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Abstract

The problem of human-centric visual quality assessment (VQA) is extensively studied

in this thesis. Our study includes three major topics: 1) design of a dataset for streaming

video quality assessment, 2) development of a new and effective video quality assess-

ment index, 3) exploration of a new methodology for human visual quality assessment

based on the notion of just-noticeable-differences (JND).

For the first topic, we present a high-definition VQA dataset that captures two typ-

ical video distortion types in streaming video services in Chapter 3. The VQA dataset,

called MCL-V, contains 12 source video clips and 96 distorted video clips with subjec-

tive assessment scores. The source video clips are selected from a large pool of public-

domain video sequences with representative and diversified contents. Both distortion

types are perceptually adjusted to distinguishable distortion levels. An improved pair-

wise comparison method is adopted for subjective evaluation to save evaluation time.

Several VQA algorithms are evaluated against the MCL-V dataset.

For the second topic, we propose two objective assessment indices to predict sub-

jective video quality in Chapter 4. They are a fusion-based video quality assessment

(FVQA) index and an ensemble-learning video quality assessment (EVQA) index. The

FVQA index first classifies video sequences according to their content complexity so

as to reduce content diversity within each group. Then, it fuses several VQA meth-

ods to provide the final video quality score, where fusion coefficients are learned from

ix



training samples in the same group. Being motivated by ensemble learning, we pro-

pose another video quality assessment index to extend FVQA furthermore, and call it

the EVQA index. The basic idea is to fuse multiple VQA methods with diverse and

complementary merits so that the fused outcome outperforms that of any single method.

The superior performance of EVQA is demonstrated by comparing it with other video

quality assessment indices with several benchmarking video quality datasets.

For the third topic, we propose a new human-centric methodology for visual quality

assessment based on the JND notion in Chapter 5. JND is characterized by the detectable

minimum amount of two visual stimuli, and has been used to enhance perceptual visual

quality in the context of image/video compression. We first argue that the perceived

quality of coded image/video is a stairwise function with several discrete jump points

defined by JND. Then, we present a novel bisection method in performing the JND test

on JPEG-coded images. Finally, we construct a JND dataset called MCL-JCI that con-

tains 50 source images and analyze the relationship between the source content and the

number of its distinguishable quality levels. The impact of JND-based quality assess-

ment on image/video coding is also discussed.

x



Chapter 1

Introduction

1.1 Significance of the Research

Video streaming service grows and evolves in a incredible speed. Thousands of titles

are monthly added to major service providers, such as Netflix, YouTube, and Amazon.

Consumers enjoy such on-demand video services from service provides, and watching

high-definition (HD) programs becomes the mainstream for video content consump-

tion. According to the report in [110], more than half of US population watches on-line

movies or dramas. Specifically, the viewers have increased from 37% in 2010 to 51% in

2013. The watched video programs vary in bit rates and resolutions due to the available

bandwidth of their networks. The main reason to the blooming of streaming video is

because abundant video genres. Thousands of movies and TV shows are provided by

streaming video service such that consumers have tremendous choices of video contents.

Therefore, the diversity of video contents is an significant issue in assessing video qual-

ity. When using the streaming service, the delivered titles are compressed and scaled in

various bit rates and resolutions to match clients’ bandwidth and end-terminal. Differ-

ent sizes of video are transmitted at lower bit rates and up-scaled for display on HDTV

(e.g., playing a 720p movie on the 1080p screen). The streaming bandwidths range from

500 Kbits/sec to 12 Mbits/sec and the resolutions vary from CIF to UHD. Thus, the dis-

tortion comes not only from compression but also resizing, where a video of a smaller

size is scaled up to a larger resolution to match the dimension of the display device.

Such artifacts usually appear after the production process. Therefore, service providers
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are looking for an automatic to detect these distortions in the video clips of their huge

libraries.

To control video quality well, there are two key factors, 1) diversity of content and

2) presence of distortions. These two factors make the nature of streaming video is so

complicated that assessing the video quality becomes a significant issue. In the field

of video compression, the mean squared error (MSE) is widely applied to assess the

quality. However, [33] indicates several psychovisual phenomena affects the human

visual system, and MSE does not reflect these phenomena. These phenomena affects

are so called spatial masking effects, which are have been studied in [5, 6, 8, 31, 43, 44].

For video, temporal masking effect has a significant impact on human perception as

indicated in [19, 75, 78, 94]. The masking effects are created by the characteristics

of video contents. Thus, researchers in the VQA field strongly intend to model these

phenomena and apply to VQA metrics. Li et al. [62] and Brandao and Queluz [16]

both adopted Daly’s contrast sensitivity function (CSF) [23] in their work. Their results

show that modeling masking effects well can improve the accuracy of the VQA indices.

However, only a few masking effects are modeled as well as CSF. Since it is difficult

to find the closed-form functions to model all the related masking effects, the research

results from the fields of vision and psychology are rarely to be combined to VQA

related researches. Therefore, machine-learning based VQA indices[73, 81, 83] are

introduced to find the relationship from data-oriented approach, rather than digging out

the interrelationship between human brain and vision systems.

In order to take the data-oriented approach of assessing video quality, we need accu-

rate and representative ground truth to develop our algorithm. However, the existing

video quality datasets have several issues such that the development would be limited.

First, some prior datasets [82, 103] contain scenes that are not representative in video

applications. For example, there are video clips with a close view on the water surface
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or the blue sky in the LIVE database [103]. These sequences were used for video cod-

ing performance test since they contain specific contents which are difficult to encode.

However, they are not common scenes in movies or dramas. We prefer more represen-

tative scenes since they can better reveal human visual experience. Second, the dataset

should have sufficient diversity in terms of several characteristics. Since the streaming

service may have higher bit rates to maintain video quality [3, 45], the blocking effect

is not as strong as that in existing video quality datasets. Furthermore, video quality is

blurred due to video resizing. Spatial and temporal masking effects appear in various

forms due to content diversity. For instance, visual artifacts are likely to be seen in still

scenes than fast-motion scenes. These properties have not yet been covered by exist-

ing datasets such that we decide to build a new dataset, called MCL-V to address the

shortcomings of existing datasets.

Our goal is to develop an automatic VQA method that is scalable to diversified video

contents and highly correlated to human perceived quality. By surveying the existing

datasets, we have not found any suitable one which can be used for our purpose. Thus,

we decide to build two new datasets, MCL-V and MCL-JCI, and develop our method

based on it.

1.2 Review of Previous Work

There are quite a few video quality assessment datasets available to the public [9, 12, 13,

17, 24, 25, 30, 35, 54, 56, 57, 72, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 103, 109, 114,

116, 128, 129]. They were however limited in the following areas [26] and [122]. First,

the source video set is not representative or diversified enough. We check the existing

datasets by the video characteristics listed in 1.1.
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Table 1.1: Video characteristics used in diversity check
Video Genres Video Semantics Video Features
• Cartoon • Face • Brightness
• Sports • People • Contrast
• Indoor •Water • Texture

• Number of objects •Motion
• Salience • Color Variance

• Color Richness
• Sharpness
• Film Grain
• Camera motion
• Scene change

None of them is able to cover all the properties. The lack of these contents will not

provide an extensive evaluation of viewers’ experience. Second, the video resolution

is low. The resolution of sequences in all VQA datasets except five [12, 35, 91, 116,

129] are lower than 1920 × 1080. Third, the distortion is not complete for the target

application. For example, all above-mentioned VQA datasets except [56, 57, 91] do not

cover video up-scaling, which is encountered frequently in our daily life. Although the

work in [91] includes practical distortion types, it has only three video sources.

In the last decade, the state-of-the-art VQA metrics follow two main approaches:

formula-based and learning-based. The traditional formula-based approach creates a

close form expression of perceptual quality. The famous ones include SSIM[118],

VIF[105], FSIM[130]. This type of metrics are good to handle specific distortions. The

other approach, the learning-based approach, integrates several features and predict the

perceptual quality based on the machine learning algorithms. [73] is an full-reference

index that fuses existing quality metrics and predicts image quality with high accuracy.

[81] combines a large number of computational statistical features and predict percep-

tual quality without reference. In this work, we focus on the learning-based approach,
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because it is more scalable. In addition, to let the model learn from the opinion scores,

we adopt supervised learning algorithms in this work.

One significant point of learning-based methods is adopting ensemble learning to

fuse existing methods rather than low-level features. Ensemble learning is a classic

divide-and-conquer strategy that has been widely adopted in solving classification and

regression problems[7, 27, 28, 37, 49, 52, 79]. Generally, in the framework of ensemble

learning, multiple methods with diverse and complementary skills are fused to tackle

a task such that the joint outcome outperforms any single method. Liu et al.[73] pro-

posed a multi-method fusion (MMF) method for image quality assessment. A regression

approach is used to combine scores of multiple IQA methods in the MMF. The MMF

score is obtained by a non-linear fusion of scores computed by multiple methods with

suitable weights obtained by a training process. So far, MMF offers one of the best IQA

results in several popular datasets such as LIVE[106], CSIQ[55], and TID2008[97].

Unlike successful IQA research, there are several challenges in designing accu-

rate learning-based VQA methods. First, Limited number of data The total number

of images in image quality datasets (e.g., [95, 96, 97, 106]) are larger than the number

of sequences in video quality datasets (e.g., [25, 82, 103]). Hence, supervised learning

operates well with abundant samples for training and develop accurate models. How-

ever, learning-based VQA method suffers from the limited samples, and the limited

training set would cause over-fit and inaccurate model. Second, no ground truth to

learn for temporal variation of video sequence. Temporal pooling has been studied by

[100, 101, 104] over a decade. These researches show that using different methods does

not generally provide significant improvement, and no solid conclusion is made in this

topic.

All of above methods provide a quality measure of continuous-scale. However, it is

well known that the HVS cannot perceive small changes in pixel differences. In reality,
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humans cannot perceive continuous-scale but discrete-scale quality changes over a range

of coding bitrates. This phenomenon is well-known as just-noticeable difference (JND)

[50]. JND is a statistical quantity that accounts for the maximum difference unnoticeable

to a human being. It has been extensively studied to understand human visual sensitiv-

ity [66]. In the context of image/video compression, Watson [121] proposed a way to

use JND for video quality measurement. His work adopts “pair comparison” or “two-

alternative forced-choice”. That is, subjects are asked to determine which of two videos

(i.e. the original source and the compressed one) is more distorted. Then, the distortion

level of compressed video can be derived from the JND test result. Although Watson’s

pioneering work offers a statistical relationship between visual quality assessment and

JND, his result is difficult to apply to a real-world video coding system. Furthermore, the

test duration required for each subject is long. Recently, several JND estimators based

on HVS properties were investigated in [51, 123]. It was also shown in [67, 77, 131]

that JND-guided coding schemes can achieve perceptually similar quality with lower

bitrates.

1.3 Contributions of the Research

To address the shortcomings of existing VQA datasets, we build a new VQA dataset

called MCL-V in Chapter 3. The specific contributions are given below.

• The MCL-V dataset contains 12 source video clips and 96 distorted video clips

with subjective assessment scores. The source video clips are selected from a large

pool of public-domain high-definition (HD) video sequences with representative

and diversified contents.

• The MCL-V dataset captures two typical video distortion types; namely, “com-

pression” and “compression followed by scaling”. The distortion types are
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designed to simulate streaming video services. Both distortion types are percep-

tually adjusted to yield distinguishable distortion levels. An improved pairwise

comparison method is adopted for subjective evaluation to save evaluation time.

We use an improved pairwise comparison method to make the final MOS more

stable and meaningful.

• Several image and video quality assessment (IQA and VQA) algorithms are eval-

uated against the MCL-V dataset. We show that the MCL-V dataset is one of

the most challenging video quality assessment datasets to today’s IQA and VQA

indices.

Being inspired by [73], we propose two VQA methods in Chapter 4. They are

the Fusion-based Video Quality Assessment (FVQA) Index and the Ensemble Learning

Video Quality Assessment (EVQA) Index. It has the following specific contributions.

• The proposed FVQA index first classifies the whole MCL-V dataset into groups

depending on the characteristics of video contents and then fuse several EVQA

algorithms to predict the perceptual quality within each group. It has two distinc-

tive features. First, video content grouping reduces content diversity and increases

the fusion performance via machine learning. Second, different quality assess-

ment methods adopted by FVQA can compensate each other with respect to dif-

ferent quality levels.

• The proposed EVQA method adopts frame-level training, and its solution is more

scalable as compared to FVQA. It uses recursive grouping and the machine learn-

ing technique to reduce content diversity and improve the fusion performance.

Furthermore, it uses an ensemble learning approach by taking different qual-

ity assessment methods and a wide variety of video content characteristics into

account for better video assessment performance.
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Finally, we argue that humans cannot perceive continuous-scale but discrete-scale

quality changes over a range of coding bitrates, quantify this phenomenon based on

JND, and then propose a new methodology to characterize the human visual experience

on coded image/video content in Chapter 5. Specific contributions include the following.

• We study the problem of coded image/video quality assessment using a brand new

framework based on JND. It is demonstrated by a small-scale subjective test that

human perceived quality of coded images can be characterized by a piecewise

constant function of the QF/QP with discontinuities at JND locations. Although

these locations are content-dependent and statistically distributed, they do provide

consistent and useful information in understanding the human visual experience.

• Given coded image/video content with densely sampled QF or QP values, we

develop a new methodology to measure the number of JND points and locations,

and analyze the inter-person variance of measured quantities.

• We build a JND dataset called MCL-JCI that contains 50 source images. Further-

more, we analyze the relationship between the source content and the number of

its distinguishable quality levels.

