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Abstract

This thesis contains two main research topics: 1) automatic human action classification

with mocap data and 2) text localization in natural scene images. The common theme

of these two topics is the application of pattern recognition techniques to multimedia

information processing as detailed below.

Automatic classification of human action in motion capture (mocap) data has many

commercial, biomechanical and medical applications and is the principal focus of the

thesis. First, we propose a multi-resolution string representation scheme based on the

tree-structured vector quantization (TSVQ) to transform the time-series of human poses

into codeword sequences. Then, we take the temporal variations of human poses into

account via codeword sequence matching. Furthermore, we develop a family of pose-

histogram-based classifiers to examine the spatial distribution of human poses. We

analyze the performance of the temporal and spatial classifiers separately. To achieve

a higher classification rate, we merge their decisions and soft scores using novel fusion

methods. The proposed fusion solutions are tested on a wide variety of sequences from

the CMU mocap database using 5-fold cross validation, and a correct classification rate

of 99.6% is achieved.

Searching for text regions in natural images is a challenging task for many computer

vision applications. In the second part of our research, we propose a novel text localiza-

tion scheme based on multi-stage incremental region classification technique. The stable

extremal region detector investigates peculiar characteristics of text to discover regions

viii



with possible textual content across different channels. The coarse decision stump clas-

sifiers designed on geometric features and context-based text grouping stages efficiently

remove false positives and outline the regions of interest. An ensemble of trained decision

tree classifiers categorizes the remaining regions into text or non-text using the gradient

profile features. Finally, the ROIs from different views and channels are fused together to

procure a consolidated list of text regions. As per the experimental results, our suggested

technique is among the top algorithms reported in the literature.
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Chapter 1

Introduction

This thesis contains two main research topics: 1) automatic human action classification

with mocap data and 2) text localization in natural scene images. The common theme

of these two topics is the application of pattern recognition techniques to multimedia

information processing. Research significance, related previous work, contributions and

content organization of these two topics are presented below.

1.1 Significance of the Research

1.1.1 Human Action Classification

The increasing demand for rendering smooth and plausible 3D motion is fueling the devel-

opment of motion capture (mocap) systems. This new format of high quality 3D motion

data has paved its way into animation movies, high-end computer games [CCY11], biome-

chanics, robotics, gait analysis and rehabilitation [SSL02] and machine translation of sign

languages [LKL+04,YS04]. The diverse applications of mocap data and the rapid devel-

opment of mocap systems have resulted in a large corpus of motion capture data in recent

years. However, the large amount of raw data files makes it difficult to organize. It is

desirable that both file names and the associated metadata should be able to provide a

high level description of the contents of mocap sequences. Since manual annotation of

mocap sequences is labor intensive, it is essential to develop an automated technique that

can segment mocap data into homogeneous intervals, classify each interval into a basic

action type, and index it for future retrieval. With such annotated mocap databases

in place, a proper motion editing and authoring tool can be used to synthesize realistic

motion sequences.
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To develop efficient indexing and retrieval techniques for mocap databases, the first

step is to classify the data into subsets according to their similarities, which is known

as the action classification problem. As far as the human full-body motion is concerned,

the mocap system records the actions of human actors by placing several markers on

their body. These markers and a grid of infrared cameras help determine the full-

body movement of those actors in terms of joint orientations. This joint orientation

information constitutes the mocap data used in our research. Human mocap data are

essentially time series of human body poses (Fig. 3.1). Different human motions may

be of different time duration, tempo and style. Motions from same action type, e.g.

walking, can vary from person to person. Moreover, visually similar motions may start

or end with different joint orientations or even with different human body postures. A

robust classification algorithm has to compensate for these irregularities in the data.

1.1.2 Text Localization

In recent years, the task of locating text in natural scene images is attracting attention

of researchers and industrial community alike, due to its inherent complexity and vast

range of applications. Text region detection is a precursor to many computer vision tasks

such as, optical character recognition, robotic navigation, compound video compression,

scene understanding, text-based image indexing, search and retrieval etc. The aim of

our text localization research is to detect text regions in the image and draw bounding

boxes around each and every word. Contrary to the scanned documents, text in natural

images have different sizes, fonts, orientations, illumination and colors. The cluttered

background also poses a serious threat to the localization accuracy. This diversity and

irregularity makes text localization in these circumstances quite difficult. The fact that,

no algorithm has yet been able to achieve a considerable accuracy on the benchmark

datasets, further illustrates the challenging nature of the problem.
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1.2 Review of Related Previous Work

1.2.1 Human Action Classification

Different methods have been proposed to synthesize realistic human motions by reusing

existing mocap data via data-driven motion editing and authoring, e.g., Kovar and Gle-

icher [KG04], Safonova et al. [SHP04], Ren et al. [RSH+05], Lee et al. [LCR+02], Zordan

et al. [ZMCF05], and Pullen and Bregler [PB02]. In order to reuse existing mocap data,

efficient searching, indexing and browsing techniques are required. So the first step is

to group motion clips into subsets based on their similarities, which is the focus of our

current research.

Identifying similar action types in a mocap database has been considered a challeng-

ing problem. Most of the previous work on motion comparison adopted features that

were close to the raw data. For example, Liu and Popović [LP02] included the principal

component analysis (PCA) reduced raw data, 3D point clouds, joint angles, 3D positions,

etc. Forbes and Fiume [FF05] used the weighted PCA for motion comparison. The per-

formance was further enhanced by integrating the weighted PCA with other features

such as characteristic points, seed points, etc. Kovar and Gleicher [KG04] proposed a

numerical similarity technique to find similar motion clips from a large data set. Motion

similarity is a semantic concept. The raw numerical data may differ a lot even for two

visually similar motions. Hence these types of features do not work well in practice.

Liu et al. [LZWP03] used automatically extracted key frames and a hierarchical tree

of clusters of motions to search similar actions in the database. Sakamoto et al. [SKK04]

proposed a motion map method that trains the self-organizing-map (SOM) with motion

data and indexes clips by SOM nodes. The motion map transforms the N-dimensional

data to a 2D map and computes similarity using this map. However, this scheme lacks

higher level data indexing and demands exact node-to-node matching in search.

Human motion is typically a long time series with no overt segmentation informa-

tion so the dynamic time warping (DTW) based motion comparison techniques (e.g.,

3



Chiu et al. [CCW+04], Kovar and Gleicher [KG04], Wu et al. [WCYL03]) suffer from

the complexity of finding the corresponding start/end points of motion data series for

motion similarity comparison. Hsu et al. [HPP05] used an iterative motion warping

(IMW) technique, which is an improvement over the traditional DTW technique, to find

the correspondence by minimizing an objective function with dynamic programming.

Generally speaking, these features work well only for certain applications.

Several algorithms were developed to identify locally similar segments in the motion

dataset, for example, Arikan and Forsythe [AF02], Kim et al. [KPS03], Kovar and Gle-

icher [KG03], Lee et al. [LCR+02], and Wang and Bodenheimer [WB03]. Arikan et

al. [AFB03] proposed a semi-automatic annotation technique using SVM classifiers. Car-

dle et al. [CVB+03] used the GEMINI framework to search mocap data sets. Yang and

Shahabi [YS04] proposed a method called EROS to calculate similarity using PCA and

eigenvalues. Li et al. [LZP07] used the kWAS method to measure similarity of motion

clips via singular value decomposition.

Relational features [MRC05a,MRC05b,MR06,RKM08], built upon the Boolean rela-

tions between various body parts, are more suitable for generic applications. Common

relational features include: the position of joints with respect to a certain plane, the

angle between two limbs, the angular velocity of joint angles, the position of joints with

respect to other joints, the direction of motion, touch, etc. Such features are more robust

to pose distortion and other small aberrations in action sequences. Although relational

features provide a good alternative, automatic selection of a good set of relational fea-

tures for a wide range of motion types is not straightforward. This imposes a limitation

on the utility of these features.

Wu et al. [WXWL09] presented a cluster-based scheme for mocap data indexing and

retrieval, where temporal variations were accounted for while spatial variations were not

captured effectively. Later, Wu et al. [WWX09] incorporated the spatial complexity of

mocap data using hierarchical clustering. But this scheme cannot effectively differentiate

between perceptually similar motions, such as running and marching. The different
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variations of the same action type (e.g. cartwheel) were also not clustered correctly. The

SOM representation used in their scheme transforms the 62 dimensional mocap data into

a crude 2D representation, which suffers from self occlusions. This significantly hinders

its capability to categorize complex motions.

The main contribution of our work is automatic classification of perceptually similar

mocap sequences based on the “multi-resolution string representation” that incorporates

both spatial and temporal information effectively. It will be shown later in the experi-

mental section that the proposed algorithm offers a correct classification rate of 99.6%

for a database consisting of 30 different action types. To the best our knowledge, no

other algorithm with better performance on such a diverse dataset has been reported in

the literature.

Although our solution is promising, it has some limitations. For example, it might

not work well on a clip containing actions from different categories, e.g. a clip with

walking motion followed by running. However, with mocap data segmentation as the

pre-processing step, this problem can be mitigated. The proposed solution was not

thoroughly tested on categories with minor variations, such as, get up from the floor

without the hands touching the floor and get up from the floor by pushing hands against

the floor. As these categories are practically the same, we combined them into a single

category in the experiment.

Researchers from the computer vision community have proposed a variety of meth-

ods for action recognition in unconstrained video databases such as UCF11 and UCF50.

These methods used template matching, finite state models, bag of features, face detec-

tion, context, speech and text information etc. for action recognition [SC12,KS13]. But

here, we work directly on the human skeleton posture information, which is available

with the mocap data.
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1.2.2 Text Localization

The techniques for text localization in scanned document can be broadly classified into

three main categories: top-down, bottom-up and hybrid approaches [ODP99]. The top-

down approach [LCC00], [KNSV93], [IKA87], [CYWM03] starts by detecting the page

schematic and then successively splits up the cells to reach lower levels. For instance,

Khedekar [KGS03] proposed a projection profile based algorithm using this top-down

approach to separate images and text in the Devnagri documents. However, due to the

dependence on page layout information, these methods are suitable only for the scanned

document images. The bottom-up approach [Bix98], [Mak83] on the other hand, starts

merging together the components at the lowest level and forms larger structures as it goes

up. Though these methods are flexible, they suffer from accumulation errors [KGS03].

The hybrid approach based methods [JZ95], [CLKH96] and [JB92] try to allow some

leeway in the above two approaches. As opposed to scanned document, the natural

scene images do not have a fixed layout. Text can appear anywhere in the image and the

orientation, font-size or color may vary from one region to the other. For these reasons,

the techniques for scanned documents cannot be easily extended to natural images.

One group of text localization schemes for natural scene images use sliding win-

dow technique to search for relevant texture patterns. The sliding window meth-

ods [CY04], [LW02], [GEF04], [LDK00], [YHGZ05] employ local features within the

windows of varying sizes and resolution, to classify windows as text or non-text. Apart

from limiting text search to specific window sizes or orientations, these methods have

high computational complexity due to different possible choices of image scales, window

sizes and aspect ratios. Following this school of thought, Chen [CY04] devised a pro-

cedure of detecting regions of text in the city scenes. The approach is similar to the

face detection framework proposed by Viola-Jones [VJ01a], [VJS05]. Chen used weak

classifiers to build the strong text/non-text classifiers using AdaBoost machine learning

algorithm [FS96]. An adaptive binarization and extension algorithm was then applied

to the selected regions in order to mark out the text. This paper used the block features
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similar to the ones described in [VJ01b] and was designed specifically for reading the

text on the signboards, billboards etc.

The other group of techniques detect regions of interest by merging similar pixels

into connected components [NM13], [NM12], [LDL05], [JKJ04], [JY98], [Kim96], [YI06].

These methods are not constrained by orientation of text, font size or resolution. They

are computationally tractable and the text segmentation is precise to the granularity of

individual letters. This aids in subsequent character recognition using OCR techniques

[BMP01], [GRL+98], [RWH96]. Major disadvantages include false alarms, threshold

selection, spurious connections, sensitivity to noise and background clutter. One such

method is the stroke width transform (SWT) [EOW10], [HLYW13] that leverages the

fact that letters in images have constant stroke width. The gradients on either side

of the stroke are anti-parallel. Pairing those anti-parallel gradients help in finding the

regions of interest. Neumann and Matas [NM12] proposed maximally stable extremal

regions (MSER) based technique for detecting text regions. It relies on the fact that

pixels within the text have similar intensities. Our proposed framework builds on the

stable extremal region detector, but diverges significantly thereafter.

1.3 Contributions of the Research

1.3.1 Human Action Classification

In our tree-structured vector quantization (TSVQ) based scheme, the dynamics of human

motion is represented by a sequence of multi-resolution codewords. Apparently, two

motions are similar if their corresponding codeword sequences are similar. To lever-

age this similarity, we analyze the distribution of these codewords in the temporal

and spatial domains separately. Then, to overcome the individual limitations of these

two approaches, we fuse their outcomes and soft scores to make final decision. We

examine the proposed solutions on a wide range of motions from the CMU mocap

dataset [CMU07]. These motions are recorded in a controlled environment with only
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one performer per clip. Furthermore, the clips are assumed to be homogeneous, wherein

every motion clip belongs to only one motion category.

Figure 1.1: Illustration of ten consecutive poses of the running motion (top) and the
teapot nursery rhyme rendition (bottom)

It is worthwhile to mention that a mocap data classification technique using hierar-

chical codewords was described in [KKK11], which is a 2-page summary of some inter-

mediate results of our research. The algorithmic description was brief and experimental

results were preliminary. Compared to [KKK11], the current work has a more complete

treatment on this topic. Specifically, it has the following major contributions:

• Development of an advanced temporal domain approach to mocap data classifica-

tion using codeword sequence matching;

• Development of a novel spatial domain approach for human mocap data classifica-

tion with pose-histogram-based SVM classifiers;

• Performance evaluation on a larger dataset containing 278 human motion clips (∼

0.5 million frames) spanning 30 action categories;

• Achieving a correct classification rate of 99.6% for a data set comprising of simple,

complex as well as perceptually similar action types.

The spatial domain approach takes the human skeleton structure into account so

that it is restricted to human motions only. In contrast, the temporal domain approach

does not assume any inherent structure in the data so it is more generic in this sense.
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Moreover, other formats of marker-based mocap data can be handled with the proposed

algorithms if they can provide the 3D pose information. We will describe these new

approaches, their implementations, fusion and experimental results in greater detail to

offer readers a complete picture of our solution and its superior performance.

1.3.2 Text Localization

Text regions have some peculiar properties which distinguish them from the non-text

regions. For example, text has sharp edges, interior pixels have consistent color, related

component have distinct spatial alignment etc. Based on these observations, we propose

a multi-stage region classification model, that systematically detects individual words in

the images. This multi-stage design for text localization enhances efficiency and reduces

complexity. After detecting probable candidates in the first stage, the task of eliminating

false alarms is distributed across subsequent stages of the framework. Each stage targets

specific properties of text to come up with its own set of discriminative features. The

commendable performance justifies the effectiveness of this incremental approach.

The stable extremal region (SER) detector [MCUP04], [CTS+11] explores intra-

component color similarity, to discover potential text candidates. But these detected

regions may contain several false positives. Geometric filtering phase removes most of

these false alarms. Later on, the context-based text grouping stage combines the remain-

ing components into words, by exploiting the inter-component consistency and spatial

alignment information. The text-like false positives are gradually phased out of the

pipeline. An ensemble of decision tree classifiers, then decides the fate of these newly

formed word candidates. These weak decision tree classifiers are built on gradient pro-

file features and combined into an ensemble using the Adaboost framework. The whole

process is repeated for different channels of the image and the detected words are aggre-

gated. Experimental results on the ICDAR dataset [LPS+03], [Luc05] show that our

performance score is comparable to the state-of-the-art algorithms.

