean and standard deviation of SNR 
of twenty different simulations were calculated.  The difference between simulated and measured 
mean SNR was less than 8% for all images of the same field strength, which was considered to 
be good agreement. 
 
Real-time Upper Airway Imaging in Sleep Apnea 

Figure 3 shows two representative frames reconstructed at different field strengths, one 
with the airway partially collapsed (top rows in both a and b), and one with it open (bottom 
rows). Figures 3a and 3b correspond to gridding and CG-SENSE with temporal finite difference 
constraint, respectively. All reconstructed frames are also shown in the supporting movie. The 
SNR becomes worse as field strength goes down, and the airway becomes completely 
unidentifiable below 0.3 T. With more advanced reconstructions in b, the noise and artifacts are 
reduced significantly. We then performed airway segmentation on these images based on a 
simple region-growing algorithm and show, in Figure 3c, the average DICE coefficients over 
100 temporal frames (3 breaths) at different field strengths. Segmented airways from the 3T 
images were used as the references. Fifty independent simulations were performed at each 
simulated field strength. Error bars correspond to 95% confidence intervals. In our experience, 
DICE coefficient > 0.9 is acceptable for this application, suggesting that the minimum field 
requirement is 0.2 T. Note also that the DICE coefficients exhibit a sharp drop at 0.2 T and the 
variance increases significantly, implying segmentation failures. 

 
Fat-Water Separation 

Figure 4a compares water-only, fat-only, and fat fraction images for a single axial slice at 
different field strengths. A region of interest (ROI) in the liver is manually selected and figure 4b 
shows the mean and standard deviation of the fat fraction inside ROI, calculated from fifty 
independent simulations at each field strength. The precision (standard deviation) becomes worse 
as B0 goes down. The accuracy (mean) deviates significantly at 0.1 T, a result of dominant noise 
making fat fraction bias towards 50%. Although the accuracy and precision needed for a clinical 
liver fat biomarker is not yet known (11), once determined, this type of analysis could facilitate 
determination of the required minimum field strength. For example, if the accuracy and precision 
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needed are both 2%, then this analysis suggests a minimum field strength of 0.3 T would be 
sufficient. 
 
 
DISCUSSION 
 
          Many new MR imaging and reconstruction methods are developed at centers that utilize 
state-of-the-art high-field instruments.  In addition to advancing performance at high field 
strengths, it is informative to determine the potential to apply these same techniques on more 
affordable low-field systems. New methods, if translated and implemented on low-field scanners, 
could enable many applications that are now prohibitive at low field because of insufficient SNR. 
Low-field MRI has the potential to be more cost-efficient, and has many other attractive 
properties including reduced acoustic noise and specific absorption rate (SAR), safer for subjects 
with metal implants, more uniform RF transmission, and less off-resonance for the same part-
per-million B0 homogeneity. If the effective SNR can be improved to reasonable levels with the 
help of advanced imaging and reconstruction techniques, these nice features could further 
broaden the role of low-field MRI. 

It is relatively straightforward to determine the minimum field strength requirement for 
new MRI methods under certain circumstances, as listed in Table 1.  We have demonstrated the 
process, using modeling assumptions that are widely accepted in the MR community.  However, 
several precautions need to be taken before applying the model here. First, the model assumes 
the same sequence parameters at all field strengths. It would be natural to pick different 
parameters at low fields. Second, the model assumes the same scanner geometry and coil 
geometry. This is also not perfect, since many design constraints change at low fields and they 
all could impact the magnet and coil layout. Third, the receiver coil noise goes down more 
slowly than the body noise as field strength goes down (23). The validity of body thermal noise 
dominance is questionable for ultra-low field (< 0.1 T) and small volume imaging. Even in the 
range of 0.1 to 0.5 T, the requirement for suppressing receiver coil noise, although already 
achievable, is typically higher compared to at high fields. Finally, to achieve reasonable image 
quality at low fields, constrained reconstruction methods are likely to be involved in many 
applications. Although powerful, many of these methods have not been extensively validated yet.  
One needs to be extra careful with them, especially when the depiction of subtle features is 
important. 

Although it would be ideal to validate the assumptions and methods on a real low-field 
scanner, such validation would require the existence of a low-field scanner with very similar 
geometry, RF coils and sequence implementations as the high-field scanner. To eliminate the 
impact of these factors, we performed the validation experiment using 1.5T, 3T, and 7T scanners 
from the same manufacturer with similar geometry and RF coils. To reduce the effects of B1 
inhomogeneity and off-resonance, which are particularly severe at 7T, we used a small flip angle 
(10˚) and short TE (3.1 ms) relative to T2 (100 ms) so that the validation can mostly reflect the 
accuracy of the assumptions and methods in this work. The phantom validation results exhibit a 
good match between the simulations and measurements. It demonstrates that the assumptions we 
made are reasonable and the simulations based on them can give reliable predictions.  