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows. A brief review of previous related

work is described in Chapter 2. Next, a newly-built MCL-V video quality dataset is

described in detail in Chapter 3. The proposed FVQA and EVA indices are presented

in Chapter 4. The JND-based visual quality assessment methodology is described, and

a JND-based JPEG-coded image dataset is presented in Chapter 5. Finally, concluding

remarks and future research directions are given in Chapter 6.
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Chapter 2

Background Review

2.1 Video Quality Assessment Indices

Full-reference (FR) video quality indices take both the test video and the reference

video as inputs. Because the information is retrieved from the reference video, the

FR approach is more reliable than the no-reference approach, which only considers the

test video. In this paper, we extend the image quality (IQA) metrics as VQA indices by

averaging frame-level quality scores. The PSNR value is the most common FR VQA. It

is calculated from the mean squared error (MSE), which can discriminate slight change

between reference and distorted videos. However, it is highly content dependent due to

perceptual effects[33], and its values are not comparable between different video con-

tents. For example, video with grain noise is heavily penalized in PSNR although its

perceptual quality is high as shown in Fig. 4.1. Even for identical content coded by

different bit rates, the difference in PSNR is not a good indicator of subjective quality

difference. Since PSNR is not well correlated with subjective human visual experience,

other VQA indices are proposed to assess video quality[68, 74].

The state-of-the-art VQA metrics follow two main approaches: formula-based and

learning-based. The formula-based approach creates a close form expression of percep-

tual quality. The famous ones include SSIM[118], VIF[105], FSIM[130]. This type

of metrics are good to handle specific distortions. The other approach, the learning-

based approach, integrates several features and predict the perceptual quality based on
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the machine learning algorithms. [73] is an FR index that fuses existing quality met-

rics and predicts image quality with high accuracy. [81] combines a large number of

computational statistical features and predict perceptual quality without reference.

Formula-based VQA indices were designed to measure “similarity” or “difference”

with close forms. The former approach usually retrieves features from reference and

distorted videos and computes the similarity index from the ratios of specific fea-

tures. Examples include: SSIM[118], MSSIM[119], VIF[105] and FSIM[130]. The

difference-based approach adopts the human visual system (HVS) model to predict how

human perceives the difference between reference and distorted videos. WSNR[80],

ADM[62], and VADM[61] belong to the difference-based category. These indices work

reasonably well against simpler video quality databases developed before MCL-V[64].

The correlation coefficient of the best metric, VADM[61] is less than 0.75. However,

these metric takes various approaches to justify the quality degradation between refer-

ence and distorted videos. It would be interesting to see the strength of each metric.

2.2 Formula-based Quality Indices: SSIM and FSIM

SSIM and FSIM are two commonly used IQA indices. They can be applied to the entire

video sequence frame by frame followed by an averaging. We briefly review both of

them below.

The computation of the SSIM index consists of two steps. First, it measures the local

change in luminance, contrast and structure with the following formula:

SSIM(x) =
(2µd(x)µr(x) + c1)(2σd,r(x) + c2)

(µ2
d(x) + µ2

r(x) + c1)(σ2
d(x) + σ2

r(x) + c2)
, (2.1)
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where x denotes the same block in distorted and reference images. The block size in

SSIM is 11× 11. A block-wise SSIM map is generated accordingly. Second, the SSIM

index is the average of the SSIM map in form of

SSIM = SSIMx∈Ω(x), (2.2)

where Ω denotes the whole image domain.

The FSIM and FSIM Color (FSIMc) indices are computed based on the following

two formulas:

FSIM =
Σx∈Ω [Spc(x)] [SG(x)] [PCm(x)]

Σx∈Ω [PCm(x)]
, (2.3)

FSIMc =
Σx∈Ω [Spc(x)] [SG(x)] [SI(x) · SQ(x)]λ [PCm(x)]

Σx∈Ω [PCm(x)]
, (2.4)

where Spc, SG, SI , SQ, and PCm represent the phase congruency (PC), the gradient

magnitude (GM), the I color compoent and the Q color component in the YIQ color

space, and the maximum PC between distorted and reference images, respectively.

FSIM uses PC and GM only while FSIMc includes all of them. Being similar to that

the SSIM index is averaged by all local SSIM values, the resulting FSIM and FSIMc

indices are the normalized mean values of all blocks. The these formula-based indices

are difficult to be generalized to adapt to diversified contents. This is their main weak-

ness.

2.3 Comparison of VQA Indices

Generally speaking, compressed video contains two types of visual artifacts, blurriness

and blockiness, as illustrated in Fig. 2.1. High quality video has slight blurring but no

obvious blocking. It may appear sharp to ordinary viewers, yet blurred edges can be
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found by experts. The artifact of medium quality video is visible to common assessors,

yet the overall quality is still acceptable. Low quality video has the strongest blurring

and blocking artifacts, which is unacceptable for broadcasting. The appearance of visual

artifacts changes along the scale from high to low quality.

Figure 2.1: Illustration of video quality scale.

To understand the strength of different VQA indices in assessing streaming video

quality, we test them with videos of different quality levels given in Fig. 4.1. Specifi-

cally, we split the 48 compression-only videos in MCL-V into three classes according

the their mean opinion scores (MOS):

• Class-High: It is the high quality class whose video is slightly blurred with little

blocking artifacts;

• Class-Medium: It is the medium quality class whose video has medium level

blurring and blocking artifacts;

• Class-Low: It is the low quality class whose video has the strongest blurring and

blocking among the three.

If a method performs well in Class-High, we claim that it performs well in detecting

perceptual blurriness. We conduct experiments for videos in each class and compute the
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root mean squared error (RMSE) of predicted quality scores. It is worthwhile to point

out that correlation coefficients may not provide an accurate result on their performance

due to the small number of sequence numbers (i.e. 16) in each quality class. The ranking

of several VQA methods (namely, SSIM, VIF, FSIM, and VADM) for each video quality

class is shown in Table 4.1. We see that the best VQA indices with respect to Class-High,

Class-Medium and Class-Low are SSIM, FSIM and VIF, respectively. Thus, if we can

fuse them into a single index via learning, it may offer the best solution among all three

individual indices.

Table 2.1: The ranking of quality methods with respect to different quality classes.
Quality Class Comparison of the Methods in RMSE

High
SSIM VIF VADM
0.565 0.599 0.617

Medium
FSIM VIF VADM
0.683 0.684 0.738

Low
VIF VADM FSIM

0.283 0.466 0.506

2.4 Learning-Based VQA Methodology

In this work, we focus on the learning-based approach, because it is more scalable. In

addition, to let the model learn from the opinion scores, we adopt supervised learning

algorithms in this work. Supervised learning entails learning a model between input data

and labeled data and applying the model to predict unseen test data. In order to learn

the subjective opinions, supervised learning is generally adopted in quality assessment

research. The input data are calculated from image or video features and the labeled

data are the mean of opinion scores (MOS) of quality databases. Since modeling HVS

is so complicated that learning-based image quality assessment methods adopt the strat-

egy to boost accuracy of the model. Narwaria and Lin[83] extracts the major structural
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information in images by singular value decomposition and use support vector machine

to map the feature to MOS. Moorthy and Bovik[81] developed a two-stage framework

for learning-based IQA metric. In the first stage, the algorithm classifies the input image

into one of the five distortions by SVM. In the second stage, image features are calcu-

lated and mapped to MOS by SVM.

One approach of learning-based methods is combing low-level features to final

scores as introduced above. The other approach adopts ensemble learning to fuse exist-

ing methods rather than low-level features. Ensemble learning is a classic divide-and-

conquer strategy that has been widely adopted in solving classification and regression

problems[49, 52, 79, 7, 37, 27, 28]. Generally, in the framework of ensemble learning,

multiple methods with diverse and complementary skills are fused to tackle a task such

that the joint outcome outperforms any single method. Liu et al.[73] proposed a multi-

method fusion (MMF) method for image quality assessment. A regression approach

is used to combine scores of multiple IQA methods in the MMF. The MMF score is

obtained by a non-linear fusion of scores computed by multiple methods with suitable

weights obtained by a training process. So far, MMF offers one of the best IQA results

in several popular databases such as LIVE[106], CSIQ[55], and TID2008[97].

Unlike successful IQA research work, there are several challenges in designing accu-

rate learning-based VQA methods. First, Limited number of data The total number of

images in image quality databases (e.g., [106, 97, 95, 96]) are larger than the number

of sequences in video quality databases (e.g., [25, 103, 82, 64]). Hence, supervised

learning operates well with abundant samples for training and develop accurate models.

However, learning-based VQA method suffers from the limited samples, and the lim-

ited training set would cause over-fit and inaccurate model. Second, no ground truth to

learn for temporal variation of video sequence. Temporal pooling has been studied by

[101, 100, 104] over a decade. These researches show that using different methods does
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not generally provide significant improvement, and no solid conclusion is made in this

topic.

As compared with previous work[65], the proposed EVQA method adopts frame-

level training to solve the problems of limited samples and temporal pooling. When

we take one frame as one sample, we use the sequence MOS of the whole sequence

as ground truth. Since the MOS is represented for the whole sequence, there exists

mismatch between a single frame and the whole sequence. In order to compensate the

mismatch, we assume each frame has close perceptual quality and the frame scores

should be adjusted by video content. Therefore, we should use certain spatial and tem-

poral indices to denote the spatial and temporal context of the current frame, such that

the learning process can take account of the spatial and temporal masking effects.
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Chapter 3

MCL-V: A streaming video quality

assessment database

3.1 Introduction

The high-definition video broadcasting and streaming services are blooming nowadays.

Consumers can enjoy on-demand video services from Netflix, Hulu or Amazon, and

watching high-definition (HD) programs becomes the mainstream for video content con-

sumption. According to the report in [110], more than half of US population watches

on-line movies or dramas. Specifically, the viewers have increased from 37% in 2010

to 51% in 2013. The watched video programs vary in bit rates and resolutions due to

the available bandwidth of their networks. Different sizes of video are transmitted at

lower bit rates and up-scaled for display on HDTV (e.g., playing a 720p movie on the

1080p screen). This is common in people’s daily life [11], yet users’ video quality of

experience on HD video has not yet been extensively studied in the past.

There are quite a few video quality assessment databases available to the public [9,

12, 13, 17, 24, 25, 30, 35, 54, 56, 57, 72, 82, 85, 86, 87, 88, 89, 90, 91, 92, 93, 103, 109,

114, 116, 128, 129]. They were however limited in the following areas [26], [122]. First,

the source video set is not representative or diversified enough. For example, they do

not contain dark scenes, sports scenes, traditional cartoon, and computer animation. The

lack of these contents will not provide an extensive evaluation of viewers’ experience.

Second, the video resolution is low. The resolution of sequences in all VQA databases
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except five [12, 35, 91, 116, 129] are lower than 1920×1080. Third, the distortion is not

complete for the target application. For example, all above-mentioned VQA databases

except [91, 56, 57] do not cover video up-scaling, which is encountered frequently in our

daily life. Although the work in [91] includes practical distortion types, it has only three

video sources. Being motivated by these observations, we build a new VQA database

called MCL-V to address the shortcomings of existing VQA databases. The MCL-V

database provides 12 source video clips, 96 distorted video clips and their associated

mean opinion score (MOS). In this paper, we will elaborate on the methodology of

building MCL-V such as collecting suitable video sources, generating distortions and

conducting subjective evaluation.

One key issue in our design is to choose an appropriate subjective test procedure to

collect opinion scores. Several subjective test methodologies have been recommended

in VQEG [114, 115] and ITU [47, 48] as shown in Table 3.1. Since the precision of the

final MOS is not improved by adopting the continuous scale [18, 111], the discrete scale

is adopted in this work for user friendliness. Furthermore, we use an improved pairwise

comparison method to make the final MOS more stable and meaningful.

Table 3.1: Classification of subjective testing methods.
Discrete Scale Continuous Scale

Single Stimulus Absolute Category Rat-
ing (ACR) [47]

Single Stimulus Con-
tinuous Quality Evalua-
tion (SSCQE) [48]

Double Stimulus Degradation Category
Rating (DCR) [47]

Double Stimulus Con-
tinuous Quality Scale
(DSCQS) [48]

Comparison Category
Rating (CCR) [48]

The rest of this paper is organized as follows. Section 2 describes ways to choose

representative and diversified reference sequences, to generate practical distortion types
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and to determine the reasonable distortion levels. Section 3 presents an improved pair-

wise comparison method for subjective evaluation and elaborates on the process of col-

lecting and normalizing opinion scores in the subjective test. We study the MOS values

and analyze the performances of several existing IQA and VQA metrics against the

MCL-V database in Sections 4 and 5, respectively. Finally, concluding remarks are

given in Section 6. The whole database is publicly available on the USC Media Com-

munication Lab website http://mcl.usc.edu/mcl-v-database/.

3.2 Construction of MCL-V Database

3.2.1 Source Video Selection

We selected 12 uncompressed HD video clips as the source sequences. Some sequences

are originally in YUV444p or YUV422p, and we converted them into YUV420p using

[10] to make all videos included in the MCL-V database be YUV420p at a fixed resolu-

tion of progressive 1920× 1080. The frame rates of the sequences range from 24 fps to

30 fps, and the length of each video is 6 seconds. Figure 3.1 shows all reference videos

with a single frame.

The selected sequences are freely available from several sources, including HEVC

test sequences [84], TUM dataset [53], CDVL [20], and others [29, 34, 40]. They were

professionally acquired and recorded in digital form. We select some of them to con-

struct the MCL-V database based on the following two criteria.

First, some prior databases [82, 103] contain scenes that are not representative in

video applications. For example, there are video clips with a close view on the water

surface or the blue sky in the LIVE databse [103]. These sequences were used for

video coding performance test since they contain specific contents which are difficult to
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(a) Big Buck Bunny (BB) (b) Birds in Cage (BC) (c) BQ Terrace (BQ)

(d) Crowd Run (CR) (e) Dance Kiss (DK) (f) El Fuente A (EA)

(g) El Fuente B (EB) (h) Fox Bird (FB) (i) Kimono (KM)

(j) Old Town Cross (OT) (k) Seeking (SK) (l) Tennis (TN)

Figure 3.1: Selected Source Video Sequences

encode. However, they are not common scenes in movies or dramas. We prefer more

representative scenes since they can better reveal human visual experience.