The major contributions of our research are listed below:
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• Designed the stripe-scan features for removing text-like false positives

• Proposed the scan-line stroke width transform technique for efficient computation

of stroke width values on binary components

• Developed a robust text grouping mechanism which is immune to missing compo-

nents

• Built the novel gradient profile features that capture the peculiarities of text regions

• Demonstrated the effectiveness of the approach by achieving excellent results on

publicly available datasets

1.4 Organization of the Dissertation

Rest of the thesis is organized as follows. Chapter 2 reviews some prominent tools in these

fields. The advanced techniques for automatic human action classification are presented

in Chapter 3. Chapter 4 entails detailed discussion on the proposed text localization

framework. Finally, conclusions and future work items are listed in Chapter 5.
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Chapter 2

Background Review

This chapter reviews some well-known tools used in our human action classification and

text localization research. It also presents some relevant techniques that are widely used

by other researchers in these fields. The chapter serves as a vignette for the methods

briefly mentioned in the main chapters.

2.1 Human Action Classification With Mocap Data

The increasing demand for rendering smooth and plausible 3D motion is fueling the devel-

opment of motion capture (mocap) systems. This new format of high quality 3D motion

data has paved its way into animation movies, high-end computer games [CCY11], biome-

chanics, robotics, gait analysis and rehabilitation [SSL02] and machine translation of sign

languages [LKL+04,YS04]. The diverse applications of mocap data and the rapid devel-

opment of mocap systems have resulted in a large corpus of motion capture data in recent

years. It is essential to develop an automated technique that can segment mocap data

into homogeneous intervals, classify each interval into a basic action type, and index it

for future retrieval. With such annotated mocap databases in place, a proper motion

editing and authoring tool can be used to synthesize realistic motion sequences.

To develop efficient indexing and retrieval techniques for mocap databases, the first

step is to classify the data into subsets according to their similarities, which is known

as the action classification problem. Human mocap data are essentially time series of

human body poses. Different human motions may be of different time duration, tempo

and style. Motions from same action type, e.g. walking, can vary from person to person.

Moreover, visually similar motions may start or end with different joint orientations
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or even with different human body postures. A robust classification algorithm has to

compensate for these irregularities in the data.

In our tree-structured vector quantization (Sec. 2.1.1) based classification scheme,

the dynamics of human motion is represented by a sequence of multi-resolution code-

words. Apparently, two motions are similar if their corresponding codeword sequences

are similar. To leverage this similarity, we analyze the distribution of these codewords in

the temporal and spatial domains separately. Suffix array technique (Sec. 2.1.2) serves

the purpose by finding similar subsequences within longer codeword sequences. These

similarities can later be utilized for action classification. A short summary of these

methods is provided in the following sections.

2.1.1 Tree Structured Vector Quantization (TSVQ)

The human action classification algorithm categorizes actions in the mocap sequences.

A frame in the mocap sequence is inherently a high dimensional vector of 3D rotation

angles. For compact representation of such multi-dimensional vectors, they can be clus-

tered together and represented by cluster centroids. Tree Structured Vector Quantiza-

tion provides an elegant and fast way of clustering data while maintaining the codeword

hierarchy.

TSVQ performs clustering of the data vectors by repeated application of the Gen-

eralized Lloyd Algorithm (GLA). Initially all the vectors are considered to be a part of

a single cluster. Iteratively, each cluster is split into two using LBG splitting and fine

tuned with the repeated application of the GLA to the perturbed centroids. After con-

vergence, the parent codeword spawns two child codewords in the tree structure. Finally,

a balanced binary tree-like structure is obtained.

For example, consider the 2D vectors represented by crosses in Fig. 2.1. Initially

all the vectors are considered to be the part of a single cluster. The cluster centroid

is represented by the level-0 node. The centroid is split into two points. The new

child centroids thus obtained are fine tuned with repeated application of the GLA until
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convergence, to get two child codewords. Fig. 2.1 represents those child codewords with

the two nodes at level-1 in the tree structure. Two green lines from the node at level-

0 to nodes at level-1 emphasize the parent-child hierarchy. The points in the parent

cluster are split among the two child centroids based on their distances from those new

centroids. The split of the data points is represented by the green line. Similarly, the

yellow, red and blue lines partition the points into smaller clusters. The stable centroids

are depicted by nodes in the adjoining tree structure.

Figure 2.1: TSVQ data splitting and the corresponding codeword tree

The codewords or nodes at a certain level constitute the codebook at that specific

level. For example, the four nodes at level-2 in the tree structure of Fig. 2.1 form

level-2 codebook. To encode the data vectors, a level-n codebook is chosen from the tree

structure and the vector is mapped to the nearest node or codeword.
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2.1.2 Suffix Array Technique

In the human action classification research, the action sequences are represented using

multi-resolution motion strings. Two actions are similar if their corresponding motion

strings are similar. The problem of finding similarity between two motion strings can

be reformulated to a string matching problem. The latter can be efficiently solved by

using the suffix array technique [AKO04,KS03,KLA+01]. In this technique, all suffixes

of a string, S, are sorted in an ascending order. The sorted suffixes for a sample motion

string, S = [25, 18, 87, 160, 98, 25, 18], are shown in the last column of Table 2.1. Note

that the end of the string is denoted by a unique symbol ‘$’. The ‘$’ symbol is assigned

to have the highest value among all codeword indices in the motion string. The suffix

notation Sq represents the sub-sequence of S starting from S[q] till the end of the string,

followed by $. Only the starting point i.e. index ‘q’ is enough to represent this suffix

Sq. The array of indices ‘q’ defines the “suffix array”, denoted by suftab in Table 2.1.

We have suftab[̃i] = q for suffix Sq that is at the ĩth position in the sorted list starting

with ĩ = 0. To give an example, S4 represents the sub-sequence starting from S[4] = 98,

which is [98, 25, 18, $]. The suffix S4 is at the fifth location (̃i = 5) in the sorted list.

Therefore, suftab[5] = 4 in Table 2.1.

ĩ suftab[̃i] lcptab[̃i] bwttab[̃i] Ssuftab[̃i] or Sq

0 1 0 25 18 87 160 98 25 18 $
1 6 1 25 18 $
2 0 0 - 25 18 87 160 98 25 18 $
3 5 2 98 25 18 $
4 2 0 18 87 160 98 25 18 $
5 4 0 160 98 25 18 $
6 3 0 87 160 98 25 18 $
7 7 0 18 $

Table 2.1: The suffix array for motion string: [25, 18, 87, 160, 98, 25, 18, $]

For a sequence of length p, the suffix array can be built in O(p log p) time using

an appropriate sorting algorithm. Besides, Kim et al. [KSPP05] proposed a linear time
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complexity algorithm for generating the suffix array. Other supplementary arrays are

also constructed to enhance and optimize the string matching functionality. These arrays

include:

1. The Burrows Wheeler Transform array, denoted by “bwttab”, that stores the ele-

ment before the first element of the corresponding suffix Sq. The ĩth element

of bwttab is bwttab[̃i] = S[suftab[̃i] − 1] = S[q − 1]. For example, bwttab[5] =

S[suftab[5]− 1] = S[3] = 160.

2. The longest common prefix array, denoted by “lcptab”, that stores at the ĩth loca-

tion, the length of the longest common prefix between Ssuftab[̃i] and Ssuftab[̃i−1].

For example, the longest common prefix of Ssuftab[3−1] (i.e. S0) and Ssuftab[3] (i.e.

S5) is [25, 18]. Therefore, lcptab[3] = 2.

The value stored in lcptab[̃i] is the length of unique repeated sub-sequence when we

have,

bwttab[̃i− 1] 6= bwttab[̃i]. (2.1)

Thus, there is only one unique repeated sub-sequence in this example, which is of length

2 and the sub-sequence is [25, 18]. In this manner, all unique matches within string S

can be found using the suffix array technique.

To find similarity between two strings S1 and S2, they are concatenated into a new

string Sc, denoted by Sc = S1#S2$, where symbol ‘#’ is a unique logical separator

between S1 and S2 but different from ‘$’. Symbol ‘#’ is assigned the second largest

value in string Sc after ‘$’. The same technique used to find the repeated sub-sequences

for a single string is now applied to new string Sc with additional care. That is, one

of the matching sub-sequence should begin before the ‘#’ symbol in Sc and the other

should begin after the ‘#’. It ensures that the match is not within S1 or S2 itself, but

across strings S1 and S2. This additional constraint can be expressed in the following

form:
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suftab[̃i− 1] < |S1| < suftab[̃i], or

suftab[̃i] < |S1| < suftab[̃i− 1]

(2.2)

where | · | is the cardinality of string S1.

2.1.3 Support Vector Machines (SVM)

To analyze the distribution of codewords in the spatial domain, encoded sequence are

transformed into multi-resolution codeword histograms. These histograms are the fea-

tures for training the SVM classifiers. Support vector machines [Wik04] are supervised

learning models for regression analysis and binary classification. Assume the classifi-

cation labels yj ∈ {+1,−1}∀j; the decision rule C̃(xj) = sign(wTφ(xj) + b); xj to be

the input feature vector for the jth connected component, φ(·) the mapping function,

classifier C̃(·) and w to be the parameter vector. Then the optimization algorithm trains

the SVM classifier by minimizing the hinge loss function as shown.

min
w,b

∑
j

max(0, 1− yj(wTφ(xj) + b)) +
λ

2
‖w‖22 (2.3)

min
w,b

C
∑
j

max(0, 1− yj(wTφ(xj) + b)) +
1

2
‖w‖22 (2.4)

ξn = max(0, 1− yj(wTφ(xj) + b)) ∀n (2.5)

The last term in the above equation is the regularizer coefficient. SVM constructs

a hyperplane with the largest separation between the two classes. Fig. 2.2 shows the

case with linearly separable data. The vectors belonging to category-x and category-y

are displayed in gray and yellow color respectively. The points lying on the dotted lines

are the support vectors.

16



Figure 2.2: Support Vector Machines (SVM) binary classifier

The objective function can be rewritten in the well-known form as demonstrated in

Eq. 2.4, where C parameter is equivalent to 1
λ . The equation inside the summation sign

can be replaced by ξn or the slack variable. This gives the primal formulation of the

SVM introduced in Eq. 2.6 with the large margin constraints. In case of non-separable

data, slack variables can still satisfy the large margin constraints.

min
w,b

C
∑
j

ξn +
1

2
‖w‖22

such that, ξn ≥ n ∀n

1− yj(wTφ(xj) + b) ≤ ξn ∀n

(2.6)

2.2 Text Localization

In recent years, the task of locating text in natural scene images is attracting attention

of researchers and industrial community alike, due to its inherent complexity and vast

range of applications. Text region detection is a precursor to many computer vision tasks

such as, optical character recognition, robotic navigation, compound video compression,
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scene understanding, text-based image indexing, search and retrieval etc. A well-known

strategy is to narrow down the search space by finding candidate text regions, which

requires efficient text segmentation techniques.

Text regions have some peculiar properties which distinguish them from the non-

text regions. For example, text has sharp edges, interior pixels have consistent color,

related component have distinct spatial alignment etc. Based on these observations,

researchers have proposed several methods for text segmentation in natural images, such

as, stable extremal regions detector (Sec. 2.2.1), stroke width transform (Sec. 2.2.2),

morphological detectors etc. These detectors reduce the search space, but on the flip

side, there are number of false positives to be dealt with. Gradient based features like

gradient orientation histogram, gradient profiles and scale invariant feature transform

codeword histogram can be used with the Adaboost enhanced decision tree classifiers to

separate out the false positives. These features can be used for recognition task as well.

The following sections provide a brief overview of some of these methods.

2.2.1 Stable Extremal Regions (SER) Detector

An efficient way of localizing text in natural scene images is to narrow down the search

space by detecting Region Of Interest (ROI). Stable Extremal Region operator is per-

haps the most widely used ROI detection tool in the text localization field. The pixels

belonging to the same text region have similar intensities. SER operator tries to clus-

ter those pixels together which constitute our ROIs. Suppose image I is a mapping

I : D ⊂ Z2 → S for S ∈ {0, 1, · · · , 255}. Then the region Q with boundary δQ is

an extremal region, if it satisfies either the maximum or the minimum intensity region

property:

Q ⊂ D such that ∀p ∈ Q, q ∈ δQ : I(p) > I(q) (maximum)

Q ⊂ D such that ∀p ∈ Q, q ∈ δQ : I(p) < I(q) (minimum)

(2.7)
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Let Q1 · · ·Qi−1, Qi · · · be a sequence of nested extremal regions, i.e. Qi ⊂ Qi+1. q(i)

be mathematically represented by Eq. 2.8, where 4 ∈ S denotes the step size and | · | is

the cardinality. The extremal region Qi∗ is maximally/minimally stable if and only if,

q(i) has a local minimum at i∗.

q(i) = |Qi+4 \Qi−4|/|Qi| (2.8)

(a)

(b) (c)

Figure 2.3: SER detector (a) Original image (b) Maximal regions in intensity image (c)
Minimal regions in intensity image

For visual interpretation, consider an intensity image I and a variable threshold t.

A binary image It is obtained by setting pixels p to black if I(p) < t or white otherwise.

Suppose t is varied from 0 to 255 and the resultant images I0 to I255 are viewed as
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frames in a video, at first, only white pixels are seen. Subsequently, black spots will

appear at the locations of local minima. These spots will grow and combine till the

whole image becomes black. The connected components formed by those black pixels

at various stages in the video are the extremal regions. Those extremal regions which

do not grow rapidly over a wide range of thresholds are maximally stable. Repeating

the process on an inverted image Iinv will fetch the minimally stable regions. For more

details, refer to [MCUP04]. Text components generally have flat color tones and sharp

contrast compared to the background. In other words, they are precisely the stable

extremal regions, as they have flat color tones and sharp contrast. Fig. 2.3 shows the

maximal extremal text regions like, “Database” and “C. J. Date” along with the minimal

regions “Sixth” and “Edition”.

2.2.2 Stroke Width Transform (SWT)

Stroke Width Transform or SWT is another widely used ROI detection technique in the

text localization field. As the name suggests, stroke width transform [EOW10] computes

the width of the stroke associated with each pixel. Stroke is the thickness of the brush

used to draw the letters in the text. Letters within a word have similar thickness of

the stroke. The pixels associated with these letters have the same stroke width values.

These pixels can be grouped together to form ROIs.

Text components usually have sharp contrast with the background. So the gradient

intensity values on the outline of the text regions are significantly higher than in the

background or the interior regions. Fig. 2.4 depicts the gradient intensity at each pixel

locations in the regions containing text. The length of the vector is proportional to the

gradient intensity. It is evident from the figures that the pixels along the outline of

the text have larger gradient values compared to the pixels in the background or the

interior. Moreover, the gradients on the opposite edges of the stroke are anti-parallel.

If it is a bright text component on a dark background as in Fig. 2.4(a), the gradients

point towards each other. On the contrary, with dark text on bright background, the
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(a) (b)

Figure 2.4: Anti-parallel gradients (a) Gradient directions for bright text on dark back-
ground (b) Gradient directions for dark text on bright background

gradients are pointing away from each other. Refer to Fig. 2.4(b) for illustration. These

key observations help us to compute the stroke width values at each pixel location.

The process of stroke width transform is depicted pictorially in Fig. 2.5. The top

left section of the letter “D” (red box in Fig. 2.5(a)) is expanded in the subsequent

images for demonstration. The Canny edge detector finds edge points in the image.

Refer to Fig. 2.5(b). The gradient magnitudes and directions for those edge points are

presented in Fig. 2.5(c). The stroke width transform matrix Min has the same size as

the input image. The initial values in the SWT matrix Min are set to +∞. For each

edge pixel, we traverse along the direction of the gradient until an anti-parallel gradient

is reached. The black pixels in Fig. 2.5(d) represent the pixels encountered during one

such traversal. The process is repeated for other edge pixels in the image. The traversal

paths for all the gradient pairs can be seen in different colors in Fig. 2.5(e). Finally

all the pixels encountered during the traversal are replaced by the length of traversal

in the SWT matrix Min. This is the stroke width value for that pixel. If the traversal

for a certain edge point does not lead to an anti-parallel edge, then that edge pixel is

discarded and the corresponding stroke width values in the matrix are left unchanged.
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The blank pixels of Fig. 2.4(f) have value of +∞. The whole process is repeated again,

but this time traversing in the direction opposite to the gradient. This gives another

SWT matrix Mopp . The matrix obtained after taking the element-wise minimum of Min

and Mopp is the stroke width transform for that image. The pixels having similar stroke

width values are grouped together to form ROIs.

