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Abstract

Speech is one of the most common and natural means of communication, convey-

ing a variety of information, both linguistic and paralinguistic. The paralinguistic

information is crucial in verbal communication, because rich meaning (e.g., nuance,

tone) in spoken language, and the states (e.g., emotion, health, gender) and traits

(e.g., personality) of the speaker are encoded and decoded in paralinguistic fac-

tors. These two aspects of information (linguistic and paralinguistic) are encoded

into speech sound jointly and simultaneously by the actions of speech articulators.

Hence, a better understanding of production aspects of speech can shed further

light on the information encoding (and decoding) mechanism of verbal communi-

cation. This dissertation seeks a better understanding of the articulatory control

strategy for the multi-layered information encoding process, as well as developing

computational models for expressive speech production system. This describes my

achievements in the research pathway on emotional speech production, including

data collection, data processing, analysis, computational modeling and applica-

tions.

The first is development of algorithms and software for data processing: (i)

robust parameterization of magnetic resonance images and (ii) co-registration of
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real-time Magnetic Resonance Imaging (rtMRI) data and ElectroMagnetic Artic-

ulography (EMA) data. These algorithms allow automatic and robust extraction

of articulatory information of interest from these speech production data.

The second is collection (and release) of the USC-EMO-MRI corpus: a novel

multimodal database of emotional speech production, recorded using the rtMRI

technology. This corpus is designed as a resource to study inter- and intra-speaker

variability in both articulatory and acoustic signals of emotional speech.

The third is novel findings and insight on emotional speech production. The

specific sub-topics are (i) the vocal tract shaping of emotional speech, (ii) articu-

latory variability of emotional speech, depending on the linguistic criticality of the

articulator, and (iii) invariant properties and variation patterns in speech planning

and execution components for emotional speech. Specifically, for (i) this disser-

tation investigates inter- and intra-speaker variability using the USC-EMO-MRI

corpus. For (ii), this dissertation reports experimental results suggesting that the

large variability of linguistically less critical articulators is an important source

of emotional information, and its relationship with the controls of corresponding

critical articulators. This also offers novel insight regarding the relationship, based

on computational modeling and simulation experiments. For (iii), this offers novel

findings on the invariant properties and variation patterns in the perspective of

the Converter/Distributor model.

Finally, the fourth is development of a computational framework to predict

rich articulatory information (anatomical point tracking, vocal tract shaping, mor-

phology) from speech waveform. The articulatory information is extracted from

production data recorded using multiple data acquisition modalities (rtMRI and

EMA) after registering the data of different modalities. Deep learning model is

used to learn the acoustic-to-articulatory (inverse) mapping. The benefit of using
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rich articulatory parameters for inversion mapping and emotion classification appli-

cation is discussed.
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Chapter 1

Introduction

1.1 Overview and goals

Speech conveys a variety of different kinds of messages, including linguistic infor-

mation and paralinguistic information. Linguistic information refers to discrete

categorical information, e.g., lexical meanings of words, of language. Paralinguistic

information refers to para-language or non-lexical elements, e.g., emotion, gender,

age, personality and health condition of the speaker. Paralinguistic aspects are

essential for natural communication and interaction. They are closely associated

with complex, subtle and delicate meanings (e.g., nuance) in spoken language,

thus the crux of rich information. Paralinguistic information processing is use-

ful for many technical applications, including Human-Machine Interaction (HCI),

healthcare, security and defense. This study particularly focuses on emotional

aspects in speech signal. Studying speech emotion is important for not just devel-

oping advanced emotion processing technologies, e.g., emotion recognition and

emotion synthesis, but also for providing quantitative ways of assessing human

communicative behavior. Emotional information processing can impact a variety

of applications including in commerce, education and learning, and healthcare.

Most of emotional speech studies have predominantly focused on speech acous-

tic properties, such as voice quality, prosody and speech spectrum [Schröder, 2001,

Vroomen et al., 1993, Frick, 1985, Yildirim et al., 2004, Busso et al., 2009, Gobl

and ŃıChasaide, 2003, Ververidis and Kotropoulos, 2006, Williams and Stevens,
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1972, Lee and Narayanan, 2009]. Although such knowledge contributes to a better

understanding of emotional speech acoustic variability and technical applications

(e.g., emotion recognition and emotional speech synthesis), there remain open ques-

tions as to how these emotional variations are encoded into the speech acoustic

signal. The elegant acoustic structure of speech is produced by dynamic shaping

of the vocal tract in coordination with respiratory and laryngeal behavior. Com-

plex, but choreographed actions of the speech articulators do not encode only the

linguistically significant resonant structure and aerodynamic qualities for vowels

and consonants, but they also do rich expressive quality jointly. However, little

has been systematically and quantitatively established in regard of the production

aspects of emotional speech.

A better understanding of how emotion affects articulatory behavior during

speaking can be beneficial for both speech science and technologies. Speech vari-

ability has been one of the most prevalent and difficult problems to understand and

deal with in speech signal processing [Benzeghiba et al., 2007, Mozziconacci, 1998,

Perkell and Klatt, 2014]. In particular, emotional variations are closely related to

both intra-speaker and inter-speaker variability; Emotion expression varies signif-

icantly across time and speakers. Studying production aspects is directly related

to this problem in the sense that speech articulation is one of the major sources of

generation and modulation of speech acoustics. Hence, a better understanding of

the emotional influence on articulatory movements can shed further light on this

variability problem. This can also inform various speech applications for recog-

nizing and synthesizing more human-like expressive quality, as well as improving

robustness of linguistic and other paralinguistic processing systems, e.g., auto-

matic speech recognition, language identification, and speaker verification, against
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emotional variations. Understanding the emotional states of speakers is also essen-

tial for choosing natural and proper ways to respond in HCI [Cowie et al., 2001,

Picard and Picard, 1997]. Computational models and tools for speech emotion

have broad impact on a wide range of applications, because emotion processing is

employed in many domains including commerce (e.g., customer care quality con-

trol [Picard and Klein, 2002, Komiak and Benbasat, 2004]), child education [Finkel-

stein et al., 2009] and healthcare (e.g., characterizing atypical or distressed behav-

ior in Autism [Hobson et al., 1988, Hobson, 1986], depression [Edwards et al.,

2002] and post-traumatic stress disorders [Davidson and Irwin, 1999, Mazza et al.,

2012]).

One of the goals of this dissertation is to discover the realistic rules of articu-

latory controls for the multi-layered (linguistic and emotional) message encoding

in speech. Previous studies in emotional speech production [Erickson et al., 2004,

2006, Lee et al., 2005] reported surface-level articulatory characteristics depending

on emotion. In this study, the kinematic aspects of articulators are further inves-

tigated systematically by exploring the relationship among emotional state of the

speaker, and the roles of articulators, and the articulatory variability. This study

also investigates emotional variations in the entire midsagittal plane of the vocal

tract, and reports novel findings.

This dissertation also describes my contributions to the USC-EMO-MRI corpus

and novel algorithms for speech production data processing. First, this dissertation

describes the objectives, data acquisition configurations, and detailed contents of

the novel multimodal dataset of emotional speech, which was recorded using real-

time Magnetic Resonance Imaging (rtMRI) technology [Narayanan et al., 2004].

This dataset is released publicly and freely for assisting emotional speech produc-

tion studies about various aspects, including inter- and intra-speaker variability of
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the vocal tract shaping for emotional speech, emotional effects on speech in the

acoustic and articulatory domains, and their relationship. Second, this explains

the robust algorithm that I developed for capturing linguistically important infor-

mation from the rtMRI data automatically. A MATLAB implementation of this

algorithm is released publicly and freely.

Another goal of this dissertation is to understand how emotional state of a

speaker affects speech production process. Specifically, this dissertation is inter-

ested in emotional influence on the production components in both cognitive and

surface-level stages. Under the framework of the Converter/Distributor (C/D)

model, this explores invariant and variation aspects on both (pre-motor and motor)

planning and execution stages [Perkell, 1999] in emotional speech. The pre-motor

planning stage determines what (sequential lexical items of an utterance) and how

(temporal organization of the items) to speak. The motor planning stage deter-

mines gestural organization of articulators. Finally, the execution stage converts

the phonetic goals into articulatory muscle forces and eventually smooth articula-

tory motions under physiological constraints.

The C/D model proposed by Fujimura [2000] provides a theoretic framework

for representing the comprehensive speech production processes, both temporal

organization (planning) of an utterance and its realization (execution) to articula-

tory movements. This model contains speech variability factors in the individual

stages and their relations. They are important components for the novel emo-

tional speech production modeling at which this dissertation aims. Bonaventura

[2003], Menezes [2003] have examined the validity of underlying assumptions of

the C/D model and proposed algorithmic methods to infer temporal organization

of an utterance from articulatory trajectories, only using neutral speech data. One

contribution of this dissertation is to extend the C/D model to emotional speech
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production model. In particular, this dissertation examines the validity of the

underlying assumptions of the C/D model in emotional speech (and speech with

contrastive emphasis), and discusses potential issues and methodology for compu-

tational implications for emotional speech generation using the C/D model.

The final goal of this dissertation is to develop a computational model for the

inverse process of speech production, namely acoustic-to-articulatory inversion. In

particular, this dissertation proposes the framework of estimating rich articula-

tory information using co-registered rtMRI and ElectroMagnetic Articulography

(EMA) data. Despite recent progress in improving estimation accuracy [Liu et al.,

2015, Najnin and Banerjee, 2015], there are only few studies [Aron et al., 2006]

that succeeded improving the amount of articulatory information to be estimated.

This may due to the limitation of currently available data acquisition modalities

and the difficulty of simultaneous recording using multiple modalities. This disser-

tation proposes a methodology of using co-registered data for combining different

types of articulatory information captured by multiple data acquisition modalities,

in particular rtMRI data and EMA. The spatial and temporal alignment algorithm

that I developed is used for generating the co-registered data. Then, deep neu-

ral network is adopted for learning the inverse mapping from clean speech audio

(from EMA) to various kinds of articulatory parameters (from both EMA data and

rtMRI data). This study examines the estimation performance of different kinds

of articulatory information, and the benefit of offering rich information during

model training in terms of prediction accuracy and for an application to emotion

classification.
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(a) EMA sensors attached on articulators (b) MR image of the upper airway

Figure 1.1: Example images of EMA and rtMRI data. Left plot shows the place-
ment of EMA pellets in the mid-sagittal plane. Right plot shows an MR image of
the upper airway in the mid-sagittal plane.

1.2 Background

1.2.1 Direct articulatory measurements

This section describes two data acquisition modalities for speech production

research: One is EMA [Perkell et al., 1992] and the other is rtMRI [Narayanan

et al., 2004]. This also discusses the difference, including advantages and disad-

vantages, of the individual modalities. The two modalities are chosen, because

this dissertation uses speech production data recorded using them. For rtMRI, the

data recording protocols and data specifications follows those of the USC-TIMIT

corpus [Narayanan et al., 2014] and the USC-EMO-MRI corpus [Kim et al., 2014e],

because the datasets were used for the studies in this dissertation. Similarly, the

data information for EMA also based on the EMA data used in this dissertation.

EMA captures articulatory movements by tracking 3-dimensional (3D) coordi-

nates of a handful of sensors attached on the surface of oral articulators. Speech

waveform is often simultaneously recorded and later synchronized with the artic-

ulatory trajectories. Figure 1.1 (a) illustrates the placement of the six sensors in
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the mid-sagittal plane for the USC-TIMIT corpus. Three sensors are placed on

the tongue surface: the front-most sensor (yellow color in the figure) is placed

about 0.5 - 1 cm behind the anatomical tongue tip for monitoring the movement

of the tongue tip as well as minimizing its interference on the articulatory action;

the rear-most sensor (red color) is attached as far back as possible for speakers

(approximately 4 - 4.5 cm behind the tongue tip sensor) for capturing the move-

ments of the tongue dorsum; and the third sensor (orange color) is positioned

between the tongue tip and tongue dorsum sensors (typically at the center of the

other tongue sensors). Sensors are also glued on the upper (violet color) and lower

(green color) lips. Finally, a sensor is attached on the lower incisor for monitoring

the movement of the jaw. 3D spatial coordinates of the sensors are recorded at

a sampling rate of 100 Hz (using the NDI Wave Speech Research system). It is

noted that the NDI Wave Speech Research system allows options of 100, 200, or

400 Hz and that the Carstens’ AG500 EMA system allows 200 Hz.

The 3D coordinates of the six sensor position data are transformed for head

movement correction and occlusal plane correction, based on reference sensor track-

ing. The orientation of the occlusal plane is measured using a half-rounded bite

plane on which three reference sensors are attached. Typically, articulatory stud-

ies use the projections of the EMA sensors on the (horizontal) x-axis and the

(vertical) y-axis as shown in Figure 1.1(a). Reference sensor trajectories and raw

articulatory trajectories are smoothed by a 9th-order Butterworth filter, using 20

Hz cutoff frequency and 5 Hz cutoff frequency for articulatory trajectories and

reference trajectories, respectively.

Recently, rtMRI technology has been employed for capturing the dynamics of

the vocal tract shaping. Reconstructed Magnetic Resonance (MR) images offer the

entire view of the upper airway, typically in the mid-sagittal plane. The rtMRI
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Table 1.1: Comparisons of articulatory data recorded by EMA and rtMRI and of
speech audio

EMA rtMRI

Frame rate (frame/sec.) 100 23.180
Monitored articulators 6 flesh points The entire vocal tract in any plane

Data type Motion capture 2D pixel image sequence
Audio quality Clean speech Noise-cancelled speech

data can offer the articulatory information in the vocal tract regions that are not

easily monitored by using EMA. The frame rate of MR movies is 23.18 frames/sec.

for the image resolution of 68 × 68 pixels (spatial resolution of 2.9 mm2) in the

USC-TIMIT corpus and the USC-EMO-MRI corpus. It is noted that the frame rate

can be increased up to 162.23 frames/sec by finer sliding window reconstruction.

It is also noted that sparse sampling and constrained reconstruction [Lingala et al.,

2015] enables a frame of 83 frames/sec with spatial resolution of 2.5 mm2. Speech

audio is recorded using a fiber-optic microphone at a sampling rate of 20 kHz

simultaneously with MR image recording. Noise cancellation is performed as a

post-processing procedure, using the normalized least mean square method based

on the noise model [Bresch et al., 2006]. The audio and MR image sequences are

synchronized.

Table 1.1 provides the specifications of EMA and rtMRI data in the USC-

TIMIT corpus and the USC-EMO-MRI corpus.

1.2.2 Previous studies on emotional speech production

Human speech production system consists of two major components of vocal con-

trols: voice source activity and articulatory movements. The prosodic and spectral

aspects of speech sound are primarily governed by coordinated controls of voice

source and articulatory modulations. Prosodic modulations have been considered
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as the major component for emotion encoding in speech emotion research [Paeschke

et al., 1999, Scherer, 2003]. Hence, previous studies [Mozziconacci and Hermes,

Banse and Scherer, 1996] on emotional speech have been based on measurement

and manipulation of prosodic parameters, such as duration, fundamental frequency

(f0) and intensity, which are obtained from the acoustic speech signal.

Compared to studies on acoustic properties of emotional speech, there have

been only a few published studies on articulatory modulations in emotional speech.

Erickson et al. [1998, 2004] reported that the positions of the tongue tip, the tongue

dorsum, the jaw and the lips, can be characterized by emotion type of speakers.

In addition, Erickson et al. [2006] reported the difference between acted and real

sadness in terms of articulatory positioning. Lee et al. [2005] found that emotional

speech articulation exhibits more peripheral or advanced tongue positions and

that the movement range of the jaw is largest for anger. Both findings are in

the line with the previous findings [Erickson et al., 2004, 1998]. Although these

findings are valuable, they provide a limited view of emotional speech production,

focused on the observation of a few anatomical points for vowels. Lee et al. [2005]

reported better classification accuracy using articulatory parameters than using

acoustic parameters for four acted emotions, such as neutrality, anger, sadness and

happiness. Although it was obtained using a limited number of parameters and a

relatively simple classifier (Fisher linear discriminant analysis), this result suggests

that articulatory movements display significant emotion-dependent variations.

Later, Kim et al. [2012a] examined emotion-dependent information in both true

articulatory trajectories and estimated trajectories (using inversion). A recently

proposed algorithm based on the generalized smoothness criterion [Ghosh and

Narayanan, 2010] was used for the inversion process. This study used EMA data
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(a) The tongue tip
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(b) The lower lip

Figure 1.2: Example plots of the maximum tangential speed of critical articu-
lators and the maximum f0. A circle indicates the Gaussian contour with 2-
sigma standard deviation for each emotion (red-Anger, green-Happiness, black-
Neutrality, blue-Sadness). Different emotions show distinctive variation patterns
in the articulatory-f0 space

for 5 elicited emotions, such as neutrality, hot anger, cold anger, happiness and sad-

ness, spoken by 3 native speakers of American English. Experimental results sug-

gest that the emotion-dependent information in the estimated trajectory, although

smaller than that in the direct articulatory measurements, is found to be comple-

mentary to that in the prosodic features.

Kim et al. [2010] investigated the interplay between articulatory movements

and f0 patterns as a function of emotion. They found distinctive patterns in

the prosodic-articulatory space, especially for happiness and anger. Figure 1.2

illustrates the distributions of 4 categorical emotions in the space of maximum f0

and maximum articulatory speed in demisyllables. The examined speakers tended

to emphasize articulatory speed modulations for angry speech, while emphasizing

f0 modulations for happy speech. Also, results indicate greater correlation between

intensity statistics and articulatory speed statistics for high arousal emotions, such
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as anger and happiness, than low arousal emotions, such as neutrality and sadness.

These results suggest that the joint controls of prosody and articulation should be

considered in the emotional speech production model.

1.3 Dissertation outline

The outline of this dissertation is as follows. This dissertation begins with my

efforts on research creation for emotional speech production research. Chapter 2

presents my work on technical resource creation, such as automatic parameteriza-

tion algorithm for rtMRI data, co-registration algorithm for EMA and rtMRI data,

and their MATLAB implementations. Chapter 3 offers the details of the USC-

EMO-MRI corpus. The objective, data acquisition protocols, data specifications,

post-processing procedures and emotion quality evaluation are described. Initial

analysis results on the vocal tract shaping depending on emotion are also provided.

Chapter 4 discusses my scientific investigation on emotional speech production. In

particular, this chapter presents empirical analysis and simulation results on the

emotional variations in the articulatory variability, depending on the linguistic

criticality of the articulator Chapter 5 investigates emotional variations of speech

production components in the planning and execution stages under the framework

of the C/D model. Chapter 6 describes the inverse process of speech production,

focusing on estimating rich articulatory information from speech acoustic signal.

Finally, Chapter 7 concludes this dissertation with vision for future research.
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Chapter 2

Data processing technologies

2.1 Automatic parameterization of real-time

MRI data

2.1.1 Introduction

Real-time Magnetic Resonance Imaging (rtMRI) technology [Narayanan et al.,

2004] is an important tool for studying human speech production. The vocal tract

information that rtMRI offers encompasses the entire mid-sagittal view of the

upper airway at a fast frame rate, which is spatially much richer than ElectroMag-

netic Articulography (EMA). However, unlike EMA data, it is often required to

extract interested vocal tract information, e.g., the vocal tract movements [Rama-

narayanan et al., 2013] and the morphological structure of the vocal tract [Lam-

mert et al., 2013], from the rtMRI data as a pre-processing for speech production

research. Performing this parameterization automatically is essential for analyzing

rtMRI data of speech production, that typically comprise hundred s or thousands

of video frames; the complex structure of the vocal tract, non-uniform field sensi-

tivity of the tissues in head and neck, grainy noise, magnetic resonance (MR) image

artifact, and the rapidly varying irregular vocal tract shape, however, make this

problem challenging. This study presents an algorithm for more robust segmenta-

tion of the MR images, which includes (1) retrospective pixel intensity correction

of the MR images, (2) detection of the front-most edge of the lips and the top of
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(a) Original image (b) Sensitivity map (c) Left-most edge of (b)

(d) Head and neck image (e) Intensity corrected (f) Final image

Figure 2.1: The MR image after each pre-processing step

the larynx, (3) segmentation of airway-tissue boundary in the vocal tract, and (4)

measurement of the distance between the outer and inner boundaries. The current

method improves the robustness of the airway-tissue boundary estimation over the

previous method [Proctor et al., 2010] by using a combination of data-driven way of

pre-processing of the MR images, robust airway path estimation, and model-based

weighted linear curve fitting.

2.1.2 Methods

Pre-processing of MR images

Images of rtMRI data often suffer from grainy noise and non-uniform field sen-

sitivity of the tissues, depending on recording configuration [Narayanan et al.,
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2004]. Figure 2.1 (a) shows an example of the MR images in the USC-EMO-MRI

corpus [Kim et al., 2014e], which was recorded at an image frame rate of 23.18

frames/sec and a spatial resolution of 68 × 68 pixels. The present algorithm uses

a multi-resolution approach to minimizing the effects of the noise, artifacts, and

non-uniform field sensitivity of the tissues. The details of the approach are as

follows.

1. Create a field sensitivity map, denoted by S, of an original MR image using a

morphological closing operation, followed by 2-dimensional median filtering.

Figure 2.1 (b) shows the sensitivity map of the image in Figure 2.1 (a). The

morphological closing operation selectively exclude low-intensity pixels (of

grainy noise or artifacts in general) in the airway region when creating S.

2. Create the set of edge points, as in Figure 2.1 (c), of the sensitivity map

using the Canny edge detector [Canny, 1986] implemented in MATLAB.

Likewise, create the set of edge points of the original image. Let EO and

ESM denote the sets of edge points of the sensitivity map and the original

image, respectively.

3. Create the head and neck boundary line EH by finding the left-most points of

EO and ESM . Then, create a binary image, denoted by B, of the head-neck

region by setting the pixel intensity to be 1 for pixels in the right side of EH

in each row and setting the pixel intensity to be 0 otherwise, as in Figure 2.1

(d).

4. Multiply the pixel intensity of the original image and the inverse of the pixel

intensity of S for non-zero elements in B, while setting the non-tissue pixel

intensity to be zero. Figure 2.1 (e) shows the result image, denoted by C.
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5. Perform a sigmoid warping of the pixel intensity in C for suppressing grainy

noise as well as highlighting tissue. Figure 2.1 (f) shows the final image.

2.1.3 Construction of grid lines

In order to detect the lips, the larynx, and the airway-tissue boundaries, the present

algorithm constructs grid lines, adopting from the previous method [Proctor et al.,

2010]. The previous method is motivated by the analysis of the upper airway image

by Öhman [Öhman, 1967]. The grid construction method requires four manually

chosen anatomical landmarks near the larynx, the highest point on the palate, the

alveolar ridge, and the center of the lips, in one of the MR images. See [Proctor

et al., 2010] for the details of grid construction that we follow. The differences from

the previous method are (i) that a user chooses the distance between the center

of adjacent grid lines in the present algorithm, not by the number of grid lines as

in the previous method, and (ii) that the origin of the reverse polar grid lines is

placed at the top of the image on the horizontal coordinate of the labial landmark

point. This point offers more smooth transition from the forward polar grid lines

to the reverse polar grid lines. Note that such method of the grid line construction

assumes that the head and neck are aligned such that the subject faces the left

side of the image and the neck is vertically straight.

2.1.4 Lips and Larynx detection

For each frame, the initial and the final grid lines correspond to the locations of

the top of the larynx and the front-most edge of the lips, respectively. Since these

articulatory positions vary slowly and smoothly over time, the present algorithm

finds each of their optimal positions by constraining rapid change of the estimated

locations of them.
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Figure 2.2: The grid lines (cyan color) superimposed on an MR image. Four blue
dots are the manually selected landmarks. The origins (green color) of the forward
polar grid lines (19 ∼ 61) and the reverse polar grid line (61 ∼ 76) are determined
based on the landmarks.

Assume qt is a state at instance t. N denotes the number of states. ST
qi,qj

denotes

the transition score from qi to qj . S
L
qi
is the likelihood score (of the observation) for

qi. Pi is the prior score of qi. K is the number of instances. Q denotes a sequence

of states q1, q2, · · · , qK , one state for each instance. The objective score J of Q is

defined as follows:

J =
(

P1S
L
q1
+ wST

q2,q1

)

+

(

K−1
∑

u=2

SL
qu + wST

qu+1,qu

)

(2.1)

where w is a weighting factor for ST
qi,qj

. The optimal sequence Q⋆ is obtained by

finding Q associated with the minimum J :

Q⋆ = argmin
[q1,q2,··· ,qK ]

J (2.2)
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(c) Tissue Boundaries

Figure 2.3: Estimated vocal tract parameters: (a) estimated locations of forward-
most edge of the lips (yellow color) and top of the larynx (cyan color), (b) airway
path (cyan color), (c) airway-tissue boundaries (red line for inner boundary, green
line for outer boundary).

