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Abstract

Intensity variations over time in resting BOLD fMRI exhibit spatial correlation
patterns consistent with a set of large scale cortical networks. However, visualizations
of this data on the brain surface, even after extensive preprocessing, are dominated by
local intensity fluctuations that obscure larger scale behavior. Our novel adaptation
of non-local means (NLM) filtering, which we refer to as temporal NLM or tNLM,
reduces these local fluctuations without the spatial blurring that occurs when using
standard linear filtering methods. We show examples of tNLM filtering that allow
direct visualization of spatio-temporal behavior on the cortical surface. These results
reveal patterns of activity consistent with known networks as well as more complex
dynamic changes within and between these networks. This ability to directly visualize
brain activity may facilitate the development of new insights into spontaneous brain
dynamics. Temporal NLM can also be used as a preprocessor for resting fMRI for
exploration of dynamic brain networks. We demonstrate its utility through applica-
tion to graph-based functional parcellation, showing improved performance relative to
unfiltered and Laplace-Beltrami smoothed data.

1 Introduction

Low frequency fluctuations in BOLD activity during resting functional MRI (rfMRI) exhibit
correlations between cortical regions that are known to be functionally related, as first shown
by Biswal et al. [1]. These correlations are the basis for identification of functional networks
from rfMRI in individuals and groups [2–4].

Resting BOLD data are typically preprocessed with a pipeline that may include com-
pensation for susceptibility-related (B0) distortion, slice timing and subject motion, as well
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as high-pass filtering of the time series at each voxels and removal of ICA-identified tem-
poral noise components [5]. The data are then resampled onto a cortical surface extracted
from coregistered T1-weighted structural MR to allow investigation of cortical networks [6].
A large number of methods for identifying anatomic regions involved in different networks
are now available, including seed-based correlation, independent components analysis (ICA)
and cortical parcellation methods [2]. However, when visualized as a time series or movie of
cortical images, correlated patterns of BOLD variation reflecting time-varying brain activity
are not readily visible in the data, even after preprocessing. Rather, the local intensity vari-
ations across the brain at each time point obscure larger scale correlated activity, as shown
in Fig. 1(a) and the linked movie.

To reduce noise in fMRI it is common to spatially smooth the data, typically with an
isotropic kernel applied in the volumetric space [3–5, 7–10]. This smoothing will inevitably
mix signals from different areas, including areas that are not directly adjacent with respect
to the cortical surface, for example when blurring occurs across the void from one side of a
sulcal bank to the other. To avoid this problem, data can be smoothed in the 2D manifold
of the cortical surface [3, 8, 9]. Because cortical surfaces have an intrinsic curvature that
prevents them being mapped without distortion onto the plane, isotropic smoothing on
the surface requires that curvature be taken into account. The Laplace Beltrami operator,
which generalizes the 2D Gaussian smoothing kernel from the plane to an arbitrary smooth
manifold [11], can produce isotropic smoothing on cortex.

While Laplace Beltrami smoothing can avoid blurring across sulcal banks, the smoothing
is still linear and isotropic so that sharp spatial features on the surface will become blurred
after filtering. This smoothing will blur boundaries between distinct functional regions. As
we show below, the resulting signal mixing can also confound cortical parcellation methods,
introducing artifactual parcels purely as a result of smoothing. An example of Laplace
Beltrami smoothing is shown in Fig. 1(b) with a corresponding linked movie.

The primary contribution of this paper is to describe an alternative nonlinear surface
filtering method that reduces noise while also respecting functional boundaries on the cortical
surface. As we illustrate in Fig. 1(c) and the corresponding linked movie, this results in the
ability to directly visualize cortical brain activity and networks in resting state by playing
back the filtered data on the cortical surface.

Techniques for edge preserving filtering that have been developed and described in the
image processing literature can be adapted to the cortical surface. Anisotropic diffusion
filtering in 3D is a natural extension of Gaussian smoothing in which a measure of edge
strength (the image gradient) is used to reduce smoothing across edges or boundaries [12].
This approach can be extended to surfaces using an anisotropic form of the Laplace Beltrami
operator as we described in [13]. However this denoising method uses only local information
to denoise the data. More recently the concept of Non-Local Means (NLM) filtering was
introduced [14]. In common with conventional linear filtering, NLM uses weighted spatial
averaging to reduce noise. However rather than using a fixed set of weights applied to pixels
in a local neighborhood, a larger neighborhood is used with the weights adaptively chosen
to emphasize those pixels that have a similar local spatial structure to that of the pixel
being filtered. Using this approach, NLM filtering has the effect of reducing noise through
averaging but, simultaneously, retaining spatial structure by favoring those pixels that have
similar local structure.
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NLM filtering has previously been applied to structural [15–18], functional [19–21], and
diffusion [22–24] MRI data. Modified NLM methods tailored to MRI data have been de-
veloped that use blockwise filtering and automatically adapt weighting parameters based
on signal to noise ratio [15, 16, 23, 24]. Manjón et al. [17] describe extensions to multi-
component MRI data sets. Similarly, St-Jean et al. [22] have recently described extensions
for HARDI MRI in which multiple angular components are used to filter rather than filter-
ing each component image separately. All of these methods use spatial similarity over one
or more images as the basis for NLM smoothing. While this approach can be applied to
fMRI time series [19–21], filtering each temporal frame separately with NLM will produce a
time-varying smoothing kernel, confounding subsequent time-series analysis.