Second, the database should have sufficient diversity in terms of several character-

istics. We list various characteristics for diversity consideration in Table 3.2. They are

categorized into three groups: 1) high-level video genres, 2) mid-level video semantics

and 3) low-level video features. We aim to make the database cover a wide range of

characteristics given in the table.
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Table 3.2: Video characteristics used in diversity check
Video Genres Video Semantics Video Features
• Cartoon • Face • Brightness
• Sports • People • Contrast
• Indoor •Water • Texture

• Number of objects •Motion
• Salience • Color Variance

• Color Richness
• Sharpness
• Film Grain
• Camera motion
• Scene change

For video genres, we take several new genre types such as animation and sports into

account. These video genres have different characteristics from others. For instance,

cartoons scenes contain clear edges and simple color components while sports scenes

contain fast moving objects with simple background. These videos are commonly seen

in applications and should be included in the MCL-V database.

For video semantics, we consider factors that will have a great impact on human

visual perception. For example, while other databases usually do not include video

scenes with a close-up face, we take this feature into consideration since it is typical in

many dramas. In addition, the human face is typically a region of visual salience which

attracts human attention.

For video features, we examine brightness, contrast, motion, texture and color since

these features are related to the level of the video compression distortion. These features

also have influence on the visual masking effect. For example, there is no obviously dark

scene or fast-motion scene in existing video quality databases [25, 82, 103]. As a result,

they do not contain representative video clips for horror movies or action films. The

diversity of video features can be captured by the Spatial Information (SI) versus the
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Temporal Information (TI) plot as defined in the ITU-T Recommendation [47]. Eqs. 4.4

and 4.5 of SI and TI are shown as follows:

SI = maxtime{stdspace[Sobel(Fn)]} , (3.1)

TI = maxtime{stdspace[Mn(i, j)]} , (3.2)

SI is calculated based on the Sobel filter. The nth video frame, Fn, is first filtered with

the Sobel filter and taken the standard deviation over space domain. Then, the maximum

value along the time is chosen to present SI. TI is based on motion difference. Mn(i, j)

is the difference in pixel at the ith row and jth column between Fn and Fn−1. TI is

computed as the time maximum of the space standard deviation of Mn(i, j). These two

indices correspond to the texture and the motion features in Table 3.2, respectively. As

shown in Fig. 3.2, the 12 video sequences in the MCL-V database are well scattered in

the feature space spanned by SI and TI, which demonstrates the diversity of the MCL-V

database.

Not all characteristics can be quantitatively measured. We conducted subjective

evaluation on the characteristics of video clips to illustrate the diversity of the MCL-V

database and show the results in Table 3.3. The main characteristics are listed from high-

to-low levels in the first column while the 12 source sequences are listed in the top row

in this table. Each column in the table represents the characteristics of the corresponding

source sequence. The subjective evaluation was conducted by a group of professionals.

Since there are only a few levels defined for each property, the results can be easily

verified and they are quite consistent among viewers. This table shows that the selected

source video clips in the MCL-V database well span all characteristics with excellent

diversity.

The contents of the 12 source video clips are described below.
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Figure 3.2: Plot of the Spatial Information (SI) and the Temporal Information (TI)
indices for selected video sequences.

• Big Buck Bunny (BB) in Fig. 3.1a: An animated sequence, where there are two

animals in the video, with clear textures and rich backgrounds.

• Birds in Cage (BC) in Fig. 3.1b: Two colorful birds standing in front of a clean

background in a still scene.

• BQ Terrace (BQ) in Fig. 3.1c: Plenty of vehicles moving on a bridge, and below

the bridge are the water. The camera pans in a diagonal direction.

• Crowd Run (CR) in Fig. 3.1d: A crowd of people running together, with big trees

and the blue sky as the background.

• Dance Kiss (DK) in Fig. 3.1e: People dancing in a dark room. There are scene

changes, and the motions are fast. People will focus on two main characters that

kiss in the middle of the scene.
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Table 3.3: MCL-V source video diversity
BB BC BQ CR DK EA EB FB KM OT SK TN

Cartoon
√

CG Animation
√

Sports
√

Indoor
√

Scene change
√ √ √ √ √ √

Camera motion (*) P S P M Z P P SPZ P P P P
Face close-up

√ √ √

People
√ √ √ √ √ √

Water Surface
√

Salience
√ √ √ √ √ √ √

Film grain noise
√

Flat, low gradient area
√ √

Object number (**) 1 1 2 3 1 2 1 2 1 0 2 1
Brightness 2 3 2 2 1 2 3 3 2 2 3 2
Contrast 3 3 2 3 1 2 3 2 2 1 2 2
Texture (spatial variance) 2 1 2 3 2 2 3 2 3 2 2 1
Motion (temporal variance) 2 1 1 3 3 2 2 3 2 1 2 3
Color variance 1 3 1 3 1 1 1 3 2 1 2 1
Color richness 2 3 1 2 1 1 1 3 2 1 3 2
Sharpness 2 3 2 1 2 2 1 3 3 2 2 1

For high-level video genres,
√

indicates the video contains this features, and vice
versa.
For low-level video features, the number represents the level of the feature, where
( 1 , 2 , 3 ) means ( low , median , high ), respectively.
(*) Camera motion types: S for Still, P for Pan, Z for Zoom, M for irregular
movements.
(**) Object number: ( 0 , 1 , 2 , 3 ) means ( no main object , one , a few , many )

• El Fuente A (EA) in Fig. 3.1f: Several people in the tribe dancing around a

man who is drumming. In addition to fast motions, the scene also contains large

portions of ground and sky that are with low gradient.
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• El Fuente B (EB) in Fig. 3.1g: A boy walking in front of a fountain. In another

scene, we have a close view to the frontal face of the boy. The water drops in the

background make it very difficult for video coding.

• Fox Bird (FB) in Fig. 3.1h: A cartoon sequence with a fox running rapidly. There

are scene changes, and several camera motions are involved.

• Kimono (KM) in Fig. 3.1i: A woman walking slowly toward the camera in front

of the woods. The woman is close to the camera and the face of the women can

be seen clearly.

• Old Town Cross (OT) in Fig. 3.1j: A bird’s eye view of an old town with slow

camera movements. Except the sky and the buildings, there are no other objects

in the scene. Film grain noise can be observed in this video sequence.

• Seeking (SK) in Fig. 3.1k: Several people in different colors moving around.

• Tennis (TN) in Fig. 3.1l: Girls playing tennis, and running very fast to chase the

ball. There is also a scene change in this sequence.

3.2.2 Distorted Video Generation

We consider two typical distortion types in video applications.

• H.264/AVC compression

H.264/AVC is the most popular video format used in IP-based video streaming.

The compression artifact due to lower coding bit rates is one main distortion

source.

• compression followed by scaling (or simply called scaling below)

The image size has to be scaled when a video clip of a lower resolution is dis-

played in a display panel of higher resolution. This effect can be simulated via a
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cascade of operations: down-sampling, encoding, and then resizing to the original

resolution.

We adopt four distortion levels for each distortion type. Since there are 12 source refer-

ence sequences, we have 12× 2× 4 = 96 distorted sequences in total.

We used x264 [4] as the encoder to generate compressed video files. Rate control

was enabled with a variable bit rate, and a two-pass encoding scheme was used to ensure

consistent perceptual quality frame by frame so that viewers can determine the opinion

reasonably. At most two B frames were allowed between an I and a P frames. Both

the input and the output video resolutions are kept at 1080p as shown in Fig. 3.3. The

distortion levels are controlled by the target bit rates. Since we select a wide variety of

video sequences, the bit rate range is from 0.2 Mbps to 10 Mbps.

Figure 3.3: The process of generating distorted video contents with an H.264/AVC
codec.

Since the bit rates depend on video contents, we used the following method to sub-

jectively select distinguishable levels. First, we generated 300 compressed sequences

with different bit rates in the above range and drew a plot of “the PSNR value versus the

bit rate” as shown in Fig. 3.4. Although the PSNR value could be used as an auxiliary

tool, We do not rely on PSNR to determine perceptual quality. In this bit rate range,

there is a region where coded video quality is no distinguishable any longer as the bit

rate increases. We also set up a lower bound in the sense that the quality of video clip
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will not be acceptable if the bit rate is lower than this bound. The perceptual upper and

lower bounds are plotted as two solid horizontal lines in Fig. 3.4. We generated 300

clips for selection within the interval, and divided them into four regions with respect

to the PSNR value - A, B, C and D. Finally, we choose four suitable distortion levels

(namely, one from each region) based on subjective visual experience.

Figure 3.4: The process of selecting compression-distorted video clips with four distor-
tion levels.

To generate scaling-distorted video files, we follow the process as depicted in Fig.

3.5. First, all video sequences are converted to 720p before compression. The down-

sampling process is achieved by using the Lanczos algorithm so as to preserve as many

details as possible. Different video players may have different settings in video resizing.

To make a controllable environment, we choose the bilinear interpolation as the up-

sampling algorithm. The format conversion is done by FFmpeg [10]. In the subjective

test, we play up-sampled YUV sequences. The distortion levels are adjusted in the

compression step, which is the same methodology as before.
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Figure 3.5: The process of generating scaling-distorted video clips.

3.3 Subjective Video Quality Assessment

3.3.1 Subjective Assessment Methodology

Quite a few subjective test methods for multimedia applications have been recom-

mended by VQEG [114, 115] and ITU [47, 48]. There are various discrete scoring

methods, for example, five score levels in DCR [47] and seven score levels in CCR [48].

When the number of choices increases, it becomes more difficult to get consistent and

stable scores across multiple assessors. That is, the same choice made by a different per-

son may have a different meaning. Sometimes, the decision of the same person may also

vary along the test time. To mitigate these problems, we adopt the pairwise comparison

method in the subjective test.

Video clips of the same source but with a different distortion level were selected to

form a pair for comparison. An assessor was only asked to decide which video has better

quality out of the pair. The objective of a sequence of pairwise comparisons by the same

assessor is to create an ordered list of multiple distorted video sequences according

to the perceptual quality. The shortcoming of a straightforward pairwise comparison

method is its long assessment time. For example, if one attempts to compare the quality

of N samples, the total number of an exhaustive pairwise comparison is CN
2 . Several

methods were proposed to lower the complexity of the pairwise comparison method,

e.g., [107, 108, 58, 98, 60, 59, 124]. Here, we propose another simplification method as
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illustrated in Fig. 3.6, where each circle represents one distorted sequence. The basic

idea is sketched below.
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Figure 3.6: Illustration of a simplified pairwise comparison process.

It is desirable to get a good initial list for pairwise comparison. The distorted

sequences were first sorted by visual inspection. When the two sequences are far from

each other in the queue, it means the visual quality gap between them is obvious. This

initialization process is illustrated in Step 1, which is used to generate a rough sorted

list of all distorted video sequences for the initialization purpose at a low complexity.

Specifically, we ask a small number of professionals to participate in the subjective

evaluation with the ACR [47] to achieve this goal. The sorted list result is shown in Q1,

where A1 and A7 denote sequences of the best and worst quality, respectively.

After the initialization, all assessors are invited to participate in the subjective test.

When the distance of two distorted sequences in the ordered list is longer, their quality
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difference is more obvious. Thus, each assessor is asked to conduct pairwise comparison

of adjacent nodes only. In the given example, if the assessor prefer A4 to A2, then A4

and A2 are swapped. Furthermore, A8 and A3 are swapped similarly. After this round,

the assessor is led to a new ordered list denoted by Q2. With Q2, the four new adjacent

pairs (A4, A5), (A2, A6), (A6, A3), and (A8, A7) will be compared by the assessor, and

the assessors decision will create Q3. The process is repeated for the same assessor until

no further swap is needed. A comparison record matrix is used to record whether any

pair of nodes has been compared or not. If two adjacent nodes have been compared by

this assessor once, no further comparison will be conducted. All adjacent nodes in the

final ordered list, Qn, will be compared by the same assessor once, and the sequence in

the list reflects the preference of this assessor. A preference matrix for the nth assessor,

denoted by Pn, can be created accordingly.

By aggregating the preference matrices of multiple assessors, we get the group pref-

erence matrix, M . Here, we use the Bradley-Terry model [14, 15, 113] to derive the

final absolute scale score from the group preference matrix. Note that the Bradley-Terry

(BT) model and the Thurstone-Mosteller (T-M) model are two well-known models to

convert pair comparison data to psychophysical scale values for all stimuli. To verify

its accuracy, we compute the point score, as defined in [97], for the nth assessor based

on his/her ordered list Qn and compare them in Fig. 3.7, where the horizontal axis is

the point score and the vertical axis is the absolute scale number obtained by using the

Bradley-Terry model. We see that the two results are very consistent. The Pearson Cor-

relation Coefficient (PCC) between them is 0.9961. The absolute scale score can also

be derived by using the Morrisey Gulliksen incomplete matrix solution [36, 42].
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Figure 3.7: Correlation between the point score and the absolute scale number calculated
based on the Bradley-Terry Model.

3.3.2 Test Setting and Procedure

The assessors are seated in a controlled environment to assess the quality of video. The

view distance is strictly kept in 3 meters (3.5 times of the picture height), from the center

of the monitor to the seat. The videos are displayed on the HDTV, LG 47LW5600, with

native 1920x1080 resolution, thorough this work.

The total number of assessors is 45 consisting of 13 females and 32 males. Their age

is distributed from 20 to 40. Some of the assessors are PhD students in image processing

field. Others are naive and inexperienced with the topic of video quality assessment. The

assessors are confirmed verbally with sound or corrected vision.
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Before each test session, a lesson is offered to assessors on how to provide their

opinion scores. The training session consists of two parts. For the first part, a 5-minute

video is played with various video quality. In the second part, assessors learn to see

the difference in video quality and the way to operate the software. After the training

lesson, assessors will see the notification on the screen and start their test session.