For detection problem of the edge of the lips, qi corresponds to the i-th grid

line, where qN/2 is placed on the grid line of the labial landmark (the 77-th grid

line in Figure 2.2). Also, ST
x,y is the Euclidean distance between the centers of grid

lines x and y. SL
x is the maximum pixel intensity of all pixels in the grid line x.

Note that the length and width of the searching region for the lip detection are

specified by users.

For the top of the larynx, qi corresponds to the i-th grid line where qN/2 is

placed on the grid line of the larynx landmark (the first grid line in Fig. 2.2).

ST
x,y is the same as defined for lips detection. Let DL

x be the mean of the first-

order derivatives of pixel intensities of x, computed along the grid lines. Then, SL
x

= DL
x ×Wx, where Wx is an optional weighting term which gives more weight on

higher grid line. Wx often helps for better estimation, especially when the low part

of the larynx in MR images protrudes. This algorithm detects the point where the

pixel intensity increases the most, searching from the top grid line.
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The length and the width of searching regions (grid lines) for the lip detection

and the larynx detection are specified by users. w is set to be 1 for these problems.

One example of lips and larynx detection results is shown in Figure 2.3 (a).

2.1.5 Airway-path detection

The key idea behind improving airway-tissue boundary segmentation is to find an

accurate and possibly approximate airway path in the upper airway first, from

which the optimal airway-tissue boundaries can be determined easily and more

robustly. The optimal airway paths passing through all grid lines in an MR image

are determined by finding the paths of the minimum score, using the Viterbi algo-

rithm. For this problem, each possible path in a grid line corresponds to a state,

while each grid line corresponds to an instance. qi corresponds to the i-th bin,

where qN/2 is located at the center of the grid line; ST
x,y is the Euclidean distance

between bins x and y, where the bins are located in the adjacent grid lines, one

bin for each grid line. SL
x is the pixel intensity (observation) of the bin x, deter-

mined for each instance. Then, the optimal airway path is found by minimizing

the score of possible bins as in the equation 2.2. The reason of using all bins, not

only local minima as in the previous method [Proctor et al., 2010] is that all local

minima are sometimes found outside the upper airway when some regions in the

vocal tract is fully closed. The estimated airway path in our method can still stay

within the region of interest during full contact in the upper airway, restricted by

the transition costs between states.

Optionally, our algorithm performs a smoothing of the pixel intensity matrix

(observations) using the mean of the 25% and 75% quantiles of the intensity values

of neighboring pixels. We found that this smoothing is effective for reducing the

estimation error caused by the low-intensity pixels outside the vocal tract walls,
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because this smoothing tends to increase their intensity values. Also, the smooth-

ing assists the airway path to stay inside the upper airway when a part of vocal

tract is fully closed, by forcing the intensity of the present pixels of fully closed

region to be low (because the past and future pixel intensities are low). Neighbors

in the range of four instances, eight grids and four bins were used for the estimated

airway path in Figure 2.3 (b). w in eqn. 2.1 was set to be 3.

2.1.6 Airway-tissue boundary segmentation

Two airway-tissue boundaries, i.e., the outer and inner boundaries of the vocal

tract walls, are determined at the first bins whose pixel intensity is over a certain

threshold in the outer direction and inner direction, respectively. The threshold

was set to be 0.5, where the maximum pixel intensity of each MR image is 1.

The estimated airway-tissue boundary points are smoothed by the robust local

regression using weighted linear least squares and a 1-st degree polynomial model,

implemented in MATLAB, for each image frame. Figure 2.3 (c) illustrates the

smoothed airway-tissue boundaries. Finally, a distance function for the airway-

tissue boundaries is obtained by computing the Euclidean distance (in pixel unit)
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Figure 2.4: Distance function from the larynx to the lips for Figure 2.3 (c). Green
line is the shortest distance from the estimated outer boundary point for each grid
line to the closest point in the inner boundary to it. Blue line is the distance
between inner and outer boundary points for each grid line.
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between the outer and inner boundaries or between the outer boundary point and

the closest inner boundary point regardless of their grid line. It was observed that

the later (green line in Figure 2.4) is less erroneous, in particular near the lip region,

than the former (blue line in Figure 2.4). The initial boundary point for computing

the distance function is in the grid line of the estimated larynx. The final boundary

point is in the grid line of the first local minimum distance from the final grid line.

Figure 2.4 illustrates a distance function in the upper airway. The software package

which contains MATLAB codes for the present algorithm and the subsets of data

for demonstration is freely available at http://sail.usc.edu/old/software/rtmri seg.

2.1.7 Evaluation of estimated airway-tissue boundaries

The estimated airway-tissue boundaries are evaluated against manually annotated

tissue boundaries. For this purpose the annotators were instructed to sketch the

inner and upper vocal tract walls using a continuous curve. For each of inner

and outer boundaries, the Euclidean distance between each estimated boundary

point and the closest point in the reference boundary for the estimated point is

measured.

The statistics (mean and standard deviation) of the distance values are com-

puted for each sub-region in the vocal tract and each phone. The sub-regions of

the present algorithm are (1) grid lines 1 ∼ 19 for pharyngeal region, (2) grid lines

20 ∼ 52 for velar and dorsal constriction region, (3) grid lines 53 ∼ 67 (alveolar

ridge landmark) for the hard palate region, and (4) grid lines 68 ∼ 77 for labial

constriction region. The sub-regions of the previous algorithm are also determined

in a similar way. The previous algorithm does not include the lip detection, thus

large estimation error is observed in the grids after the lip landmark. For a fair

comparison, the final grid line for analysis is fixed to the lip landmark point.
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Figure 2.5: Errorbar of the distance (in pixel unit) between manual airway-tissue
boundary and estimated airway-tissue boundary. From left to right in each phone,
each errorbar is for pharyngeal region (black color), velar and dorsal region (red
color), palatal region (green color), and labial region (blue color).

The palatal and dental corrections, and the mean pharyngeal wall were used

as pre-processing for the baseline system [Proctor et al., 2010]. See [Proctor et al.,

2010] for more details. For the present algorithm, the mean of the estimated

boundary in the palatal region and the vertical position of the palate landmark is

used in the final outer boundary. The reason for the palatal corrections in both

algorithms is that the soft tissue in the hard palate region often shows significantly

inner pixel intensity than other tissues, thus not sufficiently contrasted to the

airway.

The list of phones used for evaluation is [b, f, g, iy, k, m, n, ng, p, uw, v].

Producing speech sound for these phones involves highly constricted or fully closed

articulatory gestures, where the error of the estimated airway-tissue segmentation

tends to be high. For each phone, 10 phone instances were randomly selected in a

male subjects’ data in the USC-EMO-MRI corpus. The acoustic phone boundary
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Table 2.1: RMSE between the estimated and manually-labeled boundaries in pixel
unit

Baseline Proposed
inner outer inner outer
2.56 2.13 0.71 0.93

of each phone instance is obtained using an adaptive speech-text alignment tool,

SailAlign [Katsamanis et al., 2011]. The image frames within the starting and

final times with one marginal frame in each side were selected. In total, 492 image

frames were used for evaluation.

Figure 2.5 shows the errorbar (as standard deviation) of the distance for each

region and each phone for each estimated boundary. For inner boundary, the mean

and standard deviation of the proposed algorithm is significantly smaller in all four

regions than those of the baseline algorithm. Especially, the larger error in the front

cavity (the palatal and labial regions) is significantly suppressed in the proposed

algorithm. For the outer boundary, the baseline algorithm performs significantly

better in the regions from the pharynx to the palate regions than for the inner

boundary, presumably partially by the dental and palatal correction. However,

the labial region still shows significantly large error. The amount of error in the

labial region is significantly suppressed in the proposed algorithm. Table 2.1 shows

the root-mean-squared-error (RMSE) for all estimated boundary points in each of

the inner and outer boundaries. The proposed algorithm shows significantly inner

RMSE for both inner and outer trajectories than the baseline algorithm. These

results suggest that the proposed algorithm generates significantly more accurate

airway-tissue boundaries than the baseline algorithm. In sum, the proposed algo-

rithm generates more robust airway-tissue boundaries regardless of the phone and

the vocal tract region than the baseline algorithm.
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2.1.8 Conclusion and future work

The present algorithm estimates the airway-tissue boundaries from a robustly

estimated airway path in each enhanced MR image. According to the quan-

titative evaluation on the estimated boundaries, the estimation error is signifi-

cantly reduced by the present algorithm than the previous method [Proctor et al.,

2010] in terms of RMSE (2.56 to 0.71 for the inner boundary; 2.13 to 0.93 for the

outer boundary). A major advantage of the proposed method over the baseline is

robustness across different regions in the vocal tract. The proposed algorithm also

extracts the positions of the front-most edge of the lips and the top of the larynx

automatically. This helps constrain the search space of the airway-tissue bound-

aries, resulting more robust boundary estimation. In addition, with the algorithm

one can estimate the length of the vocal tract above the larynx.

Automatic head movement correction for each MR image is an on-going work

that we would like to use for more robust and convenient tissue boundary estima-

tion. In addition, this approach also calls for a pre-processing technique that is

better suited to this imaging modality.

2.2 Co-registration of real-time MRI and EMA

datasets

2.2.1 Introduction

Speech production research crucially relies on articulatory data acquired by var-

ious data acquisition modalities. Each modality has its advantage in terms of

the nature of information it offers, while at the same time limited in important

ways, notably in terms of the spatio-temporal details offered. Popular techniques
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include ultrasound [Stone, 2005], X-ray microbeam [Fujimura et al., 1973], Elec-

tropalatography [Recasens, 1984], ElectroMagnetic Articulography (EMA) [Perkell

et al., 1992] and recently introduced real-time Magnetic Resonance Imaging

(rtMRI) [Narayanan et al., 2004]. For example, EMA offers motion capture of

several flesh-point sensors in two (sagittal) or three dimensional (parasagittal)

coordinates with high temporal resolution (100 samples/second in WAVE system),

while real-time MRI (rtMRI) provides complete midsagittal (or along any arbitrary

2D scan plane) view of the vocal tract in relatively low temporal resolution (e.g.,

68 × 68 pixel images at 23.180 samples/sec in the USC-TIMIT corpus [Narayanan

et al., 2014]).

While it may be desirable to simultaneously acquire data with multiple modal-

ities, it is not currently feasible due to technological limitations or incompatibility

such as in the case of EMA and rtMRI. One possible way to obtain some of the

combined benefits of EMA and rtMRI is by spatial and temporal alignment of

datasets recorded with the same stimuli, by the same speaker, but at different

times. However, differences in the dimensionality and quality of the measured

articulatory and acoustic data across these two modalities make the alignment

problem challenging. This study aims at obtaining the combined benefits of “mul-

tiple” data acquisition methods in modeling speech production dynamics by both

spatial alignment and temporal alignment of these multimodal data. Specifically,

it aims to obtain detailed vocal tract dynamics from MRI video aligned with EMA

sensor trajectories. The alignment of multiple data will not only provide us finer

and richer articulatory information, but also offer new opportunities for speech

production research and modeling, i.e., temporal reconstruction (i.e., upsampling)

of rtMRI based on EMA information, tongue reconstruction and complete tongue
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movement representation from EMA pellets, palate reconstruction from EMA pel-

lets, and their evaluations.

We use a corpus of TIMIT sentences collected from the same speakers, but

at different times, with rtMRI and EMA as the basis for this study. The speech

waveform and corresponding articulatory data (recorded simultaneously) within

each dataset is provided as synchronized by the acquisition system itself (EMA by

WAVE) or by an algorithm in the case of rtMRI [Bresch et al., 2006]. However,

EMA TIMIT data and MRI TIMIT data need time warping alignment, because

they were recorded separately. The temporal alignment of the two datasets is not

straightforward due to several reasons. First, the nature of articulatory information

of the two datasets is different: EMA is motion capture of flesh-point sensors and

MRI is image stream. Second, rtMRI has grainy image noise and suffers from

acoustic distortion in the speech audio signal. Lastly, the complex structure of

articulators and their movements in rtMRI images make it hard to directly use

spatio-temporal alignment techniques on the articulatory data.

In order to overcome the limitation of co-registering relying on any individual

modality, such as using just acoustic feature based temporal alignment, we propose

a novel temporal alignment using both acoustic and articulatory features, working

with dynamic time warping (DTW) [Sakoe and Chiba, 1978]. The goal of this

work is to examine how articulatory features can be used to improve temporal

alignment. For instance, spatial alignment of articulatory data can be solved by

transformation based on relatively stationary “reference” structures such as using

palate tracking of both EMA TIMIT and MRI TIMIT. The automatic feature

extraction technique in the novel temporal alignment formulation determines the

set of pixels whose mean pixel intensity behaves similar to each EMA sensor tra-

jectory. We demonstrate the performance of this alignment method on a subset
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of the USC-TIMIT corpus elicited from a female speaker (denoted by F1 in the

corpus) of American English.

This study is organized as following. Section 2.2.2 explains the relation of

our new algorithm to prior work. Section 2.2.3 describes a multimodal speech

production database, the USC EMA TIMIT and MRI TIMIT corpora, along with

the details of post-processing them after acquisition. Section 2.2.4 describes our

spatial alignment method and results. Next, Section 2.2.5 explains our temporal

alignment method followed by its results in Section 2.2.6. Section 2.2.7 discusses

the benefits of using co-registered data over data of individual modalities. Finally,

discussions, conclusions and future works follow in Sections 2.2.8 and 2.2.9.

2.2.2 Relation to prior work

There have been spatio-temporal alignment studies in various domains including

multimedia, medical imaging [Kovar and Gleicher, 2004, Ledesma-Carbayo et al.,

2005, Kopp and Bergmann, 2007]. Although these methods have shown successful

alignment results on their dataset of interest, they are not directly applicable to

our multimodal data. This is mainly due to the different spatio-temporal nature

of the multimodal data streams. Recently, canonical time warping (CTW) [Zhou

and De la Torre Frade, 2009] was introduced for alignment task, which deals with

different nature of data by alternating between the linear transformation of two

original data spaces to a common latent space and temporal alignment. However,

CTW based alignment is likely to fail when the two original feature streams have

complex (nonlinear) relationships such as exhibited by the EMA sensor trajectories

and MRI image streams. In fact we have found poor performance of CTW-based

alignment on our corpus (see Section 2.2.8 for details).
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Accurate information about the shape of the palate can be obtained by explicit

measurements of the palate (i.e., taken from a dental cast), although in practice

this can be labor intensive and uncomfortable for subjects. Previous work has

tried to measure palate shape from flesh-point tracking data by asking subjects to

sweep the tongue tip sensor across the palate, but this can be unreliable because

subjects have trouble keeping the tongue tip sensor directly against the palate

and precisely in the midsagittal plane [Westbury, 2005]. Palate shape can also

be inferred from flesh-point tracking data, using all the sensor positions observed

from an entire acquisition, for instance by taking the convex hull of those sensor

positions [Tiede, 2010]. In the current study, palate shape is inferred from all

tongue sensor positions in the data using a windowed technique which allows for

more detail about palate shape to be preserved in the inference.

2.2.3 Data

(a) High variance MRI pixels (b) Aligned palate trace

Figure 2.6: (a) Top 3% highest variance pixels are highlighted (along with their
bounding box), which includes articulatory movements in vocal tract region. (b)
Spatial alignment result - dark blue line is the estimated palate trace on MRI
image.
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We used the parallel EMA and rtMRI data of a female speaker (F1) in the

USC-TIMIT corpus [Narayanan et al., 2014]. More details of the database, data

collection and post-processing, including noise cancellation on speech audio, are

offered in [Narayanan et al., 2014, Bresch et al., 2006], as well as in Section 1.2.1,

thus omitted here.

Figure 2.6(a) shows a sample MRI video frame along with top 3% high variance

pixels. With the same stimuli and subjects of MRI TIMIT we also collected, at

a different time, flesh-point tracking EMA data using WAVE system (referred

to as EMA TIMIT), which includes the trajectories of 6 flesh-point sensors on

tongue tip (TT), tongue blade (TB), tongue dorsum (TD), upper lip (UL), lower

lip (LL) and lower incisor (LI), at a sampling rate of 100 Hz and simultaneously

recorded speech audio. Following the procedure outlined in [Kim et al., 2011a], we

performed post-processing which includes smoothing and occlusal plane correction

on EMA sensors. The x,y co-ordinate trajectories of six EMA sensors (i.e., 12

EMA trajectories) are used for our experiments. EMA TIMIT also contains palate

tracking. In palate tracking, a subject scans the upper surface of the vocal tract

from the alveolar ridge to the soft palate, using the TT sensor. This palate tracking

along with MRI image is used for spatial alignment. For analyzing the performance

of temporal alignment, we use identical set of 20 sentences (∼40 sec) from the MRI

TIMIT and EMA TIMIT such that they cover all phonemes.

2.2.4 Spatial alignment

The goal of spatial alignment is to align the reference midsagittal plane (i.e., x-y

plane) in EMA recording with MRI scan plane such that EMA sensor coordinates

on the midsagittal plane correspond to the respective points on the MRI image.

The spatial alignment is achieved by estimating the transformation of EMA sensors
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on the MRI image. We uses MRI image and palate tracking of EMA sensors for

this task. The spatial alignment of articulatory sensors on MRI image can be done

by applying the same transformation on the sensor coordinates. We estimate the

palate contour from EMA palate tracking data as well as all tongue sensor data by

choosing the highest vertical point in each adjacent bins (L/20 mm in length, no

overlap), where L is the length of the palate tracking data, along x axis. To find a

location for the palate trace in the MRI image plane, we firstly scaled down EMA

sensors by 2.9 (Note that unit of EMA sensors is mm, and the pixel size of MRI

image is 2.9 mm). Then, after manual initialization, we perform a grid search over

a variety of translations, δx and δy (along x and y axis), from -5 to +5 pixels at

increments of 0.5 and rotations θ from -π/4 to π/4 radians at increments of π/32

radians. The manual initialization is done at (horizontal pixel = 25th, vertical

pixel = 23th, rotation = 0). The optimum translation and rotation is found to

be (δ⋆x = 25.5, δ⋆y = 24, θ⋆ = -π/32). δ⋆x, δ
⋆
y , and θ⋆ are found by maximizing the

contrast across palate trace as follows:

{

δ⋆x, δ
⋆
y , θ

⋆
}

= argmax
δx,δy,θ

∑

∀i,j∈palate trace

pi,j−1

pi,j+1
(2.3)

where pi,j is a pixel at (i, j) of standard deviation (SD) MRI matrix. The SD MRI

matrix contains the standard deviations of MRI image pixels. In SD MRI matrix

the palate is clearly visible as a region of high contrast just above the oral cavity

and it also guards against the false palate problem unlike the raw MRI image

matrix. Due to the unavailability of ground truth we visually examine the spatial

alignment result. Figure 2.6(b) shows the optimum palate trace location of EMA

on MRI image. Visually it appears that the transformation of EMA results in a

good match between EMA palate trace and the palate visible in MRI image.
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2.2.5 Temporal alignment

Below we describe our proposed automatic algorithm for temporal alignment of

MRI and EMA recordings using both acoustic and articulatory features. We refer

to this automatic algorithm as Joint Acoustic-Articulatory based Temporal Align-

ment (JAATA). A key feature of JAATA is that it computes EMA-like features

from raw MRI video in order to achieve optimum alignment.

Objective function

Suppose we need to perform temporal alignment of MRI and EMA recording of

F sentences. Suppose the f -th (1 ≤ f ≤ F ) sentence has NM and NE frames

in MRI and EMA recordings, respectively. Let XM,f = [x1,M · · · xNM ,M ]

denote the acoustic feature sequence matrix of MRI audio of the f -th sen-

tence where xl,M is the acoustic feature vector at the l-th frame. Similarly, let

XE,f = [x1,E · · · xNE ,E] denote the acoustic feature sequence matrix of EMA

audio. We vectorize MRI video in each frame, i.e., at l-th frame MRI video

matrix Vl,M (68×68) is converted to MRI video vector yl,M (682×1) such that

yl,M(68j + i) = Vl,M(i, j), 0 ≤ i, j ≤ 67. Thus, for the f -th sentence, we obtain

the MRI video sequence matrix YM,f =
[

y1,M · · · yNM ,M

]

. The 12 EMA sensor

trajectory matrix is denoted by YE,f =
[

y1,E · · · yNE ,E

]

=
[

z1E,f · · · z12E,f

]T
,

where yl,E (12×1) represents the 12 EMA sensor values at the l-th frame and

zqE,f (NE×1) is the trajectory of the q-th EMA sensor for f -th sentence. T is

the matrix transpose operator. We obtain the best temporal alignment between
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MRI and EMA recordings of all F sentences by minimizing the following objective

function:

J(λ, {WM,f ,WE,f} , {sq,M , 1 ≤ q ≤ 12})

=
F
∑

f=1

Jf(λ,WM,f ,WE,f , {sq,M , 1 ≤ q ≤ 12})

=

F
∑

f=1

{

λ

(

∣

∣

∣

∣

∣

∣
XM,fWM,f −XE,fWE,f

∣

∣

∣

∣

∣

∣

2

F

)

(2.4)

+(1− λ)
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1

A
sTq,MYM,fWM,f −
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∣

∣

∣

∣

∣

2
)}

The objective function J is obtained by summing objective functions Jf corre-

sponding to each sentence. Jf has two terms which are convexly combined using

weight λ - the first term measures the Euclidean distance between acoustic features

of MRI and EMA audio after alignment and the second term measures the same

for articulatory features. ||U||2F = Tr(UTU) designates the Frobenious norm.

WM,f , WE,f encode the time alignment path for f -th sentence (see [Zhou and De

la Torre Frade, 2009] for details).

sq,M (682×1) is a masking matrix, whose non-zero elements selects a submatrix

(of size K × L,K, L ∈ Z) from the MRI image matrix. Thus, 1
A
sTq,MYM,f is

the articulatory trajectory derived from MRI video corresponding to q-th EMA

trajectory. The number of pixels or the area of the submatrix is denoted by

A(= KL), which is user-specified before optimizing J . The elements of sq,M can

take value of 0 or 1. Thus, sTq,M1 = A, where 1 is a column vector of all ‘1’s.

31



Optimization of the objective function

Minimization of J is a non-convex optimization problem with respect to the opti-

mization variables WM,f , WE,f (time alignment matrices), {sq,M , 1 ≤ q ≤ 12}

and λ. Hence we use an iterative approach comprising two main steps - 1)

Optimize WM,f , WE,f using DTW given {sq,M , 1 ≤ q ≤ 12} and λ, 2) Given

WM,f , WE,f ∀f and λ, optimize {sq,M} sequentially ∀q by searching over K,L

such that KL = A. λ is optimized by performing a grid search. It is easy to show

(from (2.4)) that in each of these steps J decreases monotonically. Thus the itera-

tive process of optimization stops when the value of J reaches a local minima. The

iterative process is initialized with the temporal alignment obtained by acoustic-

only features using DTW and Euclidean distance between acoustic features as the

distance measure.

Experimental setup

We use 13 dimensional Mel-Frequency Cepstrum Coefficient (MFCC) vector as

the acoustic feature XM and XE for both MRI TIMIT and EMA TIMIT audio.

MFCCs are computed at a frame rate of 100 Hz. Note that 12 EMA trajectories

are also at a frame rate of 100 Hz. We applied smoothing on the EMA trajectories

by butterworth filter with a cut-off frequency at 8 Hz. 8 Hz is chosen by the

frequency analysis in a previous work in [Ghosh and Narayanan, 2010]. We have

computed the derivative of EMA trajectories and denote them as YE. Similar to

the EMA trajectories, we also low-pass filtered MRI video pixel trajectories using

a butterworth filter with a cut-off frequency at 8 Hz. Since MRI videos have a

lower frame rate, we have upsampled the MRI video at a sampling rate of 100Hz

such that both acoustic and articulatory data streams are at identical frame rate.