We have developed a novel variation on NLM which we refer to as temporal NLM (tNLM).
Our method directly exploits the temporal information in the data by replacing the standard
spatial similarity weighting in NLM with a weighting that is based on the correlation between
time series. As a result we reduce noise by averaging only those pixels that have similar time
series. This has the effect of not smoothing across functional boundaries, since the time
series in different functional areas will be less strongly correlated than within each distinct
functional region. The practical effect of this procedure is illustrated in Fig. 1(c) and the
corresponding linked movie. Spatio-temporal data were also used to compute weights in a
recent report from one of the authors on NLM denoising of dynamic PET data [25]. In that
case the weights used a combination of spatial and temporal information.

In addition to demonstrating the impact of tNLM on the spatio-temporal structure of
rfMRI data, we also illustrate its utility through one application: functional cortical parcel-
lation. A number of parcellation methods have recently been described that include spectral
clustering, hierarchical clustering, edge detection, and snow-balling [2–4, 8, 9, 26]. Our goal
here is to illustrate the effect on cortical parcellation of tNLM filtering and compare it to
unfiltered and linearly filtered data. For this purpose we use a spectral clustering method
based on normalized cuts [27], although tNLM could also be used as part of a pre-processing
pipeline and combined with other parcellation methods.

2 Methods

2.1 Data

All of the results in this report (and in the supplemental data) used the minimally pre-
processed rfMRI data from 40 unrelated subjects from the Human Connectome Project
[5, 6, 28]. Functional MRI data sets were acquired for four independent resting state ses-
sions of 15 minutes each (TR=720ms, TE=33.1ms, 2×2×2 mm voxel) and the subjects were
asked to relax and fixate on a projected bright cross-hair on a dark background [28]. Minimal
preprocessing corrected the data for spatial and temporal artifacts including B0 distortions,
head motion, temporal drift and non-neuronal physiological artifacts and co-registered the
functional images with their corresponding structural images [5, 6]. All results use rfMRI
data resampled onto the 32K Conte69 cortical mesh [6, 29]. The only additional prepro-
cessing step we introduced prior to filtering was to normalize the time series associated with
each cortical vertex to zero mean and unit variance.

3



The functional parcellation results presented below are evaluated using the functional-
localizer maps obtained from task-based fMRI for the same 40 subjects, as made available
by the Human Connectome Project. We used data for six major task domains [30] which
included somatosensory and motor systems, language processing, social cognition, relational
processing, emotion processing and decision making (gambling). We used the pre-processed
and analyzed task-based fMRI data (8 mm Gaussian smoothing) resampled on the 32K
Conte69 cortical mesh, which yielded a total of 15 statistical task-pair activation maps.
Pre-processing and analysis details for extraction of statistical parametric maps from the
task-based fMRI are described in [6, 30, 31].

2.2 Spatio-temporal filtering of rfMRI

We compare our tNLM filtering method with linear isotropic filtering on the cortical surface.
As described in the Intoduction, Laplace Beltrami (LB) smoothing generalizes the concept
of isotropic Gaussian filtering to smooth surfaces or manifolds. The LB operator solves the
heat equation on the cortical surface with the degree of smoothing determined by a single
time parameter t. The LB operator can be expressed in discrete form as a square matrix of
dimension equal to the number of vertices on the cortical surface. LB filtering of multiple
images that constitute a spatio-temporal rfMRI data set was performed efficiently using a
truncated eigenvector expansion of the LB operator [32, 33].

LB filtering does not account for temporal structure in the data and tends to blur signals
across functional boundaries. For this reason we propose instead the use of temporal Non-
Local Means (tNLM), a novel variation on spatial NLM. Spatial NLM denoising replaces
each pixel intensity with a specially weighted average of the pixel intensities drawn from a
large area surrounding that pixel [14]. The NLM weights are based on a measure of similarity
between small local regions or neighborhoods surrounding each pixel: when the structure of
the neighboring regions is similar the weight is large; and when it is dissimilar, the weight is
low. In this way, the weighted averaging tends to reinforce spatial structure while removing
noise.

We are interested in identifying functional regions that share common temporal varia-
tions. For this reason tNLM uses a weight based on the similarity of the time series rather
than a spatial patch to filter the data. Specifically, let d(s, τ) denote the rfMRI data at
surface vertex s at time τ . Then the corresponding tNLM-filtered rfMRI is given by

f(s, τ) =
1∑

r∈N (s)w(s, r)

∑
r∈N (s)

d(r, τ)w(s, r) , (1)

where N (s) denotes a set of vertices lying in a large neighborhood surrounding vertex s (in
our results we use all vertices that are D = 11 or fewer edges away from s), and the weights
w(s, r) are given by

w(s, r) = exp

(
−

1
T
||d(s)− d(r)||2

h2

)
(2)

with d(s) = [d(s, 1), · · · , d(s, T )]> a vector of length T representing the time series at vertex
s. The parameter h determines the rate at which the weights decrease with similarity of the
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two time series. Since we pre-process the time series at each vertex to have zero mean and
unit variance, the normalized weights in eq. 1 are equivalent to using Pearson’s correlation
coefficient, corr (d(s), d(r)) between d(s) and d(r) since 1

T ||d(s)−d(r)||2 = 2−2× corr(d(s),d(r)).
The degree of smoothing in tNLM depends on the parameter h and the size of neighbor-

hood N , as parameterized by the maximum link distance D on the surface. Based on visual
inspection of the resulting smoothed data and a preliminary performance study we chose
a value of h = 0.72 and a maximum link distance of D = 11 to define the neighborhood
in tNLM for the majority of results presented below. For comparisons of tNLM with LB
filtering we selected a value of t, the parameter that determines the degree of LB smoothing,
to match the mutual information of the smoothed spatio-temporal data between the two
methods. For the tNLM case D = 11, h = 0.72 we used t = 4.