We would like to emphasize that due to the nature of MRI, poorer image quality is 
inevitable at low fields in almost all cases no matter what acquisition and reconstruction 
techniques are used. But as already been illustrated here and shown in several other low field 
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studies (4,24,25), worse image quality does not necessarily lead to less diagnostic value. With 
that in mind, selecting appropriate evaluation criteria becomes very important when comparing 
the results at different field strengths.  If, for example, the sensitivity and specificity of the useful 
features are comparable at both high and low fields, then differences in root-mean-square error 
(RMSE) are likely to be inconsequential. 
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APPENDIX 
 
Signal relaxation corrections for common sequences 
 
a) Spin echo (SE/FSE/TSE) 

At steady state, the magnetization after excitation can be expressed as 
𝑀!!   =   𝑀!

!!!!
!!!!!"#$

𝑠𝑖𝑛𝜃                [A1] 
where 𝑀! is the longitudinal magnetization, 𝜃  is the flip angle and 𝐸!   =   𝑒!!"/!!. The acquired 
signal is  

𝑠 = 𝐴 (!!!!)!"#$
!!!!!"#$

𝑒!!"/!!              [A2] 
where A is a constant proportional to 𝐵!!. Because T2 is largely independent of field strength 
(23,26), we neglect the differences of transverse relaxation due to T2 change at different field 
strengths. According to Eqn. [4], the relaxation correction function becomes 

𝑓 = !!
!!!!

= [(!!!!,!)!"#!!
!!!!,!!"#!!

/ (!!!!,!)!"#!!
!!!!,!!"#!!

]  𝑒!(!"!!!"!)/!!  [A3] 

l and h stand for low and high field respectively. For PDw imaging, where a) TE << T2 and b) 
TR >> T1 or the flip angle 𝜃 is low,  𝑓   ≈ 𝑠𝑖𝑛𝜃!/𝑠𝑖𝑛𝜃! regardless of the species type. As a result, 
the restriction of single species dominance can be relaxed and the equation above can be applied 
to multiple species types. 
 
a) Gradient echo (GRE/FGRE/SPGR/FLASH) 
 The signal change is similar to spin echo, except following T2

* decay: 
𝑓 = !!

!!!!
= [(!!!!,!)!"#!!

!!!!,!!"#!!
/ (!!!!,!)!"#!!
!!!!,!!"#!!

]𝑒!(!"!/!!!
∗!!"!/!!!

∗ )  [A4] 

In practice, one may not know the explicit values of T2
*, since it also depends on local B0 

inhomogeneity and susceptibility. Given (27) 
!
!!∗

= !
!!
+ c𝛾Δ𝐵!!"𝐵!    [A5] 

where c is a constant and Δ𝐵!!" is the field inhomogeneity in parts-per-million. We can rewrite 
the exponential term in  [A4] as: 

𝑒!(!"!/!!!
∗!!"!/!!!

∗ ) = 𝑒!(!"!!!"!)/!!𝑒!!"!!!!"(!!,!!"!!!!,!!"!)  [A6] 
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In cases where T2
* is difficult to estimate, T2 may be used instead of T2

*. As long as 𝐵!,!𝑇𝐸! ≤
𝐵!,!𝑇𝐸!, this will lead to an underestimation of signal, which means the simulated SNR will be 
at best the same as the actual low-field acquisition. 

In the airway example, T2
* is unknown, so T2 is used instead. Given proton density 

weighting and  𝜃! = 𝜃!,  𝑓 ≈ 1. In the fat-water example, in order to generate the same fat-water 

phase shift, the product of B0TE needs to remain the same, [A6] is reduced to 𝑒!
!"!!!"!

!! . Since 

small flip angles 𝜃! = 𝜃! = 3° were used, 𝑓 ≈   𝑒!
!"!!!"!

!! , with liver T2 set to 42 ms (23).   
 
c) Balanced steady-state free precession (bSSFP, FIESTA, true FISP) 

The steady state transverse magnetization, assuming TE, TR << T1, T2, is (28): 
𝑀!!   =   𝑀!

!"#$
!!!"#$!(!!!"#$)(!!/!!)

    [A4] 
based on similar calculations in a), 𝑓 is now a function of T1, T2 and flip angle: 

 𝑓 = !!!"#$!(!!!"#$)(!!!/!!)
!!!"#$!(!!!"#$)(!!!/!!)