This frame rate was chosen to match the frame resolution of the phone boundary,
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which is used for evaluation of temporal alignment. Derivatives of the upsampled

MRI pixel trajectories are computed and used as YM . We normalized both EMA

and MRI articulatory feature trajectories between 0 and 1 for each sentence. We

have found that derivative computation and normalization contribute to better

temporal alignment performance.

As discussed in Section 5, for each EMA trajectory, the optimum rectangular

region on the MRI image is estimated as a by-product of the temporal alignment

formulation. Trajectory of the derivative of the mean pixel intensity of MRI in

the optimized area is used for temporal alignment. To reduce the search space

for finding the location of the optimum rectangular area, we restrict the search

to a bounding box of the top 3% high variance pixels (see Figure 2.6(a)) which

contains the surface movement of articulators. The λ values used for optimization

are {(k − 1)× 0.05, 1 ≤ k ≤ 20}.

For evaluation of the temporal alignment, we have used an objective measure

of how the phonetic boundaries of MRI audio correspond to those of the EMA

audio when mapped using the optimized alignment path. We call this measure as

Average Phonetic-boundary Distance (APD). Phonetic boundaries obtained from

forced alignment [Katsamanis et al., 2011] are manually corrected to be used in

this evaluation. APD is computed as the root mean square (RMS) value of the

difference between the manually corrected phonetic boundaries and the estimated

phonetic boundaries in EMA audio obtained by mapping phonetic boundaries of

MRI audio using the temporal alignment.

2.2.6 Results

We experimented with different values of rectangular area A - 9, 12, 15, 18, 21, 24,

30, 32, 36. For all these different choices of A, the optimum value of λ turns out to
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(a) for LIx (ρ=0.68) (b) for LLy (ρ=0.67)

(c) for TTy (ρ=0.65) (d) for TBy (ρ=0.64)

Figure 2.7: Four examples of optimum MRI regions whose mean pixel intensities
show highest correlation with corresponding sensor trajectories. Automatically
selected pixel region is marked by a blue square box on each MRI image. ‘x’ or ‘y’
after sensor name, i.e., LI, indicates the direction of sensor movement (in the x or
y axis).

be 0.1. For different choices of A, APD averaged over all sentences reduces by ∼6

msec when articulatory features are used in addition to MFCC by JAATA. The

minimum APD, 44.198 msec occurs with A=21 compared to an APD of 50.101

msec using only MFCCs. To have deeper insights, we, therefore, investigate the

quality of alignment for each sentence with A=21.

We firstly examine the optimum rectangular region on MRI image for each EMA

trajectory. Figure 2.7 shows the estimated regions of MRI image with A = 21 for
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four different EMA trajectories, namely LIx, LIy, TTy, TBy. From Figure 2.7 it is

clear that the regions correspond to the respective articulators on the MRI image.

The mean pixel intensity indicates the constriction degree in the region of selected

pixels. Constriction degree measurement of a specific vocal tract region of rtMRI

data has been used in earlier speech production studies i.e., [Hagedorn et al., 2011,

Lammert et al., 2011]. However, finding the “best” region corresponding to each

EMA trajectory by hand is not straightforward. Varying morphological structure

of subjects sometimes makes it hard to decide the best region. Thus our proposed

optimization for temporal alignment offers a solution in this regard. To examine

how correlated the mean pixel trajectory is with the corresponding EMA trajectory,

we also report correlation coefficient (ρ) between the two. ρ, when averaged over

all articulators, is 0.59 with a SD of 0.10. ρ values for different articulators ranges

from 0.36 (ULy) to 0.68 (LIx). ρ values suggest that, on an average, the features

from the mean intensity over optimum MRI regions are linearly correlated to the

respective EMA trajectories.

Figure 2.8 shows example alignment maps for four different sentences obtained

using only MFCC and with both MFCC and articulatory features (‘MFCC+Artic’)

using JAATA. As a reference alignment, we have also shown an alignment based

on phonetic boundaries (‘Reference’). These four cases are chosen to illustrate the

sentences where use of articulatory features led to better as well as worse alignment

compared to only MFCC based alignment. For example, APD decreases by 134

msec for sentence 19 (Figure 2.8(b)) and by 34 msec for sentence 3 (Figure 2.8(b))

by using automatically extracted articulatory features in addition to MFCC. How-

ever for sentence 12, we observed that APD increases by 52 msec (Figure 2.8(d)).
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Figure 2.8: Alignment maps of 4 example sentences with acoustic only (MFCC) and
acoustic-articulatory features (MFCC+Artic). Reference is for manually corrected
phoneme boundary (baseline). (a) and (b) are when JAATA performs better than
only MFCC, (c) is when benefits from JAATA is minimal, and (d) is when JAATA
performs worse than only MFCC.

2.2.7 Benefits of co-registered data

The co-registered data can offer spatially or temporally richer articulatory infor-

mation than either EMA or rtMRI data by themselves. This section illustrates

some ways in which co-registrated data can be used for taking advantage of both

EMA and rtMRI data for speech production research.
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Information from more speech articulators

Articulatory information that is not directly available from EMA sensors, e.g.,

constrictions in the velar and pharyngeal regions, can be measured fromMR images

in the co-registered dataset. An example of this can be seen in Fig. 2, which shows

three articulatory time series extracted during articulation of the word “harms.”

The velic and pharyngeal opening parameters were extracted from rtMRI data

using Region-Of-Interest (ROI) analysis [Lammert et al., 2010]. Labial opening

was extracted from EMA data as the Euclidean distance between the upper and

lower lip sensors in the midsagittal plane. The action of the lips is accurately

captured, and the closure of the lips during production of /m/ can be clearly

seen. Moreover, labial closure is coordinated in time with the velic opening to

produce the nasal sound, with both time series showing a similar time course. The
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Figure 2.9: Clean speech waveform (top plot) for the word “harms” and cor-
responding time series of velic (the second plot), pharyngeal (the third plot)
and labial (bottom plot) opening. The velic and pharyngeal opening parame-
ters extracted from rtMRI are synchronized with the the labial opening parameter
extracted from the EMA by JAATA.
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pronounced pharyngeal constriction is also well captured, during the production

of /A/ and /ô/ and preceding the nasal.

Higher temporal information and tongue landmarks for rtMRI data

Spatio-temporal alignment of rtMRI and EMA can be used for articulatory land-

mark tracking in the MR images with improved temporal resolution as a result

of co-registration. Anatomical landmarks are not always conspicuous in MR

images (e.g., tongue tip) because certain speech articulators, particularly the

tongue, change drastically in shape over time. These shape changes can obscure

or make indistinguishable anatomical landmarks, and can present challenges for

landmark tracking in rtMRI. The spatio-temporal alignment can provide infor-

mation about which point in each MR image corresponds to each EMA sensor

that was placed at an anatomical landmark in the vocal tract. In addition, the

alignment map between rtMRI and EMA can assist in upsampling rtMRI data

by utilizing the higher temporal resolution of EMA to interpolate between rtMRI
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Figure 2.10: Left: Six EMA sensors (circles) overlaid on MRI image with estimated
vocal tract boundaries (outer and inner lines in the vocal tract) and grid lines
after co-registration. Right: Constriction degrees of the tongue tip (top plot)
and tongue dorsum (bottom plot) extracted from upsampled rtMRI data for the
sentence “Publicity and notoriety go hand in hand.” The circle for each phone
is placed on the trajectory of the critical articulator of the phone, indicating the
frame index for the phone in the registered data.
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frames. The left-most plot in Fig. 3 shows an example plot of an MR image

overlaid with EMA sensors (circles in the plot). Sample MRI videos with up-

sampled rtMRI data, vocal tract tissue boundaries, overlaid EMA sensors before

and after spatio-temporal alignment can be found at the ‘Demo video’ section

in http://sail.usc.edu/old/software/Registration_EMA_rtMRI. The right-

most plot in Fig. 3 illustrates the estimated constriction degrees of two landmark

points (tongue tip and tongue dorsum) extracted from upsampled MR images for

the sentence “Publicity and notoriety go hand in hand.” The mean of start and

end times of each phone is indicated by a circle, where the phonetic boundaries

were estimated by an adaptive speech-text alignment tool, SailAlign [Katsamanis

et al., 2011], followed by manual correction. The constriction degrees from rtMRI

were computed by measuring the Euclidean distance between upper (outer line in

the vocal tract in the left-most plot in Fig. 3) and the lower (inner line) air-tissue

boundary points on the closest vocal tract grid line to each EMA sensor of the

tongue. Note that the tongue tip sensor is usually placed about 5 mm behind

the anatomical tongue tip for minimizing its interference on its natural movement.

For a rough comparison, the tongue tip constriction degree was measured on the

next grid line anterior to the closest grid line to the superimposed tongue tip

sensor position. Air-tissue boundaries were determined using a MATLAB-based

software [Proctor et al., 2010] for analyzing rtMRI data. The right-most plot in

Fig. 3 suggests that the estimated landmarks in the registered data capture the

closure gestures of the tongue tip and the tongue dorsum well.

2.2.8 Discussion

This study includes two alignment tasks, spatial alignment and temporal align-

ment. The performance of our temporal alignment technique does not rely much
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on spatial alignment. JAATA formulation does not use spatial alignment informa-

tion directly. Even if we transform EMA sensor coordinates by spatial alignment

before using them in JAATA, the temporal alignment performance may not change

much. This is because the optimum spatial alignment parameter of rotation (θ⋆) is

small. However, the detailed information offered by spatial alignment, i.e., precise

geometric relation between EMA sensor trajectories and the whole vocal tract in

MRI could be beneficial for other speech production research problems.

Figure 2.8 shows that the temporal alignment of JAATA while promising, still

has alignment error. Also, the temporal alignment of MRI and EMA recording

using joint acoustic articulatory features improves APD for some sentences but

decreases for others. This could be due to the temporal sparseness of articula-

tory information in rtMRI data. The frame resolution of rtMRI image is about

43 msec/frame, and the APD of temporal alignment using acoustic features is 50

msec. Therefore, the information gain for temporal alignment by incorporating

articulatory features on top of acoustic feature might be limited. Error in man-

ual phone boundary correction could be another possible reason for the limited

performance of JAATA.

We have also investigated the benefit of using a subset of EMA sensors in

temporal alignment using forward sensor selection approach. This was done by

varying q (in eqn. 2.4) over a subset of sensor indices instead of all 12 EMA

trajectories. The APD value was used to select the best EMA sensor trajectory

in each iteration of forward selection approach. The lowest value of APD (44.106

msec) was achieved with A=30 and ULx, ULy, LLx, LIy, TDy trajectories. Thus,

there was no significant benefit in APD by using forward sensor selection compared

to using all sensor trajectories.
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Finally, we tested the spatio-temporal alignment performance using

CTW [Zhou and De la Torre Frade, 2009] on our corpus. Identical to JAATA

evaluation, CTW performance is also measured by APD for each sentence. Articu-

latory features used in CTW are the direct 12 EMA sensor trajectories and the MRI

image pixels (in the blue bounding box in Figure 1(a) for feature reduction without

loosing surface movements of articulators in the vocal tract). The mean (±SD)

APD across all 20 sentences of CTW is 93.143 msec (± 56.026 msec), when CTW

is initialized with uniform time warping [Fu et al., 2008] (the default initialization

method of CTW). For fair comparison with JAATA, we also initialized CTW by

DTW with MFCC. The mean APD of DTW with MFCC is 50.101 msec (±40.659

msec). With MFCC based initialization, the APD of CTW with only articulatory

data is 60.731 msec (±39.427 msec). It indicates that CTW with articulatory data

does not improve temporal alignment on top of MFCC based initialization. When

both MFCC and articulatory data are used in CTW, the mean APD becomes

50.229 msec (±40.617 msec). This result is worse than that of JAATA - 44.198

msec (±19.949 msec) - which uses MFCC and automatically extracted articulatory

features. This performance benefit suggests that the proposed JAATA formulation

results in better temporal alignment performance. Additional benefit of JAATA is

that it provides “interpretable” EMA-like articulatory features from MRI video.

2.2.9 Conclusions and future works

The goal of this study is to obtain spatial and temporal alignments of multi-

modal speech production data, specifically MRI and EMA in order to gain the

advantages of both types. For spatial alignment, we aligned the coordinates of

EMA data to MRI images successfully by a grid search of estimated EMA palate

tracking. For temporal alignment, we propose a novel algorithm, called JAATA,
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which combines DTW-based temporal alignment with optimum articulatory fea-

ture extraction from MRI video. This technique also generates the best MRI image

regions from which the EMA-like articulatory features are extracted for optimum

alignment. We observed the benefits of using this technique experimentally using

data from MRI and EMA articulatory corpora of English TIMIT sentences spoken

by the same talker. Experiment on 20 sentences’ data shows that JAATA reduces

mean APD value from 50.101 msec (acoustic only alignment) to 44.198 msec, which

is 12% improvement. Although results are reported on 20 sentences, the alignment

algorithm developed in this work can be readily applied on all the sentences from

MRI TIMIT and EMA TIMIT corpora.

Spatially and temporally aligned EMA and MRI data can assist speech pro-

duction research by combining the advantages of both modalities. On top of the

illustrated benefits of each articulatory measurement modality in Section 2.2.7,

another possible advantageous combination would be to substitute the clean speech

audio collected in conjunction with EMA data for the degraded rtMRI audio after

temporal alignment. In addition, it may also be possible to reconstruct the tongue

contour from EMA sensors, as Qin and Carreira-Perpinan [2010], by learning the

statistical relationships between the EMA sensor positions and the midsagittal con-

tours visible in rtMRI. The aligned data can also be used to extract articulatory

features for subsequent modeling, including for automatic speech recognition [King

et al., 2007] and speaker verification [Li et al., 2015] which use speech production

knowledge.

The temporal alignment of EMA TIMIT and MRI TIMIT still has room for

improvement. Although it was tested with more data in [Kim et al., 2014c], the

robustness of JAATA against additional sources of intra- and inter-speaker variabil-

ity needs to be examined. For example, the effects of the variation in speaking rate
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and style (e.g., casual v.s. formal) need to be examined. Another future direction

is to continue improving the proposed alignment techniques. For example, more

flexible specifications (size, shape, numbers) of ROI selection might generate artic-

ulatory features leading to better alignment. Although the mean pixel intensity

of some rectangular windows in rtMRI images behaves similarly to certain EMA

sensors, pixel-wise tracking in rtMRI could be even more similar. Finally, our

co-registration approach is potentially applicable for datasets collected by other

modalities, e.g., ultrasound. Selecting a subset of EMA sensors (for alignment)

depending on the corresponding available articulatory information in ultrasound

data or proper feature engineering are needed so that the articulatory features

from the two modalities behave similarly. These are part of our planned future

work.
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Chapter 3

Vocal tract shaping of emotional

speech

3.1 Introduction

The emotional state of a speaker affects his/her articulatory and voice-source con-

trols, by which emotional information is encoded in speech acoustic signal. Com-

pared to the studies about acoustic variations in the prosodic, spectral and/or

glottal feature spaces, there are much fewer studies regarding articulatory varia-

tions in emotional speech. One possible reason is that the direct measurements

of articulatory movements often require expensive data acquisition devices and

advanced signal processing technologies, which is not commonly available. Despite

the difficulties, there have been efforts to understand articulatory variations and

underlying control mechanisms for emotion expression. For example, Erickson

et al. [2004, 2006], Lee et al. [2005] found postural variations of anatomical articu-

latory points, e.g., the tongue tip, the tongue dorsum, the jaw and the lips, using

EMA data. Kim et al. [2011a, 2012a, 2015c] also found kinematic variations as

well as postural variations of articulators in emotional speech, using EMA data.

These preliminary studies suggest that emotional state of the speaker is reflected

in the articulatory movements.

Recently, more comprehensive articulatory information than what EMA offers

has been used to investigate articulatory variations during emotion expression. One
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of such comprehensive articulatory data is upper airway image sequences recorded

by real-time Magnetic Resonance Imaging (MRI) technology [Narayanan et al.,

2004]. The real-time MRI is non-invasive articulatory data acquisition method

that offers the complete view of dynamic vocal tract shaping in a plane, typically

the mid-sagittal plane. Hence, Magnetic Resonance (MR) images are capable of

providing spatially richer information of the vocal tract shaping than EMA. Using

real-time MRI data of emotional speech, Lee et al. [2006] reported preliminary find-

ings on the variations of the vocal tract shaping. Specifically, it was observed that

vocal tract shape parameters, e.g., movement ranges in the pharyngeal region, and

the vocal tract length, which are not measurable by using EMA, also vary depend-

ing on emotions. These findings were, however, obtained from limited amount of

data from a single male speaker.

The present study investigates articulatory variability in real-time MRI data

of ten speakers from the recently collected USC-EMO-MRI corpus. The USC-

EMO-MRI corpus is a novel multimodal database of emotional speech, comprising

Magnetic Resonance (MR) video data (sequences of upper airway images with

synchronized speech audio after noise reduction) and perceptual evaluation results

of speech emotion quality. This corpus is designed to serve as a resource in the

context of diverse speech production studies, addressing, for example inter- and

intra-speaker variability of the vocal tract shaping, resultant acoustic variations,

and computational modeling of emotional speech production. Kim et al. [2014e]

provided a brief summary of the corpus and reported preliminary analysis of artic-

ulatory variation across emotions, using a part of a single speaker’s data from the

database. As an extended-version of the preliminary report, the goal of the present

study is three-fold: (i) to provides the details of the USC-EMO-MRI corpus which

are made publicly and freely available, (ii) to re-visit the preliminary findings of
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articulatory variability in the literature, using data from multiple speakers, and

(iii) to discover novel emotion-dependent variability in the vocal tract shaping.

The present study analyzes the vocal tract shape in terms of a distance func-

tion and the vocal tract length. In this study, the distance function refers to

the collection of the Euclidean distances between inner and outer tissue-airway

boundaries in the oropharyngeal vocal tract as a function of the distance from the

lips. These vocal-tract-shape parameters will be automatically computed using a

novel segmentation algorithm that we have developed [Kim et al., 2014b]. This

algorithm performs tracking of the lips and the larynx, and detection of the tissue-

airway boundaries in vocal-tract grid lines that are systematically spread over the

oropharyngeal vocal-tract space [Öhman, 1967, Story, 2009, Proctor et al., 2010].

The details of this algorithm are provided in Section 3.3.1. The vocal tract length

is computed based on the locations of the lips and the larynx, and the tissue-airway

boundaries, which are discussed in Section 3.3.3.

The present study employs Principal Feature Analysis, or PFA [Lu et al., 2007]

for a compact representation of the distance function. The distance function is

generally redundant and highly correlated due to the physiological constraints of

the vocal tract (e.g., smooth shape of the surface) and the coordinated controls

of speech articulators. Hence, reduced set of parameters driven by decomposition

techniques, e.g., Principal Component Analysis (PCA) and Fourier series, are often

used for analysis and modeling of the vocal tract [Liljencrants, 1971, Harshman

et al., 1977, Story et al., 1996, Story and Titze, 1998, Mokhtari et al., 2007, Cai

et al., 2009]. These methods transform the initial parameters to a low-dimensional,

compact parameter space in which the behavior of each component is often difficult

to interpret. Also, the influence of the variation in a hidden parameter to the

(interpretable) initial parameters is mostly complex, which makes it difficult to
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analyze local variability of the vocal tract shaping. In contrast, PFA allows us

to select most variable and least redundant locations in the vocal tract for each

speaker, hence emotion-dependent variation captured in the compact feature set is

easily interpretable in terms of its behaviors as a function of emotion. Analyzing

most variable vocal-tract locations is important for the present study, because

articulatory movement range varies depending on emotion [Lee et al., 2005, Kim

et al., 2010, 2015c]. Using the compact set of distance values also allows efficient

computation for temporal alignment which is needed for standardizing vocal tract

shape across multiple utterances. The details of PFA are provided in Section 3.3.2.

This chapter is organized as follows: Section 3.2 describes the USC-EMO-MRI

corpus. Section 3.3 describes the ways to compute vocal tract parameters from the

real-time MRI data. Section 3.4 reports analysis results on the emotion-dependent

variations of the vocal tract shaping in terms of the principal features and the

vocal tract length. Section 3.5 provides discussion.

3.2 The USC-EMO-MRI corpus

The present study uses the USC-EMO-MRI corpus which comprises a real-time

MRI data and corresponding speech audio from five female and five male speakers,

and categorical emotion labels for each individual utterances. All speakers have

had earlier professional acting experience and theatrical vocal training.

3.2.1 Speech stimuli

The speakers were recorded reading a short passage and a small set of sentences,

shown in Table 3.1, while targeting to enact the three basic emotions of happiness,

sadness and anger, or being in a neutral emotional state. The set of sentences was
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Table 3.1: List of sentence prompts for the USC-EMO-MRI corpus. ‘Index’ refers
to the sentence index.

Index Prompt

1 John bought five black cats at the store.
2 The Leopard, skunk and peacock are wild animals.
3 Charlie, did you think to measure the tree?
4 The queen said the KNIGHT is a MONSTER.
5 Hickory dickory dock, the mouse ran up the clock. Hickory dickory dock.
6 9 1 5 (short pause) 2 6 9 (short pause) 5 1 6 2.
7 Ma Ma Ma (short pause) Ma Ma Ma (short pause) Ma Ma Ma Ma.

designed to investigate the effects of emotion expression on syntactic, prosodic,

and rhythmic structure, including reiterant speech [Kelso et al., 1985].

In particular, speakers read the passage in normal speaking rate for all four

emotions (including the neutral emotion) and additionally in fast rate only for

the neutral emotion. They also read six sentences in seven repetitions for each

of the four emotions, all in normal speaking rate. The order of presentation of

the sentences was randomized in each repetition. For some subjects, a seventh

“nonsense” sentence was added. That sentence was always presented right after the

sixth sentence and speakers were asked to read it with the same intonation. When

reading the fourth sentence, speakers were asked to emphasize the uppercased

words in the stimuli, such as “KNIGHT” and “MONSTER.”

3.2.2 Data acquisition and processing

We used the MRI data acquisition and processing protocols of the USC-TIMIT

database [Narayanan et al., 2014]. This section offers the summary of the acquisi-

tion and processing protocols. See [Narayanan et al., 2014] for technical details.

We collected upper airway MR images at the Los Angeles County Hospital

using a Signa Excite HD 1.5T scanner (GE Healthcare, Waukesha WI). We used

48



a custom 4-channel receiver coil array, with two anterior coil elements and two

coil elements posterior to the head and the neck. We recorded the MRI data of

speakers while they lay supine in the scanner and read the stimuli.

The real-time MRI acquisition was performed using a spiral fast gradient echo

sequence, where thirteen interleaved spirals form a single image. We used a slid-

ing window technique [Narayanan et al., 2004] which allows view sharing, thus

increases frame rate. The repetition time, or TR at data acquisition was 6.164 for

each spiral, and the TR-increment for view sharing was 7 acquisitions [Narayanan

et al., 2004, Bresch et al., 2008, Kim et al., 2011b]. Hence, MRI movies were gen-

erated with a frame rate of 23.18 frames/sec (= 1 / (7 × 6.164 msec)). The field

of view of imaging was 200 × 200 mm, and image resolution was 68 × 68 pixels

(2.94 × 2.94 mm for each pixel). We used RTHawk (HeartVista, Inc., Los Altos,

CA), which is a custom real-time imaging platform [Santos et al., 2004], for the

scan plane localization of the mid-sagittal slice. We recorded speech audio at a

sampling frequency of 20kHz, simultaneously with MR imaging, using a custom

fiber-optic microphone (Optoacoustics Ltd., Moshav Mazor, Israel) and a custom

recording setup; the unblank TTL signal from the scanner, which is generated at

the beginning of each MRI acquisition, triggers audio data recording.

During post-processing, we performed noise cancellation on the speech audio

using a custom adaptive signal processing algorithm [Bresch et al., 2006], followed

by the synchronization of the MRI video and speech audio.

3.2.3 Evaluation of emotion quality

Perceptual evaluation tests were performed to assess the emotional quality of the

recorded data, i.e., how well the intended emotion (by speakers) is expressed in

speech audio. At least ten evaluators tested each speaker’s data. Some of the
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Table 3.2: Summary of evaluation results of all evaluators. ‘Sentences’ indicates
the sentence ID included. ‘Average’ and ‘STD’ denotes average and standard
deviation of the matching ratio (%) between target emotion and the final emotion
label for sentence-level utterances, respectively.