2.3 Identifying Cortical Networks

To explore the impact of tNLM filtering on cortical parcellation we used a graph-based
spectral clustering method to identify a set of functional networks for each subject. We
represent the spatio-temporal rfMRI data as a graph G = (V,A) where the set of vertices
of the cortical tessellation are the nodes v ∈ V of the graph and A is the adjacency (edge)
matrix such that any two vertices u, v ∈ V are connected by an undirected edge of strength
A(u, v) = exp(d>(u)d(v)/T ).

The normalized-cuts (N-cuts) algorithm [27] subdivides the nodes of the graph (or vertices
on the tessellated cortical surface), V , into K disjoint subsets V1, V2, · · · , VK so that ∩K

i=1Vi =
∅ and ∪K

i=1Vi = V . N-cuts partitions the graph to maximize the average “normalized
association” within each of the K sub-graphs:

assoc =
1

K

K∑
i=1

( ∑
u,v∈Vi

A(u, v)∑
u∈Vi,v∈V A(u, v)

)
(3)

Yu and Shi [27, 34] show this cost is equivalent to minimizing the average normalized cut
cost. N-cuts therefore finds the set of K subgraphs that have the weakest normalized average
connectivity between subgraphs and the maximum connectivity within each subgraph. We
use the implementation of N-cuts provided by the authors http://www.cis.upenn.edu/

~jshi/software/.
Note that the graph definition described above produces a fully connected graph that

contains no explicit spatial information about each vertex’s neighborhood structure. It is
common to explicitly introduce spatial neighborhood information for functional clustering of
rfMRI data [2–4]. In preliminary evaluations we found that the fully connected graph pro-
duced more reliable parcellation with tNLM, presumably because the fully connected graph
contains far more information about functional similarity of nodes/vertices than the sparser
spatially constrained graph. The fully connected graph also allows clustering of spatially
disjoint nodes/vertices in a single subgraph Vi allowing direct identification of functional
networks rather than just producing a cortical parcellation.
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2.4 Performance Evaluation

2.4.1 Cortical maps and movies of resting fMRI

We compare the performance of different smoothing approaches using a variety of qualitative
and quantitative methods. First we show the resting-state time series as a series of still
images and movies of BOLD signal intensities on the cortical surface for each of the following:
unfiltered data, data with tNLM filtering and data with LB filtering. The movies are played
back at a real-time rate i.e. the movies linked in Fig. 1 show 5 minutes of brain activity played
back over 5 minutes. We render the movie at 10 frames per second by linearly interpolating
the images which are spaced by a TR=720ms. The signal intensities are visualized on a
smoothed cortical surface using a colormap with transitions from blue (negative) to white
(zero) to red (positive). The movie frames are concatenated and encoded using the H.264
codec to produce an mp4 movie.

2.4.2 Simulation: the effect of smoothing on clustering

We used a simulated data set to investigate the relative performance of the different smooth-
ing methods in presence of functionally distinct areas. We simulated a square patch with four
quadrants, each corresponding to a different functional area. The vertices in each quadrant
were assigned time series from in vivo rfMRI data drawn from a small cortical region in a
single subject (Fig. 3). Regions were chosen in visual, motor, default mode and task positive
networks to be locally homogeneous based on the mean correlation with vertex neighbors.
We applied N-cuts using the graph structure described above to find K = 4 and K = 8
networks for tNLM, LB and unsmoothed data. The resulting networks provide insight into
the impact of the different smoothing methods on identifying networks in the case where
ground truth is known.

2.4.3 Cortical networks in in vivo data

We studied the effect of smoothing of rfMRI data on cortical parcellation by comparing the
classification of cortical networks using N-cuts for different numbers of classes. The N-cuts
clustering approach sub-divides all the vertices into K disjoint sets as described above. We
assign all vertices which are clustered in the same set a unique label ID and visualize them
with a unique color on the cortical surface (so that a clustering result with K classes will
have K unique colors).

We repeated clustering for all 40 subjects for a range of values of K and for three values
of the tNLM parameter h = 0.60, 0.72 and 1.73. Matching the mutual information in the LB
filtered with tNLM results for each value of h we found equivalent values of t = 2, 4 and 10.
To enable comparisons across subjects and smoothing methods for a given value of K, we
first identify equivalent sub-networks across subjects using the matching method described
in the supplemental data, which is based on the Gale-Shapley stable matching algorithm
[35].

We also investigated how the boundaries of functional regions changed with the number
of networks K. For each subject and value of K we defined a triangle on the tessellated
cortical mesh as a ‘boundary’ triangle if its vertices lie in more than one cluster. We then
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computed the cumulative boundaries for a single subject as a cortical map where the intensity
of each triangle represents the number of times the triangle has been identified as a boundary
triangle across the values ofK = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 30, 40, 50, 60, 80. We also computed
the population average of these cumulative boundary maps across 40 subjects for both tNLM
and LB filtering.

2.4.4 Concordance of N-cuts parcellation with functional localizer studies and
Brodmann areas

To evaluate quantitative performance we compared the functional parcellation obtained us-
ing N-cuts on rfMRI with functional regions defined in the HCP functional localizer studies
and probabilistic Brodmann maps. A good filtering algorithm should produce a parcellation
whose regions have high agreement with independently determined functional or cytoarchi-
tectonic regions and borders.

For each subject we created a discrete cortical map using several functional localizer
activation studies from the HCP data to represent a set of functional regions. First, we
thresholded each task activation map at p ≤ 0.001 (uncorrected) and merged them into a
single cortical map with a unique label for each task. If a vertex has p ≤ 0.001 in more
than one task we assigned the task label corresponding to the most significant activation.
We then removed isolated task-label patches which had less than 50 vertices. This task map
was generated for each subject and compared against the corresponding individual rfMRI
parcellation as described below.