2.2.3 Gradient Orientation Histogram

Gradient-based features are widely used in computer vision and pattern recognition for

object classification. In the face recognition algorithms, gradients at the corresponding

locations in different facial images are compared to detect facial similarities. But in

text region classification, we are only interested in the histogram distribution of the

gradient orientations and their magnitudes. The Gradient Orientation Pyramid (GOP)

Magnitude Histogram feature serves this purpose.

Consider an image I(`), where ` represents the two-dimensional location of the pixel.

The pyramid of the image I(`) is defined as ℘(I) = I(`, ω)pω=0 at each scale ω [LSRJ10],

I(`, 0) = I(`) (2.9)

I(`, ω) = [I(`, ω − 1)⊗ Φ(`)]↓2, ω = 1, 2· · ·p (2.10)

with ⊗ denoting the convolution operation and Φ(`) is the Gaussian kernel with the

standard deviation of 0.5. ↓2 denotes the down-sampling by a factor of 2 and p denotes

the number of pyramid levels. For visual illustration refer to Fig. 2.2.3.

In the traditional GOP approach, the gradients for all the pixel position at all the

scales of the image are normalized to a unit vector. This 2-dimensional normalized

gradient image pyramid is stacked to create d× 2 vector where d is the total number of

pixels in the image at all scales. But in our approach, we compute the magnitude and

the angle of the gradients of all the pixels in the image at all the scales. The angles are
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: SWT or Stroke Width Transform (a) Section of image used for illustration
of SWT (b) Edge pixels (c) Gradient magnitude and directions at the edge pixels (d)
Traversal along the gradient direction to an anti-parallel edge (e) Different anti-parallel
gradient pairs shown in different colors (f) Stroke width matrix Min
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(a) (b)

(c)

Figure 2.6: GOP or Gradient Orientation Pyramid features. (a)Training image I(`)
(b)The Gradient Map I(`, 1) (c)Gradient Pyramid I(`, ω), ω = 1, 2, 3

rounded off to the nearest integer between (0, 360◦). The GOP Magnitude Histogram

feature is then the histogram consisting 360 bins, one for every possible orientation angle,

with the element in the bin weighted by the magnitude of the gradient.

2.2.4 Scale Invariant Feature Transform (SIFT) Codewords Histogram

Scale invariant feature transform (SIFT) is also a widely used gradient-based approach

in computer vision for object and category classification [Low99], [Low04]. The SIFT

extracts 128 dimensional local feature descriptors that are invariant to illumination,

rotation and scaling. These features are especially useful in modeling the appearance of

letters.

The images are convolved with Gaussian filters G(x, y, σ) of different scales as

expressed mathematically in Eq. 2.11. ⊗ denotes the convolution operation. The

24



difference between the adjacent Gaussian blurred images (Eq. 2.12) or Difference Of

Gaussian (DoG) images i.e. D(x, y, σ) are searched for candidate points. The candidate

points correspond to the extrema of DoG images across adjacent scales. The points with

low contrast are eliminated. Each keypoint is assigned an orientation by computing a

gradient orientation histogram in the neighborhood of that point. To provide rotation

invariance, all the properties of the keypoint are measured with respect to its orientation.

L(x, y, σ) = I(x, y)⊗G(x, y, σ) (2.11)

D(x, y, σ) = L(x, y, kσ)− L(x, y, σ) (2.12)

SIFT codeword histogram feature computation technique is described below. These

features are used with the classifiers like Support Vector Machines, Decision Tree or

Random Forests.

• The 128 dimensional SIFT key-point descriptors are computed for all the training

images using the procedure outlined above.

• The keypoints from all the training images are analyzed to compute the princi-

pal component axes that capture maximum variance. The dimensionality of the

keypoints is reduced by projecting those features to a lower dimensional sub-space

spawned by the principal components.

• All the keypoints from all the training images are grouped together into distinct

clusters using K-means clustering algorithm. Each cluster centroid is a codeword.

For every image, each keypoint is matched to the nearest codeword. The histogram

of these codewords is the SIFT codewords histogram for that image.
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2.2.5 Adaboost

Adaboost is a meta-algorithm that combines many weak classifiers to arrive at complex

decision boundaries. The algorithm can be used with any classifier. In the text localiza-

tion framework, the decision tree classifiers are the weak classifiers used to build a strong

ensemble classifier with Adaboost technique. Suppose N training pairs {xn, yn} are pro-

vided, where xn denotes the feature vector and yn ∈ {+1,−1} be the classification label.

Let the tth weak classifier be depicted by ht(x) and all the training samples be initialized

with equal weights i.e. w1(n) = 1
N ∀n. During the tth iteration, a weak classifier ht(x)

is trained to minimize the classification error εt based on the current weights wt(n). The

classification error εt is represented as,

εt =
∑
n

wt(n)1[yn 6= ht(x)] (2.13)

1[·] is the indicator function. The weight βt for combining the weak classifier ht(x)

is a function of the classification error as given by Eq. 2.14. Updates to the weights for

next iteration are made according to the Eq. 2.15. The incorrectly classified samples

get more weights in the next iteration. The new weights are normalized after every

iteration so as to sum up to 1. Adaboost minimizes exponential loss function related to

the classification error. The current classifier is constructed such that it minimizes the

exponential loss.

βt =
1

2
log

1− εt
εt

(2.14)

wt+1(n) ∝ wt(n)e−βtynxn (2.15)

h[x] = sign
[ T∑
t=1

βtht(x)
]

(2.16)
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The final output classifier (Eq. 2.16) is weighted combination of all the weak classifiers

learned in the T iterations. The output classifier weighs in the predictions of the weak

classifiers to make a final decision.
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Chapter 3

Automatic Human Action

Classification With Mocap Data

Abstract

Automatic classification of human action in motion capture (mocap) data has many

commercial, biomechanical and medical applications and is the principal focus of this

chapter. First, we propose a multi-resolution string representation scheme based on

the tree-structured vector quantization (TSVQ) to transform the time-series of human

poses into codeword sequences. Then, we take the temporal variations of human poses

into account via codeword sequence matching. Furthermore, we develop a family of

pose-histogram-based classifiers to examine the spatial distribution of human poses. We

analyze the performance of the temporal and spatial classifiers separately. To achieve

a higher classification rate, we merge their decisions and soft scores using novel fusion

methods. The proposed fusion solutions are tested on a wide variety of sequences from

the CMU mocap database using 5-fold cross validation, and a correct classification rate

of 99.6% is achieved.

3.1 Introduction

The increasing demand for rendering smooth and plausible 3D motion is fueling the devel-

opment of motion capture (mocap) systems. This new format of high quality 3D motion

data has paved its way into animation movies, high-end computer games [CCY11], biome-

chanics, robotics, gait analysis and rehabilitation [SSL02] and machine translation of sign
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languages [LKL+04,YS04]. The diverse applications of mocap data and the rapid devel-

opment of mocap systems have resulted in a large corpus of motion capture data in recent

years. However, the large amount of raw data files makes it difficult to organize. It is

desirable that both file names and the associated metadata should be able to provide a

high level description of the contents of mocap sequences. Since manual annotation of

mocap sequences is labor intensive, it is essential to develop an automated technique that

can segment mocap data into homogeneous intervals, classify each interval into a basic

action type, and index it for future retrieval. With such annotated mocap databases

in place, a proper motion editing and authoring tool can be used to synthesize realistic

motion sequences.

To develop efficient indexing and retrieval techniques for mocap databases, the first

step is to classify the data into subsets according to their similarities, which is known

as the action classification problem. As far as the human full-body motion is concerned,

the mocap system records the actions of human actors by placing several markers on

their body. These markers and a grid of infrared cameras help determine the full-

body movement of those actors in terms of joint orientations. This joint orientation

information constitutes the mocap data used in our research. Human mocap data are

essentially time series of human body poses (Fig. 3.1). Different human motions may

be of different time duration, tempo and style. Motions from same action type, e.g.

walking, can vary from person to person. Moreover, visually similar motions may start

or end with different joint orientations or even with different human body postures. A

robust classification algorithm has to compensate for these irregularities in the data.

In our tree-structured vector quantization (TSVQ) based scheme, the dynamics of

human motion is represented by a sequence of multi-resolution codewords. Appar-

ently, two motions are similar if their corresponding codeword sequences are similar.

To leverage this similarity, we analyze the distribution of these codewords in the tem-

poral and spatial domains separately. Then, to overcome the individual limitations of

these two approaches, we fuse their outcomes and soft scores to make final decision.
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We examine the proposed solutions on a wide range of motions from the CMU mocap

dataset [CMU07]. These motions are recorded in a controlled environment with only

one performer per clip. Furthermore, the clips are assumed to be homogeneous, wherein

every motion clip belongs to only one action category.

It is worthwhile to mention that a mocap data classification technique using hierar-

chical codewords was described in [KKK11], which is a 2-page summary of some inter-

mediate results of our research. The algorithmic description was brief and experimental

results were preliminary. Compared to [KKK11], the current work has a more complete

treatment on this topic. Specifically, it has the following major contributions:

• Development of an advanced temporal domain approach to mocap data classifica-

tion using codeword sequence matching;

• Development of a novel spatial domain approach for human mocap data classifica-

tion with pose-histogram-based SVM classifiers;

• Performance evaluation on a larger dataset containing 278 human motion clips (∼

0.5 million frames) spanning 30 action categories;

• Achieving a correct classification rate of 99.6% for a data set comprising of simple,

complex as well as perceptually similar action types.

The spatial domain approach takes the human skeleton structure into account so

that it is restricted to human motions only. In contrast, the temporal domain approach

does not assume any inherent structure in the data so it is more generic in this sense.

Moreover, other formats of marker-based mocap data can be handled with the proposed

algorithms if they can provide the 3D pose information. We will describe these new

approaches, their implementations, fusion and experimental results in greater detail to

offer readers a complete picture of our solution and its superior performance.

The rest of this chapter is organized as follows. Related previous work is reviewed

in Section 3.2. Our advanced action classification techniques are described in Section
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3.3. Experimental results are presented and analyzed in Section 3.4. Finally, concluding

remarks and possible future extensions are summarized in Section 3.5. The readers are

hereby informed that the words action and motion, are used interchangeably throughout

the chapter.

Figure 3.1: Illustration of ten consecutive poses of the running motion (top) and the
teapot nursery rhyme rendition (bottom)

3.2 Review of Previous Work

Different methods have been proposed to synthesize realistic human motions by reusing

existing mocap data via data-driven motion editing and authoring, e.g., Kovar and Gle-

icher [KG04], Safonova et al. [SHP04], Ren et al. [RSH+05], Lee et al. [LCR+02], Zordan

et al. [ZMCF05], and Pullen and Bregler [PB02]. In order to reuse existing mocap data,

efficient searching, indexing and browsing techniques are required. So the first step is

to group motion clips into subsets based on their similarities, which is the focus of our

current research.

Identifying similar action types in a mocap database has been considered a challeng-

ing problem. Most of the previous work on motion comparison adopted features that

were close to the raw data. For example, Liu and Popović [LP02] included the principal

component analysis (PCA) reduced raw data, 3D point clouds, joint angles, 3D positions,

etc. Forbes and Fiume [FF05] used the weighted PCA for motion comparison. The per-

formance was further enhanced by integrating the weighted PCA with other features

such as characteristic points, seed points, etc. Kovar and Gleicher [KG04] proposed a
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numerical similarity technique to find similar motion clips from a large data set. Motion

similarity is a semantic concept. The raw numerical data may differ a lot even for two

visually similar motions. Hence these types of features do not work well in practice.

Liu et al. [LZWP03] used automatically extracted key frames and a hierarchical tree

of clusters of motions to search similar actions in the database. Sakamoto et al. [SKK04]

proposed a motion map method that trains the self-organizing-map (SOM) with motion

data and indexes clips by SOM nodes. The motion map transforms the N-dimensional

data to a 2D map and computes similarity using this map. However, this scheme lacks

higher level data indexing and demands exact node-to-node matching in search.

Human motion is typically a long time series with no overt segmentation informa-

tion so the dynamic time warping (DTW) based motion comparison techniques (e.g.,

Chiu et al. [CCW+04], Kovar and Gleicher [KG04], Wu et al. [WCYL03]) suffer from

the complexity of finding the corresponding start/end points of motion data series for

motion similarity comparison. Hsu et al. [HPP05] used an iterative motion warping

(IMW) technique, which is an improvement over the traditional DTW technique, to find

the correspondence by minimizing an objective function with dynamic programming.

Generally speaking, these features work well only for certain applications.

Several algorithms were developed to identify locally similar segments in the motion

dataset, for example, Arikan and Forsythe [AF02], Kim et al. [KPS03], Kovar and Gle-

icher [KG03], Lee et al. [LCR+02], and Wang and Bodenheimer [WB03]. Arikan et

al. [AFB03] proposed a semi-automatic annotation technique using SVM classifiers. Car-

dle et al. [CVB+03] used the GEMINI framework to search mocap data sets. Yang and

Shahabi [YS04] proposed a method called EROS to calculate similarity using PCA and

eigenvalues. Li et al. [LZP07] used the kWAS method to measure similarity of motion

clips via singular value decomposition.

Relational features [MRC05a,MRC05b,MR06,RKM08], built upon the Boolean rela-

tions between various body parts, are more suitable for generic applications. Common

relational features include: the position of joints with respect to a certain plane, the
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angle between two limbs, the angular velocity of joint angles, the position of joints with

respect to other joints, the direction of motion, touch, etc. Such features are more robust

to pose distortion and other small aberrations in action sequences. Although relational

features provide a good alternative, automatic selection of a good set of relational fea-

tures for a wide range of motion types is not straightforward. This imposes a limitation

on the utility of these features.

Wu et al. [WXWL09] presented a cluster-based scheme for mocap data indexing and

retrieval, where temporal variations were accounted for while spatial variations were not

captured effectively. Later, Wu et al. [WWX09] incorporated the spatial complexity of

mocap data using hierarchical clustering. But this scheme cannot effectively differentiate

between perceptually similar motions, such as running and marching. The different

variations of the same action type (e.g. cartwheel) were also not clustered correctly. The

SOM representation used in their scheme transforms the 62 dimensional mocap data into

a crude 2D representation, which suffers from self occlusions. This significantly hinders

its capability to categorize complex motions.

The main contribution of our work is automatic classification of perceptually similar

mocap sequences based on the “multi-resolution string representation” that incorporates

both spatial and temporal information effectively. It will be shown later in the experi-

mental section that the proposed algorithm offers a correct classification rate of 99.6%

for a database consisting of 30 different action types. To the best our knowledge, no

other algorithm with better performance on such a diverse dataset has been reported in

the literature.

Although our solution is promising, it has some limitations. For example, it might

not work well on a clip containing actions from different categories, e.g. a clip with

walking motion followed by running. However, with mocap data segmentation as the

pre-processing step, this problem can be mitigated. The proposed solution was not

thoroughly tested on categories with minor variations, such as, get up from the floor

without the hands touching the floor and get up from the floor by pushing hands against
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the floor. As these categories are practically the same, we combined them into a single

category in the experiment.

Researchers from the computer vision community have proposed a variety of meth-

ods for action recognition in unconstrained video databases such as UCF11 and UCF50.

These methods used template matching, finite state models, bag of features, face detec-

tion, context, speech and text information etc. for action recognition [SC12,KS13]. But

here, we work directly on the human skeleton posture information, which is available

with the mocap data.

3.3 Proposed Classification Methods

We consider four mocap sequence classification methods.

• Method-A: Motion-string similarity

The information about the temporal order of the poses is exploited in motion

string similarity comparison using the suffix array technique. But due to the coarse

quantization used, Method A is rigid and less robust. To overcome this problem,

Method-B incorporated finer details.

• Method-B: Pose-histogram classifier

TSVQ helps to compute the multi-resolution pose histogram for each motion clip.

Multiple binary SVM classifiers, trained using these histograms, are used to gen-

erate soft scores for each test motion clip. One weakness of this method is that

it does not use the temporal information at all. But Method-A compensates for

that.

• Method-C: Two-Step Score Fusion

The soft decision scores obtained from methods A and B are combined to make

the final decision.
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• Method-D: Two-Step SVM Fusion

A more advanced SVM based fusion is used to combine the soft scores of methods

A and B.

The details are given in the following subsections.