Subject ID (M: male, F: female)
M1 M2 M3 M4 M5 F1 F2 F3 F4 F5

# Evaluators 10 10 11 10 11 12 12 12 12 10
Sentences 1-6 1-7 1-7 1-7 1-7 1-6 1-6 1-6 1-7 1-7
Average 85.3 69.5 82.6 72.0 80.5 80.7 94.0 89.8 86.5 80.5
STD 9.9 11.8 8.5 11.1 10.0 11.1 5.4 8.4 8.2 11.8

evaluators were also actors or actress who have participated in the data collection.

After listening to the recorded audio for each utterance, the evaluators were asked

to: (i) choose the emotion that they perceive from the spoken sentence (neutral,

anger, happiness, sadness, or other); (ii) judge their confidence in their choice; and

(iii) judge the strength of the emotion expression. Confidence and strength were

evaluated on a five-point Likert scale.

Table 3.2 presents the number of sentences recorded from each speaker of the

database, the number of evaluators of each speaker’s data, and the average and

standard deviation of the matching ratio between target emotion (intended emotion

by the speaker) and perceived emotions (evaluated by listeners). The matching

ratio counts the number of the utterances whose target emotion and the final

emotion label match over the number of all utterances, where the final emotion

label is determined by majority voting across all evaluators.

The USC-EMO-MRI corpus is publicly and freely available for research pur-

poses at http://sail.usc.edu/span/usc-emo-mri with real-time MRI video (MR

image sequences and speech audio) and emotion evaluation result for each utter-

ance.
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3.3 Methods

3.3.1 MR image parameterization

A tool for the automatic tissue segmentation in real-time MRI images has been

developed for the purposes of this study. Kim et al. [2014b] presented an earlier

version of the implemented method and its robustness on the segmentation task,

compared to previous work [Proctor et al., 2010]. This method seeks pixel intensity

thresholds distributed along tract-normal grid lines and defines airway contours

constrained with respect to an estimated airway path from the glottis to the lips.

The method is initialized with a manually drawn reference line, roughly follow-

ing the airway path, together with manually set points. The manually set points

correspond to the midpoint of the lips, the highest point on the palatal surface,

and the upper visible boundary of the arytenoid cartilage. The tool uses the ary-

tenoid cartilage instead of the glottis, because the glottis is not well visible in the

MR images. The reference line is smoothed using the discrete cosine transform

technique. This initialization is done once; the upper boundary of the arytenoid

cartilage in each frame is detected automatically, and so is the exit of the lips.

A set of equidistance grid lines is constructed automatically, perpendicular to

the reference line. The first of these grid lines is located at the (automatically

detected) upper boundary of the arytenoid cartilage and the last at the exit of

the lips. A frame-specific airway path from the first to the last grid line is then

determined, using dynamic programming algorithm, followed by spatio-temporal

smoothing. Then, for each grid line two tissue-airway boundaries are determined

as the first pixels whose intensity is above a certain threshold, along the grid line

and in toward the two grid line edges starting from the intersection of the airway

path and the grid line.
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The method was applied on all non-silent regions of the previously described

corpus. Silent regions were determined using the SailAlign [Katsamanis et al., 2011]

which is a Hidden Markov Model based adaptive speech-to-text forced aligner. The

method was initialized whenever significant differences in head posture or morpho-

logical structure were observed (e.g., different speakers and emotional states). The
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Figure 3.1: Results of parameterization processes of a magnetic resonance image
(speaker M1) as an example
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Euclidean distances between the two airway-tissue boundaries on each grid line

were measured. Figure 3.1 illustrates the outputs of the procedures for MR image

parameterization. The final vocal tract parameter computed from the distances

(aka distance function), using PFA, is discussed in the following section.

3.3.2 Principal feature analysis

For a compact representation of the vocal tract shaping, we perform feature reduc-

tion using PFA [Lu et al., 2007]. This method selects a subset of the original

features (i.e., distances between outer and inner boundaries on the grid lines),

using the same feature reduction criteria as PCA. Sample points are maximally

spread in the selected features, where the structure of the principal components is

retained, thus preserving the variation of the original data. Hence, PFA offers a

compact, effective and interpretable representation of the vocal tract shaping.

We computed the principal features of individual speaker’s data as follows:

(1) Compute eigenvectors and eigenvalues from the covariance matrix of distance

functions. (2) Choose the minimum number of dimension q for the subspace, where

the cumulative sum of eigenvalues for the dimensions is greater than 90% of the

total sum. (3) Perform k-means clustering on the row vectors of the subspace

eigen matrix. In our case, k was 3 – 7 greater than q for retaining 90% of the total

variation in the subspace. (4) Find the row vector corresponding to the mean of

each cluster, where the index of the row vector becomes the index of the selected

original feature. See [Lu et al., 2007] for full details of this algorithm. Figure 3.2

shows the subset (principal features) of the grid lines overlaid on an arbitrarily

chosen midsagittal image of the corresponding speaker. There are more principal

features in the front oral cavity (lips to the hard palate) than pharyngeal region,

implying more complex movements of the tongue in the front oral cavity than the
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Figure 3.2: Grid lines (principal features) overlaid on an MR image for each
speaker. The indices of the principal features are noted next to the corresponding
grid lines

tongue in the pharyngeal region. Some principal features are sometimes clustered

closely, especially near the alveolar ridge and the teeth. It is speculated that the

delicate movements of the tongue tip causes neighboring grid lines in the region to

be less correlated.

We performed within-speaker analyses, using data of the sixth utterance, “Nine

one five, two six nine, five one six two (915 269 5162).” In order to compare time

series of principal features for different emotions, we performed temporal alignment

of each utterance to a reference utterance (arbitrarily selected utterance of neutral
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emotion) using dynamic time warping algorithm [Sakoe and Chiba, 1978]. Finally,

we computed averaged time series for each emotion, which was used to specify the

analysis of emotion-dependent variation in vocal tract shaping along the midline

of the vocal tract.

3.3.3 Computing the vocal tract length

The computation of the true vocal tract length requires the location of the lips

(the initial point of the vocal tract), the location of the true vocal fold (the final

point of the vocal tract), and the center line between outer and inner tissue-airway

boundaries in the vocal tract. We selected the grid line of the smallest distance

in the lip region for the initial point of the vocal tract. The true vocal fold is

not captured in the MR images, but the arytenoid cartilage in the larynx is well

observed. Hence, we selected the grid line of the top of the arytenoid cartilage for

the final point of the vocal tract. We computed the geodesic distance (the sum

of the Euclidean distance between the center points of adjacent grid lines) within

outer and inner boundaries from the initial point to the final point, which is con-

sidered as an approximation of the vocal tract length in the context of this study.

In order to minimize the variability by speaking rate, the time-series describing the

dynamics of the vocal tract length were aligned using the alignment map created

in Sec 3.3.2.

The MATLAB tool that computes distance function, principal fea-

tures, and the vocal tract length from MR images is freely available at

http://sail.usc.edu/old/software/rtmri seg

55

http://sail.usc.edu/old/software/rtmri_seg


3.4 Results

3.4.1 Emotional variations of principal features

This section discusses emotion-dependent variations of the vocal tract shaping. As

an initial investigation, we compared the averaged time series of principal features

for each of the four emotions. Figure 3.3 illustrates the averaged time series of two

principal features as examples, using data of speaker M1.

Overall, the time series clearly show differences depending on emotions. For

the first principal feature (located at the lips) in Figure 3.3 (a), the distances of

anger and happiness are often greater than those of neutrality and sadness. It is

(a) the first principal feature
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Figure 3.3: Averaged time series of the first and the seventh principal features for
each emotion. The averaged time series were temporally aligned. The utterances
of sentence 6 “nine one five two six nine five one six two” are used.
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noted that in the USC-EMO-MRI corpus, anger and happiness are high arousal

emotions, while sadness is low arousal emotion [Kim et al., 2014e]. Hence, this

indicates that speaker M1 shows positive correlation between the degree of his lip

opening and the arousal dimension of emotion. For the seventh principal feature

(located on the hard palate) in Figure 3.3 (b), the distances for sadness is mostly

greater than those for the other emotions, especially from the 20-th frame to the

35-th image frame. This region corresponds to the words “two six” that include

high vowels /u/ and /I/. This suggests that the vertical constriction gesture of

the tongue dorsum tends to be less strictly controlled for sadness, compared to

the other emotions, and this pattern is more significant when the speaker utters

the high vowels. Interestingly, happiness and anger show clearly different patterns

in the range of the first principal feature for /u/, that is located near the image

frames 23 and 75, while they show similar patterns in the seventh principal feature.

Motivated by the emotion-dependent patterns observed in the time series of

principal features, we analyzed emotion-dependent variations relative to neutral-

ity for all principal features for each speaker. First, we computed statistics ([0.1,

0.5, 0.9] quantiles, and 0.9 quantile − 0.1 quantile) of each principal feature for dif-

ferent emotions. [0.1, 0.5, 0.9] quantiles reflects constriction degree for high vowels

and consonants, constriction degree for offset positioning and middle vowels, and

constriction degree for low vowels, respectively. 0.9 quantile - 0.1 quantile reflects

the movement range. Next, we computed relative statistics by subtracting the

statistics of each emotion from that of neutrality. It is noted that we computed

[0.1, 0.5, 0.9] quantiles instead of minimum, mean and maximum in order to min-

imize the effects of (possible) tissue-airway segmentation errors on this analysis.

Figures 3.4 illustrates emotion-distinctive behaviors captured in all principal

features in terms of the four statistics. The plots in the left and the right columns

57



1 2 3 4 5 6 7 8

−10

0

10

Principal feature index

D
is

ta
n
ce

 (
m

m
)

1 2 3 4 5 6 7 8 9

−10

0

10

Principal feature index

D
is

ta
n
ce

 (
m

m
)

1 2 3 4 5 6 7 8

−10

0

10

Principal feature index

D
is

ta
n
ce

 (
m

m
)

1 2 3 4 5 6 7 8 9

−10

0

10

Principal feature index

D
is

ta
n
ce

 (
m

m
)

1 2 3 4 5 6 7 8 9

−10

0

10

Principal feature index

D
is

ta
n
ce

 (
m

m
)

1 2 3 4 5 6 7 8

−10

0

10

Principal feature index

D
is

ta
n
ce

 (
m

m
)

1 2 3 4 5 6 7 8

−10

0

10

Principal feature index

D
is

ta
n
ce

 (
m

m
)

1 2 3 4 5 6 7 8 9

−10

0

10

Principal feature index

D
is

ta
n
ce

 (
m

m
)

Angry Happy Sad

(b) 0.1 quantile (M2)

(c) Median (M1) (d) Median (M2)

(e) 0.9 quantile (M1) (f) 0.9 quantile (M2)

(g) 0.9 quantile - 0.1 quantile (M1) (h) 0.9 quantile - 0.1 quantile (M2)

(a) 0.1 quantile (M1)

D
is

ta
n
ce

 (
m

m
)

Figure 3.4: Quantiles and quantile range of principal features for anger, happiness
and sadness relative to neutrality in data of speakers M1 and M2

in Figure 5 correspond to the results of speaker M1 and speaker M2, respectively.

Although plots of the two speakers are provided in this paper, emotion-dependent

patterns based on all ten speakers will be discussed.

Results show different control strategy of the vocal tract depending on emotions

with respect to the neutrality. Here, we will discuss both speaker-dependent and
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speaker-independent variation patterns in the vocal tract shaping. First, as shown

in Figure 3.4 (a, b), most speakers tend to show similar or smaller constriction

degree (tighter constriction) for anger than sadness, although such regions in the

vocal tract vary depending on speakers. For example, such regions are observed in

the front oral cavity (principal features 2, 4 and 5) for M1, while the tendency is

significant in the pharyngeal region (principal features 5, 6 and 7) for F4. Com-

pared to neutrality, the tighter constrictions for anger are significant for speakers

M2, F4 and F5; looser constrictions for sadness are significant for speakers M1,

M3, M5, F1, F2 and F3; both are significant for speaker M4. Second, as shown

in Figure 3.4 (e, f, g, h), most speakers tend to show greater movement range and

larger opening for high arousal emotions (anger and happiness) than neutrality in

most of the vocal tract regions. In contrast, sadness tends to show smaller opening

for the low vowels than the high arousal emotions in the front cavity more con-

sistently than the other regions of the vocal tract. Finally, although offset vocal

tract shaping shows emotion-distinctive patterns as shown in Figure 3.4 (c, d),

speaker-independent patterns are not found.
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3.4.2 Emotional variations of the vocal tract length
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Figure 3.5: Boxplots of the vocal tract length of each emotion
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Figure 3.5 shows boxplots of the vocal tract length for each emotion and each

speaker. We observed that the vocal tract length also varies depending on emo-

tions. Specifically, the vocal tract length tends to be shorter for happiness than

anger or sadness across the ten speakers. We conducted one-tailed Welch’s t-test

on the hypothesis that the mean of the vocal tract length for happy speech is

shorter than the mean for angry/sad speech. Results indicates that on average,

happy speech shows statistically significantly shorter vocal tract length than angry

speech at α = 5×10−6 level in general, except for M5 (t-statistic = 1.64, p = 0.05).

Also, happy speech shows statistically significantly shorter vocal tract length than

sad speech for all speakers’ data (p < 0.005).

3.5 Discussion

Based on new USC-EMO-MRI database and the MR image tracking software, the

present study examines how the vocal tract shape changes depending on emotions,

using automatically extracted vocal tract parameters which describe the distance

between the inner and outer vocal-tract boundaries and (approximate) vocal tract

length.

First, the present study provides supporting evidence for previous findings by

Lee et al. [2006] for emotion-dependent variation patterns, using lexically richer

data from the ten speakers in the USC-EMO-MRI corpus. Lee et al. [2006] found

that anger shows wider opening in both oral cavity (the front side of the vocal tract)

and pharyngeal region (the back side of the vocal tract) than neutrality. The result

of the wider opening in the oral cavity for anger than neutrality was consistent

with Lee et al. [2005], Kim et al. [2010, 2011a], where the movement range of a

sensor attached on the tongue tip was analyzed. The present study found that
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high arousal emotions (both happiness and anger) show greater movement range

than neutrality, but the vocal tract region of significantly contrasted opening varies

depending on speakers.

Also, the pattern that happy speech shows shorter vocal tract length than

angry, neutral and sad speech is consistent with Lee et al. [2005]. Simulation exper-

iments by Xu and Chuenwattanapranithi [2007] have suggested that the dynamic

variations of the vocal tract length (and F0 jointly) are often perceived as expres-

sion of joy or anger, but depending on vowels. The present study provides evi-

dence that relationship between the vocal tract length and emotion quality holds

for continuous speech as well; this was consistent across speakers. In addition, lip

spreading and larynx elevation are important factors contributing to the decreas-

ing of the vocal tract length for happy speech. The relative contributions of these

factors have been explored by Lasarcyk and Trouvain [2008], jointly with F0 rais-

ing, using isolated synthetic vowel sounds. That study found that lip spreading

and laryngeal elevation often affect perceptual emotion quality in the dominance

dimension. Similar simulation experiments in terms of perception of happiness

would also be useful to understand the influence of the individual factors to emo-

tion expression. We do not include simulation experiment in the present study due

to the difficulty of robust spectral feature extraction from the speech audio in the

USC-EMO-MRI corpus; although speech intelligibility is much enhanced by post-

processing in Sec. 3.2.2, it still suffers from residual noise and/or post-processing

artifact.

The present study also reports a novel finding that when low vowels are pro-

duced, sadness shows the smaller opening in the front oral cavity than anger and

happiness. The articulatory characteristics for sadness have been studied by Erick-

son et al. [2004, 2006], where stronger constriction gesture for a high vowel /i/ was
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observed in sad speech than neutral speech. However, such stronger lingual ges-

tures for sad speech are not consistent for all speakers in the USC-EMO-MRI

corpus. For example, Figure 5 (a) shows weaker constriction gestures in the oral

cavity for sad speech than neutral speech. In fact, stronger lingual gestures for

any particular emotion across all speakers were not observed. It could be speaker-

specific, but more investigation is needed to understand further any such difference.

The vocal tract length is considered as an important morphological parame-

ter that contains speaker-specific information. For example, Smith and Patterson

[2005] found the interaction of vocal tract length is an important cue for differen-

tiating speaker size, sex and age. The present study suggests that the vocal tract

length is an important cue for differentiating the emotional state of the speaker. In

fact, Kockmann et al. [2011] has reported that normalizing vocal tract length does

not improve emotion recognition accuracy, although this normalization technique

has been generally useful for reducing speaker variability [Lee and Rose, 1996].

However, in order to use (predicted) vocal tract length parameter as emotional

cue, we need to understand how to decompose its variation into emotional and

other speaker-dependent factors, e.g., age and gender. This is an open question

that we will pursue in future.
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Chapter 4

Articulatory variability, linguistic

criticality, and emotion

4.1 Introduction

Previous studies have shown that the emotional states of speakers influence the

acoustic and articulatory characteristics of their speech. While studies on the

acoustic properties of voice quality and prosody of emotional speech abound in the

literature as discussed in Section 1.2.2, there are considerably fewer studies about

articulatory details of emotional speech, presumably due to difficulties in obtaining

direct articulatory data. Although various data acquisition technologies have been

used for the study of speech production, the data collection environment is not ideal

for investigating natural emotion expression in speech. Nevertheless, it has been

shown that distinctive emotional information is present in EMA data of elicited and

acted emotional speech [Erickson et al., 2004, 2006, Lee et al., 2005]. In particular,

it has been reported that the position and speed of articulators, particularly their

properties at the syllable, word and utterance levels, are important emotional

features [Lee et al., 2005, 2006, Kim et al., 2009, 2011a, 2012a]. Kim et al. [2010]

reported empirical evidence for the interplay between prosodic characteristics and

articulatory movements as a function of emotion.

Despite progress in understanding the articulatory aspects of emotional speech,

there is still limited knowledge about the behavior of individual articulators for
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achieving emotional goals in parallel with linguistic goals during speech production.

The present study aims at investigating the relationship between the variability

in the kinematic behavior of specific articulators for the achievement of specific

linguistic and emotional goals during speech production. A better understanding of

such details can shed further light on intra-speaker variability in speech production.

Such knowledge can also benefit modeling and synthesis of emotional speech.

Linguistic criticality of articulators is an important factor to characterize artic-

ulatory variability during speech production. For achieving certain linguistic goals,

(linguistically) critical articulators are more carefully controlled and display less

variability, than non-critical articulators. For example, in producing /t/, it is

essential that the tongue tip comes in instantaneous contact with the alveolar

ridge, while the positions of the lips and the tongue dorsum may be more vari-

able. In this case, the tongue tip is considered the critical articulator for /t/,

while the lips and the tongue dorsum are considered non-critical articulators. The

linguistic criticality of articulators can also be categorized based on the direction

of movements, which depends on constriction locations. For example, horizontal

constriction of the tongue body is critical for pharyngeal vowels, while vertical

constriction is critical for palatal vowels.

The present study investigates the roles of non-critical articulators for emo-

tional information encoding. Ananthakrishnan and Engwall [2008] reported that

movement information from the critical articulators alone may be enough to almost

fully encode the linguistic message. They showed that, from the viewpoint of lin-

guistic encoding, the movements of non-critical articulators reflect temporal lin-

guistic context, displaying interpolative motions of preceding and following critical

points under vocal-tract physiological constraints. From the viewpoint of emotional

encoding, we hypothesize that the motions of non-critical articulators may encode
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emotion-distinctive information, in tandem with the aforementioned interpolative

movements. In the present paper we test this hypothesis on the basis of the binary

distinctions of articulator criticality in realizing speech gestures within the frame-

work of articulatory phonology [Browman and Goldstein, 1989] and implemented

in the task dynamics application model [Nam et al., 2004]. Further details of this

setup is provided in Section 4.3.

We thus investigate the following three questions: (i) In what ways do the kine-

matics of critical and non-critical articulators vary as a function of emotions? (ii)

Are the kinematics of non-critical articulators more emotion-distinctive compared

to the kinematics of critical articulators? (iii) Is the emotion-dependent variabil-

ity of non-critical articulators simply mechanical outcome of controls on critical

articulators? In order to address the first and second questions we analyzed artic-

ulatory variability as function of emotion at the syllable and phone levels. At the

syllable level, several static and dynamic articulatory parameters extracted from

EMA data at manually labeled phone-target and transition points were analyzed

using distribution plots. Phone-level analysis focused on understanding the vari-

ability of task-oriented articulatory trajectory formation in emotional speech. The

emotional variation in articulatory position at phone targets was quantified by the

average of centroid distance and mean dispersion, which represent the variability

between emotions and within each emotion, respectively. Critical and non-critical

cases are compared across phones using these two standardized measures. In order

to address the third question, we compared the emotion-dependent postural vari-

ation of true and estimated articulatory trajectories, where the estimated trajec-

tories were generated as a function of the movements of only critical articulators.

High similarity of the emotion-dependent variation of the two trajectories (true
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and estimated) implies considerable dependency of the emotional variation of non-

critical articulators to controls of critical articulators.

This chapter is organized as follows: Section 4.2 describes methods for collect-

ing, evaluating and processing articulatory data of emotional speech. Section 4.3

explains our binary categorization of articulators in terms of their linguistic task

criticality. Sections 4.4 and 4.5 present our methods and results for the sylla-

ble level and phone level analyses, respectively. Section 4.6 presents our methods

and results of the simulation experiment. Section 4.7 provides a discussion of the

results.

4.2 Data

This study uses an articulatory database of emotional speech production collected

at the University of Southern California. ElectroMagnetic Articulography (EMA)

Figure 4.1: Placement of EMA sensors in the mid-sagittal plane
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was used for the data collection as described in [Kim et al., 2011a]. The database

includes speech waveforms, sampled at 16 kHz, and corresponding 3D coordinates

of six sensors attached to oral articulators, sampled at 200 Hz.

Figure 4.1 shows the placement of the six sensors in the mid-sagittal plane. The

six EMA sensors were placed on the tongue surface, lips and the lower incisor (jaw)

as described in Section 1.2.1. Sensors were also glued on the upper and lower lips.

Finally, a sensor was attached on the lower incisor for monitoring the movement of

the jaw. The trajectories of the six sensors were recorded with a Carstens’ AG500

EMA system. Three native speakers of American English, one male (referred to

as SB) and two females (JR and JN) produced speech in five acted categorical

emotions (neutrality, hot anger, cold anger, happiness, and sadness) and three

speaking styles (normal, loud, fast). The speakers had previous training in theatre

and acting. They were instructed to read four or five repetitions of seven sentences

in every combination of the five emotions and the three speaking styles. The list

of the sentences is:

• Say peep again? That’s wonderful.

• It was nine one five two eight nine five seven six two.

• Say pop again? That’s wonderful.

• I saw nine tight night pipes in the sky last night.

• Don’t know how very joyful he was yesterday.

• Say poop again? That’s wonderful.

• Native animals were often captured and taken to the zoo.

The order of the seven sentences was randomized at each repetition of data collec-

tion. There were 524 utterances for JR (7 sentences × 5 emotions × 3 styles × 5
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repetitions - 1 erroneous recording which was discarded), 440 utterances for JN (7

sentences × 5 emotions × 3 styles × 4 or 5 repetitions - 2 erroneous recordings)

and 417 for SB (7 sentences × 5 emotions × 3 styles × 4 repetitions - 3 erroneous

recordings). Fast style utterances were excluded from analysis, because variation

due to the intended speaking rate change was not within the scope of the present

study. On the other hand, loud style utterances were included, because loudness

of speech is an important factor of emotion expression and perception especially

for distinguishing emotions in the arousal dimension [Kim et al., 2011a].

The 3D coordinates of the six sensor position data were corrected for head

movement, and the orientation of articulatory trajectories was fixed to the occlusal

plane. The orientation of the occlusal plane was measured using a half-rounded bite

plane on which three sensors were attached. We use the projections of the EMA

sensors on the (horizontal) x-axis and the (vertical) y-axis shown in Figure 4.1.

Each raw articulatory trajectory (evolution of sensor position projected on the x-

or y-axis) was smoothed by a 9th-order Butterworth filter with a 15 Hz cutoff

frequency as in [Lee et al., 2005].