The subjective test is conducted based on the modified pairwise comparison. The

software is written in Python. Video clips of the same source but with a different dis-

tortion level were selected to form a pair for comparison. They were randomly ordered

and played one by one with a 3-second break in-between. An assessor was given three

choices: “the first one is better”, “the second one is better”, or “no difference”. Eight

video sets were tested at each session and 45 sessions were conducted. One video set

includes all distorted video clips from the same video content. We collected 32 opinion

scores for each video set. Most assessors have no prior experience in video coding. The

test time and each decision made by every assessor were recorded for outlier detection

and score conversion. The duration of a test session ranges from 20 to 30 minutes.

3.4 Analysis of Subjective Opinion Scores

The collected opinion scores are processed according to the ITU recommendation [48].

The screening of possible outlier subjects is done by following that in [97]. That is, the

highest 10% and lowest 10% of the point scores are discarded. The final MOS values

with the 95% confidence interval sorted along the decreasing preset level are shown in

Figure 3.8. We see that the MOS values range from 0 to 8. The mean and the standard

deviation of assessors’ scores for each distorted video file are provided in the MCL-V

database. In this section, we discuss how video properties affect these scores in the

following two scenarios.
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Figure 3.8: Sorted Mean Opinion Scores with the 95% confidence interval, where the
red cross is the mean and the blue line indicates the stand deviation range between -1
and 1.

First, we compare the mean and the variance of opinion scores for two compressed

sequences in Table 3.4: Crowd Run and Kimono. As shown in the table, the variance of

Kimono is significantly lower than that of Crowd Run. This can be explained as follows.

Human has a clear visual attention region in Kimono, which is the Japanese lady in the

scene. In contrast, there is no clear visual attention region in Crowd Run. As a result,

viewers’ opinions are more diverse for Crowd Run.

Next, we compare the MOS values for two compression-distorted and scaling-

distorted video clips, Dance Kiss and Fox Bird, in Table 3.5. Since the variances are

close in each level between two distortion types, we only list the MOS here. For Dance
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Table 3.4: Comparison of the mean and the variance of opinion scores for compression-
distorted Crowd Run and Kimono sequences in MCL-V.

Mean Variance
Level Crowd Run Kimono Crowd Run Kimono
Good 6.91 6.92 0.25 0.22
Fair 5.38 4.85 0.51 0.38
Poor 3.16 2.61 0.41 0.16
Bad 1.05 0.80 0.39 0.35

Table 3.5: Comparison of the MOS values of the compression- and scaling-distorted
Dance Kiss and Fox Bird sequences.

Dance Kiss Fox Bird
Level Compression Scaling Compression Scaling
Good 6.63 6.20 6.58 6.38
Fair 4.61 4.62 4.34 4.59
Poor 2.59 2.35 2.88 1.50
Bad 0.35 0.79 1.61 0.07

Kiss, the MOS of scaling distortion is close to that of compression distortion. For Fox

Bird, we observe a significant MOS drop in scaling distortion when the bit rate becomes

low. Fox Bird is a bright video clip that contains stronger edges as a result of the cartoon

content. The scaling distortion is more visible in a bright scene with strong edges. In

contrast, Dance Kiss is a dark video clip in our selection. It has smoother textures. The

scaling distortion is reduced by the dark scene and the smooth texture.

Since the MCL-V database contains a wide range of video contents, it can capture

the characteristics of the human visual system better and allow researchers to develop

better objective video quality assessment algorithms.

3.4.1 Performance Comparison of Objective VQA Methods

Several full-reference (FR) IQA and VQA algorithms [118, 119, 105, 130, 71, 126, 61,

117] are evaluated against the collected MOS of the MCL-V databased and reported in
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this subsection. IQA methods can be extended to VQA methods by averaging frame-

level quality scores. The IQA source codes of [118, 119, 105] are downloaded from [32].

Others are downloaded from respective authors’ websites. The state-of-the-art VQA

methods take both spatial and temporal artifacts into account. For example, the VADM

method decouples two spatial distortion types; i.e. detail losses and additive impair-

ments, and evaluate them separately. Furthermore, the motion information is adopted

by VADM to measure the temporal masking effect. The ST-MAD method employs the

spatio-temporal images to model the interaction between these two artifacts.

Three performance measure for these IQA and VQA methods are calculated and

compared. They are: 1) the Pearson correlation coefficient (PCC) [114, 115], 2) the

Spearman rank-order correlation coefficient (SROCC) [114, 115], and 3) the root mean

squared error (RMSE) [114, 115]. The PCC and SROCC are computed after nonlinear

regression on the quality scores using the logistic function as recommended in [22].

Mathematically, we have

y = β1 · (0.5−
1

1 + eβ2(x−β3)
) + β4 · x+ β5, (3.3)

where x is an objective quality score and βi, i = 1...5, are fitting parameters.

First, the performance of these quality metrics with respect to the compression dis-

tortion is shown in Table 3.6. We see that FSIM and VADM give the best performance

among the test group for the compression distortion due to their good distortion models.

They are close in PCC and RMSE while VADM provides a better SROCC measure.

However, their PCC and RMSE values are still lower than 0.75, which allows room for

further improvement.

Next, the performance of these quality metrics with respect to the scaling distortion

is given in Table 3.7. First, we see that these metrics perform worse for the scaling
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Table 3.6: Performance comparison of objective quality metrics with respect to the com-
pression distortion in MCL-V.

PCC SROCC RMSE
PSNR 0.471 0.422 1.994
MSSIM[119] 0.617 0.609 1.779
SSIM[118] 0.650 0.633 1.718
VIF[105] 0.667 0.637 1.685
GMSD[126] 0.653 0.644 1.712
GSM[71] 0.715 0.713 1.580
FSIM[130] 0.770 0.775 1.441
S-MAD[117] 0.702 0.701 1.609
T-MAD[117] 0.625 0.623 1.763
ST-MAD[117] 0.657 0.663 1.702
VADM[61] 0.747 0.735 1.515

Table 3.7: Performance comparison of objective quality indices with respect to the scal-
ing distortion in MCL-V.

PCC SROCC RMSE
PSNR 0.463 0.493 1.881
MSSIM[119] 0.609 0.630 1.683
SSIM[118] 0.635 0.649 1.639
VIF[105] 0.636 0.661 1.637
GMSD[126] 0.634 0.662 1.642
GSM[71] 0.692 0.707 1.531
FSIM[130] 0.722 0.702 1.468
S-MAD[117] 0.659 0.624 1.594
T-MAD[117] 0.580 0.548 1.728
ST-MAD[117] 0.617 0.585 1.669
VADM[61] 0.728 0.741 1.469

distortion than the compression distortion. Second, VADM and FSIM are still the top

two performers among the test group while VADM outperforms FSIM in all three scores.

Finally, we list the performance of all methods against the entire MCL-V database

that contains both compression and scaling distortion types in Table 3.8. Furthermore,
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Table 3.8: Performance comparison of objective quality indices with respect to both
compression and scaling distortions in MCL-V.

PCC SROCC RMSE
Database MCL-V LIVE[103] MCL-V LIVE[103] MCL-V LIVE[103]
PSNR 0.472 0.549 0.464 0.523 1.956 9.176
MSSIM[119] 0.621 0.739 0.623 0.732 1.740 7.398
SSIM[118] 0.650 0.542 0.648 0.525 1.687 9.223
VIF[105] 0.660 0.570 0.655 0.557 1.666 9.019
GMSD[126] 0.650 0.737 0.661 0.726 1.686 8.414
GSM[71] 0.709 0.650 0.711 0.684 1.565 8.341
FSIM[130] 0.750 0.690 0.755 0.689 1.466 8.240
S-MAD[117] 0.681 0.737 0.670 0.721 1.624 7.669
T-MAD[117] 0.600 0.818 0.584 0.815 1.774 6.562
ST-MAD[117] 0.634 0.830 0.623 0.824 1.714 6.133
VADM[61] 0.742 0.844 0.752 0.835 1.489 5.945

we list their performance against the LIVE database [103] for side-by-side compari-

son. The top three performers for the LIVE database are VADM, ST-MAD and T-

MAD. Their PCC and SROCC scores are all above 0.80. In contrast, their performance

degrades substantially in the MCL-V database, which indicates that MCL-V is a more

challenging video quality database. This can be explained by that the source video in

MCL-V is more diversified, and it is not easy to find an ideal metric to cover all of them.

3.5 Conclusion and Future Work

The construction of a new HD video quality assessment database, called MCL-V, was

described in this work. MCL-V contains 12 source video clips and 96 distorted video

clips with subjective assessment scores. The source video clips were selected from a

large pool of public-domain HD video sequences with representative and diversified

contents. Several existing IQA and VQA algorithms were evaluated against the MCL-V

database. The database is publicly available at http://mcl.usc.edu/mcl-v-database/ for

future research and development.
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We attempted to analyze the relationship between video properties and the MOS

values using 4 video sequences as examples in Section 3.4. A thorough analysis of the

acquired MOS involves visual salience detection/tracking and a good understanding of

the spatial/temporal masking effects. Although this is beyond the scope of our work, it

is an interesting topic for further study. Furthermore, as shown in Section 3.4.1, there is

no objective quality metric that has a PCC (or SROCC) value higher than 0.75 against

the MCL-V database. The development of a better VQA method is also in need.
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Chapter 4

Objective Assessment Methods

4.1 Introduction

Video streaming service grows and evolves in a incredible speed. Thousands of titles

are monthly added to major service providers, such as Netflix, Hulu, and Amazon.

The delivered titles are compressed and scaled in various bit rates and resolutions to

match clients’ bandwidth and end-terminal. The streaming bandwidths range from 500

Kbits/sec to 12 Mbits/sec and the resolutions vary from CIF to UHD. Thus, the distor-

tion comes not only from compression but also resizing, where a video of a smaller size

is scaled up to a larger resolution to match the dimension of the display device. The

nature of streaming video is so complicated that assessing the video quality becomes a

significant issue.

Video quality assessment (VQA) is essential to video coding and processing. Since

the streaming service may have higher bit rates to maintain video quality [3, 45], the

blocking effect is not as strong as that in existing video quality databases. Furthermore,

video quality is blurred due to video resizing. Spatial and temporal masking effects

appear in various forms due to content diversity. For instance, visual artifacts are likely

to be seen in still scenes than fast-motion scenes. A new video quality database, called

MCL-V[64], was recently constructed for streaming video quality evaluation. MCL-V

provides richer diversity in source video contents with practical distortions.

To measure the distortion, the mean squared error (MSE) is widely applied to assess

the quality. However, [33] indicates several psychovisual phenomena affects the human
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visual system, and MSE does not reflect these phenomena. These phenomena affects are

so called spatial masking effects, which are have been studied in [31, 6, 8, 44, 5, 43]. For

video, temporal masking effect has significant impact on human perception as indicated

in [78, 19, 75, 94]. Thus, researchers in the VQA field strongly intend to model these

phenomena and apply to VQA metrics. Li et al. [62] and Brandao and Queluz [16]

both adopted Daly’s contrast sensitivity function (CSF) [23] in their work. Their results

show that modeling masking effects well can improve the accuracy of the VQA indices.

However, only a few masking effects are modeled as well as CSF. Since it is difficult

to model other masking effects by experiments, the research results from Vision and

Psychology are rarely to be combined to VQA related researches. Therefore, machine-

learning based VQA indices[83, 81, 73] are introduced to find the relationship from

data-oriented approach, rather than digging out the interrelationship between human

brain and vision systems.

Several successful learning-based IQA methods[83, 73, 81] are proposed and

demonstrate high-correlated prediction to the subjective opinions. Unlike successful

IQA research work, there are many challenges in designing accurate learning-based

VQA methods. First, Limited number of data restricts the learning performance. Sec-

ond, no ground truth is available to learn for temporal variation of video sequence.

Temporal pooling has been studied by [101, 100, 104] over a decade, but using different

methods does not generally show significant improvement. As compared with previous

work[65], we consider frame-level training to solve the problems of limited samples

and temporal pooling. When we take one frame as one sample, we use the mean opin-

ion score (MOS) of the whole sequence as ground truth. In order to compensate the

mismatch of between frame data and sequence MOS, we use video content indices to

indicate the spatial and temporal context of the current frame, such that the learning

process is capable to take account of the spatial and temporal masking effects.
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We propose an ensemble learning-based Video quality Assessment (EVQA) index

in this work. First, The frame samples are applied with multiple IQA methods and the

proposed video content indices. Then, we justify and reposition the IQA methods as

essential metric, group classifier, and fusion candidate. In the second step, the group

classifier and essential metric are used to recursively partition the whole sample space

into several groups. Finally, several VQA algorithms are selected and fused to predict

the perceptual quality within each group. The contributions of this novel EVQA index

are 1) a new approach to justify the existing IQA metrics and reposition their roles in a

scalable VQA framework, 2) two proposed video content indices for addressing video

property as input features, 3) recursive grouping by experts to reduce content diversity

and improve the fusion performance via machine learning, and 4) optimized ensemble

learning to adopt different quality assessment methods and video content indices to

compensate each other with respect to different quality levels. The rest of this paper

is organized as follows. A brief review of previous related work is described in Section

II. The details of the proposed EVQA index is presented in Section III. Experimental

results are shown in Section IV. Finally, concluding remarks are given in Section V.

4.2 Background Review

Full-reference (FR) video quality indices take both the test video and the reference

video as inputs. Because the information is retrieved from the reference video, the

FR approach is more reliable than the no-reference approach, which only considers the

test video. In this paper, we extend the image quality (IQA) metrics as VQA indices by

averaging frame-level quality scores. The PSNR value is the most common FR VQA. It

is calculated from the mean squared error (MSE), which can discriminate slight change

between reference and distorted videos. However, it is highly content dependent due to
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perceptual effects[33], and its values are not comparable between different video con-

tents. For example, video with grain noise is heavily penalized in PSNR although its

perceptual quality is high as shown in Fig. 4.1. Even for identical content coded by

different bit rates, the difference in PSNR is not a good indicator of subjective quality

difference. Since PSNR is not well correlated with subjective human visual experience,

other VQA indices are proposed to assess video quality[68, 74].