Similarly, a partial Brodmann parcellation was created using discrete labels derived from
the probabilistic Brodmann areas transferred to the 32K Conte69 cortical mesh [36]. Again,
a unique label is assigned to each Brodmann area on the surface and the resulting map
compared to the individual parcellation results. Images of the localizer task and Brodmann
label maps are shown in Fig. 8.

We computed the agreement between the N-cuts regions obtained by LB and tNLM
filtering to the functional localizer and Brodmann labels by a measure of concordance. Con-
cordance measures the fraction of vertices that agree in two sets of labelings and is described
in detail in the supplemental material (sec. S.1.1). Since each of the networks obtained by
N-cuts can contain more than one contiguous cluster of vertices, we first subdivided each
network into a set of disjoint contiguous clusters to each of which we assign a unique label.
Since the localizer and Brodmann maps do not cover the full cortex, we computed concor-
dance from the N-cuts results to these maps rather than vice versa (the measure may not
be symmetric is some cases).

3 Results

3.1 Temporal Non-Local Means Smoothing: Maps and Movies

The results of tNLM smoothing and its comparison to LB smoothing are shown in the first
two images with detailed descriptions in the legends. In Figure 1 we show the cortical
BOLD signal before and after smoothing using LB and tNLMs, in a single snapshot at 02:20
minutes, of a single subject. We provide the links to 3 movies, one for each case, that show
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(a) (b)

(c)

Figure 1: Cortical maps illustrating effects of smoothing on cortical signal intensity in rfMRI
in a single subject at a single time point, at 02:20 minutes: (a) no smoothing, (b) LB fil-
tering (t = 4) and (c) tNLM filtering (h = 0.72). Color scale shows positive (red), negative
(blue) and zero (white) BOLD contrast. Five minute real-time movies showing the un-
smoothed, LB and tNLM cases can be found here: https://dl.dropboxusercontent.com/
u/1659299/work/NLM_videos/video_html5.html. It is difficult to detect spatial structural
differences in the original data, even if there are hints that can be discerned. Applying ei-
ther LB or tNLM filtering, however, the noise is reduced and anatomical coherence in local
activation/deactivation with respect to the underlying anatomy of the cerebral cortex is re-
vealed. The tNLM results are clearer in the sense that on the basis of the activity, specific
anatomical regions can be identified, e.g. the postero-inferior parietal regions (mostly angu-
lar gyri), the dorso-lateral temporal lobes, the left postero-mesial cortex (PMC), and the left
mesial prefrontal cortex are readily identified as more active than the mean brain activity.
These regions are standard constituent nodes of the default mode network (DMN). Although
DMN activity is often described as symmetrical we note that our images reveal asymmetries.
The image obtained with LB filtering depicts, in essence, the same list and combination of
active regions, although the LB filtering is more patchy and therefore less straightforward to
interpret. The differences between the two methods is more readily evident in the 5 minutes
movies of continuous resting state recording. Note in particular the different dynamic of the
changes in brain activity. The LB images change smoothly from one brain state to the next
while the tNLM images depict a more burst like change across consecutive brain states.
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4:14 4:16 4:18

(a) (b) (c)

4:23 4:33 4:36

(d) (e) (f)

4:49 4:51 4:56

(g) (h) (i)

Figure 2: Cortical maps of BOLD intensity from a single subject at different time points with
tNLM filtering (h = 0.72, same colorscale as fig. 1). The video time (min:sec) is shown above
each subfigure. In (a), at 04:20, we see activity above the mean in the DMN nodes, similar
to the one seen in Fig. 1 at 02:20, but here more symmetrical. The rest of the brain shows
mostly activity below the mean, with the exception of the upper half of the sensory-motor
cortices (SMC) which, on the right, show some activity above the mean; (b) only 2 seconds
later the lateral temporal and parietal nodes of the DMN show activity clearly below the
mean, while the activity in the PMC is still above the mean, but less so, and the activity
in the mesial frontal regions is now mostly below the mean; (c) another 2 seconds later, all
of the DMN nodes are clearly below the mean, while mesial occipital regions are now above
the mean as are the right dorsolateral frontal (DLF) and supra-marginal gyrus (SMG); so
is the right insula; (d) five more second have passed and the image is almost the reverse of
what was seen in (a); the DMN nodes show clear negativity, as do both SMC, while the rest
of the brain, including both insulae, is clearly above the mean; (Contd. on next page)
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Figure 2: (Contd. from previous page) (e) after 10 seconds, the activity is clearly asymmetric,
with only a small region of the mesial superior frontal above the mean in the right hemisphere;
left is close to the mean on the mesial aspect but it is split on the dorsolateral aspect: the
frontal lobe, a small area of the SMG and the insula are above the mean, while the remainder
of the hemisphere is below the mean; (f) after another 3 seconds the DMN nodes in the left
hemisphere are well above the mean, the occipital lobe below, and the insula and SMC close
to the mean; the right hemisphere shows an entirely different image: the angular gyrus, PMC
and SMC are mildly positive while the rest of the hemisphere is clearly negative; the nodes
of the DMN have definite asymmetric activity; (g) at 04:49 the DMN nodes are negative and
symmetrically so, while the SMC shows activity clearly above the mean, more so on the left,
and so do the occipital lobes and the left insula; (h) three seconds later the brain activity is
in general above the mean with three interesting exceptions: the PMC and angular gyri show
activity below the mean favoring the left hemisphere, and the left insula is also below the
mean; (i) five seconds later, at 04:56, the brain is massively negative with a few exceptions
where the activity approximates the mean.