The emotion expressed in each audio utterance spoken by the three speakers

of the database was evaluated by either four or five listeners, native speakers of

American English and either undergraduate or graduate students at the University

of Southern California (see http://sail.usc.edu/data/ema_eval_jr_short for

the evaluation interface). For each speech audio, listeners were asked to choose

(1) the best-representative emotion among six emotion categories (neutrality, hot

anger, cold anger, happiness, sadness and other), (2) the degree of confidence in

their evaluation and (3) the strength of emotion expression. Only speech audio

was provided to the listeners in a randomized order, without showing any intended

goal (loudness and emotion) of the speakers. They were asked to choose ‘other’
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when none of the five given emotion categories was a good match to what they

perceived. Confidence and strength were evaluated on a five-point Likert scale.

The most representative emotion for each utterance was determined by major-

ity voting. If two emotions had the same evaluation scores, then the one with

higher confidence score was chosen. The confidence of each evaluator was normal-

ized by z-scoring across all utterances. Utterances that did not satisfy the majority

voting criteria were discarded in order to maximize distinctive articulatory char-

acteristics among the five categorical emotions for the present analysis. In the

end, 312 utterances of JR’s data, 281 utterances of JN’s data, and 267 utterances

of SB’s data were used for analysis. It needs to be noted that the non-selected

utterances are still important data for emotional speech research, since they may

reflect ambiguous displays, and heterogeneity in judging emotions. For example,

it would be important to understand what varies for emotional speech production

and perception from one speaker to another because of individual differences in

terms of gender, personality and prior experience.

Table 4.1 shows the confusion matrix among emotions perceived by the judges

(i.e., the result of majority voting) and emotions intended by the speakers (tar-

get emotions). The matching ratios between intended and evaluated emotions are

comparable to previous studies [Grimm et al., 2007, Shami and Verhelst, 2007].

In addition, we observed a significant degree of confusion between hot anger and

cold anger across all speakers, indicating that the two emotions are quite similar in

terms of perception and/or expression. Loudly spoken (intended) neutral speech

was often perceived as cold or hot anger, especially for JN’s data. Also, judges

had a preference for hot anger to cold anger in loud style speech. These are in

line with the observations of previous studies, e.g. [Kim et al., 2011a], which noted
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Table 4.1: Confusion matrix between evaluated emotion determined by majority
voting and target emotion of speakers. Neu is neutrality, Han is hot anger, Can
is cold anger, Hap is happiness and Sad is sadness. The numbers in bold are the
greatest of evaluated emotion cell for each target emotion, each speaker and each
intended style.

Evaluated emotion
JN JR SB

Emo Neu Han Can Hap Sad Neu Han Can Hap Sad Neu Han Can Hap Sad

T
ar
ge
t
em

ot
io
n

N
or
m
al

Neu 28 0 2 0 4 33 0 1 0 0 28 0 0 0 0
Han 0 13 12 4 0 1 10 20 0 0 4 0 12 1 1
Can 0 1 28 0 1 0 8 18 0 1 0 8 18 0 1
Hap 1 0 0 33 0 0 0 0 23 10 7 0 1 20 0
Sad 0 0 2 0 28 0 0 0 0 35 0 0 0 0 28

L
ou

d

Neu 5 8 15 0 0 32 0 1 0 0 26 0 1 0 1
Han 0 21 2 0 0 0 21 9 0 0 0 28 0 0 0
Can 0 6 19 0 0 0 9 16 0 0 0 10 18 0 0
Hap 0 3 0 18 0 0 2 1 26 1 0 2 0 24 0
Sad 0 0 1 1 25 0 0 0 3 31 0 0 0 0 28

that loudness of speech is an important factor of emotion expression and percep-

tion, especially for distinguishing categorical emotions in the arousal dimension.

Finally, loudly spoken (intended) happy speech was often perceived as hot anger,

presumably due to the fact that they are close in the arousal dimension of emotion

perception.

4.3 Linguistic criticality of articulators

In the present study, the linguistic criticality of speech articulators for the real-

ization of each phone is determined on the basis of the framework of Articulatory

Phonology [Browman and Goldstein, 1989] and its computational ancillary Task

Dynamics Model [Saltzman and Kelso, 1987, Saltzman and Munhall, 1989]. Artic-

ulatory Phonology views the speech production process as composed of articulatory

gestures. Specifically, the formation and release of constrictions in the vocal tract
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is represented by gestures depending on linguistic context, hence lexical items are

differentiated by different gestural composition. The gestures are defined in terms

of specific tract variables (e.g., lip aperture, tongue tip constriction degree) in task

dynamics, which specifies the sets of articulators contributing to each tract vari-

able parameters. In our subsequent analysis, we consider as critical articulators for

a given phone those that the task dynamics application model [Nam et al., 2004]

regards as involved in the production of that phone; the rest are considered non-

critical. Alternative ways of specifying the linguistic criticality of articulators have

been previously proposed. Notably, Jackson and Singampalli [2008] proposed an

empirical approach based on Kullback-Leibler divergence, based on the assumption

that the variance of articulatory positions in the mid-sagittal plane is smaller for

critical articulators than non-critical articulators. The validity of this assumption

has been supported by several experimental results [Papcun et al., 1992, Frankel

and King, 2001, Jackson and Singampalli, 2008]. This was done, however, only for

the case of neutral speech; validity in para-linguistic quality, such as emotion, was

never considered.

For consonants, we consider that the lower lip, tongue tip, and tongue dorsum

sensors correspond to labial, apical, and dorsal articulators, respectively. Table 4.2

shows the list of consonants used for analysis and the sensors corresponding to their

critical or non-critical articulators. Even though the motions of both upper and

lower lips are considered important for the production of bilabial consonants, we

consider here only lower lip sensor as critical for the sake of analytic simplicity,

taking also into account that the motion of the upper lip is highly correlated with

the motion of the lower lip during constriction and releasing gestures for the bilabial

consonants.
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Table 4.2: List of stop and fricative consonants in the EMA database and the
flesh point sensors of critical articulators of them. Note that /s/ and /z/ have two
critical articulators, because both tongue tip constriction and tongue dorsum wide
opening gestures are critical for the production of the phones [Nam et al., 2004].
The list of vowels in the EMA database is [A, æ, @, O, 2, aU, aI, E, eI, I, i, oU, OI,
u]. The flesh-point sensors corresponding to critical or non-critical articulators of
vowels are not specified here due to their less clarity than consonants.

phone Critical articulator Non-critical articulator
d Tongue tip Tongue dorsum, lower lip
D Tongue tip Tongue dorsum, lower lip
f Lower lip Tongue tip, tongue dorsum
g Tongue dorsum Tongue tip, lower lip
k Tongue dorsum Tongue tip, lower lip
m Lower lip Tongue tip, tongue dorsum
n Tongue tip Tongue dorsum, lower lip
p Lower lip Tongue tip, tongue dorsum
s Tongue tip, tongue dorsum Lower lip
t Tongue tip Tongue dorsum, lower lip
v Lower lip Tongue tip, tongue dorsum
z Tongue tip, tongue dorsum lower lip

The situation is more complicated for vowels, because the critical gestures for

vowel production do not rely on constriction in a single narrow region in the vocal

tract, but on multiple regions or at least on a wider constriction, compared to

consonants [Jackson and Singampalli, 2009, Recasens et al., 1997]. For example, it

is not clear which tongue sensor is most representative, and how much, for the wide

palatal region of most vowels. Also, it is not straightforward how to choose sensors

for a pharyngeal constriction gesture critical for /æ/, /A/ and /O/. Although

Jackson and Singampalli [2009] suggested a simple way (i.e., tongue-tip sensor

for front, tongue-blade sensor for mid and tongue-dorsum sensor for back vowels)

to achieve this, there are still other issues, such as the inter-subject variability

in terms of vocal tract shape and articulatory controls or the inconsistency of

attached sensor positions across speakers at data collection. For these reasons, we
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analyze vowels separately from consonants and compare the relative articulatory

variability within a relevant articulator for the production of the vowels. For

example, the palatal constriction gesture is critical for /i/, hence we consider the

vertical movement of the tongue dorsum to be more critical than the horizontal

movement for the vowel. Because the pharyngeal constriction gesture is critical

for /A/, we consider the horizontal movement of the tongue dorsum to be more

critical than the vertical movement.

4.4 Landmarks-based analysis on syllable seg-

ments

In this section, we investigate how emotion affects articulatory kinematics during

syllable production, conditioned on whether the articulators in question are deemed

linguistically critical for the initial and final consonants in the CVC syllables con-

sidered. Syllable segments allow us to study emotion variation at phone-target

points as well as consonant-vowel transitions for different levels of linguistic criti-

cality of articulators. Our hypothesis is that emotion coloring is more prominently

manifested in the kinematics of non-critical articulators than in the kinematics

of critical articulators. Since inter-speaker differences in emotion expression are

widespread but not fully understood, all experiments in this paper were done sep-

arately for each speaker of the database (within-speaker analysis). We begin with

analyzing how emotion-related variability of articulatory movements in the syllable

varies depending on the linguistic criticality of the articulators.
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4.4.1 Selection of syllables

We chose CVC syllables with identical place of articulation for the first and second

consonants for fair comparisons between constricting and releasing articulatory

movements. More specifically, we used the syllables, /p i p/, /n aI n/, /f aI v/, /p

A p/, /t aI t/, /n aI t/, /p aI p/, /d oU n/ and /p u p/. Table 4.3 shows the number

of CVC syllable segments used for analysis. The movements of critical articulators

for the consonants in these syllables are captured by the tongue tip sensor or the

lower lip sensor. Note that we consider the emotional quality of each monosyllabic

word the same as that of the corresponding utterance produced by the actors.
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Table 4.3: Number of CVC syllable samples used for analysis. Neu is neutrality, Han is hot anger, Can is cold anger,
Hap is happiness and Sad is sadness. CAC1 indicates the critical articulator of the first consonant of its syllable, and
CAC2 indicates the critical articulator of the second consonant of its syllable. TT is the tongue tip, L is the lips.

JN JR SB
CVC CAC1 CAC2 Neu Han Can Hap Sad Neu Han Can Hap Sad Neu Han Can Hap Sad
/p i p/ L L 4 4 15 7 6 7 3 14 11 8 9 4 9 8 8
/n aI n/ TT TT 20 33 29 19 22 32 35 15 20 34 29 26 19 18 24
/f aI v/ L L 14 22 22 10 14 22 30 8 10 24 20 18 14 10 16
/p A p/ L L 6 6 10 10 8 10 2 13 11 9 8 7 7 7 8
/t aI t/ TT TT 6 11 7 9 8 10 5 7 10 10 9 8 5 8 8
/n aI t/ TT TT 10 14 22 20 14 16 8 18 22 20 18 12 16 12 16
/p aI p/ L L 6 11 7 9 8 10 5 7 10 10 9 8 5 8 8
/d oU n/ TT TT 2 5 16 9 10 10 12 9 4 14 9 6 9 5 11
/p u p/ L L 5 7 11 10 7 8 4 9 11 10 9 6 8 6 8
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4.4.2 Extraction of articulatory parameters

We targeted five linguistically important landmark time points in each CVC: (1)

onset of the release of the first consonant; (2) instant of maximum velocity during

the release of the first consonant; (3) instant of maximum opening of the vowel; (4)

instant of maximum velocity during the movement towards the second consonant

closure; (5) onset of the second consonant closure. The landmark points were

selected based on the vertical trajectory of the critical articulator (for onset/coda

consonants). Figure 4.2 illustrates where the five landmark points are located on

the lower lip trajectory on the vertical axis during a /p A p/ syllable segment.

Landmarks 1 and 5 for each syllable were determined in the vertical movement

range, algorithmically chosen to be at the position 3% lower from the highest

position value in the CV regions and of the VC regions, respectively. Landmark 3

was determined at the maximal vertical displacement of the jaw from the occlusal

plane in the vocalic region. Landmarks 2 and 4 were determined at the points of the

maximal absolute first-order derivatives in the CV regions and in the VC regions,

respectively. The landmarks serve as basis for the standardization of articulatory

parameters of different speakers and emotions.

(1)

(2)

(3)

(4)

(5)

Figure 4.2: The five landmark points on the trajectory of the lower lip in /p a p/
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At these five landmarks, articulatory kinematic parameters (position, speed

and acceleration) of critical and non-critical articulators were measured. More

specifically, positions in the horizontal and vertical directions, tangential speed

and tangential acceleration were extracted from EMA sensor trajectories at each

landmark. In order to minimize the effects of sensor tracking error, CVC syllables

were discarded if any extracted position parameter was outside the ±3σ range from

the mean of the parameter, where σ and the mean were calculated over all data for

each speaker. In total, 20 kinematic parameters (5 landmarks × 4 measurements)

were extracted for each articulator.

4.4.3 Statistical analysis of articulatory kinematics

In this section, we investigate what kinematic aspects of critical and non-critical

articulators reveal significant emotional information and how they differ as function

of criticality. A Kruskal-Wallis test [Kruskal and Wallis, 1952] was conducted on

each articulatory kinematic parameter to reveal which parameters are emotionally

significant. The null hypothesis of this test is that the samples (of each parameter)

come from the same populations (of categorical emotions), while the alternative

hypothesis is that the samples comes from populations, at least two of which differ

with respect to location. The Kruskal-Wallis test is a nonparametric method that

does not assume normal, or Gaussian, distribution of data points. We observed

that sample distributions vary depending on articulatory parameters and that

some features do not have normal distribution. For example, the distribution of

tongue tip position in the x axis at landmark 1 (onset of release) was close to the

normal distribution, while the distribution of tangential speed of the tongue tip at

landmark 3 was considerably skewed to zero. Note that tangential speed at largest

opening point is supposed to be small in general. The result of a Shapiro-Wilk
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p ≤ 0.05 0.05 < p ≤ 0.07 p > 0.07

Figure 4.3: P-value of Kruskal-Wallis test on each articulatory parameters, such as
horizontal and vertical positions, tangential speed and tangential acceleration at
each landmark point. ‘POS x’ is the position in the x axis, ‘POS y’ is the position
in the y axis, ‘LM’ is landmark, ‘SPD’ is tangential speed, ‘ACC’ is tangential
acceleration.

test on the tangential speed of the tongue tip at landmark 3 of each emotion and

each speaker also supported that the population of the feature was not normally

distributed (p < 0.05).

Figure 4.3 shows the p-value of the Kruskal-Wallis test on each parameter for

the five emotion classes. This figure shows, on top of large speaker dependence

in emotional variation reflected in individual articulatory parameters, speaker-

independent aspects of emotion-dependent articulatory variability in the given

datasets of the three speakers. First, this figure shows that all tangential accel-

erations of the tongue tip are significantly different among five emotions for all

speakers (H(4) < 9.49, p < 0.05). This result implies that emotion influences the

variation of tangential acceleration of the tongue tip throughout the entire syllable,
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regardless of the linguistic criticality of the tongue tip. Also, the vertical position-

ings of the tongue tip at landmarks 2 and 3 are statistically significant (H(4) <

9.49, p < 0.05), which indicates that the vertical positions of the tongue tip dur-

ing releasing and at the largest opening are affected by emotion expression for all

speakers. For lower lip parameters, horizontal position at the landmark 2, vertical

position at landmarks 1, 2 and 5, tangential speed at landmarks 2 and 4, and

acceleration at landmarks 1 and 4 are statistically significant for all speakers (H(4)

< 9.49, p < 0.05). The difference of significant parameters of the tongue tip and

the lower lip suggests that emotion-dependent variability appearing in articulatory

movement margins (for the CVC syllables examined) is articulator-dependent.

Figure 4.3 also shows that some articulatory parameters of both tongue tip

and lower lip are significantly different for the five emotions. Vertical position and

tangential speed at the landmark 2 (maximum speed point during constriction

release) and tangential acceleration at the landmark 4 (maximum speed point dur-

ing constriction formation) are statistically significant parameters (H(4) < 9.49,

p < 0.05) for all speakers, indicating that the movements of the two articula-

tors during transition regions between two adjacent linguistic target positions are

important sources of emotional information.

It is also observed in Figure 4.3 that some kinematic parameters of critical

articulators are significant at landmarks 1 and 5, but not significant at landmark

3. For example, for speakers JN and JR, when the tongue tip is critical, tangential

speed at the landmark 3 is not statistically significant (H(4) > 9.49, p > 0.05),

while tangential speed at landmarks 1 and 5 is significant (H(4) < 9.49, p < 0.05).

For a better understanding of this phenomenon, we examined the horizontal and

vertical speed at the releasing onset and constriction/closure onset points sepa-

rately. Figure 4.4 shows the histograms of vertical velocity for each emotion at
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Figure 4.4: Histograms of the vertical velocity of the tongue tip at releasing onset
point (landmark 1) for each emotion in JN’s data.

releasing onset (landmark 1) in JN’s data, as an example. We found that artic-

ulatory speed at onsets of release and closure were still significantly affected by

emotion. More specifically, on average, higher horizontal and vertical speeds were

detected at the two onsets in high arousal emotions, such as hot anger and happi-

ness, than in the other emotions (e.g., sadness), while horizontal speed was lowest

in sadness (low arousal emotion). In fact, tangential speed of critical articulators
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at landmarks 2 and 4 is also statistically significant for both tongue tip and lower

lip in all speakers data in Figure 4.3. These results indicate that, on average,

initial and maximum articulatory speed during consonant-to-vowel transition, and

maximum and final articulatory speed during vowel-to-consonant transition con-

tain significant emotional information for critical articulators. These trends were

not consistently detected in the non-critical articulators.
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4.4.4 Analysis at the landmark points

Figure 4.5: Example plots (speaker JN) of sample distributions (represented by
2-sigma ellipses) of articulatory positions at different landmarks
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We also compared the distributions of the positions of critical and non-critical

articulators at landmarks using two-sigma (two standard deviations) ellipses. Our

goal with this analysis was to understand in what ways the movements of critical

and non-critical articulators vary across emotions. Figure 4.5 illustrates emotion-

dependent articulatory variability depending on the linguistic criticality. It is noted

that the contrast of criticality of the tongue tip and the lower lip is greatest for

consonants (landmarks 1 and 5), and the contrast decreases as being closer to

the largest opening (corresponding to landmark 3) for vowels, since the criticality

of articulator is categorized for consonants, not for vowels. Considering only the

case of critical articulators (subfigures in the first and third rows of Figure 4.5),

we observe that the divergence of non-neutral emotion ellipses from a neutrality

ellipse was associated with the arousal dimension of emotions when the articulators

were critical (for consonants), i.e. high arousal emotions showed greater divergence

from neutrality than low arousal emotions. The dispersion of ellipse centers across

emotions tended to be maintained throughout the CVC syllable regions for non-

critical articulators. For example, when the lower lip is critical, the center of the hot

anger ellipse is located higher than the center of the neutrality ellipse at landmark

1, then located lower at landmarks 2 and 3 (releasing and largest opening points,

respectively), and finally located higher again at landmark 5 (closure formation).

On the other hand, when the lower lip is non-critical, the relative locations of

ellipse centers are consistent for all landmarks. This difference between critical

and non-critical articulators is observed for all speakers.

Figure 4.6 illustrates emotional variations on articulatory trajectories of the

tongue tip and the lower lip depending on their criticality. The articulatory seg-

ment is for ‘nine tight night pipes.” In order to compare articulatory trajectories of
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Figure 4.6: Averaged articulatory trajectories of each emotion for “nine tight night
pipes” in the sentence 4 in JN’s data. The two plots from the top show the averaged
trajectories of the tongue tip; the other two plots show those of the lower lip.

different emotions, articulatory trajectories of each instance were aligned to a ref-

erence trajectory which is arbitrarily chosen from neutral emotion data. Dynamic

time warping [Sakoe and Chiba, 1978] with Euclidean distance between articula-

tory trajectories was used for the alignment. After alignment, average trajectories

for each emotion were obtained by computing the frame-level mean of trajectories

after a spline interpolation to 400 frames.
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Figure 4.7: Correlation coefficients of two averaged trajectories of the tongue tip
and the lower lip in the vertical direction

It was observed that when the articulator was critical for consonants, the artic-

ulations of hot anger and happiness often showed larger openings for vowels and

exaggerated constrictions for consonants, while the articulations of sadness often

showed smaller openings for vowels and smaller constrictions for consonants. When

the articulator was non-critical, relative articulatory positioning among different

emotions tended to be less sensitive to closure and opening gestures of the co-

occurring critical articulators. This contrast of critical and non-critical cases was

also observed in the data of all speakers, except the non-critical cases of JR’s data.

However, the two-sigma ellipses plot (drawn with more data than the four words) of

JR’s data supports that the relative articulatory positioning of different emotions

for non-critical cases varies less in JR’s data. This may be due to the speaker-

specific characteristic of JR, that is the significantly correlated vertical movements

of the tongue tip and the lower lip as shown in Figure 4.7. This figure shows corre-

lation coefficients of tongue tip and lower lip movements in the vertical direction,
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which were computed from the average vertical trajectories of the two articulators

for each emotion in “nine tight night pipes.” Figure 4.7 indicates that the vertical

movements of the two articulators are most correlated for all emotions in JR’s

data. Highly correlated movements of the two articulators of JR imply that the

lower lip and the tongue tip movements are being coupled during the production

of the monosyllabic words. This may suggest that the dependency between articu-

lators is not a static parameter which is associated with only anatomical structure

and coordination for linguistic encoding, but a dynamic parameter related to other

factors, e.g., para-linguistic factors.

Figure 4.5 also shows the difference of articulatory variability during closure-to-

releasing and approaching-to-closure motions. If the tongue tip is critical for con-

sonants, the articulatory position shows greater variation at the landmark 1 than

at the landmark 5 in terms of ellipse sizes and the dispersion of ellipse centers in the

horizontal and vertical directions. In fact, such variation of articulatory position is

greater at the landmark 2 than the landmark 4. This is counter-intuitive, because

constriction formation of critical articulators for consonants is more actively and

carefully controlled than releasing, hence approaching motions are likely to show

less variability. The effect of co-articulation may be one possible reason for this

phenomenon. The constriction gesture of the tongue tip for the second consonants

in /n aI t/ and /n aI n/ may have become loosened by overlapping closure gestures

of the lower lip for the following consonants, bilabial /p/ and labio-dental /f/,

respectively.

In summary, we found that emotion affects the kinematics of both non-critical

and critical articulators in the CVC syllable segments considered. The emotionally

significant kinematic parameters vary depending on speakers and articulators. In

addition, when articulators are critical for consonants in the CVC syllables, greater
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openings for vowels and stronger constrictions for consonants for high arousal

emotions are observed. When articulators are non-critical, relative articulatory

positioning for different emotions tend to be less sensitive to closure and opening

gestures of the co-occurring critical articulator. These results suggest that emotion

affects the articulatory positioning for non-critical articulators and the movement

range of critical articulators, controlled for achieving (short-term) linguistic goals.

4.5 Articulatory analysis at phonetic targets

Previous sections studied emotional variation in articulatory kinematics depending

on the linguistic criticality of articulators with a limited dataset of CVC syllables.

This section studies emotional variation of articulatory behaviors at phone target

positions using the entire EMA database (excluding fast style speech as noted

earlier).

4.5.1 Experimental Setup

The comparison of critical and non-critical articulators in terms of the articu-

latory variability of target phone position for different emotions requires deter-

mining when articulators reach the target position (steady-state point) for each

phone. Manual selection of steady-state points in the whole EMA database is

time-consuming. Acoustic boundaries determined by an automatic phonetic align-

ment do not inform articulatory target points directly. We determined the best

steady-state point of each phone as follows. First, we determined phonetic bound-

aries using a hidden Markov model based automatic phonetic alignment toolkit,

the Penn Phonetics Lab Forced Aligner [Yuan and Liberman, 2008], followed by

manual correction of misalignment outputs. For each phone, we searched for the
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best steady state point among multiple candidates. In the case of vowels, candidate

points comprised the articulatory positions on the x and y axes of each articulator

at three points: the middle frame, 20 msec before the middle frame, and 20 msec

after the middle frame with respect to the manually corrected phone boundary.

In the case of consonants, candidate point comprised the articulatory positions on

the x and y axes of each articulator at the same three points, plus four additional

points: (i) the highest point on the y axis in a large marginal region (20 msec

before and after phone boundary); (ii) the highest point on the y axis in a small

marginal region (10 msec before and after phone boundary); (iii) minimum tan-

gential speed points in the large marginal region; (iv) minimum tangential point

in the small marginal region. The reason for using the marginal regions instead of

just phone boundaries is that acoustic phone boundaries do not always include the

steady-state points of articulatory movements. Next, for each phone we calculated

the mean of Euclidean distances from the median sample point to each articulatory

position sample of each of the three frames for vowels or each of the seven frames

for consonants. The frame of the least mean value was selected as the steady-state

point for the phone.