The state-of-the-art VQA metrics follow two main approaches: formula-based and

learning-based. The formula-based approach creates a close form expression of percep-

tual quality. The famous ones include SSIM[118], VIF[105], FSIM[130]. This type

of metrics are good to handle specific distortions. The other approach, the learning-

based approach, integrates several features and predict the perceptual quality based on

the machine learning algorithms. [73] is an FR index that fuses existing quality met-

rics and predicts image quality with high accuracy. [81] combines a large number of

computational statistical features and predict perceptual quality without reference.

4.2.1 Evaluation of Formula Based Quality Indices

Formula-based VQA indices were designed to measure “similarity” or “difference” with

close forms. The former approach usually retrieves features from reference and distorted

videos and computes the similarity index from the ratios of specific features. Examples

include: SSIM[118], MSSIM[119], VIF[105] and FSIM[130]. The difference-based

approach adopts the human visual system (HVS) model to predict how human per-

ceives the difference between reference and distorted videos. WSNR[80], ADM[62],

and VADM[61] belong to the difference-based category. These indices work reason-

ably well against simpler video quality databases developed before MCL-V[64]. The

correlation coefficient of the best metric, VADM[61] is less than 0.75. However, these
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metric takes various approaches to justify the quality degradation between reference and

distorted videos. It would be interesting to see the strength of each metric.

Generally speaking, compressed video contains two types of visual artifacts, blurri-

ness and blockiness, as illustrated in Fig. 4.1. High quality video has slight blurring but

no obvious blocking. It may appear sharp to ordinary viewers, yet blurred edges can be

found by experts. The artifact of medium quality video is visible to common assessors,

yet the overall quality is still acceptable. Low quality video has the strongest blurring

and blocking artifacts, which is unacceptable for broadcasting. The appearance of visual

artifacts changes along the scale from high to low quality.

Figure 4.1: Illustration of video quality scale.

To understand the strength of different VQA indices in assessing streaming video

quality, we test them with videos of different quality levels given in Fig. 4.1. Specifi-

cally, we split the 48 compression-only videos in MCL-V into three classes according

the their mean opinion scores (MOS):

• Class-High: It is the high quality class whose video is slightly blurred with little

blocking artifacts;
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• Class-Medium: It is the medium quality class whose video has medium level

blurring and blocking artifacts;

• Class-Low: It is the low quality class whose video has the strongest blurring and

blocking among the three.

If a method performs well in Class-High, we claim that it performs well in detecting

perceptual blurriness. We conduct experiments for videos in each class and compute the

root mean squared error (RMSE) of predicted quality scores. It is worthwhile to point

out that correlation coefficients may not provide an accurate result on their performance

due to the small number of sequence numbers (i.e. 16) in each quality class. The ranking

of several VQA methods (namely, SSIM, VIF, FSIM, and VADM) for each video quality

class is shown in Table 4.1. We see that the best VQA indices with respect to Class-High,

Class-Medium and Class-Low are SSIM, FSIM and VIF, respectively. Thus, if we can

fuse them into a single index via learning, it may offer the best solution among all three

individual indices.

Table 4.1: The ranking of quality methods regarding the quality classes.
Quality Class Comparison of the Methods in RMSE

High
SSIM VIF VADM
0.565 0.599 0.617

Medium
FSIM VIF VADM
0.683 0.684 0.738

Low
VIF VADM FSIM

0.283 0.466 0.506

4.2.2 Learning-based Visual Quality Assessment Methods

There are two approaches to the design of an IQA/VQA index; namely, formula-based

and learning-based. They are reviewed below. In the formula-based approach, a closed
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form mathematical model is derived to predict perceptual quality, such as frame-based

structural similarity (SSIM) [118], visual information fidelity (VIF) [105], feature simi-

larity (FSIM) [130], and video additive impairments and detail losses measure (VADM)

[61]. However, it is extremely difficult to provide a good mathematical HVS model

to cover a wide range of video collections. To give an example, Li et al. [61] used

Daly’s contrast sensitivity function (CSF) [23] to improve the performance of VQA

indices. However, there are more visual properties than contrast in the HVS, including

luminance adaptation, visual saliency among others, the applicability of which is rather

limited.

In learning-based approaches, a statistical model is built to model the relation

between features of training image/video data and their mean opinion scores (MOS).

Then, it is used to predict the quality of unseen test video. This approach has been used

by researchers to design IQA indices in recent years. Narwaria and Lin [83] extracts

the structural information in images with the singular value decomposition and then use

the support vector regression (SVR) to map the feature to MOS. Liu et al. [73] pro-

posed a multi-method fusion (MMF) IQA index, where a regression approach is used

to combine scores of multiple IQA indices. The MMF score is obtained by a non-

linear fusion of scores computed by multiple methods with suitable weights obtained

by a training process. The MMF index offers the state-of-the-art IQA results in several

popular databases, including LIVE [106] and TID2008 [97].

The learning-based approaches have also been applied to the design of VQA indices.

The fusion-based VQA (FVQA) technique was proposed in [65]. The FVQA method

treats each video clip as a single data sample. In the training stage, it first classifies video

clips based on their spatial and temporal complexities into several groups to reduce intra-

group content diversity. Then, it learns the fusion rule of multiple VQA indices in each
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group. In the testing stage, the FVQA index first classifies a test video clip into a group

and then applies the fusion rule in that group for VQA score prediction.

Since the development of formula-based VQA indices is hindered by video content

diversity and HVS complexity, we adopt a learning-based approach in this work. It is

however important to emphasize that the number of training images in image quality

databases [106, 97] is significantly larger than that in video quality databases. The

accuracy of a statistical VQA model can be severely affected by the small size of the

training data. This is the main issue to be addressed in our current work. Two exemplary

video quality databases are used in our experiments. They are the LIVE database [103]

and the MCL-V database [64]. The LIVE database contains 80 video clips of resolution

768 × 432 and with a duration of 10 seconds. They were coded by H.264 and MPEG-

2. The MCL-V database contains 12 source video clips of resolution 1080p and with

a duration of 6 seconds. There are 96 distorted video clips due to compression and

scaling.

4.3 Proposed Fusion-based VQA (FVQA) Index

The block-diagram of the proposed fusion-based VQA (FVQA) method is illustrated

in Fig. 4.2. It consists of two stages. In the first stage, reference videos are grouped

according to their properties. In the second stage, several FR VQA methods are applied

to the reference and distorted videos and their scores are fused to generate the final

quality score. The performance of the FVQA index is evaluated by cross-validation.

The details are described below.
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Figure 4.2: The block-diagram of the FVQA method.

4.3.1 Video Grouping

By classifying videos of similar content into a group, we can build a more accurate

quality prediction model within each group. On the other hand, we want a sufficient

number of samples in each group to allow the machine learning approach. Several

features are chosen in [122] to characterize source images and videos along the color,

space and time dimensions. For the VQA purpose, we choose the Spatial Information

(SI) and the Temporal Information (TI) defined by the ITU-T Recommendation [47] to

represent the spatio-temporal characteristics of source videos and utilize them to group

video contents. Mathematically, they are expressed as

SI = maxtime{stdspace[Sobel(Fn)]} , (4.1)
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where SI is calculated by applying the Sobel filter to the nth video frame, Fn, and then

taking the standard deviation over the space domain. Then, the maximum value along

the time is chosen to present SI, and

TI = maxtime{stdspace[Mn(i, j)]} . (4.2)

where Mn(i, j) is the pixel difference between frames Fn and Fn−1 located in the ith

row and jth column. TI is computed as the maximum of the space standard deviation of

Mn(i, j) along the time axis.

Figure 4.3: Grouping video contents based on SI and TI.

By plotting the SI and TI values of each MCL-V video sample in Fig. 4.3, we

can divide all MCL-V source videos into two groups: Group I and Group II with the

following separating line:

GX = sign(a · SIX + b · TIX + c), (4.3)
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where X denotes a particular video sample, SIX and TIX are its SI and TI values. We

choose a = 1, b = 2, and c = −140 in this work. Video X belongs to Group I and

Group II if GX = −1 and GX = 1, respectively.

Moreover, there are two distortion types, compression and resizing, in MCL-V. Thus,

we classify video samples into four groups: Group I/Compression, Group I/Resizing,

Group II/Compression, Group II/Resizing eventually. In each group, the spatial-

temporal characteristics of video samples are closer. Then, we will adopt a suitable

machine learning technique for each group.

4.3.2 Learning Algorithm for FVQA

In this section, we consider the FVQA method that fuses scores from five VQA indices;

namely, ADM, VIF, FSIM, PSNR and SNR. The supervised learning algorithm is

adopted by FVQA in the determination of their weight coefficients. We compare two

popular algorithms; namely, the Support Vector Machines [21] (SVM) and the Artificial

Neural Network[38] (ANN), and choose the better one as the target training algorithm.

The 4-fold cross-validation is applied to the MCL-V database for performance compar-

ison.

For the SVM implementation, we adopted the software developed by Lin et al.[21].

We chose the Nu-SVR[102] for regression with two kernel functions - the Sigmoid ker-

nel and the Radial Basis Function (RBF) kernel. The grid search [63] method was used

to find the optimal pair of (C, γ), where C is the penalty cost in the training process

and γ is the parameter in the kernel functions. For the ANN implementation, we con-

sidered two back-propagation training algorithms. They are the Resilient Propagation

(RPROP)[99] and the Levenberg-Marquardt (LM) algorithm [39]. We tested a wide

range of hidden node parameters to find the best ANN configuration.
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Table 4.2: Comparison of Learning methods
PCC SROCC RMSE

SVM (Sigmoid) 0.732 0.724 1.512
SVM (RBF) 0.901 0.891 0.992
ANN (RPROP)[99] 0.780 0.774 1.389
ANN (LM)[39] 0.877 0.877 1.067

The performance of four FVQA methods is given in Table 4.2 for comparison. As

shown in this table, the SVM method with the RBF kernel offers the best performance

among the four. Hence, it is adopted in the framework given in Fig. 4.2.

4.3.3 Selection of Contributing VQA Indices

We examined the FVQA method with five contributing VQA indices. However, a poor

VQA index may contribute to the final fusion performance in a negative way. In this

case, we want to remove it from the contributing set. Besides, by reducing the number

of participating VQA methods, we can reduce the complexity of FVQA. To achieve this

goal, we adopt the Sequential Forward Method Selection (SFMS) method as proposed

in [73]. It is summarized in Algorithm 1. For each video group, we use SFMS to select

two to three contributing VQA indices. The results are shown in Table 4.3.

Table 4.3: Selected VQA indices for 4 video groups.
Group Selected VQA Indices
Group

I/Compression
ADM and PSNR

Group
II/Compression

ADM, VIF, and SNR

Group I/Resizing FSIM and PSNR
Group II/Resizing ADM, VIF, and SNR
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Algorithm 1 Sequential Forward Method Selection (SFMS)
Require: M : The set of available quality metrics; M∗: The set of the selected metrics;
Ensure: Optimal M∗ by minimizing RMSE;

1: Initial M∗ = {φ}; J({φ}) =∞;
2: Sort M in ascending RMSE;
3: while M 6= {φ} do
4: Pick the next best method;
5: m = arg minm∈M−M∗ J(M∗ +m);
6: if J(M∗ +m) < J(M∗) then
7: Update Selection; M∗ = M∗ +m; M = M −m;
8: else
9: Break the while loop;

10: end if
11: end while
12: return M∗;

4.4 Proposed EVQA Index

Motivation and Overview. A video stream is composed by image frames, where frame-

to-frame variation is usually small except for scene change. It is a commonly believed

fact that perceptual quality remains stable within a short period of time. This property

was exploited in [61, 117], where a spatial (or frame-level) quality index is first com-

puted for each frame independently and the index scores across multiple consecutive

frames can be weighted by a temporal pooling method. In this way, a VQA index can

be constructed from frame-level IQA indices. To tackle the problem of limited train-

ing data, our proposed method adopts a frame-based learning mechanism, inspired by

the same principle. Each source video clip in the MCL-V database lasts for 6 seconds

and the frame rate is 30 frames per second (fps). The total number of frames for one

sequence is 180 frames. In other words, each training video clip can offer 180 data sam-

ples, instead of just one. There is however a missing link in the aforementioned strategy;

namely, the frame-level MOS score is not available during the training process. Since

all video quality databases contain short and homogeneous video clips, it is assumed
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that the MOS of the whole sequence can be used as an approximate ground truth of its

frames. This assumption will be verified in Section 4.

The EVQA method consists of three steps in the training phase. Step 1: Feature

Extraction. Several IQA methods are applied to each individual frame and their scores

are stored as its feature vector. The raw scores of IQA indices are properly normalized to

match the MOS value. Step 2: Frame Space Partitioning. The frame space is partitioned

into several subspaces to enhance the learning performance. Step 3: IQA index Fusion.

The fusion rule of combining multiple IQA indices into one single IQA score for a frame

is learned in each partitioned frame subspace.

In the testing process, the EVQA method predicts the quality index of each frame

by following the above steps. After that, all predicted frame scores are integrated to

generate one MOS value for a short test video clip via temporal pooling. Since feature

extraction is straightforward, we will elaborate on the following three topics below:

frame space partitioning, IQA index fusion and temporal pooling.

Frame Space Partitioning. The main purpose of frame space partitioning is to

allow more efficient learning rule in a smaller subspace, where frames share properties

of higher similarity. This can be done based on spatial, temporal and quality/distortion

properties of frames. The spatial and temporal complexities are related to the spatial and

temporal masking effects of HVS. For the quality/distortion property, the predicted per-

formance of an IQA index can be exploited. That is, each IQA index has its own strength

in assessing some distortion types [73] and, if two frames can be well predicted by a

common set of IQA indices, they must share certain similarity in their quality/distortion

property.