5 minutes of spontaneous brain data. In Fig. 2 we show examples of images obtained with
tNML filtering, at different time points. We chose to show a sample of images at 2 seconds
and 3 seconds interval, so as to illustrate how the method allows for the moment by moment
identification of regions that are varying in their level of activity. Images at the same time
points for unfiltered data and LB smoothing, are shown in Fig. S.2 in the supplemental
data. The effect of different degrees of smoothing (varying parameter h in tNLM and t in
LB) can be found in Fig. S.3. We interpret the irregular levels of activity, the spottiness and
burst-like appearance of the anatomical regions involved, separately and in conjunction, as
corresponding, probably and intriguingly, to what the actual brain activity during a period
of undirected mind-wandering [37, 38] so characteristic of the resting state, might look like.

3.2 Finding Cortical Networks using N-cuts

The simulated map and the results of data clustering into K = 4 subgraphs are shown in
Fig. 3. The correspondence between the four quadrants of the simulated image and the
locations on the cortex from which each quadrant was sampled are shown in Figs. 3(a) and
(b). Results of clustering with LB and tNLM filtering are shown in (c) and (d) respectively.
The results are almost perfect for K = 4 in both cases and, indeed, also were for the unfiltered
data since the four regions were chosen to be internally homogeneous with respect to their
time series but with a low/negative correlation between the time series in different regions.
The case K = 8 produces very different results as shown in Fig. 4. The linear mixing across
quadrant boundaries using LB produces intermediate regions that internally have a higher
correlation than they do with the two regions from which the data originated. The resulting
parcellation includes new contiguous regions at the boundaries between quadrants that were
not present in the original data and are an artifact of processing (Fig. 4(a), clusters in light-
green, yellow and violet). When these clusters are mapped back to the surface vertices on
the cortex from which they were drawn, we see they appear distributed across more than one
functional area (for example elements in the light-green parcel appear in DMN, visual and

10



(a) (b)

LB, t=4, #class=4

(c)

tNLM, h=0.72, #class=4

(d)

Figure 3: Simulation: (a) four quadrant square surface on which smoothing and parcellation
is performed; (b) location of the four regions on cortex from which the time series for each
quadrant are taken; (c) N-cut parcellation of LB filtered data into K = 4 clusters; the cortical
surface image shows each color-coded vertex mapped back from the square to its original
location on cortex; (d) N-cut parcellation for tNLM smoothed data into K = 4, again with
mapping of each color-coded vertex back onto the cortical surface
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LB, t=4, #class=8

(a)

tNLM, h=0.72, #class=8

(b)

Figure 4: Simulation: result of N-cuts clustering on the square surface with K = 8 classes
using (a) LB filtering and (b) tNLM filtering. Each subfigure shows the clustering results
with a unique color for each cluster on the square surface on the left and the cluster labels
mapped back to the cortical surface on the right.

motor areas). This is consistent with the earlier observation that the clusters in the square
image that appear in moving from K = 4 to K = 8 subgraphs are due solely to mixing
from LB smoothing and do not reflect true patterns of similarity in the time series prior to
filtering.

In contrast, tNLM filtering shows a strong pattern of sub-division of functionally distinct
areas when 8 class clustering was used, Fig. 4(b): vertices in the top right quadrant (corre-
sponding to DMN) get sub-divided into two parcels (light and dark green) and vertices in
the bottom right quadrant (task positive network, TPN) get sub-divided into four parcels
which are distinct from those in the top right quadrant. While the spatial organization of
these clusters in the square image appears random, when they are mapped back to the area
on the cortex, from which they were drawn, we see that the clustering result actually sub-
parcellates the DFM and TPN. This result demonstrates the “non-local” nature of tNLM -
smoothing is performed based on similarity in time series rather than spatial proximity. For
this reason, subsequent partitioning based on a fully connected graph can identify groups
of pixels with similar time-series in the original data rather than producing false parcels as
a result of local linear mixing of signals from adjacent functional areas as occurs with LB
filtering.

We do not include results for unfiltered data since they are qualitatively very similar to
those obtained using tNLM for both K = 4 and K = 8. Since each quadrant was selected
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(a) (b)

(c)

Figure 5: Cortical parcellations using N-cuts on a fully connected cortical surface graph for
a single subject to partition cortex into K = 6 networks: (a) unfiltered data, (b) tNLM
filtering (h=0.72), (c) LB filtering (t=4). In each case a distinct color represents one of the
K = 6 networks.

to have clearly distinct time series from all other quadrants, the N-cuts algorithm, even
without smoothing, was able to reliably partition the data. That unfiltered data produced
very similar subparcellations for K = 8 as shown in fig. 4(b) indicates that there is evidence
for these subparcellations in the data and these results are not an artifact of the nonlinear
tNLM smoothing. As we show next, this similarity between tNLM and unfiltered data does
not occur when N-cuts is applied to a complete set of in vivo data.