3.3.1 Method-A: Motion-String Similarity

Human mocap data is a high-dimensional time series where the data at each time instance

(called a frame) represents the spatial location of markers in the 3D space [WWX09].

To eliminate the effect of bone sizes, this spatial data is converted to the rotational

angles of joints. In simplified terms, the 3D trajectory of placed markers is stored as the

trajectory of each degree of freedom (DOF) of the joint, over time [KCK10b,KCK10a].

Suppose that r(t) is the 3D position of the root joint at time t, ai is a scalar or vector

representing the orientations of all the DOFs of joint i and N is the total number of

joints in the human skeleton (N = 29). Then, a frame f(t) corresponding to time t in

the mocap sequence is a 62 dimensional vector which can be mathematically represented

as

f(t) = {r(t), a1(t), a2(t), · · · , aN (t)}, t = 1, 2, · · · (3.1)

The first three dimensions (index range 1-3) representing the position of the root joint

are neglected, as they are irrelevant to the 3D pose. The remaining 59 elements of vector

f(t) (index range 4-62) together form the “full-body” data vectors as shown in Table 3.1.

We apply the Tree-Structured Vector Quantization (TSVQ) technique [Eff98, NK88] to

the full-body data vectors in order to generate a full-body multi-resolution codebook as

described below. The TSVQ performs clustering of full-body data vectors by repeated

application of the Generalized Lloyd Algorithm (GLA). Iteratively, each cluster is split

into two and fine tuned with another round of repeated application of the GLA to the

perturbed centroids. After convergence, the parent codeword spawns two child codewords
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in the tree structure. Finally, a balanced binary tree-like structure is obtained. Fig. 3.2

shows the full-body level-n codebooks obtained using the TSVQ technique up to level

n = 3. Owing to balanced binary tree structure, level n in the tree has 2n codewords.

All the full-body codewords at level-n together form the level-n codebook.

Figure 3.2: An illustration of full-body multi-resolution TSVQ codebooks.

Methods Parts No. of DOFs Index Range

Method-A Full-body 59 4-62

Method-B

Torso 21 4-24
Right hand 12 25-36
Left hand 12 37-48
Right leg 7 49-55
Left leg 7 56-62

Table 3.1: Partitioning of a human skeleton for classification.
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This full-body level-n codebook encodes the mocap sequence by replacing each full-

body pose vector with a codeword that is closest to it in terms of the Euclidean distance.

For example, ten consecutive full-body poses of the running motion are shown in the top

row of Fig. 3.1. If this partial sequence is encoded using a full-body level-9 codebook,

each pose will be mapped to a codeword. Due to quantization, the mapped codewords

can be the same for a set of consecutive frames. As a result, the mocap sequence can be

compactly represented by a series of triplets (namely, a full-body codeword index number

and the frame range). This series of codeword indices is called the “motion string”. An

illustration of the motion string representation is given in Fig. 3.3, which shows all

frames in the aforementioned running motion sequence. The black horizontal segments

indicate the group of consecutive frames that are mapped to the same full-body level-9

codeword. For the level-9 codebook, the codeword index ranges from 0 to 511 (=29−1).

Figure 3.3: An illustration of the motion-string representation.
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Apparently, two actions are similar if their corresponding motion strings are similar.

The problem of finding similarity between two motion strings can be reformulated to

a string matching problem. The latter can be efficiently solved by using the suffix

array technique [AKO04, KS03, KLA+01]. In this technique, all suffixes of a string,

S, are sorted in an ascending order. The sorted suffixes for a sample motion string,

S = [25, 18, 87, 160, 98, 25, 18], are shown in the last column of Table 3.2. Note that the

end of the string is denoted by a unique symbol ‘$’. The ‘$’ symbol is assigned to have

the highest value among all codeword indices in the motion string. The suffix notation

Sq represents the sub-sequence of S starting from S[q] till the end of the string, followed

by $. Only the starting point i.e. index ‘q’ is enough to represent this suffix Sq. The

array of indices ‘q’ defines the “suffix array”, denoted by suftab in Table 3.2. We have

suftab[̃i] = q for suffix Sq that is at the ĩth position in the sorted list starting with ĩ = 0.

To give an example, S4 represents the sub-sequence starting from S[4] = 98, which is

[98, 25, 18, $]. The suffix S4 is at the fifth location (̃i = 5) in the sorted list. Therefore,

suftab[5] = 4 in Table 3.2.

ĩ suftab[̃i] lcptab[̃i] bwttab[̃i] Ssuftab[̃i] or Sq

0 1 0 25 18 87 160 98 25 18 $
1 6 1 25 18 $
2 0 0 - 25 18 87 160 98 25 18 $
3 5 2 98 25 18 $
4 2 0 18 87 160 98 25 18 $
5 4 0 160 98 25 18 $
6 3 0 87 160 98 25 18 $
7 7 0 18 $

Table 3.2: The suffix array for motion string: [25, 18, 87, 160, 98, 25, 18, $]

For a sequence of length p, the suffix array can be built in O(p log p) time using

an appropriate sorting algorithm. Besides, Kim et al. [KSPP05] proposed a linear time

complexity algorithm for generating the suffix array. Other supplementary arrays are

also constructed to enhance and optimize the string matching functionality. These arrays

include:
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1. The Burrows Wheeler Transform array, denoted by “bwttab”, that stores the ele-

ment before the first element of the corresponding suffix Sq. The ĩth element

of bwttab is bwttab[̃i] = S[suftab[̃i] − 1] = S[q − 1]. For example, bwttab[5] =

S[suftab[5]− 1] = S[3] = 160.

2. The longest common prefix array, denoted by “lcptab”, that stores at the ĩth loca-

tion, the length of the longest common prefix between Ssuftab[̃i] and Ssuftab[̃i−1].

For example, the longest common prefix of Ssuftab[3−1] (i.e. S0) and Ssuftab[3] (i.e.

S5) is [25, 18]. Therefore, lcptab[3] = 2.

The value stored in lcptab[̃i] is the length of unique repeated sub-sequence when we

have,

bwttab[̃i− 1] 6= bwttab[̃i]. (3.2)

Thus, there is only one unique repeated sub-sequence in this example, which is of

length 2 and the sub-sequence is [25, 18]. In this manner, all unique matches within

string S can be found using the suffix array technique.

To find similarity between two strings S1 and S2, they are concatenated into a new

string Sc, denoted by Sc = S1#S2$, where symbol ‘#’ is a unique logical separator

between S1 and S2 but different from ‘$’. Symbol ‘#’ is assigned the second largest

value in string Sc after ‘$’. The same technique used to find the repeated sub-sequences

for a single string is now applied to new string Sc with additional care. That is, one

of the matching sub-sequence should begin before the ‘#’ symbol in Sc and the other

should begin after the ‘#’. It ensures that the match is not within S1 or S2 itself, but

across strings S1 and S2. This additional constraint can be expressed in the following

form:
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suftab[̃i− 1] < |S1| < suftab[̃i], or

suftab[̃i] < |S1| < suftab[̃i− 1]

(3.3)

where | · | is the cardinality of string S1.

In our experiments, all training and testing action sequences are converted to their

motion strings. A test motion string is compared with all training motion strings individ-

ually, using the suffix array technique discussed above and the following three parameters

are computed for each testing-training string pair:

• MLM: the product of ratios of the Maximum Length Matches to the total length,

for the test and the training strings. The maximum length sequence ‘l’ is the

maximum value in the lcptab array that satisfies Eqs. (3.2) and (3.3).

• TEM: the Total number of Elements that Match in the two strings. The total

number of elements ‘t’ is the sum of all the non-zero values in lcptab array that

satisfy Eqs. (3.2) and (3.3).

• SRP: The Product of Similarity Ratios of the test string and the training string.

For example, the ith test string has f codeword indices in its motion string while the jth

training string has g codeword indices. The t codeword indices in these two strings are

identical and the largest common sequence is of length l. Then TEMi,j = t and

MLMi,j = (l/f × 100)(l/g × 100),

SRPi,j = (t/f × 100)(t/g × 100).

(3.4)

As the calculation of MLMi,j and SRPi,j has its bottleneck in the suffix array for-

mulation, their computational complexity is similar to that of the suffix array, with

p = f + g. On the average, it takes around 0.5 ms to compare two strings using the
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suffix array technique on a 64-bit Windows Vista operating system with 4GB RAM and

Intel Core 2 Duo CPU T6500 2.10 GHz.

For the ith test string, the following two metrics are calculated with respect to a

given action category k using the parameters in Eq. (3.4):

1. max-parameter: the average of MLMs of all training motions in category k;

2. sim-parameter: the average of the similarity product of all training motions in

category k.

For the kth category, we have

MAXk
i =

∑
j∈k

MLMi,j∑
j∈k

1(j ∈ k)
,

SIMk
i =

∑
j∈k

SRPi,j∑
j∈k

1(j ∈ k)
,

(3.5)

where 1(·) is the indicator function.

In standalone Method-A, the category with the highest parameter value wins. Alter-

natively, for each test motion, all categories are pitted against each other, one-on-one,

and the category with the higher value for the parameter wins the vote. All category-

specific votes are aggregated together and, then, normalized to get the soft scores. That

is, we have

V oteki,MAX =
∑
∀m 6=k

1(MAXk
i > MAXm

i ),

V oteki,SIM =
∑
∀m6=k

1(SIMk
i > SIMm

i ),

(3.6)

for the kth category with m ∈ {1, 2 · · · 30}. The standalone Method-A classification

results are presented in Fig. 3.4. The full-body level-n codebooks that offer the best
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classification results in standalone Method-A are short-listed for fusion to yield the final

decision.

(a) (b)

Figure 3.4: Standalone action classification performance of the motion string similar-
ity comparison method: (a) overall performance using the sim parameter, (b) overall
performance using the max parameter

3.3.2 Method-B: Pose-Histogram Classifier

Dynamic human behaviors are intrinsically low dimensional since legs and hands work

in a coordinated fashion [SHP04]. According to biomechanics, a human skeleton can be

decomposed into five functionally independent body-parts: right hand, left hand, right

leg, left leg and torso. The mocap data inherently provides a clear demarcation between

these body-parts. In other words, different portions of the mocap data vectors f(t) can

be associated with different body-parts. The first 3 elements give the root joint location.

The next 21 elements (i.e. with index number 4-24) provide the information about the

angular orientations of joints in the torso, the next 12 elements (i.e. with index number

25-36) for right hand and so on. The number of DOFs for each body-part and their

associated index range in the vector f(t), are shown in Table 3.1.

To leverage the spatial symmetry of human bodies, we propose a scheme that par-

titions a human skeleton into five body-parts using the information from Table 3.1.

Then, TSVQ is applied to the DOF vectors of each body-part separately to generate
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five balanced tree structured codebooks, one for each limb (i.e. right hand, left hand,

right leg and left leg) and one for the torso. These five body-part codebooks provide a

multi-resolution description of the pose for each body-part. As opposed to the previous

method which analyzes the entire body together using the “full-body” codebooks, this

method analyzes “body-parts” separately using separate codebooks.

For each frame of a mocap sequence, every body-part is encoded using the corre-

sponding level-n codebook, to get a string of five codewords. Because of the quantization

effect, these strings do not change for a chunk of consecutive frames. This chunk can

be represented by a set of five body-part codeword indexes as well as the frame range

through which this chunk exists. For instance, Fig. 3.5 shows the frames in the bend

down and pick up a box motion sequence encoded using level-5 body-part codebooks.

The black portions in the time-line indicate the frames that have the same set of five

body-part poses. Three frames selected from each of the chunks are shown above the

time-line, and the level-5 codeword indices are shown below, where RH, LH, RL, LL and

TR represent the Right Hand, Left Hand, Right Leg, Left Leg and Torso codewords,

respectively. The codeword index numbers are in the range, 0 to 31 i.e. (25 − 1) for

each of the level-5 codebooks. All the frames in each chunk are represented collectively

using a set of five body-part codeword indexes and the corresponding frame range. This

compact notation is called the “pose string representation”.

The pose string representation is used to obtain the body-part codeword histograms.

The level-n histograms obtained for each body part (namely, right hand, left hand, right

leg, left leg and the torso) for the jth motion clip are concatenated to get the level-n

pose histogram vector, denoted by −→xj . If
−→
hj
TR is the level-n torso histogram for the jth

clip,
−→
hj
RH is the level-n right hand histogram, and so on, then

−→xj = {
−→
hj
TR,
−→
hj
RH ,
−→
hj
LH ,
−→
hj
RL,
−→
hj
LL}. (3.7)
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Figure 3.5: A pose string representation of a mocap sequence based on body-part code-
words.

The pose histograms of motions belonging to the same action category are expected

to be similar. The level-n pose histogram vector offers the information about the fre-

quency of occurrence of level-n codewords for four limbs and the torso in the pose string

representation of a given motion clip. Higher TSVQ levels in these histograms corre-

spond to a higher resolution in the spatial domain. Motions belonging to the same type

show similarity up to higher levels while motions of different types begin to differ at

lower levels of the histogram. The number of levels can be gradually increased to get a

better match between motions. However, a compromise has to be made, since similar

motions will show differences if the level becomes too high. In other words, we start to

see the characteristics of an individual motion clip rather than that of a action category.
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Support vector machines [Wik04] are supervised learning models for regression anal-

ysis and binary classification. Assume the classification labels yj ∈ {+1,−1}∀j; the

decision rule C(xj) = sign(wTφ(xj) + b); xj to be the input feature vector for the jth

motion, φ(·) the mapping function, classifier C(·) and w to be the parameter vector.

Then the optimization algorithm trains the SVM classifier by minimizing the hinge loss

function in form of

min
w,b

∑
j

max(0, 1− yj(wTφ(xj) + b)) +
λ

2
‖w‖22, (3.8)

where the last term λ is the regularizer coefficient. SVM constructs a hyperplane

with the largest separation between the two classes.

For multi-class classification with m̃ classes, m̃(m̃− 1)/2 binary SVM classifiers are

built. Every binary SVM classifier Cab distinguishes between a pair of classes (a, b) where

a, b ∈ {1, 2 · · · m̃} and a 6= b.

Cab(xi) =

 +1 if xi ∈ a or

−1 if xi ∈ b
(3.9)

In our case, m̃ = 30. LIBSVM [CL11] trains these multiple binary SVM classifiers

using the level-n pose histogram feature vectors and Gaussian RBF kernel. Refer to Eq.

(3.7) for the interpretation of pose histogram vectors. The hyper-parameters of SVM

classifiers are carefully tuned using cross validation on the training set. Regularization,

careful tuning of hyper-parameters and cross validation help avoid overfitting. Every

classifier then categorizes the test motion into one of two classes. The winning class gets

that classifier’s vote. For the kth category and the ith test motion, the total votes are

calculated as

V oteki =
∑
b>k

max(0, Ckb(xi)) +
∑
a<k

1−max(0, Cak(xi)). (3.10)
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In standalone Method-B, the class that gets the maximum number of votes wins. The

standalone Method-B classification results are depicted in Fig. 3.6. Alternatively, the

votes of all classes are normalized to get m̃ soft decision scores (one for each category)

for that test motion.

The performance of standalone Method-B which uses the spatial domain information

is presented in Section 3.4. The classification results at various levels are analyzed

to choose the best performing levels in the multi-resolution tree histograms. These

shortlisted levels are then used in the decision fusion step.

Figure 3.6: Standalone action classification performance of the pose histogram classifier
method with level-n codewords, where n = 3, 4, 5, 6.

The motion string similarity (Method-A) inspects the order of the full-body poses

while the pose histogram classifier (Method-B) examines the frequency of body-part

poses. The two methods use completely different information to analyze the mocap

data. These diverse perspectives complement each other in the fusion step to enhance

the overall performance. It is worthwhile to point out that the codebooks for Method-A

demand deeper levels (n = [10, 11, 12, 13]) in TSVQ as compared to that for Method-B

(n = [3, 4, 5, 6]). This is because Method-A considers the full-body codebook and its level

has to be deep enough to offer sufficient discriminant power. In contrast, Method-B uses
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specialized body-part codebooks that can reach sufficient discriminating capability with

shallower levels in TSVQ.