Our foremost interest is the behavior at the phone level of (linguistically) crit-

ical and non-critical articulators in emotional speech production. However, from

a statistical experimental design perspective the phone identity factor is nested

in the criticality factor, which means that any analysis interested in the articula-

tory variability for different degrees of linguistic criticality requires a normalized

representation of the variability across phones. To address this problem, we tried

two different methods for parameterizing articulatory variability fairly applicable

across phones, using (i) the centroid distances between emotion cluster pairs, and
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(ii) the mean deviation within emotion for every phone. The details of the two

methods are explained in the sections that follow.

4.5.2 Inter-emotion variability

In this section, we investigate how the degree of linguistic criticality of articulators

is associated with inter-emotion variability. In particular, we examine which artic-

ulatory type (critical or non-critical) displays more inter-emotion variability in the

articulatory phonetic target position. The inter-emotion variability in articulatory

target positioning is quantified by the average of the centroid distances between

emotion cluster pairs, where the centroid is the mean position of all samples of

each emotion cluster. This parameter measures the averaged distance between the

centers of different emotion clusters for each phone. Let xk
i denote the arithmetic

mean of all samples of the vertical or horizontal coordinate of a given EMA sensor’s

position in emotion i and phone k. Suppose the number of emotion clusters is N .

Then the average of the centroid distances between emotion cluster pairs of phone

k, denoted by Dk, is calculated as

Dk =
1

C(N, 2)

∑

i,j

d(xk
i , x

k
j ), i 6= j (4.1)

where C(N, 2) is the number of 2-combinations from N elements; d(a, b) is the

Euclidean distance between a and b.
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Figure 4.8: Box plots of the average of centroid distance among emotion cluster pairs. CA is critical articulator case,
NCA is non-critical articulator case. C() denotes consonants. Vowels are analyzed separately from consonants, because
of their different nature for determining critical or non-critical articulator in this study. The Value above each box plot
is the mean of each case.
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Figure 4.8 shows the box plots of Dk of critical and non-critical cases for each

articulator. First, this figure shows that on average, the Dk of the horizontal lower

lip positions at phone targets is greater for non-critical articulators than for critical

articulators. We also conducted a one-tailed t-test with the hypothesis that the

Dk of the horizontal lower lip positions at phone targets is greater for non-critical

cases than for critical cases. Results indicated that the difference between critical

and non-critical cases was significant for JR (t=3.31, p=0.00) and SB (t=2.68,

p=0.01), but it was not significant for JN (t=1.43, p=0.09) at the 0.05 level. For

the vertical position of the lower lip, the difference between critical and non-critical

cases in terms of Dk was speaker-dependent: The average of Dk was greater for

non-critical cases than for critical cases in the data of JN and JR, while it was the

other way round in SB’s data. These results suggest that on average, the mean

positions of the lower lip for different emotions are more consistently dispersed for

non-critical cases compared critical cases, only in the horizontal direction.
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Figure 4.9: Relative mean (centroid) of the horizontal position of each emotion to
the neutrality (which is aligned to 0 on the y axis) in SB’s lower lip data.
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We investigated the variation of the horizontal position of the lower lip more

specifically for each emotion and each phone. Figure 4.9 shows the mean horizontal

position of the lower lip of each emotion after aligning the mean of neutrality to be

0 for each phone in SB data, as an example. We found that the lower lip showed a

posterior position for most phones when speakers expressed happy emotions than

the other emotions. These trends were observed in the data of all speakers. The

retraction of the lower lip for happiness was statistically significant in the result of

one-tailed t-test (t=7.38, p=0.00). We also found that on average, the retraction

of the lower lip for happiness occurred more significantly for non-critical cases

than for critical-cases. One possible reason is that when speakers express happy

emotion, their lip might have been stretched to the sides often, pulling the lower

lip backward (smile-like gesture).

For each of the tongue sensors, the average Dk of the vertical position was

larger for non-critical cases than for critical cases for all speakers. This indicates

that on average, the vertical position of the tongue tip and the tongue dorsum at

phone targets is more dispersed for non-critical cases than for critical cases. The

difference between non-critical and critical cases was statistically significant at the

0.05 level for the tongue dorsum data of JN (t=2.33, p=0.02) and the tongue tip

data of JR (t=0.96, p=0.01) by one-tailed t-test, while it was not significant for

the other cases. On the other hand Dk of horizontal position was (even slightly)

greater for critical cases than for non-critical cases for all speakers’ data. The

difference, however, was not significant for any of them at the 0.05 level of the

one-tailed t-test. These results indicate that on average, the mean positions of

the lower lip for different emotions are more dispersed for non-critical cases than

critical cases, consistently only in the vertical direction.
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Figure 4.10: Relative mean (centroid) of the horizontal (top subplot) and vertical
(bottom subplot) positions of each emotion cluster for each phone to the neutrality
(which is aligned to 0 on the y axis) in JN’s tongue dorsum data.

From our investigation on the tongue data for each emotion and each phone, it

was observed that on average, the tongue dorsum as a critical articulator showed

more upward constriction for velar stops, such as /g/ and /k/, when the emotional

state of speakers were hot anger (and cold anger for JN and SB) as opposed to

other emotions. More forward positioning of the tongue dorsum was also observed

for hot anger, except for /k/ in SB’s data. Figure 4.10 shows the horizontal and
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based on critical constriction gestures, such palatal constriction and pharyngeal
constriction of the tongue dorsum, for vowels.

vertical positions of the tongue dorsum for each emotion and each phone in JN’s

data, as an example. These results suggest that tongue dorsum closure gesture is

stronger for hot anger than for the other emotions.

Finally, we also examined whether the tongue tip and the tongue dorsum

showed different emotional variance depending on the linguistic criticality for

vowels. According to the gestural description in the task dynamics application

model [Nam et al., 2004], palatal constriction gesture is critical for /i/, /I/ and

/E/, while pharyngeal constriction gesture is critical for /æ/, /A/ and /O/. It is

reasonably assumed that the linguistic criticality of the vertical tongue dorsum

position is higher for the palatal vowels than for the pharyngeal vowels. Also, it is

assumed that the criticality of the horizontal tongue dorsum position is higher for

the pharyngeal vowels than the palatal vowels. Figure 4.11 shows the average of
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Dk of the tongue dorsum position in the horizontal and vertical directions for each

of palatal and pharyngeal vowels. We found that on average, Dk of the tongue dor-

sum horizontal position was greater for the palatal vowels than for the pharyngeal

vowels in all speakers’ data, while Dk of the tongue dorsum vertical position was

greater for the pharyngeal vowels than for the palatal vowels. This result implies

that for vowels, the tongue dorsum position in less constrained direction displays

more inter-emotion variation than in more constrained direction.

4.5.3 Within-emotion variability

In the previous section, we investigated inter-emotion variability of the mean posi-

tion of articulators as a function of linguistic constraints. In this section, we inves-

tigate within-emotion variability in terms of the range of articulatory positions for

critical and non-critical articulators. That is, we study in what way criticality asso-

ciates with the range of articulatory positions for phone targets in each emotion.

We also test our hypothesis that non-critical articulators have more emotional vari-

ation, particularly in terms of the within-emotion dispersion at articulatory target

points, than critical articulators. We quantified the articulatory range variabil-

ity of each emotion by the mean deviation of articulatory position samples in the

horizontal or vertical direction.
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Table 4.4: The results of one-tailed t-test with mean deviation measure on the hypothesis that non-critical articulator
has greater range of articulatory target position for each phone within emotion than critical articulator. ‘x axis,’ ‘y axis’
indicates the results of test on mean deviation value of the horizontal articulatory position or the vertical articulatory
position, respectively. Neu is neutrality, Han is hot anger, Can is cold anger, Hap is happiness and Sad is sadness. Only
consonants are included in this analysis. Numbers in bold are statistically significant (p < 0.05). T -statistic is out of
parenthesis in each cell, and p-value is in parenthesis.

Speaker Emo
Tongue tip Tongue dorsum Lower lip

x axis y axis x axis y axis x axis y axis

JN

Neu 0.46(0.33) 0.30(0.38) 0.42(0.34) 1.49(0.08) 1.32(0.11) 3.88(0.00)
Han 1.13(0.14) 1.84(0.05) 0.35(0.37) 2.12(0.03) 3.08(0.01) 2.90(0.01)
Can -1.14(0.86) 1.66(0.06) 1.14(0.14) 2.35(0.02) 1.84(0.05) 4.85(0.00)
Hap -0.48(0.68) 0.62(0.27) 2.39(0.02) 1.45(0.09) 2.48(0.0 2) 2.68(0.01)
Sad -0.44(0.66) 0.47(0.32) 1.64(0.07) 2.49(0.02) 1.75(0.06) 2.89(0.01)

JR

Neu 1.34(0.11) 2.44(0.02) 2.41(0.02) 3.48(0.00) 0.52(0.31) 1.12(0.15)
Han 1.87(0.05) 2.13(0.03) 2.11(0.03) 1.87(0.05) 2.13(0.03) 1.77(0.05)
Can 1.78(0.05) 2.44(0.02) 2.78(0.01) 2.04(0.04) 2.24(0.03) 2.79(0.01)
Hap 0.44(0.34) 1.38(0.10) 3.34(0.00) 2.31(0.02) 1.48(0.09) -0.14(0.55)
Sad 2.08(0.03) 2.55(0.02) 1.58(0.07) 2.65(0.01) 2.01(0.04) 1.42(0.09)

SB

Neu -0.03(0.51) 1.86(0.05) -1.29(0.89) 1.16(0.14) 2.61(0.01) 2.05(0.03)
Han -0.01(0.50) 1.92(0.04) 0.92(0.19) 1.71(0.06) 2.11(0.03) 2.72(0.01)
Can 0.07(0.47) 1.85(0.05) -0.03(0.51) 2.48(0.02) 2 .31(0.02) 2.59(0.01)
Hap 0.19(0.43) 1.82(0.05) 2.09(0.03) 1.44(0.09) 2.27(0.02) 1.57(0.07)
Sad 0.03(0.49) 2.04(0.03) 0.73(0.24) 1.27(0.12) 1.99(0.04) 1.32(0.11)
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First, we conducted one-tailed t-tests on the hypothesis that non-critical artic-

ulators had larger range of articulatory target position than critical articulators for

each emotion. Table 4.4 shows the results. We found that on average, non-critical

articulators show greater mean deviation than critical articulators in most cases

(as indicated by positive t-statistic value in Table 4.4), which supports the hypoth-

esis, overall. The statistical significance in Table 4.4 is largely speaker-dependent.

For example, the difference between critical and non-critical in the vertical mean

deviation of the tongue tip data of JN is not significant for any case, while the

difference in the vertical mean deviation of the tongue tip data of JR is significant

for four emotions (neutrality, hot anger, cold anger and sadness).
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Figure 4.12: Scatter plots of the mean deviation of articulatory positions of each
emotion of SB. Divided by 2 gray solid lines, the left most block is critical articu-
lator (noted as CA), middle block is consonant non-critical articulator (NCA), the
right most block is vowel non-critical articulator.
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We also examined emotional variation of the positions of articulators depending

on linguistic criticality more specifically for each phone. Figure 4.12 shows the

scatter plot of the mean deviation of articulatory target positions in the vertical

direction for each phone in SB’s data as an example. We observed that overall,

the mean deviations of the tongue tip, the tongue dorsum, and the lower lip at

phone targets were larger when these articulators were non-critical than when

they were critical. However, it is not always true for some cases. For vertical

tongue tip position, the mean deviations of velar stops (/g/ and /k/) tended to

be lower than those of the other non-critical cases (e.g., /f/,/m/,/p) and even

similar to those of critical cases (e.g., /d/, /D/, /n/). We note that two tongue

sensors were placed about 1.5 ∼ 2 cm closer to each other than the anatomical

tongue tip and velar closure point on the tongue surface (tongue dorsum), which

may have increased the dependency between the tongue tip and tongue dorsum

motions. Hence, we speculate that tongue tip position was associated with tongue

dorsum position more than the lower lip position, resulting in more limited tongue

tip position variation for the velar stops than for the labial consonants. We also

observe that, in the critical cases of the tongue tip, the maximal mean deviations

in both horizontal and vertical directions for alveolar fricatives (/s/ and /z/) were

always smaller than those for alveolar stops (/d/, /n/, /t/) in all speakers’ data,

presumably because alveolar fricatives require more careful maneuver than alveolar

stops [Subtelny and Oya, 1972].

For the tongue dorsum, closure gesture for velar stops (/g/ and /k/) showed

less mean deviation in the vertical direction compared to alveolar fricatives (/s/

and /z/) across all emotions. Although wide opening gesture of the tongue dorsum

(as well as constriction gesture of the tongue tip) is essential for a production of
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the alveolar fricatives [Nam et al., 2004], the result suggests that this wide open-

ing gesture does not require a strict control of the constriction degree. Speaker-

independent pattern contrasting the alveolar stops and the alveolar fricatives was

not observed in the results of the tongue dorsum horizontal position.

4.6 Simulation experiment

In this section, we examine whether the large variability of non-critical articulators

is the mechanical outcome of the controls of critical articulators. We first synthesize

non-critical articulatory trajectories on the basis of the physiological constraints

that govern the spatio-temporal relationships among all articulators and the time

points when given articulators are linguistically critical. The emotional variations

in the synthesized trajectories are compared to the emotional variation in the true

data. If the two trajectories of non-critical articulators are similar in terms of

emotional variation, it can be inferred that the emotion-dependent variability of

non-critical articulators is a secondary effect of the control of critical articulators.

4.6.1 Description of articulatory model

This section describes an articulatory model that was used for the aforementioned

simulation experiment. The details of this model is provided in [Kim et al., 2014d].

This model estimates trajectories of non-critical articulators based on only the

following two factors: (i) the contextual constraints of the preceding or following

time points when said articulators are critical, (ii) physiological constraints on

said non-critical articulators from articulators that are critical ar the time point in

question. This estimation problem is formulated as the following: Let fi(t) denotes

the position of i-th articulator at time t. fi(tc) is the position of the i-articulator
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at the nearest critical time point tc from the current time t for the i-th articulator.

Hence, this term represents the influence of the contextual constraints from the

nearest critical point. f̂ p
i (t) represents the influence of the physiological constraints

on the i-articulator. The estimated position of the i-th articulator, f̂i(t) is modeled

by convex combination of fi(tc) and f̂
p
i (t), using a weighting function Ki(t) ∈ [0, 1]

as follows:

f̂i(t) = fi(tc)Ki(t) + f̂
p
i (t)(1−Ki(t)) (4.2)

The weighting on the contextual factor should be negatively correlated to |t− tc|,

but the nature (linear or non-linear) of this function is unknown. Hence, Ki(t) is

modeled by the non-linear function as follows:

Ki(t) =
1

1 + exp(−η(λi(t)− ξ))
(4.3)

This sigmoid function can also be close to linear depending on the hyper-

parameters η and ξ which are tuned on the development set. λi(t) ∈ [0, 1] denotes a

monotonically increasing function of |t−tc|, thusKi(t) is monotonically decreasing.

f̂
p
i (t) is a function of the positions of only corresponding critical articulators at

t as follows:

f̂
p
i (t) =

NC(t)
∑

l=1
l 6=i

(αi,lfl(t)) + βi (4.4)

where NC(t) is the number of the corresponding critical articulators at t; αi,l and

βi are the coefficients of the model. It is reasonably assumed that the effect of

physiological constraints among articulators can be represented by an affine map.

For example, the physiological influence from the position of the jaw to the position

of the lower lip is computed by rotation, scaling and translation, those are affine
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Table 4.5: The number of utterances selected for simulation experiment.

Neutrality Hot anger Cold anger Happiness Sadness
JN 30 43 77 53 50
JR 62 44 55 48 67
SB 48 44 46 43 48

transformation. Note that the critical articulators’ data used for representing f
p
i (t)

do not include the data of the i-th articulator itself.

Finally, the optimal f̂i(t) is found by minimizing J :

J =
M
∑

t=1

|fi(t)− f̂i(t)|
2

(4.5)

where M is the number of articulatory frames used for tuning the parameters of

Ki(t).

4.6.2 Synthesis of non-critical trajectories

In order to minimize the effect of erroneous articulatory data, we excluded utter-

ances in which any of the articulatory data is out of empirically selected upper and

lower boundaries. For each dimension of each speaker’s data, the upper bound-

ary is 0.95 quantile + 2 × standard deviation, while the lower boundary is 0.05

quantile - 2 × standard deviation. Then, each dimension of articulatory data of

each speaker is scaled to the range of [0, 1] for fair evaluation. Table 4.5 shows the

number of utterances selected for the simulation experiment.

The critical time point for each critical articulator for consonants is selected at

the maximum constriction point of the articulator. We followed the distinction of

critical and non-critical articulators in Table 4.2 for consonants. For vowels, the

critical time point is decided based at the maximum opening point of the jaw and
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Table 4.6: The results of evaluation of the estimated articulatory trajectories.
The mean of RMSE or correlation coefficient is shown without parenthesis. The
standard derivation is shown in parenthesis.

Neutrality Hot anger Cold anger Happiness Sadness

JN
ERMSE 0.079 (0.030) 0.074 (0.018) 0.074 (0.021) 0.072 (0.017) 0.071 (0.022)
ECORR 0.848 (0.116) 0.847 (0.096) 0.845 (0.122) 0.855 (0.102) 0.846 (0.130)

JR
ERMSE 0.071 (0.023) 0.070 (0.022) 0.072 (0.024) 0.070 (0.020) 0.069 (0.023)
ECORR 0.869 (0.121) 0.864 (0.109) 0.856 (0.125) 0.865 (0.112) 0.862 (0.117)

SB
ERMSE 0.079 (0.035) 0.071 (0.026) 0.077 (0.023) 0.071 (0.026) 0.075 (0.021)
ECORR 0.847 (0.135) 0.794 (0.141) 0.814 (0.116) 0.845 (0.119) 0.801 (0.162)

the tongue dorsum (in the vertical direction). The upper lip data is excluded in

this experiment, because the upper lip is not anatomically constrained to any of

the other articulators monitored in this dataset. Also, it was reported that the

upper lip data did not improve the estimation performance [Kim et al., 2014d].

Our model is trained in leave-one-utterance-out setup for each emotion and

each combination set of critical articulators, except the estimating articulator,

because αi,l and βi of f p
i in (4.4) depends on the combination. After the train

and development sets are equally divided, f̂ p
i (t) is trained on the train set. The

parameters of Ki(t) are tuned on the development set. The performance of our

final model f̂i(t), ∀i is evaluated in terms of the mean of the root-mean-squared-

error (RMSE), denoted by ERMSE , and the mean of the correlation coefficient,

denoted by ECORR, between the true trajectory and the estimated trajectory of all

utterances.

We first demonstrate that our model can estimate articulatory trajectories well

for all emotions. Table 4.6 shows the evaluation results of the estimated artic-

ulatory trajectories in terms of RMSE and correlation coefficient. Our model

shows satisfactory estimation performance (maximum ERMSE = 0.079, minimum
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ECORR = 0.794) for data of all speakers and all emotions. This estimation perfor-

mance is similar to one reported in our previous study [Kim et al., 2014d], which

was performed with different sentences and emotions (neutrality, anger, happiness,

sadness and fear). The result in Table 4.6 suggests that the trajectories of non-

critical articulators is estimated reasonably well for the five target emotions in the

dataset. It also suggests that the positions of non-critical articulators are consider-

ably dependent on the positions of the corresponding critical articulators and the

closest critical moment of the (non-critical) articulators. Figure 4.13 illustrates

true and estimated vertical trajectories of the tongue tip, the tongue dorsum, and

the lower lip for the sentence “I saw nine tight night pipes in the sky last night,”

showing high similarity between the trajectories.

4.6.3 Results

In this section, we discuss the emotion-dependent variability of the non-critical

articulators by comparing the true and simulated articulatory data. The emotion-

dependent variability between the true articulatory data and the estimated data

from the aforementioned model was compared by means of discriminant analysis

and a statistical test. For the discriminant analysis experiment, emotion model

was trained on the true data and tested in the estimated data. The classification

accuracy on the estimated data was compared to the classification accuracy on the

true data. Similar accuracy between the two results is an evidence for the high

similarity between the true and estimation data in terms of emotion-dependent

articulatory variability. For discriminant function, we used 2D normal density

model, one mode for each emotion, in the Mahalanobis distance space.

The test statistic of the pair-sample t-test was used for the similarity metric of

the two distributions: one for the true data and the other for the estimated data.
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Figure 4.13: Example plots of the true and estimated trajectories of the tongue
tip, the tongue dorsum and the lower lip in the vertical direction. An utterance of
neutral emotion in JN’s data is used.

The analysis was performed for each phone, each emotion and each articulator.

Each of true and estimated data was subtracted to the centroid of corresponding

neutral data so that the distribution of each emotion represents the deviation from

the neutral emotion.

Figure 4.14 shows the emotion classification results. In most cases, the classi-

fication accuracy of estimated data is similar to the classification accuracy of true
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Figure 4.14: Unweighted emotion classification accuracy (%) for true and estimated
data.

data. This indicates high similarity between true and estimated data in terms

of the emotion-dependent variation of articulatory position distribution, and sug-

gests that the large variability of non-critical articulators depending on emotion is

significantly dependent on the controls of critical articulators.
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Figure 4.15: t-statistic of the pair-sample t-test on two distributions, one of true
data and the other of estimated data for non-critical articulators for each phone,
each articulator, each emotion and each speaker. ∗ indicates that p-value is less
than 0.05 for the case.
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We also investigated the similarity between true and estimated data for indi-

vidual emotions using the pair-sample t-test. The p-value less than 0.05 indicates

that the means of the two distributions (true and estimated data) are statistically

significantly different at the level of α = 0.05, suggesting that overall, the emo-

tional variations of the true and simulated data are significantly different in terms

of their means. Although high p-value cannot be directly interpreted as a statistical

evidence for the validity of null hypothesis, it can be used as a similarity metric of

true and estimated data in terms of their mean. Figure 4.15 shows the p-value of

pair-sample t-test for each speaker, each phone, each dimension and each articu-

lator. Results of neutrality are omitted, because the means of their distributions

are always 0. Note that the distribution of each emotion was normalized by sub-

tracting to the centroid of neutrality. In many cases (Not marked by an asterisk in

Figure 14) the p-value is greater than 0.05, so the null hypothesis that the mean

of true and estimated data is significantly different cannot be rejected at the level

of α = 0.05 for these cases. In fact, the p-value is often considerably high. This is

a supporting evidence for high similarity of the mean of true and estimated data

in the cases. The result of high similarity suggests that the postural variation of

non-critical articulators is often significantly dependent on the controls of critical

articulators. The cases of high similarity are not consistent across speakers, sug-

gesting large speaker variability on the dependency of non-critical articulators to

critical articulators in emotional speech.

4.7 Discussion and Conclusions

This study provides evidence that the emotional variation pattern of articulatory

positions during CVC syllables depends on the degree of linguistic criticality of
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articulators for the first and the final consonants. When articulators are critical

for the consonants in the CVC syllables, high arousal emotions show more periph-

eral articulatory movements with large movement range, especially in the vertical

direction, while it was the other way around for low arousal emotions. The dis-

persion pattern of critical cases is in line with the experimental results of previous

studies, i.e. large movement range and large opening for anger [Lee et al., 2005,

2006, 2008, Erickson et al., 2000]. Relative articulatory positioning of the five

emotions for non-critical cases is not as sensitive to the manner of articulation for

each phone as those for critical cases. One possible implication of these articula-

tory variations is the modulation of the vocal tract variables in the Task Dynamics

as a result of emotion coloring. For example, when the tongue tip is critical for

the initial or final consonants in a CVC syllable, tongue tip constriction degree

in vowel regions can be higher (larger opening) for high arousal emotions than

low arousal emotions. In summary, results suggest that the emotional variation

pattern of articulators depends on the linguistic criticality of the articulators.