Next we examine the effect of LB and tNLM filtering on N-cuts based parcellation of
an in vivo dataset for a single subject. Figure 5 shows the result of N-cut clustering with
six classes. Clusters obtained from the original unfiltered data, Fig. 5(a), yields default
mode (pink), visual (yellow/green), and somatomotor (dark blue) networks. However, the
clusters are noisy and disjointed. In contrast, tNLM smoothed data shows more jointed
networks with large contiguous regions, Fig. 5(b). In addition to the networks identified in
the original data we can also identify the visual cortices and the ventral visual stream (dark
green) separate from the occipital pole (dark red). We can also identify the fronto-parietal
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(a) (b)

(c)

Figure 6: Cortical parcellation N-cuts applied to tNLM filtered (h=0.72) data for the same
subject as in Fig. 5 for (a) K = 15, (b) K = 30 and (c) K = 60 clusters. See supplemental
data for equivalent images for unfiltered and LB filtered data.

network, described to anticorrelate to the default mode network (light blue), which includes
the frontal eye field, left middle frontal gyrus, superior parietal lobule, and the lateral-
posterior regions of the temporal lobe [39–43]. LB filtering, Fig. 5(c), also produces similar
networks as identified by tNLM, however some of the networks separate into patchy clusters.
The greater number of patchy regions in the LB result is consistent with the formation of
additional false parcels shown in the simulation in the previous section, Fig. 3(c), that result
from local linear mixing of two or more functional areas as a result of the smoothing.

Expanding on the previous clustering result, we show clusters in Fig. 6 with tNLM
filtering on one subject with (a) K = 15, (b) K = 30, and (c) K = 60 (equivalent results
for unfiltered and LB filtered data are included in the supplemental data Fig. S.1). As the
number of classes are increased, boundaries are preserved and regions are sub-divided. For
example, the somatosensory and motor cortices are initially identified as a single network
(blue) when the brain is allowed to segment into 15 classes (Fig. 6(a)). When the classes
are doubled, this area sub-divides into the right upper (violet), and left upper (pink), and
the lower (brown) somatomotor cortices (Fig. 6(b)). Increasing the number of classes to 60
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LB tNLM

(a)

LB tNLM

(b)

Figure 7: Cortical map of the cumulative boundaries of N-cut parcellations over fifteen differ-
ent values of K (a) in a single subject and (b) averaged across population of 40 subjects. The
value at each triangle represents total number of times that triangle was a boundary trian-
gle across fifteen different clustering results (K = 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 30, 40, 50, 60, 80).
The boundary map is thresholded at an upper boundary count of 10 for single subject and
6 for the population average.

segments, the right lower somatomotor cortex (red) separates from the left hemisphere, and
further divides into the ventral premotor cortex (blue) and the ventral motor cortex (dark
red) (Fig. 6(c)). Similar patterns of progressive subdivision can be observed in other primary
networks including the visual network.

In Fig. 7 we illustrate how the boundaries of the clusters vary across several parcellations
with different number of classes in both tNLM and LB. Fig. 7(a) shows cumulative bound-
aries for a single subject over different number of classes. The tNLM results show consistent
boundaries delineating the ventro-medial prefrontal cortex (vmPCC), posterio-medial cor-
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(a) (b)

Figure 8: Cortical maps of the label sets used for quantitative analysis: (a) functional
localizers for a single subject [30, 31] and (b) discrete Brodmann’s labels from a probabilistic
atlas [36]. Each color represents a different Brodmann or functional area.

tex (PMC) and the visual cortex. The LB results are quite similar. But when averaged
across the 40 subjects, Fig. 7(b), there are clear differences with boundaries occurring more
consistently across different values of K with tNLM than with LB. In both cases the upper
and lower sensorimotor areas are consistently identified, as evidenced through the absence of
boundaries in these regions. However, tNLM shows clearer boundaries than LB, particularly
for the PMC, the visual cortex and the ventrolateral prefrontal cortex. LB shows boundaries
spread across frontal and lateral posterior temporal-occipital region, possibly reflecting the
introduction of false region boundaries between functional areas as illustrated in our earlier
simulation. High order association cortices also clearly show marked internal consistency
(i.e. lack of edges) in tNLM results.

Next we present a quantitative analysis of the concordance between parcellations obtained
through N-cuts clustering of resting data and functional localizers and Brodmann areas
(BA). An image of the functional localizer and Brodmann maps in shown in Fig. 8 for a
single subject. We used different level of LB filtering (t = 2, 4, 10) and tNLM filtering (h =
0.60, 0.72, 1.73) before using N-cuts clustering with a large number of classes (3 ≤ K ≤ 400).
Fig. 9 shows the median concordance of clustering results with functional localizers over a
population of 40 subjects (see sec. S.1.1 for details of the concordance measure). Both LB
and tNLM filtering shows a marked improvement in concordance as compared to the original
unfiltered data. However, tNLM consistently shows higher median concordance than LB
across a large range of number of classes K. Fig. 10 shows concordance with Brodmann area
maps. Similarly to the functional localizers, we see a large improvement in concordance of
clusters with smoothing as compared to the original data without any smoothing. LB and
tNLM show similar behavior for smaller number of classes (K < 50), however tNLM shows
robust performance over parcellations with larger number classes.
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Figure 9: Concordance between task localizer maps and N-cuts parcellations with LB and
tNLM filtering as a function of the number of classes K. For every set of smoothing and
parcellation parameters, we show the median concordance over a population of 40 subjects
(4 resting state sessions for each subject).
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Figure 10: Concordance between 26 Brodmann areas and N-cuts parcellations with LB and
tNLM filtering as a function of the number of classes K. For every set of smoothing and
parcellation parameters, we show the median concordance over a population of 40 subjects
(4 resting state sessions for each subject).