Spatial and temporal complexities are computed based on the undistorted reference

frames. The spatial information (SI) and the temporal information (TI) introduced in

[47] are two well-known parameters for video sequences. However, they are not suitable
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for our purpose since we are concerned with the properties of a single frame. Some

modifications are needed, and we call extended SI (ESI) and extended TI (ETI) the

modified metrics.

For the ESI, we first obtain the edge magnitude map GM of frame Fn using the 3×3

Sobel filter. Then, the ESI for this frame is defined as

ESIn =
std[GM(Fn)]

mean[GM(Fn)]
. (4.4)

Complex scenes with a large amount of texture have a larger ESI value. For the ETI, the

basic idea is to compute the pixel-based luminance difference of two adjacent frames.

Sequences with large motion have large ETI values. Since the fine structure of the frame

data, such as film noise, will have a negative impact on the accuracy of ETI, we apply the

5×5 Gaussian filter to their pixel difference, which is equivalent to taking the difference

after we filter out each frame by the same Gaussian filter. Then, the ETI is defined as

ETIn =
1

WH

W∑
x=1

H∑
y=1

Dn(x, y) . (4.5)

where W and H are the width and the height, correspondingly of the nth frame and

Dn(x, y) = |G ∗ (Fn(x, y)− Fn−1(x, y))| (4.6)

is the absolute value of the Gaussian-smoothed frame difference, and where G is the

Gaussian filter.

Besides spatial and temporal complexities, it is desired to classify image frames

based on their distortion type. However, it is difficult to obtain this information directly,

yet it is possible to be obtained indirectly by analyzing its IQA scores. This analysis is

conducted with respect to frames in the training set. Suppose that there are T training
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frames. For a given IQA index, we can divide all training frames into C clusters of equal

size N = T/C, based on its score distribution. We map raw IQA scores in one cluster,

denoted by x, to a normalized score, Q, using a logistic function [130] as follows:

Q = β1 · (0.5−
1

1 + eβ2(x−β3)
) + β4 · x+ β5, (4.7)

where βi, i = 1...5, are the fitting parameters determined by known IQA/MOS score

pairs. Eq. (4.7) is used to convert an IQA score of an arbitrary range to a suitable range

which is compatible with measured MOS values. After the score conversion, we can

compute the root-mean-squared-error (RMSE), denoted by E, between Q and MOS in

that cluster via

E(Q,MOS) =

√√√√ 1

N

N∑
n=1

(Qn −MOSn)2, (4.8)

where n is a frame index, MOSn is its MOS value and Qn is its transformed IQA index

value. Furthermore, we can choose a threshold value to determine if an IQA method

performs well in a cluster. For example, the RMSE values of 8 clusters are shown in

Fig. 4.4. By setting the threshold value to E = 1, we see that the IQA index performs

well for frames in Cluster Nos. 6-8 but poorly for frames in Cluster Nos. 1-5.

If an IQA index performs equally well (or poorly) for all clusters as shown in Fig.

4.5 (a), it cannot be used to partition the frame space. On the other hand, if it performs

well for some clusters but poorly for other clusters as shown in Fig. 4.5 (b), we can use

it to partition the frame space into two subspaces according to its preference - favored

and unfavored subspaces.

Furthermore, we can use a sequence of IQA indices with preference to partition a

frame space into multiple subspaces as illustrated in Fig. 4.6, where each split is defined

by one IQA index. In this figure, the favored and unfavored subspaces of the first IQA

index is denoted byA andAc, respectively. Similarly, the frame space can be partitioned
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Figure 4.4: The plot of the RMSE of the predicted MOS values against the actual ones
in 8 clusters for an exemplary IQA index, where a black and a gray bars indicate that its
RMSE is lower and higher than a pre-selected threshold value, respectively.

(a) Index without preference (b) Index with preference

Figure 4.5: Illustration of an IQA index (a) without and (b) with preference.

by another IQA index into the favored and unfavored subspaces denoted by B and Bc,

respectively. Then, the frame space can be decomposed into four subspaces as shown in

the third stage of Fig. 4.6.

The frame space partitioning process can be organized as a binary tree as shown in

Fig. 4.7. Each partition creates two children, and grows the tree to the next level. The

partition should stop if the number of frames in a node is too small since each group

should have a sufficient number frames for the learning purpose. On the other hand, for
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Figure 4.6: Frame space partitioning using multiple IQA indices with preference.

nodes that have a large number of frames, after we exhaust all IQA indices, we can use

the frame′s ETI and ESI value to further partition them. Then, we can use frame’s ETI

and ESI to partition them.

Figure 4.7: Illustration of frame space partitioning using a binary tree structure, where
the stop criterion is checked at each node.

IQA index Fusion. In our experiment, six state-of-the-art IQA indices [62, 118,

105, 130, 119, 71] are included in the IQA candidate pool. For each partitioned frame

subspace, we use the sequential forward method selection (SFMS) scheme [73, 65] to

select a set of IQA indices to fuse so as to optimize an objective function such as the

Pearson linear correction coefficient (PCC) value. The SFMS scheme is a greedy search
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algorithm that selects the optimal IQA index in the candidate pool to yield a better

prediction at each iteration. The iteration will terminate if the improvement becomes

negligible. The SFMS scheme is determined by training data while the fusion rule is

also learned through SVR from training data in each frame subspace.

Temporal Pooling. Temporal pooling is necessary to generate the final MOS value

for the entire test video based on the predicted MOS value of each individual frame.

Several temporal pooling methods such as the mean, median, Minkowski, percentile

was studied and compared in [100, 104]. There is however no universal method that

offers the best performance for all video contents. We adopt a simple average scheme

here, which is justified by experimental results in Section 4.

4.5 Experimental Results

We present experimental results in two parts in this section. In the first part, we study

the relationship between the frame-level and the sequence-level quality indices to justify

two items: 1) the assumption that the sequence-level MOS can be used to approximate

the frame-level MOS, and 2) the adoption of simple averaging as the temporal pooling

method in EVQA.

Relationship between Frame-Level and Sequence-Level MOS Values. The

frame-to-frame quality level is assumed to be stable for a short period if no scene change

occurs. To verify this assumption, we plot the predicted frame-level MOS as a function

of the frame index for the BC (Birds in Cage) sequence coded under ”good” quality in

the MCL-V quality database in Fig. 4.8. We see that the predicted frame-level MOS is

nearly constant.

The MCL-V video quality database consists of 12 sequences with five quality levels

caused by different coding bitrates. We show the mean (µ) and the standard deviation
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Figure 4.8: The predicted frame-level MOS value is plotted as a function of the frame
index for the BC sequence coded under ”good” quality, where predicted sequence-level
MOS is 6.81 by simple averaging while the true MOS value is 7.06.

(σ) of the predictive frame-level MOS values for all of them, in four quality levels (good,

fair, poor and bad) in Table 4.4. The first column is the acronym for the title of each

sequence. When the standard deviation value is low, it means that the frame-level MOS

is nearly a constant. There are several sequences with larger standard deviation values

such as DK (Dance Kiss), EA (El Fuente A), EB (El Fuente B), FB (Fox Bird) and TN

(Tennis). These sequences were shot with more complex camera-object relative motion;

thus they deviate slightly from the homogeneous frame-level MOS assumption.

To examine such a deviation in detail, we plot the predicted frame-level MOS as

a function of the frame index for the DK sequence coded under ”good” quality in

the MCL-V quality database in Fig. 4.9. We do observe the fluctuation of the pre-

dicted frame-level MOS values between frames 45-90 caused by camera-object relative

motion. However, the predicted sequence-level MOS (6.48) is still close to its ground

truth (6.63).

Performance Comparison of VQA Indices. The performance of the proposed

EVQA method is evaluated on the MCL-V database [64] and the coding distortion of
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Table 4.4: Mean and standard deviation of frame scores with compression distortion in
MCL-V

Qual. Level Good Fair Poor Bad
Seq. Title µ σ µ σ µ σ µ σ

BB 6.17 0.43 4.92 0.58 2.97 0.67 1.82 1.53
BC 6.81 0.09 5.79 0.59 2.69 0.59 0.71 0.26
BQ 6.88 0.19 6.42 0.52 3.58 0.55 1.80 0.64
CR 6.76 0.50 4.50 0.41 3.22 0.42 1.29 0.64
DK 6.48 1.05 5.42 1.88 2.74 1.65 0.42 1.72
EA 6.64 0.82 4.37 0.92 1.72 0.70 0.29 0.06
EB 4.92 0.92 3.48 1.18 1.52 0.68 1.76 0.79
KM 6.24 0.50 5.00 0.90 2.81 0.71 1.05 0.52
FB 6.00 0.72 3.57 1.08 1.37 0.89 1.43 1.26
OT 6.55 0.24 6.34 0.19 2.80 0.49 0.73 0.28
SK 6.75 0.08 5.34 0.52 3.35 0.42 0.75 0.36
TN 6.32 0.47 4.82 0.58 4.12 0.69 1.29 0.84

Figure 4.9: The predicted frame-level MOS value is plotted as a function of the frame
index for the DK sequence coded under ”good” quality, where predicted sequence-level
MOS is 6.48 by simple averaging while the true MOS value is 6.63.

the LIVE video database [103]. We follow the validation process proposed by VQEG in

[115]. First, IQA index scores [62, 118, 105, 130, 80, 119, 126, 71] are mapped by the

logistic function given in Eq. 4.7. Then, we consider three commonly used performance

measures: 1) the Pearson correlation coefficient (PCC), 2) the Spearman rank-order cor-

relation coefficient (SROCC), and 3) the root mean squared error (RMSE). PCC com-

putes the correlation between the true and predicted MOS values. SROCC measures
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prediction monotonicity. RMSE calculates the error between the true and predicted

MOS values.

Table 4.5: Performance comparison of video quality indices for video clips in the LIVE
video quality database with compression distortion (H.264 and MPEG-2).

PCC SROCC RMSE
PSNR 0.478 0.449 9.034
VIF [105] 0.600 0.607 8.236
MSSIM [119] 0.591 0.692 8.294
FSIM [130] 0.634 0.698 7.955
GSM [71] 0.614 0.658 8.117
ST-MAD [117] 0.838 0.825 5.607
VADM [61] 0.847 0.850 5.469
EVQA 0.934 0.926 3.664

We adopt the 10-fold cross-validation strategy to select training and testing sets in

the experiments. The performance of EVQA is compared with several benchmarking

IQA and VQA indices. If an IQA index is used, its simple averaging is adopted to yield

the final sequence-level MOS value. PCC, SROCC and RMSE results against the LIVE

and the MCL-V databases are shown in Tables 4.5 and 4.6, respectively. Clearly, EVQA

outperforms all other indices in every performance measure in both databases.

Table 4.6: Performance comparison of video quality indices for video clips in the MCL-
V video quality database.

PCC SROCC RMSE
PSNR 0.476 0.426 1.984
VIF [105] 0.660 0.655 1.666
MSSIM [119] 0.621 0.623 1.740
FSIM [130] 0.755 0.747 1.455
GSM [71] 0.709 0.711 1.565
ST-MAD [117] 0.634 0.623 1.714
VADM [61] 0.742 0.752 1.489
FVQA [65] 0.945 0.932 0.727
EVQA 0.956 0.947 0.652

Fig. 4.10 shows the scatter plots of four leading methods in Table 4.6, where each

dot gives the predicted MOS value and the actual MOS value in its x-coordinate and

y-coordinate, respectively, for each test sequence in the MCL-V database. The red dash
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line indicates the optimal regression curve for these points. The ideal case is a straight

line starting from zero along either the positive or the negative 45-degree direction with

little deviation. The ST-MAD [117] regression curve is not straight while its data points

are too spread out. The VADM [61] has a more straight regression line, yet its data

points are still quite spread out. In contrast, data points in FVQA [65] and EVQA are

much closer to their regression lines. Furthermore, the regression line of EVQA is more

straight than that of FVQA.

(a) STMAD [117] (b) VADM [61] (c) FVQA [65] (d) EVQA

Figure 4.10: Scatter plots and their regression curves for all sequences in the MCL-V
database using (a) ST-MAD, (b) VADM, (c) FVQA and (d) EVQA indices.

4.6 Conclusion

A novel FR VQA index, called EVA, was proposed to assess compressed and resized

video quality in the work. EVA classifies video contents into groups and adopts a

machine learning technique to fuse several known VQA indices to predict the MOS

value within each group. The effectiveness of EVA was demonstrated using the MCL-V

database. We would like to extend the current work in two directions. First, it is inter-

esting to improve the proposed grouping technique by considering other HVS attributes

such as luminance and contrasts. Second, it is desired to develop no-reference VQA

based on the same fusion idea.
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Chapter 5

JND-based Visual Quality Assessment

5.1 Introduction

The mean-squared-error (MSE) has been widely used in measuring the distortion of

compressed image and video content. It offers a continuous-scale distortion measure

as a function of coding parameters, such as the bitrate, the quality parameter (QP) in

video coding or the quantization factor (QF) in image coding, since it is computed

based on pixel differences. Recent efforts have been made to develop new objective

quality/distortion metrics that are better correlated with the human visual system (HVS)

[69]. All of them provide a quality measure of continuous-scale. However, it is well

known that the HVS cannot perceive small changes in pixel differences. In reality,

humans cannot perceive continuous-scale but discrete-scale quality changes over a range

of coding bitrates. In this work, we quantify this phenomenon based on the notion of

just-noticeable difference (JND) [50], and propose a new methodology to characterize

the human visual experience on coded visual content.