3.3.3 Method-C: Two-Step Score Fusion

For simplicity, we use the following nomenclature to represent the selected algorithm and

its parameter setting:

• A (or B): Method-A (or Method-B) classification algorithm;

• MLn: Max-parameter with Level-n TSVQ full-body codebooks (associated with

Method-A only);

• SLn: Sim-parameter with Level-n TSVQ full-body codebooks (associated with

Method-A only);

• PLn: Pose histograms with Level-n TSVQ body-parts codebooks (associated with

Method-B only).

The top two algorithms in Method-A (A-SL12, A-SL13) and Method-B (B-PL04,

B-PL06), are shortlisted for fusion, in Method-C. Refer to the Tables 3.3, 3.4 and 3.5

for details. Given the individual outcomes of these four algorithms and their soft scores,

Method-C makes the final decision on the action category using a two-step procedure as

outlined below.

Step 1: Hard Decision Fusion The individual outcomes of the above-mentioned

four algorithms (for a certain test motion) are taken together. If these outcomes are

biased towards a specific category, then the test motion is classified into that category.

Otherwise, we move on to the second step. For example, if algorithms A-SL12, B-PL05

and B-PL06 classify the motion into category-M while A-SL13 classifies the motion into

category-N. Then, Method-C classifies the motion into category-M since this category

has the maximum number of votes. If there is any tie of some sorts, we proceed to the

second step to break the tie.
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Step 2: Soft Score Fusion If there is a tie, soft scores of all these four algorithms are

merged together as

(A)ki,Soft =
∑

n∈{12,13}
(A-SLn)ki,Soft,

(B)ki,Soft =
∑

n∈{4,6}
(B-PLn)ki,Soft,

(3.11)

where k ∈ {1, 2 · · · m̃} and i denote an action category and a test motion sequence,

respectively, and subscript Soft indicates soft scores. The category getting the maximum

score is assigned to that of test motion i; namely,

Ci = max
k∈{1,2···m̃}

{(A)ki,Soft + w ∗ (B)ki,Soft}. (3.12)

where weight w can be determined heuristically by analyzing the variance of the soft

scores and the standalone classification outcomes. For simplicity, w is set to 1 in our

experiments. The performance results of Method-C are given in Table 3.6.

3.3.4 Method-D: Two-Step SVM Fusion

To improve the performance further, we developed another two step fusion approach

based on SVM classifiers, a.k.a. Method-D. The details of this two step approach are

given below.

Step 1: Hard Decision Fusion Similar to Method-C, the individual outcomes of

four algorithms A-SL12, A-SL13, B-PL04 and B-PL06 (for a certain test motion) are

taken together. If these outcomes are biased towards a specific category, the test motion

is classified into that category. If there is a tie, we proceed to the second step.

Step 2: SVM Fusion For Method-D, we adopt a new mechanism to compute soft

scores of Method-A and Method-B. For Method-A, we use the normalized SIM parameter

values as the soft scores. For Method-B, we use the ‘one-versus-rest’ SVM classifier

Ck{xi} = wTφ(xi) + b, (3.13)
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where φ(·) is the mapping function, b is a constant and k ∈ {1, 2 · · · m̃}, to yield the

soft score for feature vector xi with respect to category k. A higher absolute positive

score implies a higher possibility of test motion i belonging to class k while a higher

absolute negative scores imply otherwise.

The soft scores, computed in this fashion for the four aforementioned algorithms

i.e. A-SL12, A-SL13, B-PL04 and B-PL06, are combined to form the following four

dimensional feature vectors:

−→
pki = {(A-SL12)ki,Soft, (A-SL13)ki,Soft,

(B-PL04)ki,Soft, (B-PL06)ki,Soft} (3.14)

Suppose j is the training motion. In the training phase, feature vectors pkj belonging

to class k are used to build new ‘one-versus-rest’ SVM classifiers Nk for class k. In the

testing phase, the four dimensional feature vectors pki and the corresponding classifiers

Nk are used to find the SVM scores Nk{pki } for i and its corresponding class k. Then,

in Method-D, the category having the maximum SVM score, i.e.,

Di = max
k∈{1,2···m̃}

{Nk{xi}}, (3.15)

is the category of test motion i. The performance results of Method-D are presented in

Table 3.6.

3.4 Experimental Results

3.4.1 Dataset Description

Our experimental dataset contains a total of 278 high quality labeled motion clips (∼ 0.5

million frames) belonging to 30 distinct action categories taken from the CMU mocap

database [CMU07]. 33 different subjects were involved in recording these motions. The
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captured data has 62 dimensions of freedom (DOFs). The first three dimensions give the

3D position of the centroid of the human skeleton while the remaining 59 DOFs describe

the angular positions of the joints as shown in Table 3.1. These 59 DOFs together define

a full-body pose in the 3D space. The pre-processing step irons out the kinks in the

full-body raw data file and also separates it into five body-part files for Method-B. The

generated TSVQ codebooks are used to classify the motions from the dataset using n-fold

cross validation process.

The n-fold cross validation method is adopted to evaluate the performance of the

proposed classification algorithms. In this procedure, all motion clips of the same cat-

egory are divided into n subsets. We choose an arbitrary subset as the test data and

the other n − 1 subsets as the training data, and conduct the experiment to get the

classification performance. Following the same procedure, we can perform n such tests

using each subset as a test subset once. Finally, the classification results for all n tests

are aggregated together. We set n = 5 in our experiment. Fig. 3.7 shows the cross

validation results for each of the five groups.

(a) (b)

Figure 3.7: (a) Group-wise performance using the sim and max parameters and (b)
group-wise classification results for pose histogram classifiers.
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3.4.2 Classification Performance and Discussion

We compared the performance of the four classification methods: 1) Standalone Method-

A, 2) Standalone Method-B, 3) Method-C and 4) Method-D. The overall correct classi-

fication results for 278 test motions using the 5-fold cross validation with different level

TSVQ codebooks and parameter settings are summarized in Table 3.3. More detailed

classification results are listed in Tables 3.4, 3.5 and 3.6.

Stage Features Accuracy

Method-A only

A-ML12 82.3%
A-ML13 80.5%
A-SL12 95.6%
A-SL13 95.6%

Method-B only

B-PL03 92.8%
B-PL04 95.6%
B-PL05 95.3%
B-PL06 95.6%

Method-C Score Fusion 98.2%

Method-D SVM Fusion 99.6%

Table 3.3: Comparison of classification results.

In contrast with the pose histogram classification approach (Method-B), the motion

string similarity comparison approach (Method-A) examines the transition of “coarsely

quantized poses” in the temporal domain. Though there is an approximation, the tem-

poral information helps in classifying some of the motions correctly, which the pose

histograms missed. For instance, the misclassified Kickball motions are all correctly

categorized by the temporal domain approach, indicating the fact that the sequence

of poses do matter. Please check A-SL12 and B-PL06 columns in Tables 3.4 and 3.5,

respectively. In addition, the temporal domain approach reinforces the confidence in the

correctly classified motions. On the flip side, due to the coarse quantization used in the

temporal domain approach, a lot of motions from the Cock Robin category are misclas-

sified as shown in column A-SL13, Table 3.4. However, the finer resolution of the pose

histogram classification algorithms give us correct results for those motions as shown in
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Sr.No. Category(#Motions) A−ML12 A−ML13 A− SL12 A− SL13
1 Run(27) 26(96%) 26(96%) 27(100%) 26(96%)
2 Walk(47) 40(85%) 40(85%) 46(97%) 47(100%)
3 Forward Jump(9) 8(88%) 8(88%) 8(88%) 9(100%)
4 Forward Dribble(5) 5(100%) 5(100%) 5(100%) 5(100%)
5 Cartwheel(5) 5(100%) 5(100%) 5(100%) 5(100%)
6 Kickball(6) 6(100%) 6(100%) 6(100%) 6(100%)
7 Boxing(7) 0(0%) 0(0%) 6(85%) 7(100%)
8 Mickey Walk(7) 7(100%) 7(100%) 7(100%) 7(100%)
9 Sit and Stand(5) 4(80%) 4(80%) 5(100%) 5(100%)
10 Laugh(6) 4(66%) 6(100%) 6(100%) 6(100%)
11 Sweep Floor(5) 2(40%) 2(40%) 5(100%) 5(100%)
12 Wash Windows(5) 3(60%) 3(60%) 5(100%) 5(100%)
13 Climb Ladder(5) 5(100%) 5(100%) 5(100%) 5(100%)
14 Steps(7) 4(57%) 6(85%) 7(100%) 7(100%)
15 Eating(5) 5(100%) 5(100%) 5(100%) 5(100%)
16 Tiptoe(5) 5(100%) 3(60%) 5(100%) 5(100%)
17 Pick Box/Bend Waist(6) 6(100%) 6(100%) 5(83%) 6(100%)
18 Limp(5) 5(100%) 4(80%) 5(100%) 5(100%)
19 Balancing Walk(12) 10(83%) 9(75%) 12(100%) 12(100%)
20 Get Up From Chair(5) 4(80%) 4(80%) 5(100%) 4(80%)
21 Breast Stroke(6) 3(50%) 1(16%) 5(83%) 5(83%)
22 Hop on Left Foot(6) 4(66%) 6(100%) 6(100%) 6(100%)
23 Bouncy Walk(6) 4(66%) 4(66%) 6(100%) 6(100%)
24 Marching(10) 10(100%) 10(100%) 10(100%) 9(90%)
25 Rhyme Tea Pot(16) 13(81%) 13(81%) 12(75%) 12(75%)
26 Rhyme Cock Robin(15) 9(60%) 6(40%) 13(86%) 13(86%)
27 Swing(10) 10(100%) 10(100%) 9(90%) 10(100%)
28 Placing Tee(5) 5(100%) 5(100%) 5(100%) 4(80%)
29 Salsa Dance(15) 13(86%) 11(73%) 15(100%) 14(95%)
30 Get Up From Floor(5) 4(80%) 4(80%) 5(100%) 5(100%)

Total(278) 229(82.3%) 224(80.5%) 266(95.6%) 266(95.6%)

Table 3.4: The standalone motion string similarity comparison results

column B-PL06 of Table 3.5. In this manner, these two diverse approaches complement

each other.

Both the temporal and the spatial domain approaches have their own strengths and

shortcomings. Due to this diversity, it is desired to combine them so as to improve the

classification accuracy even further. Both the fusion approaches are able to do so. For

example, the Run and the Walk motions which were not classified by either Method-A

or Method-B are correctly classified by both the fusion approaches. This demonstrates

the significance of proper fusion. Within these two fusion approaches, the SVM fusion
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Sr.No. Category(#Motions) B−PL03 B−PL04 B−PL05 B−PL06
1 Run(27) 26(96%) 27(100%) 26(96%) 26(96%)
2 Walk(47) 46(97%) 46(97%) 46(97%) 46(97%)
3 Forward Jump(9) 8(88%) 8(88%) 7(77%) 9(100%)
4 Forward Dribble(5) 5(100%) 5(100%) 5(100%) 5(100%)
5 Cartwheel(5) 5(100%) 5(100%) 5(100%) 5(100%)
6 Kickball(6) 5(83%) 5(83%) 5(83%) 5(83%)
7 Boxing(7) 7(100%) 7(100%) 7(100%) 7(100%)
8 Mickey Walk(7) 6(85%) 7(100%) 7(100%) 7(100%)
9 Sit and Stand(5) 5(100%) 5(100%) 5(100%) 4(80%)
10 Laugh(6) 6(100%) 6(100%) 6(100%) 6(100%)
11 Sweep Floor(5) 4(80%) 5(100%) 5(100%) 5(100%)
12 Wash Windows(5) 5(100%) 5(100%) 5(100%) 5(100%)
13 Climb Ladder(5) 5(100%) 5(100%) 5(100%) 5(100%)
14 Steps(7) 7(100%) 7(100%) 7(100%) 7(100%)
15 Eating(5) 5(100%) 5(100%) 5(100%) 5(100%)
16 Tiptoe(5) 5(100%) 5(100%) 5(100%) 5(100%)
17 Pick Box/Bend Waist(6) 5(83%) 5(83%) 6(100%) 6(100%)
18 Limp(5) 5(100%) 5(100%) 5(100%) 5(100%)
19 Balancing Walk(12) 10(83%) 12(100%) 11(91%) 11(91%)
20 Get Up From Chair(5) 4(80%) 5(100%) 5(100%) 3(60%)
21 Breast Stroke(6) 6(100%) 6(100%) 5(83%) 5(83%)
22 Hop on Left Foot(6) 6(100%) 5(83%) 6(100%) 6(100%)
23 Bouncy Walk(6) 3(50%) 4(66%) 5(83%) 6(100%)
24 Marching(10) 10(100%) 10(100%) 10(100%) 10(100%)
25 Rhyme Tea Pot(16) 12(75%) 14(87%) 14(87%) 14(87%)
26 Rhyme Cock Robin(15) 14(93%) 13(86%) 12(80%) 15(100%)
27 Swing(10) 10(100%) 10(100%) 10(100%) 10(100%)
28 Placing Tee(5) 4(80%) 4(80%) 5(100%) 4(80%)
29 Salsa Dance(15) 15(100%) 15(100%) 15(100%) 15(100%)
30 Get Up From Floor(5) 4(80%) 5(100%) 5(100%) 4(80%)

Total(278) 258(92.8%) 266(95.6%) 265(95.3%) 266(95.6%)

Table 3.5: The standalone pose histogram classification results

(Method-D) outperforms the score fusion (Method-C). This is mainly due to the fact that

Method-C weighs all the features equally while Method-D is able to put more emphasis

on the relevant features. This effect is more pronounced for the Tea Pot nursery rhyme

category as shown in Table 3.6.

The performance results of the state-of-the-art mocap classification algorithms, tested

on similar datasets, are presented in Table 3.7. Our classification results are better than

the other. However, the direct comparison of all these algorithms with ours is difficult

due to the following reasons.
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Sr.No. Category(#Motions) Method−C Method−D
1 Run(27) 27(100%) 27(100%)
2 Walk(47) 47(100%) 47(100%)
3 Forward Jump(9) 9(100%) 9(100%)
4 Forward Dribble(5) 5(100%) 5(100%)
5 Cartwheel(5) 5(100%) 5(100%)
6 Kickball(6) 6(100%) 6(100%)
7 Boxing(7) 7(100%) 7(100%)
8 Mickey Walk(7) 7(100%) 7(100%)
9 Sit and Stand(5) 5(100%) 5(100%)
10 Laugh(6) 6(100%) 6(100%)
11 Sweep Floor(5) 5(100%) 5(100%)
12 Wash Windows(5) 5(100%) 5(100%)
13 Climb Ladder(5) 5(100%) 5(100%)
14 Steps(7) 7(100%) 7(100%)
15 Eating(5) 5(100%) 5(100%)
16 Tiptoe(5) 5(100%) 5(100%)
17 Pick Box/Bend Waist(6) 6(100%) 6(100%)
18 Limp(5) 5(100%) 5(100%)
19 Balancing Walk(12) 12(100%) 12(100%)
20 Get Up From Chair(5) 5(100%) 5(100%)
21 Breast Stroke(6) 5(83%) 6(100%)
22 Hop on Left Foot(6) 6(100%) 6(100%)
23 Bouncy Walk(6) 6(100%) 6(100%)
24 Marching(10) 10(100%) 10(100%)
25 Rhyme Tea Pot(16) 12(75%) 15(93%)
26 Rhyme Cock Robin(15) 15(100%) 15(100%)
27 Swing(10) 10(100%) 10(100%)
28 Placing Tee(5) 5(100%) 5(100%)
29 Salsa Dance(15) 15(100%) 15(100%)
30 Get Up From Floor(5) 5(100%) 5(100%)

Total(278) 273(98.2%) 277(99.6%)

Table 3.6: Decision fusion results

• Most of state-of-the-art algorithms tested their approach on their own datasets

(or a mixture of CMU and self-generated datasets). We have no access to their

datasets. Our approach uses the motions from the freely available online CMU

mocap database [CMU07] only as listed in the Appendix.

• We adopted a stricter classification performance evaluation metric. For example,

Wu et al. [WWX09] clustered the running and marching motions into one group

as these motions are similar. In contrast, our evaluation metric requires that,

if the labels of motions are different, they should be categorized into separate
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groups. Apart from that, some motions belonging to the same category are clus-

tered into separate sub-groups in [WWX09]. As long as samples in each sub-group

are homogeneous, it is treated as correct clustering. However, they are treated as

misclassification in our performance metric.