4 Discussion

The tNLM filtering results shown in Fig. 1 appear qualitatively quite different from both the
unfiltered noisy data and the result of linear Laplace-Beltrami smoothing. While the images
are smoother in the latter, the regions appearing coherently activated are more patchy. The

17



image obtained with tNLM filtering allows more direct identification of components of the
default mode network. In Fig. 2 a sequence of images at short intervals shows clearly how
coherent co-activation changes for other networks. As activity in one network increases and
that in an adjacent network decreases, the effect of LB smoothing across the boundary be-
tween these networks produces an apparent boundary or wave moving from one network to
the other. This behavior is apparent in the LB movie. With tNLM, because only surface
elements with similar time series are averaged to denoise the data, when two adjacent net-
works have distinct time series then they will not be blurred through smoothing and this
wavelike effect does not occur. The impression is that of irregular, burst like activity, which
is to be expected during a period of undirected mind-wandering, characteristic of the resting
state. Qualitatively, there are clearer boundaries in tNLM relative to LB, although it is
also evident that even within networks, activation is not always synchronous. The ability of
tNLM to denoise data while respecting functional boundaries makes it a potentially attrac-
tive processing tool both for data exploration and as a precursor to network identification
or parcellation.

There are relatively few examples showing real time rfMRI whole-brain activity in the
form of either single frame images or movies in the literature. An early example from Vincent
et al. [44, 45] shows real-time brain dynamics from data used to explore resting networks
[40, 46] however the dynamics do not clearly show coherent activity in, for instance, regions
of the default mode networks or other networks. Kundu et al. [47, 48] have developed
a method for denoising multiecho fMRI data that distinguishes BOLD from non-BOLD
signals based on echo-time dependence. The resulting denoised data show dynamic activation
in DMN and other networks in realtime [49] similar to that shown here. However, their
approach explicitly requires a multi-echo sequence and unlike tNLM cannot be applied to
standard fMRI protocols. The dynamics shown in our movies also share similarities with
those in Zalesky et al. [50] who explore the HCP resting data using dynamic regional network
efficiency measures, computed from time-resolved connectivity estimates, to produce movies
of brain dynamics. Their results show “a consistent set of functional connections (with)
pronounced fluctuations in their strength over time”. The authors also note spontaneous
increases in spatially distributed regions over brief intervals, observations that can also be
made from our movies and of which a sample is shown in Fig. 2.

While all examples show here are restricted to cortex, tNLM filtering can also be applied
to volumetric or grayordinate [6] representations of the data. Similarly, tNLM could be
applied as a denoising tool in event-related functional MRI studies which may result in
improved resolution of focal activation relative to methods based on conventional isotropic
linear smoothing. The tNLM method could also be extended to include a spatial component,
so that the weighted average depends on a combination of temporal and spatial similarity.
It would also be interesting to explore a dynamic version in which the similarity measure is
computed of restricted time-window, rather than the entire time-course as was the case in
the results presented above.

We illustrated the potential utility of tNLM through cortical parcelation studies based
on N-cuts spectral graph partitioning. Our approach parcellates a single subject using a
fully connected graph with edge strengths based on pairwise correlations between the time
series on the surface elements. Most previous applications of graph-cuts in brain parcelation
have used locally connected graphs to ensure spatially contiguous parcels [3, 4]. While
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this appears necessary for unfiltered data (Fig. 5(a)), the denoising effect of tNLM allows
use of the fully connected graph while still producing a piecewise contiguous parcellation
(Fig. 5(b)). This has the advantage of using all correlations for parcellation rather than a
restricted local set which, based on our comparison of parcellations using locally and globally
connected graphs (not shown), should produces more reliable results. LB smoothed data can
also be parcellated using the fully connected graph (Fig. 5(c)) but the resulting networks
appear to contain regions that may not actually belong. We explored this issue further in the
simulations shown in Figs. 3 and 4. LB smoothing applied to the four quadrant configuration
in Fig. 3(a) produced mixing of signals across quadrant boundaries that it turn resulted in
artifactual networks that arise purely as a result of filtering. This finding indicates that
care should be taken when using linear smoothing in combination with parcelation methods
based on pairwise correlations to ensure that parcels are not produced solely as an artifact
of smoothing.

Changes in parcellation as a function of the number of networks was investigated in
Fig. 6 for tNLM (with equivalent results in Fig. S.1 for LB and unfiltered data). A well
known problem with N-cuts is that the algorithm tends to produce cuts of similar size if the
graph (and its adjacency matrix) does not contain sufficient information to unambiguously
support a single K-way partition. We note that this does seem to be the case even for the
relatively large number of networks (K = 60) as shown in Fig. 6. To investigate consistency
as a function of the number of networks, we averaged edge locations over multiple values
of K in Fig. 7. It is interesting that the resulting individual edge maps (Fig. 7(a)) bear a
strong resemblance to the group functional connectivity gradients shown in Fig. 10 in [5].
Comparisons with functional localizer (Fig. 9) and Brodmann (Fig. 10) maps, as a function
of K, show similar peak performance at approximately K = 45 for the localizers and K = 30
for Brodmann maps for LB and tNLM. This is somewhat surprising given the qualitative
differences between the two results in Figs. 6, 7, and S.1. The best results for LB are for the
most heavily smoothed data (t = 10) while for tNLM best results are for h = 0.72. The value
t = 10 produces significantly more smoothing than shown in Figs. 1 and S.2 and appears to
remove much of the spatial detail in the data as shown in Fig. S.3. As K is increased tNLM
retains consistently higher concordance than LB indicating more reliable parcellations with
a larger number of networks.