Considering speaker-independent behaviors observed in this study, our experi-

mental results also support the hypothesis that the emotional variation of articu-

latory positioning for vowels is associated with linguistic criticality of the tongue

body (the tongue dorsum sensor parameters were used) in terms of the average

of distance between the mean positions of different emotions. Supporting evi-

dence was found by comparison between palatal and pharyngeal vowels in their

movement directions (critical and non-critical) in terms of the average of cen-

troid distances between emotion cluster pairs in Section 4.5.2. Larger variance of

non-critical articulatory trajectories when compared with critical articulatory tra-

jectories were reported in literature [Papcun et al., 1992, Frankel and King, 2001],

and this characteristic was employed for statistical identification of articulatory
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roles [Jackson and Singampalli, 2009]. The experimental results in the present

study provide additional information for vowels, i.e. the inter-emotion variance of

articulatory positions is greater in the non-critical articulatory direction than in

the critical articulatory direction. This suggests that the large variance of articula-

tory movements due to low linguistic criticality is an important factor of emotional

modulation for vowels.

Previous studies have shown that tongue dorsum positions are dependent on

emotion. For example, Erickson et al. [2000] reported that upward positioning

and backward positioning of the tongue dorsum were observed for suspicion and

admiration, respectively, in two vowels, /æ/ and /2/ in an utterance “That’s won-

derful.” The present study reports another speaker-independent characteristic in

that the mean position of the tongue dorsum for velar stops is more forwarded and

upward for hot anger than for other emotions. This tongue dorsum positioning for

hot anger was consistently observed for all speakers only when the tongue dorsum

were critical, implying that the exaggerated closure gesture of the tongue dorsum

for velar stops is a characteristic of hot anger.

Non-critical articulators comprise dependent and redundant articulators

according to the three-level categorization (critical, dependent, redundant) by

Jackson and Singampalli [2009], Guenther [1995]. Dependent articulators refer

to articulators whose movements are significantly dependent on the movements of

critical articulators due to anatomical structure and/or coordinated articulatory

controls for linguistic encoding. For example, the tongue blade is a dependent

articulator of the tongue tip, and the jaw is a dependent articulator of the lower

lip in general. Redundant articulators refer to the remaining articulators whose

movements are little dependent on the critical movements. Although the present

study considered only critical and redundant articulators, controls of dependent
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articulators are also important to understand the detailed vocal tract shaping in

emotional speech. Also, this study did not consider the jaw, although previous

studies [Erickson et al., 2000, 2004, 2006] have shown that vertical jaw positioning

is emotionally distinctive. In addition, jaw opening has been generally employed

as a basic control of speech rhythm in literature [Nelson et al., 1984, Fujimura

and Erickson, 2004], so a better understanding of jaw movement can be useful

for a comprehensive model that incorporates articulatory and rhythmic aspects of

expressive speech.

The results of our analyses still cast an open question: What are the acoustic

and perceptual consequences of the emotional variations of critical and non-critical

articulators, observed in the present study? Emotion perception tests with an

articulatory synthesizer incorporating the controls of both critical and non-critical

articulators will be useful for answering this question, although the articulatory

synthesizer should be improved for minimizing potential loss of perceptual emotion

quality first. In order to fully understand the variations of emotional speech pro-

duction, it is important to know how the emotional variations of speech production

components are related to each other, not only among articulators, but also with

other emotionally crucial voice cues, i.e., prosody (pitch, energy and duration),

intonation and voice quality. Articulatory synthesizers (e.g., [Rubin et al., 1996,

Maeda, 1982, Toutios and Narayanan, 2013]) do not incorporate para-linguistic

aspects of expressive speech yet. These remain topics for future research. Incorpo-

rating physiological conatraint among non-critical articulators for the simulation

experiment in Section 4.6 is also our future work.
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Chapter 5

Invariant properties and variation

patterns in emotional speech

production

5.1 Introduction

The human speech signal is produced by the coordinated controls of vocal

organs [Browman and Goldstein, 1992, Fowler and Saltzman, 1993] with large

variability on their surface movements [Koenig et al., 2008, Jackson and Singam-

palli, 2009]. One of the main challenges in speech production modeling is, there-

fore, to represent articulatory behaviors in an effective, but simpler way. Despite

the large variability of articulatory movements, previous studies have reported

the presence of relatively invariant portions, called “iceberg” regions [Fujimura,

1986, Bonaventura, 2003], of the transient articulatory trajectories of demisylla-

bles. More specifically, it has been observed that the speed of the (linguistically)

critical articulator for producing the consonant in the demisyllable is relatively

invariant at a certain excursion point regardless of prosodic change, e.g., differ-

ent level of stress on the syllable, as long as the vowel of the demisyllable and

para-linguistic factors, e.g., speaker-specific characteristics, gender and emotion,
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are fixed. The iceberg region is roughly the fastest part of the critical articula-

tory trajectory in each demisyllable. This invariant characteristic at the iceberg is

considered in the Converter/Distributor (C/D) model.

The C/D model is a comprehensive model of the speech production system, a

part of which describes the (abstract) high-level temporal organization of speech,

based on articulatory movements [Fujimura, 2000]. In this model, sequential sylla-

ble pulses represent the rhythmic pattern of consecutive syllables in the utterance.

Syllable triangles are constructed based on the syllable pulses, where the height

of the triangle reflects the syllable magnitude, i.e., syllable prominence, and the

length of the base of the triangle reflects abstract syllable duration in the articu-

latory domain. Para-linguistic factors, e.g., speaker style, rate of speech and emo-

tion, affect the variation of syllable pulse trains, resulting in the variation of the

amplification and timing of the Impulse Response Function (IRF) for consonantal

gestures [Fujimura, 1994b, 2002]. The IRFs are prototype time functions that rep-

resent inherent characteristics of elemental consonantal gestures, e.g., apical stop,

labial fricative, velar stop. See [Bonaventura, 2003, Fujimura, 2002, Menezes, 2003]

for the details of the entire C/D model that contains other components needed for

generating articulatory signals from these variables.

The present study investigates the invariant properties and variation patterns of

articulatory movements of emotional speech in the perspective of the C/D model.

Such knowledge is valuable from both a theoretic standpoint (to shed further light

on the articulatory control mechanism with emotion coloring) and application per-

spectives (such as in informing better articulatory modeling and (re-)synthesis

with emotion). The invariant properties in the C/D model include (i) the strong

linear relationship between the (vertical) excursion of critical articulators and the
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articulatory speed at the iceberg and (ii) the linear relationship between the syl-

lable duration and the syllable magnitude. The latter is based on the assumption

that the acute angles of the two side lines of all syllable triangles, called “shadow”

angles, are identical. This we refer to here as the consistency assumption.

The present study examines the variation of the timing and amplitude of the

iceberg points found in the articulatory trajectories and the “shadow” angle. In

the C/D model framework, emotion affects the parameters of IRFs, not the surface

articulatory trajectories directly. However, the IRFs represent abstract articula-

tory gestural controls that are not directly observable due to the highly nonlinear

nature between the IRFs and articulatory signals [Fujimura, 1994a], which makes

the direct analysis on the IRFs harder. This study examines the variation of artic-

ulatory parameters that are influenced by the change of the IRFs as a function of

emotion.

5.2 Iceberg metric

In most literature, the iceberg point is algorithmically determined at the minimum

variance point of a number of trajectories of the same demisyllable. One approach

is to find the point of the minimum root-mean-squared-error in the horizontal

direction after optimal time shifting of the trajectories to the reference trajectory.

Another approach is to choose the point of the minimum “iceberg metric” among

multiple vertical movement bands of the critical articulator. The iceberg metric is

proportional to the variance of articulatory speed and inversely proportional to the

mean of articulatory speed in the band. Although these algorithmic approaches

can find reliable iceberg points abiding in the invariability principle of the C/D

model, these methods require a large number of trajectory samples to secure the
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reliability. However, the number of trajectories of each demisyllable and each

emotion is very limited in the present study.

This section offers discussion regarding the iceberg metric, presented in [Kim

et al., 2015b]. Since the concept of the iceberg region is important in the C/D

model, this section discusses the conventional way to determine the iceberg, fol-

lowing the guidelines in earlier work (e.g., [Fujimura, 1981, 1986, 1994b,a, 1996,

2002, Fujimura and Spencer, 1983, Menezes, 2003, Bonaventura and Fujimura,

2007]). According to the C/D model, a syllable consists of a nucleus (vowel) and

onset and coda elements. For the sentence examined here, the crucial articulators

for producing the onset and coda elements are the lower lip (for [p, m, b, f]),

the tongue tip (for [s, d, t]) and the tongue dorsum (for /k/). If one overlays

the vertical trajectories of the crucial articulator of all the instances for a given

demisyllable containing a CV or VC pattern, for the same set of utterances for a

given speaker, after shifting individual trajectories horizontally (in time) so that

the sum of distance between individual trajectories and a reference trajectory in

the horizontal dimension (time) is minimum, one can see the slopes in a certain

region overlap very tightly. The longest trajectory is selected as the reference tra-

jectory. This region is what is referred to as the iceberg. The iceberg metric is

calculated for each band (1 mm interval) in the vertical range of motion of the

crucial articulators, using the following formula [Menezes, 2003]:

Y (i) =
Var{X(i)}

E{X(i)}
(5.1)

where i is the index of a small vertical region, Y (i) is the iceberg metric at i-th

band. Var{X(i)} is the variance of vertical speed values of all data points in the

i-th band, and E{X(i)} is the mean of vertical speed values of all data points in
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Figure 5.1: Example of iceberg metric, mean and variance of slopes in each band,
overlaid with vertical trajectories of CA, after normalized to the range of the
trajectories of CA.

the same band. The band of the smallest Y is selected as the iceberg region for

the demisyllable.

According to Equation 5.1, the iceberg metric is a function of two factors: the

variance of the slopes, as shown in the numerator, and the mean of the slopes,

as shown in the denominator. The iceberg region is found where the variance

term (in the numerator) is small and the speed term (in the denominator) is large.
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Interestingly, as long as the demisyllable consists of a low vowel (/ae/ in our

stimulus) and stop/fricatives ([p, m, b, f, s, d, t, k] in our stimulus) with complete

closure or high constriction, the band of the minimum variances (in the numerator)

and the band of the maximum mean speed (in the denominator) tend to be close,

but do not always agree. This indicates that, depending on how the two factors

are weighted, the algorithmically determined iceberg region can vary somewhat.

Figure 5.1 illustrates three different cases in terms of how well the bands match.

Black curved solid lines are the horizontally aligned trajectories of the correspond-

ing critical articulator: Trajectories for the initial demisyllable of BAT (Speaker

A05) in (a), those for the initial demisyllable of MAT in (b), and those for the (co-

articulated) initial demisyllable of (T)AT in (c). Pink triangles show the denom-

inator values (mean of vertical speed) in (Equation 5.1), pink horizontal dashed

line shows the center of the band for the maximum of the denominator values;

blue diamonds show the numerator values (variance of vertical speed) in (Equa-

tion 5.1), blue horizontal solid line shows the center of the band for the minimum

of the numerator values; gray circles show the iceberg metric of each band, gray

horizontal dashed-dot line shows the center of the band for the minimum iceberg

metric. Red ‘x’ dots show the maximum speed points of individual trajectories.

Figure 5.1(a) is when the two optimal bands are not identical; the greatest mean

speed (pink horizontal dashed line), the least speed variance (blue horizontal solid

line) and the least iceberg metric (gray horizontal dashed-dot line) are located at

different bands. Figure 5.1(b) illustrates the case when the three bands are iden-

tical, although the complete agreement among the three bands is not common in

our data. We observed that the robustness of the iceberg metric depends on coda

or onset for the demisyllable. Figure 5.1(c) shows results of the iceberg metric cal-

culation for the first demisyllable of at, computed using the releasing movements
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of TT for the preceding consonant /t/ in cat For our stimulus, Pam said bat that

fat cat at that mat, we have in the ensuing analysis assumed as a sort of temporary

measure the final /t/ of cat to be the demisyllabic onset of at. For this iceberg

region without a clear onset, the iceberg metric, and its numerator and denomi-

nator are very noisy, although the maximum speed point of individual trajectories

are clustered in the center region. We also note that this is an important area of

the model that needs to be addressed, especially for a language such as Japanese,

which generally does not have syllable codas.

The present study chooses to use the maximum speed point of the crucial artic-

ulator for the onset or coda of each demisyllable. This method has been deployed

by Erickson [2010], Kim et al. [2015a, 2014a], Erickson et al. [2015]. The justifi-

cation of this is two-fold: (1) we found that the maximum vertical speed points

of individual trajectories are very close to the point of the minimum iceberg met-

ric, tightly clustered near the three bands, as shown in Figure 5.1(a,b), and (2)

eventually, it is more desirable to be able to determine the iceberg points for each

utterance independently, due to the difficulty and high cost of obtaining data with

large repetitions. It is noted that using the maximum speed point of an individual

trajectory can be noisier than using the point of the minimum iceberg metric from

many repetitions, although our preliminary results in our (limited) data show that

such noise is small. Remember that the center of the syllable is calculated as the

midpoint between the iceberg regions, and based on these calculations, syllable

triangles are then generated to derive not only syllable durations, but also phras-

ing/boundary patterns. Using this approach, we hope to examine the relationship

between articulation of syllable duration, phrase boundaries, syllable magnitude,

and the perception of them. The correspondence between articulatorily-generated

phrase boundaries and perceived boundaries is discussed in [Erickson et al., 2015].
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A discussion of articulatory syllable durations can be found in [Erickson et al.,

2014], but are not discussed here.

5.3 Methods

5.3.1 Data

The ElectroMagnetic Articulography (EMA) dataset collected by the NDI WAVE

system is used in this study. A sentence “Pam said bat that fat cat at that mat” was

spoken by a female native speaker of American English. The stimulus was designed

specifically for the study of the C/D model. For consonants, it contains only stops

and fricatives in which the invariant properties of the C/D model have been shown

in literature, e.g., in [Fujimura, 2000, 2002]. For vowels, it has only two vowels,

eight /ae/ and one /eh/, so that the variation of the C/D model parameters due

to vowels is minimized. The sentence was repeated five times for each of the five

emotions, such as neutrality, anger, happiness, sadness and fear. The speaker was

a professional actress who had theatrical vocal training. She was asked to start

speaking after she had immersed herself in the target emotion.

A six Degree-Of-Freedom (DOF) sensor of the NDI WAVE system was used as

the reference sensor, and six 5-DOF sensors were used for monitoring the move-

ments of articulators, such as the tongue tip (TT), the tongue blade (TB), the

tongue dorsum (TD), the upper lip (LL), the lower lip (UL) and the jaw. The

3-dimensional coordinates of the six 5-DOF sensors were recorded at a sampling

rate of 100 Hz, and speech waveform was simultaneously recorded at a sampling

rate of 22050 Hz. Occlusal plane correction was performed on the articulatory

data of all utterances by using the recording of three 5-DOF sensors attached on

the bite plate. After interpolating missing frames by the piecewise cubic Hermite
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Table 5.1: Confusion between the target emotion and the final emotion label, i.e.,
the best (perceived) emotion. ‘Neu’ is neutrality, ‘Ang’ is anger, ‘Hap’ is happiness,
‘Sad’ is sadness.

Final label
Neu Ang Hap Sad Fear Other

T
ar
ge
t

Neu 5 0 0 0 0 0
Ang 0 5 0 0 0 0
Hap 0 0 5 0 0 0
Sad 0 0 0 5 0 0
Fear 0 0 0 1 4 0
Total 5 5 5 6 4 0

interpolating polynomial, each sensor trajectory was smoothed with a 9th-order

Butterworth low pass filter with a cutoff frequency of 20 Hz. Only tongue tip,

tongue dorsum and lower lip sensors were selected as critical articulatory sensors

for the sake of simplicity of analysis along with jaw contribution.

The best emotion of each utterance was judged by 11 native speakers of Ameri-

can English. After listening to each utterance, the evaluators were asked to choose

(1) the best representative emotion among six categories, such as neutrality, anger,

happiness, sadness and ‘other,’ where ‘other’ was for the case that none of the listed

five emotions was the best, (2) confidence in their judgment, and (3) the strength of

emotion expression. Confidence and strength were evaluated on a five-point Likert

scale. The best emotion was determined by majority voting. If there were multi-

ple emotions with the same evaluation score, the one of higher mean of confidence

scores was chosen. Table 5.1 shows the confusion between the target emotion and

the best (perceived) emotion used for analysis.
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5.3.2 Parameter extraction

The critical articulators should be defined for computing C/D model parameters

pertinent to this study. In this study, the critical articulator for each phone is

determined based on the place of articulation, i.e., the tongue tip for coronals

(/s/,/th/,/t/,/d/), the lower lip for labials (/p/,/m/,/b/,/f/), and the tongue dor-

sum for dorsals (/k/). Although there is no initial consonant for “AT,” the final

consonant /t/ of the previous word “CAT” was used for extracting C/D model

parameters, because “CAT” and “AT” were spoken continuously without pause.

The midpoint between the two iceberg points (for onset and coda) in each

syllable is where the syllable pulse was placed. The excursion of the jaw at the

midpoint was considered to be the height of the syllable pulse, which represents the

syllable magnitude. The excursion of an articulator refers to the shortest distance

between the occlusal plane and the position of the articulator [Bonaventura, 2003].

Then, the “shadow” angle of the triangle was calculated for each utterance in such

a way that there is at least one pair of the close edges of adjacent triangles which

meet with no overlap in between any adjacent triangles [Fujimura, 2000].

Figure 5.2 illustrates the iceberg time points, and syllable centers, syllable

triangles in a neutral speech utterance. The time difference between the onset/coda

pulse, i.e. syllable triangle edge, to the iceberg point of the demisyllable is referred

to as τ (not shown in the figure, but discussed in Section 5.5).

5.4 Analysis on the invariant properties of the

C/D model

This section discusses two invariant properties in the C/D model associated with

emotional speech. One is the strong linear relationship between the excursion of
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Figure 5.2: Syllable triangles constructed for a neutral utterance of “Pam said bat
that fat cat at that mat.” The 1st panel is the speech waveform. The 2nd panel
shows syllable triangles. In the other panels, the red dash-dot line denotes the
iceberg time point for onset; the green dashed line denotes the iceberg time point
for coda; the blue solid line denotes the syllable center point.

the critical articulator and the speed of the articulator at the iceberg, and the

other is the consistency of the “shadow” angle values across utterances spoken

with the same emotion. These invariant properties are examined across emotions

and within emotion.
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Figure 5.3: Example scatter plots for the excursion of the critical articulator (of
consonant) and the articulatory speed at icebergs in CV/VC demisyllables. “Pam”
is used in this plot.

5.4.1 Iceberg point

Visual inspection of the scatter plot (Figure 5.3) shows a strong linear relationship

between the excursion of the critical articulator and the speed of the articulator

at the iceberg point for CV and VC demisyllables, for all utterances regardless of

the emotion condition. For demisyllables, happiness shows the greatest excursion

and the highest articulatory speed, while neutrality shows the smallest excursion

and the lowest articulatory speed. A linear regression analysis (Table 5.2) shows

the F -statistic and p-value for all emotion conditions, including neutrality, for each

CV/VC demisyllable. In Table 5.2, the p-value is significant at α = 0.00005 level

in all cases, indicating that a linear relationship between the two parameters is

maintained across all emotion conditions, not just in neutral speech. This support

of the C/D Model assumption of the linearity of articulatory speed and excursion

is discussed further in Section 5.6.
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Table 5.2: Statistical test on linearity between excursion and speed of the critical
articulator for consonant. ‘**’ denotes that p-value < 0.0000005. ‘*’ denotes that
p-value < 0.00005. N=25.

CV VC
Syllable β1 β2 F p β1 β2 F p

PAM 12.1 -5.1 405 ** 9.8 5.0 92 **
SAID 11.4 2.6 78 ** 7.8 57.7 68 **
BAT 6.8 70.8 98 ** 16.0 -83.2 92 **
THAT 15.0 -35.0 187 ** 13.3 1.4 64 **
FAT 10.1 25.6 238 ** 10.9 10.7 53 **
CAT 12.7 -52.6 48 ** 12.2 12.8 124 **

(T) AT 11.9 23.3 139 ** 10.6 43.8 26 *
THAT 14.9 -26.7 57 ** 13.5 -1.3 88 **
MAT 11.1 -2.0 285 ** 16.5 -66.2 55 **

5.4.2 Shadow angle

Next, we examine the shadow angle within each emotion condition in order to

investigate the invariance of the shadow angle of the syllable triangle.

Figure 5.4 shows the errorbar plot of the shadow angle computed for each

utterance. Note that the angle varies depending on the emotion: 36 degrees for

Neu Ang Hap Sad Fear
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Figure 5.4: Errorbar plot of the “shadow” angle for each emotion.
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neutrality, 32 for anger, 24 for happiness, 30 for sadness, and 30 for fear. The

standard deviation of the angle is smallest for neutrality (0.93), and significantly

greater for the other emotions: 3.31 for anger, 2.67 for happiness, 2.89 for sadness,

and 3.48 for fear. This suggests that for a neutral speech condition, the shadow

angle is fairly consistent, while it is relatively variable for emotional speech, within

emotion as well as across emotions. This is an interesting finding and will be

discussed in more detail in Section 5.6.

5.5 Analysis of emotional variability in the C/D

model

In the C/D Model framework, emotional variation factors are a part of the utter-

ance parameters, which cause variation of syllable magnitudes and IRF parame-

ters (i.e., phase and magnitude of IRF peak). The variation of IRFs parameters,

such as amplification (affected by the syllable magnitude) and timing (from the

onset/coda excitation pulses), affect consonantal gestures. It follows from this that

(i) the time-shifting of the IRFs influences the location of the maximum speed time

points of the critical articulators and (ii) the amplification of the IRFs influences

the speed (i.e., increases the speed) of the critical articulators at the iceberg point.

Since the IRFs are hidden, the present paper analyzes the surface phenomenon

directly. The goal is to understand the effects of emotion to the relative timing

and speed of the iceberg points in syllables.

First, we investigate the effects of emotion on syllable magnitudes. Figure 5.5

shows the syllable magnitudes for each syllable, for each emotion condition. Over-

all, happiness shows the greatest syllable magnitude (jaw displacement), while

anger shows the smallest. It would seem for happiness, the speaker uses greater
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M SAID BAT THAT FAT CAT (T)AT THAT MAT

neutral angry happy sad fearful

Figure 5.5: Syllable magnitude, as jaw excursion, for each mono-syllabic word in
the utterance

jaw movement and for anger, this speaker speaks with a “clenched jaw,” a term

often used in novels to describe expressions of cold anger. Note that although the

syllable magnitude is smaller for anger compared to that of the other emotions,

the speed and excursion of the critical articulators (as shown in Figure 5.3) is not

significantly smaller. This finding hints that the emotional factor, e.g., the one

resulting in the clenched jaw for anger, causes the variation of the relationship

between the syllable magnitude and the amplitude of articulatory gesture (exhib-

ited in the speed of the critical articulators at the iceberg point).

We further investigated the relationship between the speed of critical articulator

and the syllable magnitude for different emotions. Figure 5.6 shows the ratio of the

speed of the critical articulator (at CV/VC iceberg point) to syllable magnitude for

each sample. This figure indicates that the ratio varies significantly depending on

emotion. Note that the syllable magnitude is an indicator of syllable prominence

in the articulatory domain. Also, note that the articulatory speed at the iceberg

point is the maximum speed value of the critical articulator. Overall, the ratio

for emotional speech (anger, happiness, sadness, fear) is greater than the ratio
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Figure 5.6: Ratio of articulatory speed (at the iceberg point for CV/VC demisyl-
lable) to the syllable magnitude for each demisyllable.

for neutral speech, indicating that the ratio of the releasing speed of the critical

articulator to the syllable magnitude is greater when the subject is emotional. This

implies that the speaker tends to articulate with stronger consonantal gestures for

critical articulators when the person is emotionally charged. This tendency is more

consistent across CV demisyllables than VC demisyllables. In sum, results suggest

that the maximum speed of critical articulators given syllable prominence varies

depending on emotion.
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Figure 5.7: The top panel shows the time difference between the onset pulse point
and the iceberg point.