      [A5] 
 
c) Inversion recovery (STIR, FLAIR) 

Following similar analysis, with 90˚ excitation, we have: 
𝑀!!   =   𝑀!(1− 2𝑒!!"/!! + 𝐸!)     [A6] 

𝑓 = [(1− 2𝑒!!"!/!!,! + 𝐸!,!)/(1− 2𝑒!!"!/!!,! + 𝐸!,!)]𝑒!(!"!!!"!)/!!      [A7] 
Since the inversion time TI is usually chosen to null a particular species, the impact of 

this species on the signal can be neglected. Here T1 is the value of the remaining dominant 
species.  
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FIGURE CAPTIONS 
 
Figure 1. Simulation of low-field k-space data. High-field k-space data 𝑦! and pure noise 𝑛! are 
first acquired and served as input. 𝑦! is then scaled by 𝑎! and 𝑓 to account for signal magnitude 
change and different relaxation behaviors at different field strengths. 𝑓 can be determined based 
on steady state signal equations for different types of sequences (see Appendix for details). To 
simulate low-field data 𝑦! ,   additional noise 𝑛!"" , as calculated in the text, is added to 
compensate for the different noise levels. 
 
Figure 2. Phantom validations of simulated SNR change. The acquired 1.5T/3T/7T images and 
simulated images from data acquired at 3T and 7T respectively are listed for comparison. 
Measured SNR are also listed below. For simulated images, the mean and standard deviation of 
SNR of twenty different simulations were used. Contrast was adjusted for better noise 
visualization. 
 
Figure 3. Application to Upper Airway Compliance Measurement. a) Gridding reconstruction 
for data acquired at 3 T & simulated at low field strengths. Two temporal frames are shown: one 
with the airway partially collapsed (top row) and one with it open (second row). Notice the 
strong noise that makes the airways gradually unidentifiable as field strength goes down. b) The 
same frames using CG-SENSE with temporal finite difference sparsity constraint. c) Airways 
segmented from images using reconstructions in b) are used to calculate the average DICE 
coefficients over 100 temporal frames (3 breaths) at different field strengths. 3T images are 
served as references. Fifty independent simulations were performed at each field strength. Error 
bars correspond to 95% confidence intervals.  
 
Figure 4. Application to Abdominal Fat-Water Separated Imaging. a) Fat-water separated 
images reconstructed from data acquired at 3 T and simulated at low fields. Top row: water only; 
middle: fat only; bottom: fat fractions. b) The mean and standard deviation of fat fraction in the 
ROI at different field strengths. Fifty independent simulations were performed at each field 
strength.



 

 1 
 

 
TABLES  
 
 
Table 1:  Assumptions for Low Field Acquisition.  
 
• Body noise dominance 
• Consistent RF transmit field (B1+) 
• Consistent RF receive field (B!!) and noise covariance (Σ) 
• Consistent 𝐵! homogeneity 
• Single species dominance or PDw 
• Steady state acquisition 
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Figure 1. Simulation of low-field k-space data. High-field k-space data 𝑦! and pure noise 𝑛! are 
first acquired and served as input. 𝑦! is then scaled by 𝑎! and 𝑓 to account for signal magnitude 
change and different relaxation behaviors at different field strengths. 𝑓 can be determined based 
on steady state signal equations for different types of sequences (see Appendix for details). To 
simulate low-field data 𝑦! ,   additional noise 𝑛!"" , as calculated in the text, is added to 
compensate for the different noise levels. 
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Figure 2. Phantom validations of simulated SNR change. The acquired 1.5T/3T/7T images and 
simulated images from data acquired at 3T and 7T respectively are listed for comparison. 
Measured SNR are also listed below. For simulated images, the mean and standard deviation of 
SNR of twenty different simulations were used. Contrast was adjusted for better noise 
visualization. 
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Figure 3. Application to Upper Airway Compliance Measurement. a) Gridding reconstruction 
for data acquired at 3 T & simulated at low field strengths. Two temporal frames are shown: one 
with the airway partially collapsed (top row) and one with it open (second row). Notice the 
strong noise that makes the airways gradually unidentifiable as field strength goes down. b) The 
same frames using CG-SENSE with temporal finite difference sparsity constraint. c) Airways 
segmented from images using reconstructions in b) are used to calculate the average DICE 
coefficients over 100 temporal frames (3 breaths) at different field strengths. 3T images are 
served as references. Fifty independent simulations were performed at each field strength. Error 
bars correspond to 95% confidence intervals.  
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Figure 4. Application to Abdominal Fat-Water Separated Imaging. a) Fat-water separated 
images reconstructed from data acquired at 3 T and simulated at low fields. Top row: water only; 
middle: fat only; bottom: fat fractions. b) The mean and standard deviation of fat fraction in the 
ROI at different field strengths. Fifty independent simulations were performed at each field 
strength. 

a)

b)