• We have more action categories as compared to others. For example, our dataset

contains both simple and complex motions from 30 categories while Wu’s dataset

had only simple motions from 14 categories.

Although we do not have a direct performance comparison because of different datasets,

evaluation metrics and action categories used. The results in Table 3.7 still offer a rough

idea of the performance of prior art.

Algorithms Accuracy Dataset

D-SBGPLVM [NPP+13] 72.9% CMU dataset

EROS [YS04] 87.5% 1 Self generated

kWAS [LZP07] 90.3% 1 Self generated

Wu et al. [WXWL09] 97.0% 1 CMU + Self generated

Kadu et al. [KKK11] 97.0% 2 CMU dataset

Wu et al. [WWX09] 98.1% 1 CMU + Self generated

Proposed Method 99.6% CMU dataset

Table 3.7: Performance comparison of human mocap data classification algorithms.

3.5 Conclusion and Future Work

A technique for automated mocap data classification was presented in this work. The

TSVQ method was adopted to approximate static human poses with codewords while a

1Refer to Wu et al. [WWX09] for clustering accuracy.

2Refer to Kadu et al. [KKK11].
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dynamic human motion was represented by a sequence of codewords. Fusion approaches

were proposed to classify mocap data into different categories. We tested the proposed

algorithms on the CMU mocap database using the 5-fold cross validation procedure and

obtained a correct classification rate of 99.6%.

The proposed algorithm can be extended to various tasks required by mocap database

management such as segmentation, indexing and retrieval, without much effort. We only

sketch the basic ideas below.

• Segmentation

If a complex motion clip contains multiple basic motions, then the sequence of

these basic motions will be present in the sequence of that complex motion. By

using string matching, we can find out the location of sequences of all basic motions

in the complex motion. This corresponds to the segmentation of a complex action

sequence into multiple basic action sequences.

• Indexing

After running the classification algorithm, unknown motion clips can be classified

into one of the known categories and indexed accordingly. Consider a mixed motion

that has running, jumping and bending actions one after the other. Using the string

matching and the database of sequences, the location of all these basic motions in

that mixed motion can be determined and these basic actions can be indexed

accordingly.

• Retrieval

The retrieval problem can be solved using suffix array technique. To be more

specific, for a given test motion, we would like to extract motion clips or parts

of motion clips from the database that are similar to the query. To perform this

retrieval task, we convert the test motion into a sequence and use the string match-

ing algorithm to search the motion clips or portions of the motion clips that have

the same sequence. Those clips can then be retrieved.
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There are several algorithms for extracting human skeleton from depth images pro-

duced by Microsoft Kinect [SSK+13, AD13]. The data generated by these algorithms

are similar to the mocap data [CK13]. It is interesting to explore whether the proposed

methodology can be extended to the Kinect sensor data as well. High quality 3D ren-

dering can be achieved by blending stored mocap data with the pose information from

the Kinect sensor inputs.
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Chapter 4

Text Localization In Natural

Scene Images

Abstract

Searching for text regions in natural images is a challenging task for many computer

vision applications. In this research, we propose a novel text localization scheme based

on multi-stage incremental region classification technique. The stable extremal region

detector investigates peculiar characteristics of text to discover regions with possible tex-

tual content across different channels. The coarse decision stump classifiers designed on

geometric features and context-based text grouping stages efficiently remove false posi-

tives and outline the regions of interest. An ensemble of trained decision tree classifiers

categorizes the remaining regions into text or non-text using the gradient profile features.

Finally, the ROIs from different views and channels are fused together to procure a con-

solidated list of text regions. As per the experimental results, our suggested technique

is among the top algorithms reported in the literature.

4.1 Introduction

In recent years, the task of locating text in natural scene images is attracting attention

of researchers and industrial community alike, due to its inherent complexity and vast

range of applications. Text region detection is a precursor to many computer vision tasks

such as, optical character recognition, robotic navigation, compound video compression,

scene understanding, text-based image indexing, search and retrieval etc. The aim of
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our text localization research is to detect text regions in the image and draw bounding

boxes around each and every word. Contrary to the scanned documents, text in natural

images have different sizes, fonts, orientations, illumination and colors. The cluttered

background also poses a serious threat to the localization accuracy. This diversity and

irregularity makes text localization in these circumstances quite difficult. The fact that,

no algorithm has yet been able to achieve a considerable accuracy on the benchmark

datasets, further illustrates the challenging nature of the problem.

Text regions have some peculiar properties which distinguish them from the non-text

regions. For example, text has sharp edges, interior pixels have consistent color, related

component have distinct spatial alignment etc. Based on these observations, we propose

a multi-stage region classification model, that systematically detects individual words in

the images. This multi-stage design for text localization enhances efficiency and reduces

complexity. After detecting probable candidates in the first stage, the task of eliminating

false alarms is distributed across subsequent stages of the framework. Each stage targets

specific properties of text to come up with its own set of discriminative features. The

commendable performance justifies the effectiveness of this incremental approach.

The stable extremal region (SER) detector [MCUP04], [CTS+11] explores intra-

component color similarity, to discover potential text candidates. But these detected

regions may contain several false positives. Geometric filtering phase removes most of

these false alarms. Later on, the context-based text grouping stage combines the remain-

ing components into words, by exploiting the inter-component consistency and spatial

alignment information. The text-like false positives are gradually phased out of the

pipeline. An ensemble of decision tree classifiers, then decides the fate of these newly

formed word candidates. These weak decision tree classifiers are built on gradient pro-

file features and combined into an ensemble using the Adaboost framework. The whole

process is repeated for different channels of the image and the detected words are aggre-

gated. Experimental results on the ICDAR dataset [LPS+03, Luc05, SSD11] show that

our performance score is comparable to the state-of-the-art algorithms.
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The major contributions of our research are listed below:

• Designed the stripe-scan features for removing text-like false positives

• Proposed the scan-line stroke width transform technique for efficient computation

of stroke width values on binary components

• Developed a robust text grouping mechanism which is immune to missing compo-

nents

• Built the novel gradient profile features that capture the peculiarities of text regions

• Demonstrated the effectiveness of the approach by achieving excellent results on

publicly available datasets

The rest of this chapter is organized as follows. Related previous work is summarized

in Sec. 4.2. Sec. 4.3 presents the intricate details of our proposed text localization

framework. Experimental results are provided in Sec. 4.4 along with the performance

analysis. Finally, Sec. 4.6 has the concluding remarks and future research directions.

4.2 Review of Previous Work

The techniques for text localization in scanned document can be broadly classified into

three main categories: top-down, bottom-up and hybrid approaches [ODP99]. The top-

down approach [LCC00], [KNSV93], [IKA87], [CYWM03] starts by detecting the page

schematic and then successively splits up the cells to reach lower levels. For instance,

Khedekar [KGS03] proposed a projection profile based algorithm using this top-down

approach to separate images and text in the Devnagri documents. However, due to the

dependence on page layout information, these methods are suitable only for the scanned

document images. The bottom-up approach [Bix98], [Mak83] on the other hand, starts

merging together the components at the lowest level and forms larger structures as it goes

up. Though these methods are flexible, they suffer from accumulation errors [KGS03].
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The hybrid approach based methods [JZ95], [CLKH96] and [JB92] try to allow some

leeway in the above two approaches. As opposed to scanned document, the natural

scene images do not have a fixed layout. Text can appear anywhere in the image and the

orientation, font-size or color may vary from one region to the other. For these reasons,

the techniques for scanned documents cannot be easily extended to natural images.

One group of text localization schemes for natural scene images use sliding win-

dow technique to search for relevant texture patterns. The sliding window meth-

ods [CY04], [LW02], [GEF04], [LDK00], [YHGZ05] employ local features within the

windows of varying sizes and resolution, to classify windows as text or non-text. Apart

from limiting text search to specific window sizes or orientations, these methods have

high computational complexity due to different possible choices of image scales, window

sizes and aspect ratios. Following this school of thought, Chen [CY04] devised a pro-

cedure of detecting regions of text in the city scenes. The approach is similar to the

face detection framework proposed by Viola-Jones [VJ01a], [VJS05]. Chen used weak

classifiers to build the strong text/non-text classifiers using AdaBoost machine learning

algorithm [FS96]. An adaptive binarization and extension algorithm was then applied

to the selected regions in order to mark out the text. This paper used the block features

similar to the ones described in [VJ01b] and was designed specifically for reading the

text on the signboards, billboards etc.

The other group of techniques detect regions of interest by merging similar pixels

into connected components [NM13], [NM12], [LDL05], [JKJ04], [JY98], [Kim96], [YI06].

These methods are not constrained by orientation of text, font size or resolution. They

are computationally tractable and the text segmentation is precise to the granularity of

individual letters. This aids in subsequent character recognition using OCR techniques

[BMP01], [GRL+98], [RWH96]. Major disadvantages include false alarms, threshold

selection, spurious connections, sensitivity to noise and background clutter. One such

method is the stroke width transform (SWT) [EOW10], [HLYW13] that leverages the

fact that letters in images have constant stroke width. The gradients on either side of the
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stroke are anti-parallel. Pairing those anti-parallel gradients help in finding the regions

of interest. Neumann and Matas [NM12] proposed maximally stable extremal regions

(MSER) based technique for detecting text regions. It relies on the fact that pixels

within the text have similar intensities. Our proposed framework builds on the stable

extremal region detector, described next, but diverges significantly thereafter. Refer to

Fig. 4.1 for the schematic representation, where Re stands for estimated rectangles while

T and NT represent text and non-text components respectively.

Figure 4.1: Schematic diagram of the proposed text detection algorithm

4.3 Proposed Algorithm

The four main stages of the proposed text localization algorithm are outlined below.

The detailed description is included in the subsections that follow.

1. Multiple Channel Stable Extremal Region (SER) Detector: In natural scene images,

the pixels belonging to a letter or word component have consistent gray scale

intensity or color tone. These regions are effectively detected by the stable extremal

region operator. Multiple color channels improve detection results, but the number

of false alarms also increase.

2. Geometric Filtering: Second stage examines the structural characteristics of text

to get rid of false detections. Bulk of the false positives are efficiently removed in

this stage without significant computational overhead.

62



3. Context-Based Text Grouping: The spatial distribution of text blobs in an image

is constrained by the syntax of the script. In general cases, text is laid out hori-

zontally. Components belonging to a given line of text have similar size, font, color

and stroke widths. This alignment and similarity information helps to discover text

lines in the image. On the other hand, the non-text blobs neither have a specific

spatial arrangement nor the neighborhood similarity. Such scattered components

can be regarded as non-text and removed.

4. Ensemble Classifier and Fusion: To prune the false positives further, an ensemble

of decision tree classifiers is trained on samples from the training dataset using the

gradient profile features. Finally the detections from multiple views and channels

are concatenated together to get the aggregated list of bounding boxes.

In the algorithm description that follows, the terms components, blobs and objects are

used interchangeably.

4.3.1 Multiple Channel Stable Extremal Region (SER) Detector

Suppose image I is a mapping I : D ⊂ Z2 → S for S ∈ {0, 1, · · · , 255}. Then the region

Q with boundary δQ is an extremal region, if it satisfies either the maximum or the

minimum intensity region property:

Q ⊂ D such that ∀p ∈ Q, q ∈ δQ : I(p) > I(q) (maximum)

Q ⊂ D such that ∀p ∈ Q, q ∈ δQ : I(p) < I(q) (minimum)

(4.1)

Let Q1 · · ·Qi−1, Qi · · · be a sequence of nested extremal regions, i.e. Qi ⊂ Qi+1. q(i)

be mathematically represented by Eq. 4.2, where 4 ∈ S denotes the step size and | · | is

the cardinality. The extremal region Qi∗ is maximally/minimally stable if and only if,

q(i) has a local minimum at i∗.

q(i) = |Qi+4 \Qi−4|/|Qi| (4.2)
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For visual interpretation, consider an intensity image I and a variable threshold t.

A binary image It is obtained by setting pixels p to black if I(p) < t or white otherwise.

Suppose t is varied from 0 to 255 and the resultant images I0 to I255 are viewed as

frames in a video. Then at first, only white pixels are seen. Subsequently, black spots

will appear at the locations of local minima. These spots will grow and combine till the

whole image becomes black. The connected components formed by those black pixels

at various stages in the video are the extremal regions. Those extremal regions which

do not grow rapidly over a wide range of thresholds are maximally stable. Repeating

the process on an inverted image Iinv will fetch the minimally stable regions. For more

details, refer to [MCUP04]. Text components are generally the stable extremal regions,

as they have flat color tones and sharp contrast. Fig. 4.2 shows the maximal extremal

text regions like, “Database” and “C. J. Date” along with the minimal regions “Sixth”

and “Edition”.

In order to incorporate color information, the A∗ and B∗ channels of the CIELAB

color space are examined along with the gray scale intensity image I. The A∗ and B∗

channels have a different range from the gray scale images i.e. S = {−128, · · · ,+127}

but the procedure is same as before. Apart from being device independent, the CIELAB

is the most complete space which describes all the colors perceptible to the human eye.

The non-linear mapping and wider gamut allows better differentiation between basic

colors, which facilitates text detection even under adverse illumination conditions. The

detection results from three channels, each with two views i.e. I, Iinv, A∗, A∗inv, B∗

and B∗inv are considered in our approach. Fig. 4.3 demonstrates the significance of

multiple channels. Even as the intensity image fails, A∗ and B∗ channels are able to

detect the text “Royal London” in the image. But on the contrary, multiple channels

tend to increase the number of false positives as well.
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(a)

(b) (c)

Figure 4.2: SER detector (a) Original image (b) Maximal regions in intensity image (c)
Minimal regions in intensity image

4.3.2 Geometric Filtering

The text components exhibit a peculiar structure, continuity and compactness that is

seldom perceptible in the non-text components. The geometric filtering stage leverages

this fact to remove a majority of false positives. Each binary component is cropped and

examined individually to compute the following analytical features. Owing to the large

number of false positives, there features are purposely designed for fast processing.

4.3.2.1 Stripe Scan Feature

The binary component is broken down into non-overlapping vertical and horizontal rect-

angular sections a.k.a. stripes. For instance, the component Ĉ is segmented into ṽ
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(a) (b)

(c) (d)

Figure 4.3: Multi-channel SER detection (a) Original image (b) Intensity Image (c) A*
channel (d) B* channel. Overlapping regions are represented by different colors.

vertical stripes Sv, where v ∈ {0, · · · , ṽ − 1}. These stripes are disjoint i.e. Si ∩ Sj = φ

for all distinct i, j ∈ {0, · · · , ṽ−1} and cover the entire component
⋃ṽ−1
v=0 Sv = Ĉ. There-

after the number of disjoint fragments within each stripe is computed and stored at the

corresponding index of a ṽ dimensional vector Fv. The L1 − norm of the first order

difference of elements in Fv (Eq. 4.3) gives the Vertical Stripe Scan feature or VSS.

V SS =

ṽ−2∑
n=0

|Fv(n)− Fv(n+ 1)| (4.3)

For text components, the numbers in the sequence Fv vary in a gradual and pre-

dictable manner as depicted in Fig. 4.4. The fragments within the stripes are highlighted

using yellow circles. The text has a low score for the VSS feature. On the contrary, the
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variation is random and unpredictable for the non-text components as shown in Fig. 4.5.

That randomness yields a high score for the VSS feature. The steps are repeated for h̃

horizontal stripes Sh, where h ∈ {0, · · · , h̃ − 1} to evaluate the Horizontal Stripe Scan

or HSS feature. In our experiments, both ṽ and h̃ are set to 10.

Figure 4.4: Stripe scan feature for text component using horizontal stripes (top row)
and vertical stripes (bottom row). The example is for explanation purpose only. ṽ = h̃
= 5, HSS = 0 and VSS = 0

Figure 4.5: Stripe scan feature for non-text component using horizontal stripes (top row)
and vertical stripes (bottom row). The example is for explanation purpose only. ṽ = h̃
= 5, HSS = 5 and VSS = 5
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4.3.2.2 Scan-Line Stroke Width Transform

The stroke of a pen or a brush on a piece of paper or canvas has uniform thickness

called stroke width. Text can be viewed as a set of ordered and connected strokes

having constant width. Following this intuition, Epshtein et. al. [EOW10] proposed

the popular stroke width transform method for text detection. The technique can be

greatly simplified for a given binary connected component Ĉ. The proposed customized

version for binary component is called the scan-line stroke width transform, abbreviated

as SL-SWT.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.6: Scan-Line SWT (a), (c), (e) and (g) show the ray intersection process for
the original and transposed components. The numbers at the end of the dotted arrows,
represent the elements of array Θr or Θc. (b), (d), (f) and (h) depict the SL-SWT
values for components and its transpose. The scan-line stroke width values for the pixels
spanned by the solid red arrows are provided alongside. Only a selected scan-lines are
shown for illustration purpose.