JND is a statistical quantity that accounts for the maximum difference unnoticeable

to a human being. It has been extensively studied to understand human visual sensitiv-

ity [66]. In the context of image/video compression, Watson [121] proposed a way to

use JND for video quality measurement. His work adopts “pair comparison” or “two-

alternative forced-choice”. That is, subjects are asked to determine which of two videos

(i.e. the original source and the compressed one) is more distorted. Then, the distortion

level of compressed video can be derived from the JND test result. Although Watson’s
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pioneering work offers a statistical relationship between visual quality assessment and

JND, his result is difficult to apply to a real-world video coding system. Furthermore, the

test duration required for each subject is long. Recently, several JND estimators based

on HVS properties were investigated in [51, 123]. It was also shown in [67, 77, 131]

that JND-guided coding schemes can achieve perceptually similar quality with lower

bitrates.

In this chapter, we study the problem of coded image/video quality assessment from

a new angle based on JND. Given coded image/video content with densely sampled

QF or QP values, we would like to measure the number of JND points and locations,

and analyze the inter-person variance of measured quantities. One major contribution

of this work is to develop a new methodology to achieve these tasks. It is confirmed

by a small-scale subjective test that human perceived quality of coded images can be

characterized by a piecewise constant function of the QF/QP with discontinuities at JND

locations. Although these locations are content-dependent and statistically distributed,

they do provide consistent and useful information in understanding the human visual

experience.

The rest of this paper is organized as follows. The JND-based quality assessment

problem is defined and its solution methodology is described in Section 5.3. A brief

review of JND related work is given in Section 5.2. We start from a pilot study of

JND test. The process of JND data collection is presented and its statistics are given in

Section 5.3. The JND data post-processing technique and the final output quality plot as

a function of the QF/QP are detailed in Section 5.3.4. Next, we extend the techniques

to develop a JND dataset, called MCL-JCI. The number reference images is increased

from 5 (in the pilot study) to 50 (in the MCL-JCI) such that the MCL-JCI enables us to

study how content affects JND properties. The details of MCL-JCI is given in Section

5.4. Finally, concluding remarks are given in Section 5.5.
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5.2 Background Review

JND is essentially the visibility threshold of perceptual change above which can be

perceived by the HVS[50]. The earliest study can be traced to Weber-Fechner law in

1800s, which states that the JND of the test and background signal is proportional to the

intensity of background signal. Lin [66] represents the general relation of the test signal

xt, the original or background signal xo and the visual stimulus t as

xt = xo + t. (5.1)

According to Weber-Fechner law, if xo is a uniform image and t is a luminance varia-

tion, the difference of xt and xo can be perceived only when t is greater than the JND.

CSF1999 studied the contrast JND of image quality. When xo is a uniform image but t

is with varying contrast the JND depends on contrast sensitivity function of t.

Determining JND is a challenging task in general because of the complex nature

of the HVS. The process of investigating JND is related to the HVS characteristics

and underlying human brain activities such as sensation, perception and recognition.

Moreover, personal experience and preference play an important role in the process.

Experienced video experts, for example, can find compression artifacts more easily than

ordinary ones. In this paper, we focus on the image compression system. The subjective

test [121] has been studied to determine the JND in a compressed image xd against the

original image xo, and the test image xt for such experiments can be expressed as

xt = xo + h(xd − xo), (5.2)

where h is a scaling factor (0 < h < 1) to be adjusted in the tests. xd is a decompressed

image of xo. In the tests, observers compare xo and xt with an increasing h, and a JND
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can be determined with an h value when 75% of observers are able to distinguish xt

from xo. If the distorted image xt corresponding to a JND is denoted as x1, a 2-JND

difference can be decided when xo is substituted with x1 in Eq. 5.2, i.e., x1 is regarded

as the original image. The differences with 3-JND, 5-JND, and so on, can be determined

with a similar process. In real-world coding system, xd is controlled by bitrates rather

than scaling (xd − xo). Therefore, the results of [121] is difficult to apply to coding

systems. The tests have not been primarily designed to facilitate mathematical JND

modeling since the JND determined in this way is highly contextual to the contents of

the image under test. However, such JND maps can be utilized to calibrate a perceptual

distortion metric that has been developed [76].

Knowledge on JND is useful to evaluate the HVS tolerance for the compression

distortion. For visual quality/distortion prediction, a metric can be defined or fine-

tuned according to JND [120, 51, 125, 123] for better matching the HVS perception.

It was also shown in [67, 131, 77] that JND-guided coding schemes can achieve per-

ceptually equivalent quality with lower bitrates. JND has been used to determine

not only the noticeable visual distortion but also the possibly noticeable visual qual-

ity enhancement[70, 51]. According to the operating domains, we can divide JND

models into two basic categories: subband-based models and pixel-based models.

The former category has been relatively well investigated with DCT decomposition

[120, 112, 41, 66, 77], because of the popularity of DCT-based coders for compression.

However, the latter category [127, 67, 131] is more convenient to be used in some sit-

uations (e.g., in motion estimation and residue manipulations[127] or quality/distortion

evaluation with decoded signal[70, 51]). The work of both categories are developed

based on psychological model of low-level HVS characteristics such as edge, contrast

or luminance. The subjective tests in these research are used to examine the methods.
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The high- level or complex HVS features such as saliency and masking effects are not

well-studied due to the lack of JND ground-truth.

5.3 Problem Statement and Solution Methodology

5.3.1 Problem Formulation

To conduct the JND test on coded images, the first step is to collect a proper set of

diverse, high-resolution images. Diversity can be can be characterized by their spatial

complexity index (called the “Spatial Information” index and denoted by SI), colorful-

ness index (denoted by CF) [122], and semantic properties (e.g. a human object, etc.).

We select five source images in our preliminary test as shown in Fig. 5.1. The SI index

increases (or become more complext) from DB, RP, FT, CC to HS while the CF index

increases (or become more colorful) from HS, RP, DB, CC to FT.

(a) CC (b) DB (c) FT (d) HS (e) RP

Figure 5.1: Five images selected for the JND test: (a) Color Checker (CC) [2], (b)
Dark Building (DB) [2], (c) Food Truck (FT) [1], (d) Houses (HS) [2], and (e) Railway
Platform (RP) [2].

Each source image is encoded by the JPEG encoder [46] with densely sam-

pled bitrates. In the experiment, we encode each image 100 times with QF =

1, 2, · · · , 99, 100, where QF controls the scaling factor (denoted by S) via

S =


5000
QF

, if QF > 50

200− 2QF. otherwise
(5.3)
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The default quantization table (denoted by T ) and the matrix of quantization step

(denoted by Q) is related by the scaling factor S as

Q(i, j) =
T (i, j)× S + 50

100
, (5.4)

where Q(i, j) and T (i, j) are the (i, j)th entry of Q and T , respectively. Therefore, a

larger QF value results in a smaller quantization step size and, hence, a higher coding

bitrate. Since the quality of a coded image is a monotonically increasing function of its

coding bitrate, a higher QF will not yield a lower quality image. There are 101 images

in total for each source by including the original one. It is expected that humans are not

able to differentiate all 101 levels. We would like to ask the following three questions.

• Q #1: How many quality levels can a person discern?

• Q #2: What are the JND locations in the perceived quality level versus QF plot?

• Q #3: Are the above two results stable among multiple subjects?

In the following section, we attempt to develop a methodology to measure the quantities

raised in Questions #1 and #2. Then, we would like to analyze the obtained results so as

to answer Question #3.

5.3.2 Solution Methodology

We represent N coded images with N nodes and arrange them in a bitrate ascending

order from the left to the right. Under the assumption that quality is a monotonically

increasing piecewise constant function of the bitrate, we would like to find JND loca-

tions. This can be done efficiently using the bisection search algorithm by starting from

the two ends of the entire interval (denoted by nodes a and b) as shown in the top case

of Fig. 5.2a. If images at the two end nodes exhibit noticeable difference (ND), we
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expect that at least one JND point exists in that interval and will check the middle posi-

tion (or the closest rounded integer) of the interval. In this example, the quality at node

(a+ b)/2 is not distinguishable from that at node b. Then, the search terminates for the

interval [(a+ b)/2, b]. However, there still exists notice difference between nodes a and

(a + b)/2, so that we will continue the bisection search in the corresponding interval.

This process is repeated until the finest resolution is reached. Then, we can find the JND

location between two adjacent nodes in the finest level.

(a) (b)

Figure 5.2: Illustrations of (a) the bisection search process to determine the JND location
in the finest level and (b) the early termination condition of a bisection search process.

For some cases, the process is terminated earlier before hitting the finest level. That

is, the JND location may appear between nodes at a coarser level. An example is shown

in Fig. 5.2b. We observe noticeable differences (ND) in image quality at nodesm and n.

However, there is unnoticeable difference (UD) in visual quality between nodes m and

(m + n)/2 and between nodes (m + n)/2 and n. This happens when the quality levels

at nodes m and n are perceivable but very close. Then, one cannot tell the differences

furthermore by going to the next finer level.
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5.3.3 Subjective Test and Data Analysis

In the preliminary study, we invited 20 subjects to attend the subjective test with five

source images of resolution 1920× 1080 and coded by a JPEG encoder with integer QF

values of 1, 2, · · · , 100. Among all subjects, only eight of them had previous experience

in image coding. They were seated in a controlled environment. The viewing distance

was 2 meters (1.6 times of the picture height) from the center of the monitor to the

seat. The image pair was displayed on a 65” TV with native resolution of 3840 ×

2160. A subject compared two images displayed side by side and determined whether

these two images are noticeably different (ND) or unnoticeably different (UD). The

JND location can be identified by tracking the transitional position from ND to UD. The

bisection search methodology described in Section 5.3 was adopted in the test procedure

for speed-up. Due to the efficiency of this search algorithm, the test duration of each

subject for five images was about 15 minutes.

The JND points in the domain of QF values are collected for each subject. First, we

want to find the total number of JND points for a given source, which in turn determines

the number of perceived JND levels. That is, the number of levels equals the number

of points plus one. The mean and the standard deviation of JND points for each source

are given in Table 5.1. Furthermore, the corresponding box plot is shown in Fig. 5.3

(a), where the bottom and the top of each box indicate the 25th and 75th percentiles of

the samples, respectively, and the middle line is the mean value. We see from the table

and the figure that the number of JND points does not vary significantly among subjects.

This is especially true by focusing on the interquartile range (i.e. between the tops and

bottoms).

Furthermore, we show the box plots of the highest and lowest JND locations in Figs.

5.3 (b) and (c), respectively. By comparing Figs. 5.3 (b) and (c), we see that there is

correlation between the number of JND points and the highest JND location. That is,
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Table 5.1: Statistics of the number of JND points for five test images.
Mean Stdev

CC 5.20 1.47
DB 3.75 1.41
FT 7.05 1.63
HS 6.00 1.62
RP 5.00 1.41

if the highest JND point occurs at a higher QF, the subjects will see more JND levels.

For the lowest JND locations, since the images are heavily distorted and can be easily

detected, the opinions are close among subjects. In contrast, the highest JND locations

depend on the subject’s experience. Trained subjects can find differences at higher QF

more easily than inexperienced ones. Thus, as compared with Fig. 5.3 (b), the ranges of

the highest JND points from experienced subjects are significantly narrower as shown

in Fig. 5.3 (d).

5.3.4 JND-based Quality Level Plot

Since some subjects may have more JND points than others, we need to normalize the

JND values across different subjects. The normalization process is straightforward If

a subject has K JND points, we give a weight of K−1 to each of his/her selected JND

points. After normalization, we can aggregate the JND data from all subjects and plot

the corresponding histogram. The result for the Color Checker (CC) image is shown

in Fig. 5.4(a). We see that there is rarely any JND point for QF greater than 50. The

quality of these images is high enough that they are not differentiable from the original.

The same observation applies to other test images. Thus, we will focus on the interval

where QF ranges from 1 to 50.

Next, we describe a procedure to derive the JND level plot from the histogram plot.

Since JND is a random variable, we need to account for its statistical variation. We
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(a) (b)

(c) (d)

Figure 5.3: The box plots of (a) JND numbers, (b) the highest JND locations of all
subjects, (c) the lowest JND locations of all subjects, and (d) the highest JND locations
from experienced subjects only.

use the rounded mean number in Table 5.1 as the target number of JND points. For

example, we choose 5 JND points for the CC image. To cluster the JND histogram into

5 sub-intervals, we run the k-means algorithm with k = 5 on the JND histogram and

partition the whole QF interval into 5 sub-intervals. The JND location bars in these 5

sub-intervals are shown in 5 different colors in Fig. 5.4(a). After that, we select a high

peak that is close to the mean of each sub-interval as the desired JND point. The selected

JND location bar is labeled by a circle on its top. The reason of selecting the high peak
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rather than the mean value as the JND location is that we would like to align it with the

JND experimental data.

To demonstrate the robustness of our experimental design and the post-processing

technique described above, we aggregate the JND data from those subjects whose JND

numbers are in the interquartile range (with 10 subjects in total) to obtain the corre-

sponding JND histogram plot and the JND level plot as shown in Figs. 5.4(c) and (d),

respectively. The JND level plots are very similar for the two cases with 10 and 20 sub-

jects. Finally, the JND level plot for the other four test images with all 20 subjects are

shown in Fig. 5.5.

5.4 JND-based Coded Image Quality Dataset

5.4.1 Data Collection and Processing

From the preliminary study, we developed the method of collecting and generating sta-

tistical JND data from subjective evaluations. Next, we aim to develop a dataset with

rich content features. Therefore, we selected 50 images (as shown in Fig. 5.6) with the

resolution 1920× 1080.

The diversity of selection can be characterized by their spatial complexity index

(called the ”Spatial Information” index and denoted by SI), colorfulness index (denoted

by CF) [122], and semantic properties (e.g. a human object, etc.). SI is calculated by

applying the Sobel filter to image, taking the standard deviation over the space domain,

and then the maximum value is chosen. Fig. 5.7 shows SI and CF to all selected images.

From Fig. 5.7 , we see that our selected images cover a wide range of diversity. More-

over, the source images can be also further classified into different categories according

to its content as summarized in Table 5.2.
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(a) 20 subjects (b) 10 subjects

(c) 20 subjects (d) 10 subjects

Figure 5.4: Comparison of the JND location histogram plots in (a) and (b) and the JND
level plots in (c) and (d), where (a) and (c) are based on all 20 subjects and (b) and (d)
are based on the 10 subjects whose JND numbers are in the interquartile range.