5 Conclusion

The results shown above support the primary claim of this report: that temporal Non Local
Means filtering (tNLM) is able to denoise resting fMRI data while also retaining much of
the spatial structure that reflects ongoing dynamic brain activity. Correlated variations in
activity are directly visible in the movies of cortical activity, which appear to reflect the
underlying dynamics of large-scale brain networks. This ability to visualize real-time whole-
brain networks may facilitate exploratory data analysis leading to new insights into the
dynamics of spontaneous brain activity. Temporal NLM can also be used as a preprocessor
for resting fMRI for quantitative exploration of dynamic brain networks. Examples using the
HCP resting fMRI data set indicate the advantages of tNLM over linear Laplace-Beltrami
smoothing on the cortical surface for identifying networks and cortical parcellation.
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S.1 Supplement

S.1.1 Supplement: Measures and mapping of parcellations

Assume we have two parcellations A and B for a set of vertices V : A = {Ai : i ∈ ZM}
parcellates V into M parcels where ZM = {1, 2, · · · ,M} such that ∩iAi = ∅ and ∪iAi = V
and B = {Bi : i ∈ ZN} parcellates V into N parcels where ZN = {1, 2, · · · , N} such that
∩iBi = ∅ and ∪iBi = V .

Concordance measure

Concordance is a measure of the fraction of vertices between the two parcellations that agree:

concordance(A,B) =

∑
i∈ZM

∣∣Ai ∩BS(i)

∣∣∑
i∈ZM

|Ai|
(4)

where | · | represents the cardinality of a set and S : ZM 7→ ZN is mapping of parcels in A to
B as described next. The concordance measure ranges from 0 (no agreement) to 1 (perfect
agreement).

Find correspondence between parcels

Given two parcellations A and B for a set of vertices V , we aim to match each parcel in A
to a unique parcel in B. Let g(Ai, Bj) be a measure of the goodness of the match of Ai to

Bj such as the Dice coefficient or Jacard index. We want a map Ŝ : ZM 7→ ZN such that we
maximize the goodness of match across all parcels:

Ŝ = arg max
S:ZM 7→ZN

[∑
i∈ZM

g
(
Ai, BS(i)

)]
. (5)

The exact solution of eq. (5) is combinatorial and scales approximately as n! where n =
max(M,N)).

We use an approximate solution of eq. (5) by noting its similarity to the famous stable
matching problem [35]. Stable matching finds a match between elements of two sets of equal
size when a preference order of matching is specified for each element. A match is stable if
there does not exists a pair (a, b) in the match in which both a and b have higher preference
elements which also prefer a and b respectively over their current match. We use the Gale-
Shapley algorithm [35] after transforming our parcel mapping to a stable matching problem
as described below. We will match each parcel in A to a unique parcel in B: In the language
of Gale-Shapley algorithm elements in A are suitors and the elements in B are reviewers.

1. Compute an M ×N matrix G such that the (i, j)th element G(i, j) = g(Ai, Bj).

2. The Gale-Shapley algorithm works with sets of the same size. Hence, we define an n×n
matrix G̃ by appending appropriate number of row or columns to G. All the elements
of appended rows/columns are set to δ = min(G) − ε, where ε is a small positive
constant. This modifies our problem by adding dummy suitors/reviewers which can
be easily ignored.

25



3. Next, we compute the preference order of each element from G̃. There are a total of
n suitors and n reviewers. We define the preference order for each suitor by arranging
the indices of the elements in the corresponding row in G̃ in the descending order of
magnitude of their entries. Similarly, we define the preference order of each reviewer as
the indices of the elements of the columns arranged in descending order of magnitude of
their entries. If two elements have same preference, then we break the tie by randomly
assigning a preference order.

4. We use the resulting preference order from the last step to find a stable match S̃
using the Gale-Shapley algorithm [35]. The map S̃ : Zn 7→ Zn is modified to get

Ŝ : ZM 7→ ZN as follows: If M = N then Ŝ ≡ S̃; If M < N then all the appended
dummy suitors are ignored in S̃; If M > N then all suitors which are matched to an
appended dummy reviewer in S̃ is modified to match to an empty set so that BŜ(i) = ∅.

The matching solution obtained by the above procedure is the suitor-optimal solution
(in the sense of preference order). If a reviewer-optimal solution is required A and B should
be swapped [35]. Further, the solution obtained is an approximation of eq. (5) as the Gale-
Shapley algorithm is blind to the absolute values of g

(
Ai, BS(i)

)
and only uses relative

preference order, which may not always maximize the total cost. Nonetheless, in our experi-
ence, this approximate solution produces reasonable matching and is more computationally
tractable than combinatorial approaches.
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S.1.2 Supplement: Comparison of tNLM and LB

Unfiltered tNLM LB

K=6

K=15

K=30

K=60

Figure S.1: Examples of cortical parcellation using full-graph with N-cuts obtained with
unfiltered data, tNLM filtering (h=0.72) and LB filtering (t=4). The number of N-cuts
classes (K) is shown in left-most column. Parcel colors are matched across clustering results
with same number of classes by using procedure described in previous section.
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Unfiltered tNLM LB

4:14

4:16

4:18

4:23

4:33

Figure S.2: Cortical distribution of the signal intensity of rs-fMRI data from a single subject
at different time points (left) without filtering, (center) with tNLM filtering (h=0.72) and
(right) with LB filtering (t=4). The video time point is shown in left-most column. (Contd.
to next page)
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Unfiltered tNLM LB

4:36

4:49

4:51

4:56

Figure S.2: (Contd. from previous page) Cortical distribution of the signal intensity of rs-
fMRI data from a single subject at different time points with (left) without filtering, (center)
with tNLM filtering (h=0.72) and (right) with LB filtering (t=4). The video time point is
shown in left-most column.
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Unfiltered data

tNLM, h=0.52 LB, t=1

tNLM, h=0.60 LB, t=2

tNLM, h=0.72 LB, t=4

tNLM, h=1.73 LB, t=10

Figure S.3: Effect of tNLM and LB parameters on smoothing of the signal intensity of rs-
fMRI data on the cortical surface. The time series were normalized by mean variance of all
time-series before displaying the signal intensity on the cortical surface.
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