Consider component Ĉ to be enclosed within a rectangular bounding box having r̃

pixel rows and c̃ pixel columns. The proposed method shoots a ray along every row of

Ĉ in a scan-line fashion. For each of these rays, it computes the number of intersections

with the component and stores it in the corresponding index of an r̃ dimensional array,

Θr. A ray entering the component and leaving it is counted as one intersection. Review

Figs. 4.6 (a) and (e) for pictorial representation. The parameter VRI or Vertical Ray
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Intersections is the L1 − norm of the first order difference of elements in the array,

formulated mathematically in Eq. 4.4. As illustrated in the Figs. 4.6(c) and (g),

Horizontal Ray Intersection or HRI parameter is similarly calculated on transpose of

Ĉ.

V RI =
n=r̃−2∑
n=0

|Θr(n)−Θr(n+ 1)|

HRI =
m=c̃−2∑
m=0

|Θc(m)−Θc(m+ 1)|

(4.4)

Text blobs have low values for ray intersection parameters, while the non-text blobs

exhibit higher values. For example, VRI and HRI parameters for the text component in

Fig. 4.6 (top row) are 1 and 0 respectively. On the contrary, the non-text component

(bottom row) has higher values i.e. 10 and 25. Note that, only a subset of the scan-

lines are shown in Fig. 4.6. For explanation purpose, the previously stated values of

ray intersection parameters are computed on those selected rays only. These values are

normalized with respect to the dimensions of the component for a fair comparison across

components of varying sizes.

The ray intersection parameters VRI and HRI can be viewed as fine grained version

of the stripe scan features, but both of them are equally important. Ray intersection

features give wrong classification for text with noisy background. While stripe scan

features might miss some false positives due to its coarseness. Taking into account all

these features together helps in avoiding such mistakes. Besides, the ray intersections is

used to compute more relevant features as described next.

The component Ĉ can be a letter or word fragment as demonstrated in Fig. 4.7.

We follow a conservative assumption, that a letter component cannot have aspect ratio

more than unity. Based on this hypothesis, the aspect ratio gives a lower bound on the

number of letters contained in the word fragment. For example, the text component

with an aspect ratio of 5.0 is expected to have at least five letters. Most of the rays shot

along the rows of such a component should intersect at least five times. In other words,
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median(Θr) should be greater than or equal to five, i.e. the aspect ratio. If this value

is less than the aspect ratio, then that component is too smooth to be text and should

be discarded.

Figure 4.7: Connected components Ĉ representing letters (left) and those representing
word fragments (right)

The scan-line stroke width value matrix M, corresponding to Ĉ is generated as

follows. Suppose the component is tightly enclosed within a rectangle having r̃ rows

and c̃ columns and Mr, Mc be two matrices with all elements initialized to +∞. To

compute matrix Mr, rays are shot along the rows of Ĉ. The number of pixels a ray

encounters during an intersection with Ĉ is determined. As illustrated in Fig. 4.8, all

the corresponding elements in the matrix Mr are replaced by the number of intersecting

pixels. The process is repeated for ĈT and the values are stored in Mc. Superscript

T denotes the transpose operation. The SL-SWT matrix for the component Ĉ is then

the element-wise minimum of those two matrices, i.e. M = min(Mr,M
T
c ). The most

frequently occurring value in M is the stroke width value of Ĉ. For instance, the value

of stroke width for the letter “L” in Fig. 4.8 is 3.

The components having consistent stroke width values resemble text, while the

objects having non-uniform widths are false positives. The blobs having relatively small

stroke width value, compared to the dimensions of the circumscribing rectangle, are also
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discarded. Figs. 4.6 (b), (d), (f) and (h) are some examples. Apart from geometric

filtering, the matrix M is extensively used in Sec. 4.3.3 for grouping the components.

(a) Matrix Mr (b) Matrix Mc

Figure 4.8: Stroke width values for connected component representing letter L. The
squares with no numerical value are equal to +∞. (a) Rays shot along the rows and the
Mr matrix (b) Rays shot along the rows of ĈT and the Mc matrix

4.3.2.3 Plausibility Constraints

The stable extremal regions that do not satisfy the following plausibility constraints are

cleaned up.

Low Occupancy Ratio: Text has high compactness, as it is closely packed in

the circumscribing bounding box. Consider a text component enclosed in a rectangular

bounding box and also circumscribed by a convex contour. The ratio of area enclosed

within the contour to the area of the bounding box is called the occupancy ratio. This

ratio is close to unity for text. All the components with this ratio less than half can be

safely removed.

Long Vertical Blobs: The text is usually laid out horizontally. Hence, the long

vertical components that mostly resemble poles, iron bars, printed designs etc. can be

removed.

Massive Blobs: It is highly unlikely for the natural scene images to have text

covering more than 95% of a certain image dimension. These extremely large components

are discarded.
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Tiny Blobs: The blobs with r̃ ≤ 10 pixels can be ignored since they are practically

imperceptible in a normal resolution image.

For all the features described above, decision stumps classifiers are chosen for

text/non-text categorization. Thresholds are learned heuristically from the examples

in the training dataset. These thresholds are generous enough to retain most of the

text components, even if that leads to reduction in false positive removal rate. Collec-

tively, these features overcome the weakness of generous thresholds. Fig. 4.9 justifies

this hypothesis. Most of the false positives in Fig. 4.9 (b) are removed after geometric

filtering due to multitude of features, while all the true positives are retained thanks to

the generous thresholds.

(a)

(b) (c)

Figure 4.9: Geometric filtering (a) Sample image (b) Detected stable extremal regions
(c) Output after geometric filtering
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4.3.3 Context-Based Text Grouping

The previous stage eliminates a considerable number of non-text regions without any

extensive processing. Then the context-based text grouping stage clusters the remaining

components into words. First, the components are linked together into text lines and

then those text lines are broken down into words. As a by-product, this stage can also

prune some text-like false positives, which are otherwise difficult to remove. It can also

recover some letters or words which were wrongfully rejected by the earlier stages. These

wrongfully rejected components are synonymously referred to as missing components.

These grouping, pruning and self-correcting mechanisms are explained here in detail.

Text is laid out horizontally, as if, it is resting on an invisible baseline. Moreover,

the letters or words belonging to the same line of text have similar spatial properties.

Especially, their heights, stroke widths and color palettes are similar. The components

that are spatially consistent to their horizontally aligned neighbors, can be paired. Most

probably these component pairs represent text. On the contrary, non-text components

pop up randomly in the image. The probability of finding a similar blob in the neighbor-

hood of a non-text region is considerably low. Even if there happens to be a matching

blob, it might not be aligned properly. In this way, these spatial and alignment cues

serve a dual-purpose. They help to pair the related text regions and detect the isolated

components as non-text.

4.3.3.1 Agglomerative Clustering

Let Nl and Nr be the left and the right neighborhood of a component Ĉ. Suppose h

represents the height of that component, while (cx, cy) are the coordinates of the centroid

in the image space and ∆ is the extent of the region. Then Nl and Nr can be formulated

as,

Nl = {∀(x, y) : x ∈ (cx −∆, cx) and y ∈ (cy − h/2, cy + h/2)}

Nr = {∀(x, y) : x ∈ (cx, cx + ∆) and y ∈ (cy − h/2, cy + h/2)}
(4.5)
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In the above equation, (x, y) denotes a 2D point in the image space. The closest blob

in each of these neighborhoods Nl and Nr, that matches the component Ĉ is linked to

it. In this manner, Ĉ can have a maximum of two links; one on the left and other on

the right hand side. Please refer to Fig. 4.10(a) for illustration. The blue box is the left

neighborhood of p and the green box is the right neighborhood. The matching process

is described next.

4.3.3.2 Matching Criteria

The aforementioned spatial features of the component Ĉ, namely, height h, stroke width

s, color c and horizontal baseline b, where b = cy + h/2, can be stored in the form of

a vector S = {b, c, h, s}. If these vectors are viewed as points in a higher dimensional

space, then components that match with Ĉ would lie in a hyper-rectangle centered at

point S. The dimensions of the hyper-rectangle along b and h axes are proportional to

height of the component. This allows invariance to the size of the component. In c and

s directions, the dimensions are fixed. This constraints the color and stroke width of the

matching components to lie within a specific range. Fig. 4.10(b) shows some matching

components in the neighborhood. The blob p links to r and a. In turn, component r

matches with p and a, while a pairs with p and r.

4.3.3.3 Merging Pairs Into Lines

Consider a graph, G = (V,E) with every component in the image represented by a vertex

and the links corresponding to the edges in G. In this representation, the components

belonging to the same line of text have edges among them. While the components

belonging to different lines are not connected. Each sub-graph in such a disconnected

graph, represents a text line. A sub-graph is connected section in the graph that has no

edges coming out or going into it. Depth-first or breadth-first search can separate out

those sub-graphs to get text lines. The sub-graphs containing less than three nodes are
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discarded. The matching pairs in Fig. 4.10(b) are linked together to form the text line

“car park” (Fig. 4.10(c)).

4.3.3.4 Decimation Of Lines Into Words

Every component in the text line has two links; one to the component in the left neigh-

borhood and other to the right. Exceptions being the first and the last components in

the line. As far as components within a word are concerned, they can be categorized

into three types, namely, (i) starting component (ii) intermediate components and (iii)

ending component. Consider Lleft and Lright to be the lengths of the left and the right

links respectively. The disparity of these lengths is large for the starting (Lleft � Lright)

and the ending components (Lleft � Lright) of a word. On the contrary, the ratio of

these lengths is close to unity for intermediate components. Put differently, intra-word

gaps are smaller compared to inter-word gaps. This property helps to segment out the

words from those text lines. In Fig. 4.10(c), the brown link that describes the inter-word

gap has to be broken down. To mitigate the effect of missing components, the output of

the stable extremal regions stage is checked to verify that the inter-word gap is indeed

empty.

(a) (b)

(c)

Figure 4.10: Context-based text grouping (a)Left and right neighborhood (b)Links
between adjacent and similar components (c)Sub-graph with vertexes and internal edges
that together represent a text line. The orange link has to be broken to form individual
words.
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(a) (b)

(c) (d)

Figure 4.11: Context-based text grouping (a) Raw image (b) Blobs retained after geomet-
ric filtering (c) Bounding boxes generated after merging pairs into lines (d) Decimation
of lines into words

Fig. 4.11 demonstrates the grouping procedure for a sample image. It must be noted

that the isolated false positives that survived after geometric filtering in Fig. 4.11 (b)

are all removed in the grouping stage, i.e. Fig. 4.11 (c). After drawing bounding boxes

around the tentative words in the image, the next stage inspects their contents to classify

the boxes as text or non-text. The text boxes are retained, while the others are removed.

4.3.4 Ensemble Classifier and Fusion

The inherent properties of text are markedly different from the non-text regions. The

features which exploit these properties are better suited for region classification. Such

features include, Gradient Orientation Histogram, Scale Invariant Feature Transform
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Codewords Histogram etc. Refer to Sec. 2.2.3 and 2.2.4 for details. Taking these things

into account, we developed novel gradient profile features to train an ensemble of decision

tree classifiers using the Adaboost framework. After region classification, the bounding

boxes from different views, namely, I, Iinv, A∗, A∗inv, B∗ and B∗inv were fused together

to get the consolidated list of bounding boxes.

4.3.4.1 Gradient Profile Features

The text regions have sharp edges with consistent blank spaces between consecutive

letters or words. On the contrary, non-text regions seldom have sharp edges and certainly,

there is no consistent spacing throughout. Gradient profiles of these regions, help to

exploit these peculiar properties of text for classification purpose.

The regions within the bounding boxes are resize to fixed size of 96× 32, followed by

gradient computations along the X and Y direction, i.e. Gx and Gy respectively. The

mean vector along the rows of the matrix, Gx is termed as the horizontal gradient profile

of Gx. Similarly, the mean vector along the columns of Gx is the vertical gradient profile

of Gx. Then the gradient profile feature vector GP is the concatenation of horizontal

and the vertical gradient profile vectors of Gx and Gy as shown in Eq. 4.6. The gradient

profile features for a sample text and non-text region are shown in Figs. 4.12 and 4.13

respectively. The peaks in the profiles of text regions are interleaved with valleys. The

spacing between those valleys is fairly consistent. On the contrary, the profiles for non-

text regions do not usually have such consistent spacing.

GP = {(
∑
i

Gx(i, j))T ,
∑
j

Gx(i, j), (
∑
i

Gy(i, j))
T ,
∑
j

Gy(i, j)} (4.6)

4.3.4.2 Ensemble of Decision Tree Classifiers

Decision tree classifiers are used as weak classifiers in the Adaboost framework. An

ensemble of these weak classifiers is trained on the normalized gradient profile features.

77



(a)

(b) (c)

Figure 4.12: The gradient profile features (a) Sample text image (b) Gx and mean vectors
along the rows and the columns (c) Gy and mean vectors along rows and columns

Training dataset for the ensemble classifier consists of 1391 positive and 1278 negative

samples taken from the ICDAR [LPS+03,Luc05,SSD11,KSU+13] training dataset. Some

images from the dataset are displayed in Fig. 4.14. The positive samples are cropped

from the text regions using semi-automatic techniques, while the negative samples are

randomly picked. The positive and negative samples are distributed into five equal

sized sets. During cross validation, one set is used for training while the remaining four

constitute the test set. The training data is purposely chosen to be smaller compared to

the test data in order to simulate real word scenario. After five iterations, the average

accuracy is 90.46%. The input to the ensemble classifier is the list of bounding boxes

accrued after the grouping stage and the output is a probability value ∈ [0, 1]. The

cutoff is the midway point and the rectangles with probability less than the threshold

are filtered out.
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(a)

(b) (c)

Figure 4.13: The gradient profile features (a) Sample non-text image (b) Gx and mean
vectors along the rows and the columns (c) Gy and mean vectors along rows and columns

Figure 4.14: Positive samples for training ensemble classifier (left) and negative samples
(right)

4.3.4.3 View and Channel Fusion

The whole localization process is repeated for both the views in each channel, namely, I,

Iinv, A∗, A∗inv, B∗ and B∗inv; to obtain six different lists of bounding boxes. The objects

detected in the complementary views, such as I and Iinv, are mutually exclusive i.e.

I ∩ Iinv = φ. So the corresponding lists from these complementary views are appended
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with minimal processing. Fig. 4.15 illustrates the concept of view fusion. In this case,

no processing is required to aggregate the bounding boxes from I and Iinv.

View fusion leaves us with three distinct lists, one for each channel. The bounding

boxes from all these lists are categorized as overlapping or non-overlapping, based on

the amount of intersection of those bounding boxes with the boxes from other channels.

The rectangles from the non-overlapping pool are directly inducted into the final list of

estimated rectangles Re. The overlapping boxes are either merged together or pruned.

The decision to merge or prune an overlapping box is contingent on the amount of

overlap, aspect ratio and number of components enclosed. This decision is delegated to

an objective function that weighs in all those factors before making a decision. These

merged rectangles are then appended to the list of estimated rectangles Re. Refer to

Fig. 4.16 for an example of channel fusion. The bounding boxes from the channels I,

A∗ and B∗ are merged together to get a single rectangle enclosing the whole word.

4.4 Experimental Results

The ICDAR database is the most popular for text localization in natural scene images.