More than 50 volunteers participated in the subjective test, with equally stratified

by gender and by age between 20 and 40 years old. 10 out of the subjects are experts

in technical implementation in quality assessment or image compression. The rest of

them have little or no prior experience of quality evaluation experiments. They were

seated in a controlled environment. The viewing distance was 2 meters (1.6 times of the

picture height) from the center of the monitor to the seat. The image pair was displayed

on a 65” TV with native resolution of 3840 × 2160. A subject compared two images

displayed side by side and determined whether these two images are noticeably different
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(a) DB (b) FT

(c) HS (d) RP

Figure 5.5: The JND level versus the QF plot for (a) DB, (b) FT, (c) HS and (d) RP.

(ND) or unnoticeably different (UD). The JND location can be identified by tracking

the transitional position from ND to UD. The bisection search methodology described

in Section 5.3 was adopted in the test procedure for speed-up. Due to the efficiency of

this search algorithm, the test duration of each subject was about 45 minutes.

The JND points in the domain of QF values are collected for each subject. First,

we want to find the total number of JND points for a given source image, which in turn

determines the number of perceived JND levels. That is, the number of levels equals the

number of points plus one. The mean and the standard deviation of JND points for each

source are given in Fig. 5.8. Furthermore, the corresponding box plot is shown in Fig.
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Figure 5.6: 50 reference images in the MCL-JCI Dataset.
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Table 5.2: Count of Reference Images in MCL-JCI.
number

People 5
Dark Scene 6

Animals 3
Plants 4

Building 8
Water or Lake 5

Sky 3
Bridge 3

Boat or Cars 5
Indoor 8

5.9, where the bottom and the top of each box indicate the 25th and 75th percentiles of

the samples, respectively, and the middle line is the mean value. We see from the table

and the figure that the number of JND points does not vary significantly among subjects.

This is especially true by focusing on the interquartile range (i.e. between the tops and

bottoms). Most of images have 4-6 JND points . We also show the average JNDs of

the highest and lowest JND locations in Figs. 5.10, which are marked in red and blue,

Figure 5.7: Reference image spatial information and colorfulness.
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respectively. We see that there is rarely any JND point for QF greater than 60. The

quality of these images is high enough that they are not differentiable from the original.

The same observation applies to other test images. Thus, we will focus on the interval

where QF ranges from 1 to 60.

By comparing average number of JND points in Fig. 5.8 and the highest and lowest

JNDs in Figs. 5.10, we see that there is correlation between the number of JND points

and the highest JND location. That is, if the highest JND point occurs at a higher QF,

the subjects will see more JND levels. For the lowest JND locations, since the images

are heavily distorted and can be easily detected, the opinions are close among subjects.

Figure 5.8: Statistics of the number of JND points for all images in MCL-JCI.

The data-processing techniques introduced in Section 5.3 are applied to the dataset.

The JND level plot for all 50 reference images in 5.6 with all 20 subjects are shown in

Fig. 5.11.
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Figure 5.9: The box plot of the number of JND points for all images in MCL-JCI.

Figure 5.10: Statistics of JND locations of the highest and lowest acceptable quality for
all images in MCL-JCI.

5.4.2 Relationship between Contents and JND-based Quality Lev-

els

With the JND data, it is a desire to know which and how image feature influence to the

visual quality. We compare the images from different JND levels and figure out which

part is change and what is the trending.
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Figure 5.11: Final output JND points and location to all reference image corresponding
in Fig.5.6.
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Luminance. The experiment results show that the 6 dark sources in Fig. 5.12 have

less JND points are than other bright images. However, if the dark image contains

homogeneous information with chrome change, people could also see more different

quality levels. The phenomenon can be explained by Weber-Fechner law. Since the

image is in low luminance, the background creates higher bar for the HVS to trigger

stimuli of the difference. However, quantifying the luminance is still an open problem.

Figure 5.12: Statistics of the JND location to 6 dark sources in MCL-JCI.

Texture. The JPEG compression adopts block-based quantization of the transform coef-

ficients. Therefore, the high frequency components are reduced after JPEG compres-

sion. For textureless or flat area, if the color is gradually changed in the block, the

compression distortion is significant. In contrast, if the block is with rich texture, the

distortion is not obvious. Fig. 5.13 shows the compressed image that is one JND to the

original one. We can see that most details are preserved after compression. Fig. 5.14

shows the compressed image with six JND to the original one. We select two patches,

”Sky” and ”Tree”, as our example to show how texture affect JND. We calculate the

spectrums and show them next to the patches. In the Sky region, the spectrum looks less

degradation but the visual quality is much worse than the ”Tree” region.

When we look into the distortion, the fake contours in the ”Sky” draw our attention.

In contrast, the fuzziness on the edges in the ”Tree” is not obvious. Therefore, the texture

on the background influences the thresholds of JND. If the texture of certain regions is
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Figure 5.13: Compressed image with one JND level to the original Source 8.

homogeneous, the threshold is lower than the ones with rich texture. If the whole image

is filled with rich texture, the viewers may perceive less JND levels due to the higher

thresholds.

In MCL-JCI, Source 44 is one of the source images with rich textures. In Fig.

5.15, the middle row of the three images show the details of the ”People” region, and

the bottom row shows the details of the ”Ground” region. We can see that differences
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Figure 5.14: Compressed image with six JND levels to the original Source 8.

among JND levels are not significant. Therefore, the number of JND points is much less

than other source images with flat regions.

Semantic. Some images have stronger semantic meanings on certain regions such that

the viewers intend to focus on these regions of the images. When the distortion appears

on these semantic regions, the HVS is more sensitive to these distortions. Fig. 5.16

shows that the JND points are more related to the quality change in the face region.
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Figure 5.15: ”People” and ”Ground” regions of the Source 44.

Most of Source 13 is background and the quality are close for each level as shown in

the bottom three images of Fig. 5.16. Even though the area of the face is much smaller

than the background, the viewers tend to evaluate the quality based on the face region.

Image JND are influenced by both low-level (like luminance and texture) and high-

level features (like face, sky, building and bridge). From the collected JND data, the
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Figure 5.16: Quality change on the face and background regions of Source 13.

relationships of these image features and JND properties can be analyzed. This leads us

a better understanding of the underlying scheme in the HVS and provides a new angle

to efficient compression.
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5.5 Conclusion

A new methodology for human visual experience measurement was proposed in this

work. A preliminary subjective test was carried out to collect the JND data to demon-

strate the feasibility of this idea. The collected raw JND data was analyzed and post-

processed to derive the JND-based quality level plot. It was shown that this quality level

plot is robust by shrinking the number of test subjects from 20 to 10. Currently, we

are working on large-scale JND-based compressed image quality assessment datasets

to gain a deeper understanding of the relationship between the JND-based quality level

plot and the underlying image content. Then, for a given image content, we would like

to be able to predict its JND numbers and locations based on extracted features.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In Chapter 3, the construction of a new video quality assessment database, called MCL-

V, was described in this work. MCL-V contains 12 source video clips and 96 distorted

video clips with subjective assessment scores. The source video clips were selected

from a large pool of public-domain video sequences with representative and diversified

contents. Several existing IQA and VQA algorithms were evaluated against the MCL-V

database.

In Chapter 4, two novel VQA indices, FVQA and EVQA, were proposed to assess

compressed and resized video quality in the work. FVQA classifies video contents into

groups according to their content complexity to reduce content diversity within each

group. The proposed EVQA extended the framework of FVQA by take frame-level

prediction into account. The frame samples were classified by the distortion significance

measured by selected quality methods. In the first step, multiple IQA methods and two

proposed video content indices are applied to video frames. According to the outcomes

of the IQA methods, they are repositioned as essential metric, grouping classifier, and

fusion candidate. In the second stage, the group classifier and essential metric are used

to recursively partition the whole sample space into several groups. Finally, several

VQA algorithms are selected and fused to predict the perceptual quality within each

group. We demonstrate the superior performance of EVQA as compared with other

video quality assessment methods using the MCL-V video quality dataset.
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In Chapter 5, a thorough discussion about JND was described. A new methodology

for human visual experience measurement was proposed in this work. A pilot subjective

test was carried out to collect the JND data to demonstrate the feasibility of this idea.

The collected raw JND data were analyzed and post-processed to derive the JND-based

quality level plot. It was shown that this quality level plot is robust by shrinking the

number of test subjects from 20 to 10. With the experience from the pilot study, we

developed the first JND image dataset, called MCL-JCI. The MCL-JCI dataset contained

50 image sources that cover a wide range of visual features (like people, bridge, building

and indoor scenes). The analysis of JND and content showed image content affects JND.

6.2 Future Work

6.2.1 Preliminary video JND

We built the MCL-JCI dataset in Chapter 5 and wanted to extend the research to video

JND. For the JND test on coded video, we collected five high-resolution and diverse

video sequences. Again, their diversity can be characterized by their spatial and tempo-

ral information [47] and semantic properties [64]. The five video sequence selected in

the preliminary test are shown in Fig. 6.1.

(a) BB (b) BD (c) CS (d) FB (e) IC

Figure 6.1: Five video sequences selected for the JND test: (a) Bunny and Butterfly
(BB) [34], (b) Basketball Drive (BD), (c) City Sky (CS) [20], (d) Fountain Boy (FB),
and (e) Inside Church (IC).

Each source video is encoded by x264 [4]. For video coding, the quality is con-

trolled by quality parameter (QP). Since the QP value can be dynamically adjusted by
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a rate control algorithm so that rate control methods may affect visual quality. In the

experiment, we compare the following two rate control methods for the x264 encoder.

• Fixed QP (FQP). Each video is encoded with QP = 1, 2, · · · , 51.

• Variable Bitrate (VBR). We enable the default variable bitrate (VBR) of the x264

encoder. To get the same number of encoded video as that in the FQP setting, we

set the target bitrates to those obtained from FQP. For example, if the bit rate is

3000 kbps with QP = 20, we set the target bitrate to 3000 kbps to get a corre-

sponding data point under the VBR setting.

As a result, each source video is encoded 102 times, and there are 103 video contents

in total for each source by including the source. A larger QP value leads to a larger

quantization step size and a lower coding bitrate in video coding. Again, humans are

not able to differentiate all levels. The mean and the standard deviation of JND points

for each video source are given in Table 6.1. From Table 6.1, we observe fast-moving

Table 6.1: Statistics of the number of JND points for x264 coded video.
FQP VBR

Mean Stdev Mean Stdev
BB 4.50 1.32 4.60 1.39
BD 3.15 0.59 3.20 0.77
CS 3.50 0.95 3.65 0.93
FB 3.15 0.99 2.80 1.01
IC 3.50 0.69 3.30 0.86

scene, BD and FB, tend to have less JND points than other 3 scenes. Since the temporal

masking effect has significant impact on human perception as indicated in [78, 19, 75,

94], the HVS is unable to differentiate as many quality levels of fast-moving scenes

as static scenes. In video compression, useful QP range depends on content. When

choosing video bitrates, we can use the QP in the range to achieve reasonable quality

with lower bitrates. The JND results give us a rough QP range for acceptable visual
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(a) BB (b) BD (c) CS

(d) FB (e) IC

Figure 6.2: The JND-based quality level plot for x264 with FQP: (a) BB (b) BD, (c) CS,
(d) FB and (e) IC.

quality. Table 6.2 shows the useful QP for video coding are between 26 and 45. It

is obvious that the range is so wide due to the diversity of video content. In video

JND, content temporality plays an important role. It can affect the number and location

of JND points. If we want to achieve better compression efficiency, predicting JND

enables us how to choose bitrates. However, the prediction is difficult since the diversity

of content.

6.2.2 JND prediction and its application

We adopted the absolute scale for the representation of video quality in the current

research. However, we observe that the visual quality is not continuous and only several

levels can be perceived. This created the mismatch between the test principle and score

representation. In other words, if we believe pairwise comparison is reliable, we should

not convert the results to the typical way. Thus, we want to examine this problem from
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JND. The JND is in general defined to be the smallest detectable difference between

the starting and the secondary level of a particular sensory stimulus. In the context of

video quality assessment, we define the JND is the least quality difference that a trained

person can tell from two videos of same content. According the analysis in Chapter 5,

image content has a impact to JND. We assume that the JND is strongly affected by

video content characteristics. Consider the coding of two movies with the same bit rate,

where one movie is grainy and the other is a cartoon. To achieve the same visual quality,

the former demands a higher bit rate than the latter. The JND values are expected to be

different. To achieve better coding efficiency, we should consider a coding scheme that

is content-adaptive. Since we compare two coded video programs to determine the JND,

we can record the results of subjective evaluation as JND pairs. It is natural to assume

that the JND metric is transitive from pair to pair. By collecting multiple JND pairs with

an anchor sequence whose bit rate is known, we can plot the JND vs. bitrate curve,

which is simply called the JND curves. The JND curve offers a relationship between

video contents and bit rates. Given a target JND, we can use a model, based on the video

content, to predict the corresponding bitrate. A good understanding of the JND model

will help a video encoder choose a set of suitable coding bit rates according to its con-

tent. To develop the JND model, one need to conduct video complexity analysis. With

the experiences in MCL-JCI, we want to develop a video dataset, called MCL-JCV. The

MCL-JCV dataset can offer a new training set for the proposed EVQA quality metric

under our current investigation. Along this line, we set the following three objectives

for the proposed research.

• We will conduct the subject test to construct a JND video dataset, called MCL-

JCV. This dataset should contain diverse video sources for developing related

applications.
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• Based on the current MCL-JCI and future MCL-JCV datasets, we will build the

image/video analysis model to predict the JND levels of various operating points

for a test image/video.

• We will develop a bit rate control scheme based on the image/video analy-

sis model. We expect that this model indicates anchor points according to

image/video contents and these points will be adopted as target bitrates.
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