This dataset was used in ICDAR 2003 [LPS+03] and ICDAR 2005 [Luc05] text local-

ization competitions. The competing algorithms are evaluated on the basis of three

parameters, namely, precision, recall and f-parameter. The list of ground truth rectan-

gles is denoted by Rt and the competing algorithm is expected to output a similar list

of estimated rectangles Re. Consider the match mp(r, r
′) as the area of intersection of

r and r′ divided by the area of minimum rectangle circumscribing both these rectan-

gles. Then the value m(re, Rt) = maxr′∈Rtmp(r, r
′) gives the matching score for re ∈ Re

with the best fit rectangle in the set Rt. Based on these scores, the precision and the

recall parameters are computed as shown in Eq. 4.7. With α set to 0.5 in Eq. 4.8, the

f-parameter is a non-linear combination of precision and recall. A detailed description of

the evaluation parameters can be found in [LPS+03].
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(a) (b)

(c) (d)

Figure 4.15: View fusion (a) Original image (b) Bounding boxes for I (c) Bounding boxes
for Iinv (d) Fusion of I and Iinv

precision =

∑
re∈Re

m(re, Rt)

|Re|
, recall =

∑
rt∈Rt

m(rt, Re)

|Rt|
, (4.7)

f =
1

α
precision + 1−α

recall

, (4.8)

Lucas et. al. [Luc05] reported the performance of the few top-ranked text localization

algorithms from those competitions. The precision, recall and f-parameter scores were

separately computed on individual images and then averaged over all the images in the

dataset. Several other algorithms proposed thereafter propose a different method for

calculating the overall performance score. They compute a single precision, recall and

f-parameter value on the entire dataset. The results on ICDAR 2005 and 2011 datasets
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(a)

(b) (c)

(d) (e)

Figure 4.16: Channel fusion (a) Sample image (b) Bounding boxes for channel I (c)
Bounding boxes for channel A∗ (d) Bounding boxes for channel B∗ (e) Fusion of I, A∗

and B∗

are tabulated in Tables 4.1, 4.2, 4.3 and 4.4. As evident from these tables, our proposed

scheme is among the the state-of-the-art algorithms.

To demonstrate the effectiveness of individual stages of the proposed framework, a

comparative analysis on a subset of the training data is performed. Table 4.5 lists the

number of objects that are retained after every stage. These objects can be letters, words

or false positives. The table also reports the percentage of components removed by the

current stage, when compared to the output of the previous stage. For this analysis, the
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Algorithms Precision Recall f-parameter

Proposed Method 0.70 0.62 0.64
Neumann and Matas [NM11] 0.65 0.64 0.63

Hinnerk Becker 0.62 0.67 0.62
Alex Chen 0.60 0.60 0.58

Ashida 0.55 0.46 0.50
HWDavid 0.44 0.46 0.45

Wolf 0.30 0.44 0.35
Quiang Zhu 0.33 0.40 0.33

Table 4.1: Performance comparison of various text localization algorithms with the eval-
uation method from ICDAR 2005 competition

Algorithms Precision Recall f-parameter

Proposed Method 0.76 0.62 0.68
Neumann and Matas [NM11] 0.72 0.62 0.67

Chen et. al. [CTS+11] 0.73 0.60 0.66
Epshtein et. al. [EOW10] 0.72 0.60 0.66

Yi and Tran [YT13] 0.71 0.62 0.63

Table 4.2: Performance comparison of various text localization algorithms with the new
evaluation method on ICDAR 2005 dataset

Algorithms Precision Recall f-parameter

Neumann and Matas [NM13] 0.79 0.66 0.72
Proposed Method 0.76 0.61 0.68
Yi and Tran [YT13] 0.76 0.68 0.67

Gonzalez et. al. [EOW10] 0.73 0.56 0.63
Yi and Tran [YT11] 0.67 0.58 0.62

Neumann and Matas [NM11] 0.69 0.53 0.60

Table 4.3: Performance comparison of various text localization algorithms on ICDAR
2011 dataset using [WJ06] evaluation criteria

Algorithms Precision Recall f-parameter

Huang et. al. [HLYW13] 0.82 0.75 0.73
Proposed Method 0.81 0.64 0.72

Table 4.4: Performance comparison of various text localization algorithms on ICDAR
2011 dataset using Yao’s evaluation method [YBL+12]
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dataset is carefully chosen such that almost all of the true positives survive till the end.

So the percentage of components removed is a reliable indicator of the false positive

removal rate of that particular stage. The geometric filtering and context-based text

grouping stages show a high removal percentage. On the contrary, region classifier stage

has a low percentage because there are hardly any false positives left by the time this

stage is reached.

Stages Components Retained Components Removed

Stable Extremal Regions 1685 Not Applicable
Geometric Filtering 974 42.20%

Context-Based Text Grouping 387 60.27%
Ensemble Classifier and Fusion 374 3.36%

Table 4.5: Statistical performance analysis of each stage of the framework

4.5 Error Analysis

The proposed text localization pipeline is able to detect words of different fonts, colors

and sizes, even in the presence of reflection and background clutter. For instance, in

Fig. 4.17(a) the textured brick pattern can be potentially misinterpreted as text due to

its structural similarity with low resolution small font words. Our algorithm is able to

correctly discarded those patterns with the help of geometric filtering. Fig. 4.17(b) shows

that the reflection of vegetation on the transparent glass window can be effectively dealt

with. The context-based text grouping stage is able to remove this vegetation as the

spatial distribution of those blobs is drastically different from that of the text. Similar

is the case with the background clutter in Fig. 4.17(c). The window patterns in Fig.

4.17(d) pass the grouping stage but they are cleaned up by the ensemble classifier.

The algorithm is reliable, but under adverse circumstances it shows its weaknesses.

For example, in Fig. 4.18 the Stable Extremal Region (SER) operator fails to detect

some text in the image. The intensity values of the pixels within the text are similar to

the values of the pixels in the background. Due to the background blending, those text
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(a) (b)

(c) (d)

Figure 4.17: Correct detections

regions are not detected in the first stage itself. The regions lost at such an early stage

in the algorithm cannot be recovered thereafter. Incorporating edge information in the

SER operator functionality might alleviate the problem.

(a) (b)

Figure 4.18: SER detection error (a) Sample image (b) Text blobs detected
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In some cases, the repeated background patterns might be misinterpreted as text. As

it can be seen in Fig. 4.19(b), the small non-text blobs at the top are mistaken as small

font text. These blobs are passed on as text by the geometric filtering, context-based

text grouping and ensemble classifier stages. A technique that can take care of such

repeated patterns will be helpful in getting rid of these false positives.

(a) (b)

Figure 4.19: Repeated patterns (a) Error image (b) Repeated patterns detected as words

The text is difficult to recover in the images with partial occlusion. Fig. 4.20 has

a strong camera flash that partially wiped out the underlying text. The SER operator

coalesces the text and flash light together to form a big heterogeneous blob. The geo-

metric filtering treats the whole blob as one entity and discards it as non-text. To avoid

this problem, the camera flash should be removed in the pre-processing step.

If the words are not separated out correctly from the text lines, then the performance

score can get affected. In Fig. 4.21, the words “Good” and “Year” are detected correctly,

but the icon in between the two words causes them to be wrongly classified as a single

word. The root cause of the problem is that, the multi-stage incremental region classifi-

cation technique was unable to remove the icon. But removing these blobs is inherently

difficult for any region classification technique. If text recognition is incorporated in

the framework then probably we might be able to correct such errors as well, using a

feedback mechanism.

86



(a) (b)

Figure 4.20: Partial occlusions (a) Flash light partially occludes the text (b) Text is
wrongly discarded along with the flash light

(a) (b)

Figure 4.21: Grouping error (a) Sample image (b) Words wrongly grouped together

The other potential problems are shadow, reflection and orientation of the words. The

characters “ADT” that are oriented at a specific angle to the camera are not detected

in Fig. 4.22 (a). Shadow and reflection prevents the SER operator from detecting the

words, “Dollar”, “Golf” and “Club”. Partial detections due to occlusions or incomplete

detections may lead to missing text. In the example of Fig. 4.22(b), the letter “S” is

broken down into two connected components and fails to form a coherent group with

“TOP”. The grouping stage considers it as an isolated blob and removes it.
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(a) (b)

Figure 4.22: Incorrect detections (a) Effect of reflection and shadow (b) Broken text

4.6 Conclusion

In this research, we proposed a novel text localization framework based on multi-stage

incremental region classification technique. The probable text regions detected by multi-

channel stable extremal region detector are passed on to the geometric filters. Text

context-based grouping stage combines the related text regions into words. A significant

amount of false positives are removed in the process. We also developed a decision

tree based ensemble classifier that categorizes the detected regions into text or non-text

using the gradient profile feature information. Then the bounding boxes from different

channels and views are merged together to get a consolidated list of estimated rectangles.

A region adaptive step selection can improve the accuracy of the stable extremal

region detector. The properties of the area being processed can be used to determine

the appropriate step-size for the detector. This would assist the subsequent stages by

reducing the number of false alarms. Next step would be to recognize words in the

bounding boxes with an integrated optical character recognition system. This OCR

system can also be used as a feedback mechanism to improve the localization results

further. No algorithm can detect text that is occluded by flash light illumination or the

foreground objects. So we plan to incorporate an intelligent dictionary based system
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which might be able to reconstruct the whole word with this partial information at

hand.
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Chapter 5

Conclusion and Future Work

The conclusions of our research and future research prospects are summarized in the

sections ahead.

5.1 Human Action Classification

A technique for automated mocap data classification was presented in this work. The

TSVQ method was adopted to approximate static human poses with codewords while a

dynamic human motion was represented by a sequence of codewords. Fusion approaches

were proposed to classify mocap data into different categories. We tested the proposed

algorithms on the CMU mocap database using the 5-fold cross validation procedure and

obtained a correct classification rate of 99.6%.

The proposed algorithm can be extended to various tasks required by mocap database

management such as segmentation, indexing and retrieval, without much effort. We only

sketch the basic ideas below.

• Segmentation

If a complex motion clip contains multiple basic motions, then the sequence of

these basic motions will be present in the sequence of that complex motion. By

using string matching, we can find out the location of sequences of all basic motions

in the complex motion. This corresponds to the segmentation of a complex action

sequence into multiple basic action sequences.

• Indexing

After running the classification algorithm, unknown motion clips can be classified

into one of the known categories and indexed accordingly. Consider a mixed motion
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that has running, jumping and bending actions one after the other. Using the string

matching and the database of sequences, the location of all these basic motions in

that mixed motion can be determined and these basic actions can be indexed

accordingly.

• Retrieval

The retrieval problem can be solved using suffix array technique. To be more

specific, for a given test motion, we would like to extract motion clips or parts

of motion clips from the database that are similar to the query. To perform this

retrieval task, we convert the test motion into a sequence and use the string match-

ing algorithm to search the motion clips or portions of the motion clips that have

the same sequence. Those clips can then be retrieved.

There are several algorithms for extracting human skeleton from depth images pro-

duced by Microsoft Kinect [SSK+13, AD13]. The data generated by these algorithms

are similar to the mocap data [CK13]. It is interesting to explore whether the proposed

methodology can be extended to the Kinect sensor data as well. High quality 3D ren-

dering can be achieved by blending stored mocap data with the pose information from

the Kinect sensor inputs.

5.2 Text Localization

In this research, we proposed a novel text localization framework based on multi-stage

incremental region classification technique. The probable text regions detected by multi-

channel stable extremal region detector are passed on to the geometric filters. Text

context-based grouping stage combines the related text regions into words. A significant

amount of false positives are removed in the process. We also developed a decision

tree based ensemble classifier that categorizes the detected regions into text or non-text

using the gradient profile feature information. Then the bounding boxes from different

channels and views are merged together to get a consolidated list of estimated rectangles.
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A region adaptive step selection can improve the accuracy of the stable extremal

region detector. The properties of the area being processed can be used to determine

the appropriate step-size for the detector. This would assist the subsequent stages by

reducing the number of false alarms. Next step would be to recognize words in the

bounding boxes with an integrated optical character recognition system. This OCR

system can also be used as a feedback mechanism to improve the localization results

further. No algorithm can detect text that is occluded by flash light illumination or the

foreground objects. So we plan to incorporate an intelligent dictionary based system

which might be able to reconstruct the whole word with this partial information at

hand.
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Appendix

The CMU mocap database [CMU07] motion capture files used in our research, are listed

below. All these files are .amc files containing the frame by frame values of 59 rotational

angles of the 29 joints in the human skeleton, plus a triplet representing the 3D position

of the root joint at that instance. The number before the ‘ ’ symbol is the subject

identification number and the one after it is the motion serial number. For e.g. 09 01

is the 09 01.amc file which is the first motion of the subject ‘09’. The corresponding

skeleton file having the details of the subject’s skeleton structure is 09.asf .

1. Run: 09 01, 09 02, 09 03, 09 04, 09 05, 09 06, 09 07, 09 08, 09 09, 09 10, 09 11,

35 17, 35 18, 35 19, 35 20, 35 21, 35 22, 35 23, 35 24, 35 25, 35 26, 127 06, 127 07,

127 08, 141 01, 141 02, 16 55.

2. Walk: 35 01, 35 02, 35 03, 35 04, 35 05, 35 06, 35 07, 35 08, 35 09, 35 10, 35 11,

35 12, 35 13, 35 14, 35 15, 35 16, 35 28, 35 29, 35 30, 35 31, 02 01, 02 02, 07 01,

07 02, 07 03, 07 06, 07 07, 07 08, 07 09, 07 10, 07 11, 08 01, 08 02, 08 03, 08 06,

08 08, 08 09, 08 10, 12 01, 12 02, 12 03, 16 15, 16 16, 16 21, 16 22, 16 31, 16 32.

3. Forward Jump: 16 05, 16 06, 16 07, 16 09, 16 10, 13 11, 13 13, 13 19, 13 32.

4. Forward Dribble: 06 02, 06 03, 06 05.

5. Cartwheel: 49 06, 49 07, 49 08.

6. Kickball: 10 01, 10 02, 10 03, 10 05, 10 06, 11 01.
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7. Boxing: 13 17, 13 18, 14 01, 14 02, 14 03, 15 13, 17 10.

8. Balance: 49 18, 49 19, 49 20.

9. Sit and Stand up: 13 01, 13 02, 13 03, 14 27, 14 28.

10. Laugh: 13 14, 13 15, 13 16.

11. Sweep Floor: 13 23, 13 24, 13 25.

12. Wash Windows: 13 20, 13 21, 13 22, 14 10, 14 11.

13. Climb Ladder: 13 33, 13 34, 14 33, 14 34, 14 35.

14. Steps: 13 35, 13 36, 13 37, 13 38, 14 21, 14 22, 14 23.

15. Mop: 14 13, 14 15.

16. Tiptoe: 13 10, 13 12, 14 07, 14 08, 14 09.

17. Pick Box Bend Waist: 115 01, 115 02, 115 03, 115 04, 115 05, 115 10.

18. Pick Box Bend Knees: 115 06, 115 07, 115 08, 115 09.

19. Fly Stroke: 126 06, 126 07, 126 08, 126 09.

20. Free Style: 126 10, 126 11, 126 12, 125 06.

21. Breast Stroke: 125 01, 125 02, 125 04, 126 03, 126 04, 126 05.

22. Hop on Left Foot: 132 23, 132 24, 132 25, 132 26, 132 27, 132 28.

23. Bouncy Walk: 132 29, 132 30, 132 31, 132 32, 132 33, 132 34.

24. Marching: 138 01, 138 02, 138 03, 138 04, 138 05, 138 06, 138 07, 138 08, 138 09,

138 10.

25. Nursery Rhyme Tea Pot: 24 01, 25 01, 26 03, 26 04, 27 03, 27 07, 28 02, 28 06,

29 03, 29 08, 30 02, 30 08, 31 02, 31 06, 32 04, 32 08.

102



26. Nursery Rhyme Cock Robin: 26 07, 26 08, 27 05, 27 10, 28 04, 28 08, 29 06, 29 10,

30 05, 30 06, 30 10, 31 04, 31 08, 32 06, 32 10.

27. Swing: 64 01, 64 02, 64 03, 64 04, 64 05, 64 06, 64 07, 64 08, 64 09, 64 10.

28. Placing Tee: 64 16, 64 17, 64 18, 64 19, 64 20.

29. Salsa Dance: 60 01, 60 02, 60 03, 60 04, 60 05, 60 06, 60 07, 60 08, 60 09, 60 10,

60 11, 60 12, 60 13, 60 14, 60 15.

30. Get Up From Floor: 111 06, 111 07, 111 08.
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