Finally, we examined the time variation (τ) between the onset pulse, i.e., syl-

lable triangle edge, to the iceberg point of CV demisyllable. Note that τ should

be the same as the time difference between the coda and the iceberg point of

VC demisyllable. This information is useful in the sense that it directly relates

the abstract representation for temporal structure of an utterance to the surface

phenomenon of articulatory movements. Figure 5.7 shows box plots of τ for each

syllable. The mean of τ is greater for neutrality than for the other emotions in

all cases, except ‘CAT.’ τ is a function of the shadow angle and the syllable mag-

nitude: A larger shadow angle and greater syllable magnitude cause greater τ ,

which is in line with our previous observations in Figure 5.4 and Figure 5.5. For

example, anger shows a smaller shadow angle and smaller syllable magnitude (due

to idiosyncratic “clenched jaw” of the speaker) than neutrality, so τ of anger is

also smaller than τ of neutrality.
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5.6 Discussion and future works

In the analyses of this paper, we observed that emotion influences the shadow

angle, syllable magnitude, the ratio of the maximum speed of the critical articu-

lator in demisyllables to the syllable magnitude, and τ . One hypothetical reason

for the variation of the shadow angle is that the assumption of the linear depen-

dency between the syllable magnitude and the articulatory syllable duration is not

valid in emotional speech. More specifically, jaw excursion may not be linearly

dependent on the syllable duration in emotional speech, e.g., in clenched jaw for

anger. This may point to the need of more comprehensive representation for the

syllable magnitude in the C/D model framework for emotional speech. Another

hypothetical reason is the conventionally applied assumption that the angles of the

CV demisyllable and the VC demisyllable are identical is not valid in emotional

speech. Bonaventura [2003] has raised the possibility of the two angles’ asymme-

try in the phrase-final elongation. In fact, the symmetry has been assumed for

the simplicity of analysis, not for the theoretic or algorithmic necessity in the C/D

model framework.

According to the C/D model, smaller shadow angle given the same syllable

duration indicates greater syllable magnitude, thereby greater jaw excursion and

faster maximum speed of critical articulator. This finding is in line with the faster

articulatory movement and the greater movement range for happiness reported in

previous studies [Kim et al., 2010, Lee et al., 2005, Kim et al., 2011a, Lee et al.,

2006].

It should be noted that the variation of these parameters mentioned above is

not independent from each other. The shadow angle is a function of the syllable

magnitude and the time gap between the closest edges of adjacent syllable trian-

gles. The maximum speed of the critical articulator is a function of the IRFs, which
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is affected by the syllable magnitude. τ is also a function of the IRFs. Hence, a

joint analysis and modeling for the variation of these parameters as a function of

emotion, is important to represent emotional variability in the C/D model frame-

work. An articulatory re-synthesis experiment with emotion transformation can be

useful for evaluating the joint model. These constitute future work to be explored.
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Chapter 6

Rich inversion using co-registered

multimodal speech production

data

6.1 Introduction

Recently, using articulatory information for recognition task has been drawing

attention in the information processing for speech signal. Previous studies have

shown that using speech articulatory signals can improve accuracy of various auto-

matic recognition, e.g., linguistic and para-linguistic decoding tasks. For exam-

ple, using the direct recording of articulatory signals on top of standard speech

acoustic features, i.e., Mel-Frequency Cepstral Coefficients (MFCCs), improved

phone recognition accuracy significantly [Zlokarnik, 1995]. Also, even predicted

articulatory positions were useful to improve various recognition tasks, e.g., for

phone [Ghosh and Narayanan, 2011], emotion [Kim et al., 2012b], speaker ID [Li

et al., 2013a, 2015], palatal shape [Li et al., 2013b], and Parkinson’s condi-

tion [Hahm and Wang, 2015] of the speaker. Using articulatory information was

also useful for the robustness against channel noise for speech recognition [Mitra

et al., 2011].

One of the limitations for the inversion modeling lies on the difficulty of obtain-

ing high quality of both acoustic and articulatory signals. Inversion modeling
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requires multimodal data, both speech acoustic signal and articulatory signal.

However, the state-of-the-art technologies for articulatory recording can offer only

limited articulatory information. For example, ElectroMagnetic Articulography

(EMA) offers the 3-dimensional (3D) coordinates of a handful of anatomical points

monitored by pellets. Real-time Magnetic Resonance Imaging (rtMRI) [Narayanan

et al., 2004] provides the complete view of a plane with fast frame rate, but simul-

taneous recording of speech audio involves scanning noise. Simultaneous recording

using multiple data acquisition modalities is not often feasible due to technological

limitations or compatibility issues such as in the case of EMA and rtMRI.

This study proposes a methodology of using co-registration technique for com-

bining information of multiple modalities (e.g., EMA and rtMRI). The co-registerd

data will contain (i) clean speech audio (from EMA dataset), (ii) 3D tracking of

a handful of anatomical landmarks on the vocal tract (from EMA) and (iii) the

complete view of the upper airway (from rtMRI). We used the EMA and rtMRI

datasets collected from the same speakers with the same stimuli, but in different

time. The co-registered data from the two datasets was created by using recently

proposed temporal alignment technique, namely Joint Acoustic and Articulatory

Temporal Alignment (JAATA) [Kim et al., 2013]. For rtMRI data, linguistically

important articulatory parameters will be extracted in batch using a robust vocal

tract segmentation algorithm we developed. The advantage of learning the inver-

sion mapping on the co-registered data is two folds: (i) The inversion model is

capable of predicting various kinds of articulatory information, and (ii) the model

is more useful for real applications, because clean speech audio (from EMA) can

be directly usable as input signal (Speech audio in rtMRI dataset suffers from

scanning noise or artifact from noise cancellation).
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The present paper examines the capability of Deep Neural Network (DNN)

regression model for the estimation of rich vocal tract information, i.e. vocal

tract parameters obtained from co-registered data, from speech waveform. DNN

has been shown satisfactory prediction accuracy for learning highly complicated

relationship between parallel feature streams. The relationship between acoustic

and rich vocal tract data is highly non-linear and complex, so DNN fits this problem

well. We explore various structures of DNN for more accurate estimation of the

vocal tract parameters. For an application, we perform preliminary test if the

predicted rich articulatory information can boost emotion classification accuracy.

This study is organized as follows: Section 6.2 offers a summary of previous

work on acoustic-to-articulatory inversion. Section 6.3 describes the co-registration

method. Section 6.4 describes the articulatory parameter extraction method for

the MR images Section 6.5 presents our rich inversion modeling scheme. Section 6.6

offers experimental setup. Section 6.7 discusses the prediction accuracy of the rich

inversion model. Section 6.8 examines the benefits of using the predicted rich

articulatory information on emotion classification. Section 6.9 concludes with the

summary and future works.

6.2 Related works

Previous studies have evaluated various statistical models for acoustic-to-

articulatory inversion. The inversion models in literature include a Gaussian

mixture model [Toda et al., 2008], the Hidden Markov Model combined with

maximum-likelihood parameter generation algorithm [Youssef et al., 2011], a gen-

eralized smoothness criterion [Ghosh and Narayanan, 2010], a DNN [Uria et al.,

2011], a Recurrent Neural Network [Liu et al., 2015, Najnin and Banerjee, 2015],
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a codebook [Ouni and Laprie, 2005], and a dynamic Kalman smoothing [Özbek

et al., 2011]. These studies have performed inversion using EMA data, e.g., the

MOCHA-TIMIT corpus [Wrench, 2000] and the MNGU0 corpus [Richmond, 2009].

However, EMA data contain spatially limited articulatory information (3-D coor-

dinates of a handful of anatomical points), hence the articulatory information

predicted in these studies is not rich.

The present paper focuses on another important problem for inversion, that is

improving the amount of information to be predicted, aka. rich inversion problem.

Training rich inversion model requires collecting rich articulatory information. The

challenge for collecting rich articulatory information is technical limitations or

incompatibility for using multiple modalities simultaneously. Although there was

a success for ultrasound and EMA [Aron et al., 2006], and ultrasound and facial

video [Hueber et al., 2012], it is still not feasible for many other modalities, e.g,.

EMA and rtMRI. The present paper consider an alternative approach for this case

by collecting data using individual modalities, then registering the two collections

afterwards. The registration algorithm we have developed will be discussed in the

following section.

6.3 Co-registeration

We used the EMA and rtMRI datasets of one female speakers (denoted as ‘F1’

in the corpus) in the USC-TIMIT corpus [Narayanan et al., 2014]. The EMA

dataset contain the three-dimensional coordinates of six articulatory sensors and

simultaneously recorded clean speech audio, while the rtMRI dataset contain the

Magnetic Resonance (MR) images of the upper airway and simultaneously recorded

and noise-cancelled speech audio. The frame rates of the EMA data and MR
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images are 100 Hz and 23.180 Hz, respectively. See [Narayanan et al., 2014] for

more details of the datasets.

Initially, identical utterance pairs from the two datasets are temporally aligned

as follows: First, we created word sequences (transcription) for each sentence

manually by listening to the speech audio. Second, we selected 411 utterance

pairs whose word sequences are identical in EMA and rtMRI datasets. Third, we

performed a temporal alignment for each pair of utterances using Joint Acoustic-

Articulatory based Temporal Alignment (JAATA) method [Kim et al., 2013]. This

algorithm utilizes both acoustic and articulatory information for aligning two fea-

ture streams from different modalities. Specifically, this iterates dynamic time

warping and automatic feature extraction (from MRI data) in order to find an opti-

mized alignment map. We evaluated the temporal alignment accuracy of JAATA

based on the Averaged Word Boundary Distance (AWBD); AWBD is the root mean

square value of the difference between true and estimated word boundaries in EMA

audio. We considered word-final-time stamps that were automatically generated

by forced alignment as the true word boundaries. For each of EMA and rtMRI

audio, we used an adaptive forced aligner, SailAlign [Katsamanis et al., 2011]. The

estimated word boundaries were obtained by mapping the word boundaries of MRI

audio onto EMA data, using the alignment output of JAATA.

Finally, co-registered data is obtained by JAATA on a well-behaving utterance

pairs. In order to obtain high quality of registered data, we performed temporal

alignment twice: The first batch on the entire pairs, then the second batch on

a subset after discarding poorly aligned pairs in the first batch. It is noted the

automatic feature extraction in JAATA is dependent on the temporal alignment

accuracy. Hence, discarding poorly aligned pairs can improve the alignment per-

formance significantly. The utterance pairs were discarded for the second batch
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Table 6.1: AWBDs of JAATA and baseline system on two sets of data: the entire
utterance pairs (denoted by ‘All’) and a subset of utterance pairs (denoted by
‘Subset’). The unit of AWBD value is msec.

All Subset
Baseline 105.5 59.0
JAATA 100.4 48.6

if AWBDs of both JAATA and baseline system were equal to or greater than a

threshold, that is 2 × MR frame period (2 / 23.180 = 86.28 msec). Finally, 332

utterance pairs were selected for co-registered data.

The performance of JAATA was compared with the performance of a base-

line system, that is dynamic time warping on the same acoustic features (13-

dimensional MFCCs). Table 6.1 shows AWBDs for each batch and each alignment

method. JAATA shows lower AWBD than the baseline on the entire utterance

pairs. The improvement ratio by using JAATA than using the baseline system is

even greater on the (cleaned) subset of utterance pairs: 17.6% lower AWBD for

F1 and 31.6% lower AWBD for M1. The improvement ratio by using JAATA than

using the baseline system is even greater on the (cleaned) subset of utterance pairs:

17.6% lower AWBD for F1. This improvement ratio and the boundary error value
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Figure 6.1: AWBDs of the baseline system (DTW + MFCCs) and JAATA for each
utterance
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are comparable to the cases when we used more strictly selected utterance pairs

in previous studies [Kim et al., 2013, 2014c]. Figure 6.1 shows the AWBDs of the

baseline system and JAATA for each utterance of the subset, indicating that in

most cases, JAATA is capable of reducing significant temporal alignment error of

the baseline system.

6.4 MR image parameterization

Rich vocal tract parameters were extracted automatically from the co-registered

articulatory data. The rich information examined in this study comprises (i) 2D

coordinates of six anatomical points (from EMA), (ii) distance function of the

oropharyngeal airway (from rtMRI), (iii) lips and larynx positions (from rtMRI),

(iv) vocal tract length and (v) oropharyngeal airway shape. A robust MR image

segmentation algorithm [Kim et al., 2014b] was used in order to perform automatic

tissue-airway segmentation in the oropharyngeal region. This algorithm initially

estimates an oropharyngeal airway path between the outer and inner tissue-airway

boundary robustly, using dynamic programming algorithm on smoothed the cost

function. We computed the distance function by measuring the Euclidean distance

between outer and inner tissue-airway boundaries. We considered the initial and

final points in the oropharyngeal region as the lip and larynx positions, respectively.

We measured the vocal tract length for each MR image by computing the sum of

geodesic distance between adjacent center points of the upper airway. Finally, we

computed the upper airway shape by measuring acute angles of three neighboring

points on the center of the upper airway.
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6.5 Rich inversion model

This study examines the capability of a DNN regressor for the rich inversion. We

followed a conventional way of training the DNN regressor [Uria et al., 2011]. We

initialized the weights of DNN by pre-training of a Deep Brief Network (DBN)

model, followed by tuning the weights using stochastic gradient descent and the

backpropagation algorithm. The DBN is a stacked Restricted Boltzmann Machines

(RBMs), where a Gaussian-Bernoulli RBM and Bernoulli-Bernoulli RBMs are used

for the bottom layer (visible units to hidden units) and higher layers (hidden

units to hidden units) of the DBN, respectively. For efficient DBN training, we

used Contrastive Divergence (CD) learning [Hinton, 2002] which typically reaches

to a local minimum of the objective function (i.e., mean-squared-error form for

regression) faster than the maximum likelihood learning. In order to minimize

overfitting problem due to the limited amount of training data, we used the L2

regularization during DNN training. A linear regressor was used for the top layer

of DNN.

Figure 6.2 shows the proposed training process for the inversion model.
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Figure 6.2: Rich inversion model training and testing processes
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6.6 Experimental setup

The input (acoustic features) and output (articulatory features) features for the

DNN regressor were created as follows. For acoustic features, we initially computed

41-dimensional acoustic features: 40 Linear Spectral Frequencies (LSFs) [Strube,

1980] and the gain of residual signal, which were extracted with a window size of

25 msec and a window shifting of 10 msec. In order to offer contextual information

of acoustic feature stream, we created a context feature vector by concatenating

5 successive acoustic frames where the present frame corresponds to the third

frame. Therefore, each context feature vector spans a period of 50 msec. We have

compared 50-msec context and 100-msec context [Uria et al., 2011], but there was

not significant difference in terms of prediction accuracy.

EMA data and the vocal tract parameters extracted using automatic process

in Section 6.4 can be noisy. Hence, we discarded noisy feature frames empirically

in order to minimize their effect as follows: We discarded frames if any articula-

tory feature values in the frames were outside ± 3 × standard deviation from their

means. The means were computed from the training set. Finally, the input (acous-

tic) and output (articulatory) features are normalized by z-scoring, where the mean

and standard deviation of the training set were used for the normalization.

The co-registered data splitted into the training set (200 utterances, 60% of the

total), the development set (66, 20%) and the test set (66, 20%). We have tested 6

different structures of DNNs: 2 or 3 layers of the same number of neurons, and 200

and 800 neurons for each layer. The optimal values of hyper-parameters, such as

learning rate, momentum, the number of epochs, batch size, and L2 regularization

parameter, for model training were empirically chosen based on the Pearson’s

correlation coefficient on the development set.
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6.7 Results

Initially, we compared the prediction accuracy of two approaches: (i) training

inversion model using only EMA parameters and (ii) training the model using

rich articulatory parameters. The goal of this experiment is to check the benefits

of offering richer articulatory information into the network in terms of prediction

accuracy.

Figure 6.3 shows the prediction accuracy in terms of the average of Pearson

correlation. Overall, training with rich articulatory features shows higher accuracy

than doing with only EMA features. This suggests that the model is capable of

using information from non-EMA features to predict EMA features better, indicat-

ing the benefit of using rich articulatory data for acoustic-to-articulatory inversion

for higher prediction accuracy.

Next, the predicted articulatory paramters of the best DNN system (2 hidden

layers with 800 neurons on each layer) were smoothed using a Butterworth low

pass filter in order to improve the accuracy in terms of Pearson’s correlation.

The trajectories of the articulatory parameters are smooth and slowly varying in
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Figure 6.3: Averaged Pearson correlation coefficient (%) between true and pre-
dicted parameters of EMA, computed for different DNN structures and feature
sets (only EMA parameters or entire rich articulatory parameters for output) for
model training
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Table 6.2: The Pearson’s correlation coefficient (%) of each articulatory parameters
for the best DNN system before LPF (denoted by ‘None’) and after LPF (denoted
by ‘LPF’). ‘Freq.’ denotes the cut-off frequency of LPF.

TTx TTy TBx TBy TDx TDy ULx ULy LLx LLy LIx LIy Mean
None 76.8 84.7 77.8 85.9 79.1 76.8 56.3 53.8 72.0 75.1 69.5 83.3 74.3
LPF 80.2 87.3 81.2 88.6 82.2 80.5 61.4 57.3 75.8 77.4 77.4 85.6 77.5
Freq. 4.53 5.28 4.50 5.14 4.50 5.57 3.09 4.43 3.92 7.02 4.17 5.72

nature due to physical constraints on the articulators. Also, temporal smoothing

has been useful for achieving higher prediction accuracy in literature [Richmond,

2002, Toda, 2004, Uria et al., 2011]. The optimal cut-off frequency and the order

of the filter was tuned on the development set. Finally, the Pearson’s correlation

coefficient of the best system (DNN with 800-800 neurons) is improved to 77.5%

by the smoothing. Table 6.2 shows the optimal cut-off frequency computed for

each dimension of the EMA parameter set, and Pearson’s correlation before/after

the smoothing.

Next, we examined the prediction accuracy for each subset of the other artic-

ulatory features after the smoothing. The articulatory parameters are categorized

into (i) 2D coordinates of six anatomical points (from EMA), (ii) distance function

of the oropharyngeal airway (from rtMRI), (iii) lip protrusion (from rtMRI), (iv)

laryngeal height (from rtMRI), (v) vocal tract length and (vi) oropharyngeal airway

Table 6.3: The (averaged) Pearson’s correlation coefficient (%) of each subset of
articulatory parameters after smoothing. ‘EMA’ refers to parameters of anatomical
point tracking; ‘DF’ refers to parameters of distance function. ‘LP’ refers to lip
protrusion parameter. ‘LH’ refers to laryngeal height parameter. ‘VTL’ refers
to the parameter of the vocal tract length. ‘SHP’ refers to the parameters of
oropharyngeal airway shape.

EMA DF LP LH VTL SHP
77.5 68.8 37.2 10.4 55.6 14.0

143



shape. Table 6.3 shows the prediction accuracy in terms of the average of Pearson

correlation of F1’s data as an example. First, prediction accuracy is highest on

the EMA parameters. This is expected, because EMA parameters are free from

any temporal alignment error and parameterization error. Overall, the Pearson’s

correlation on the distance function is high (68.8%). In particular, the averaged

correlation in the second-half of the distance function parameters is 66.5%. This

is encouraging result, because the distance function offers the information of the

vocal tract shaping for the locations that are hard to be monitored using EMA

(e.g., back of the tongue). Vocal tract length parameter is also well predicted

(55.6%), which is also information that the EMA data cannot offer.

However, the proposed system is not capable of well predicting the parameters

of lip protrusion, laryngeal height and upper airway shaping. Although the lip

protrusion parameter (‘LP’ in Table 6.3) was not well predicted (Pearson’s corre-

lation is 37.2%), more accurate estimation of such information is still provided by

the horizontal movements of the upper and lower lip, denoted by ULx and LLx

in Table 6.2, respectively; The correlation values for ULx and LLx are 61.4% and

75.8%, respectively. The reasonably predicted upper airway shaping parameters

(correlation is greater than 0.2) are limited to only 2-th to 7-th parameters, which

are located from the lips to the alveolar ridge. This result indicates that the pro-

posed model is not capable of predicting the oropharyngeal airway shape well.

Other representation and prediction methods need to be explored in future study.

6.8 Application to emotion classification

This section explores an application of the rich inversion model for computa-

tional paralinguistics, in particular emotion classification. Specifically, we examine
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whether the predicted rich articulatory parameters can boost the accuracy of emo-

tion classification. This section also examines the prediction capability on the

EMA data of a different speaker.

6.8.1 Experimental setup

The data of a female speaker JR, in Chapter 4, is selected, because the number of

utterances is the greatest, compared to the other two speakers’ data. This contains

470 speech utterances of five acted emotions: neutrality, hot anger, cold anger,

happiness and sadness. See Section 4.2 in Chapter 4 for the detailed description

of the data collection, post-processing, and emotion quality evaluation.

We will examine the benefit of using predicted articulatory information on top

of acoustic features (directly computable from speech audio). The acoustic feature

set was extracted using the openSMILE feature extractor [Eyben et al., 2010]. This

comprises functionals of Low-Level Descriptor (LLD), i.e., prosodic, spectral, voice

quality and voice source features. In total, 6374 features were initially extracted

for each utterance.

The input acoustic features (LSFs) for DNN were computed using the same

configuration in Section 6.6. Since speech region is of interest, we performed Voice

Activity Detection (VAD) based on extracted f0 feature; The frames of non-zero

f0 value with 50-msec margin were considered as speech region. The articulatory

parameters were, then, estimated using the best DNN system (2 hidden layers with

800 neurons on each layer) in Section 6.7.

Some functionals are highly correlated, noisy and not-much useful for discrimi-

nating emotion. So, we performed feed-forward feature selection using 2-fold cross-

validation on the training set. The Support Vector Machine (SVM) with a radial

basis function kernel was used for the emotion classifier. Eighty percent of data
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Table 6.4: The Pearson’s correlation coefficient (%) of each articulatory parameters
on JR’s data.

TTx TTy TBx TBy TDx TDy ULx ULy LLx LLy LIx LIy Mean
36.4 35.3 27.2 65.6 38.3 62.3 33.0 9.6 42.3 54.0 33.1 58.0 41.3

was used for training the SVM classifier, and the remaining 20% was used as test

set in a five-fold cross-validation setup.

6.8.2 Results

Table 6.4 shows the Pearson’s correlation between true EMA sensor parameters and

predicted parameters using the best DNN, after smoothing. Overall, the prediction

accuracy decreases significantly for the entire dimension, which indicates the needs

for speaker normalization or speaker-independent prediction scheme. This will be

discussed in Section 6.9.

Next, we examined the usefulness of the predicted rich articulatory informa-

tion for improving the accuracy of emotion classification. Table 6.5 shows the

unweighted classification accuracy on different set of features. The by-chance

accuracy is 24.5%. the predicted articulatory features show lower classification

accuracy on the test set than the baseline features. However, the best accuracy

was achieved by the fusion system which improves the accuracy by 7.9% from

the baseline features. McNemar’s test result indicates this improvement of perfor-

mance from baseline system is statistically significant (χ2 = 25.1, p<5e-06). This

Table 6.5: Unweighted accuracy (%) of emotion classification. ‘Baseline’ is for the
baseline openSMILE acoustic feature set; ‘Arti’ is for the predicted rich articulatory
feature set; ‘Fusion’ is for the feature-level fusion of the two sets.

Baseline Arti Fusion
70.6 69.8 78.5
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result suggests that the predicted rich articulatory information contains comple-

mentary information than what acoustic features offer, resulting in boosting the

emotion classification accuracy.

6.9 Conclusions and future works

This study explores a framework of acoustic-to-articulatory inversion where rich

articulatory information from multiple modalities (EMA and rtMRI) is estimated.

First, the optimal temporal alignment map between EMA and rtMRI data is

obtained using JAATA, which generates more accurate alignment map than using

DTW on MFCCs. Next, articulatory parameters from EMA and rtMRI, as well as

acoustic features from clean speech audio of EMA are used for training the inverse

mapping function. The proposed method of using DNN is capable of estimating

articulatory parameters for EMA parameters, distance function for the oropha-

ryngeal airway and the frame-level vocal tract length well, but not for the lip

protrusion, laryngeal height and airway shaping parameters.

It is encouraging that the predicted articulatory parameters are capable of

improving emotion classification accuracy even without speaker normalization.

Speaker normalization [Afshan and Ghosh, 2015] and/or adaptation [Saon et al.,

2013] may be able to improve the accuracy of articulatory prediction. Also, the

state-of-the-art performance of inversion has been achieved by using recurrent neu-

ral network [Liu et al., 2015, Najnin and Banerjee, 2015], which has been tested

on EMA data only. Since the recurrent neural network learns the dynamics of

feature sequences, which is also important nature of the vocal tract shaping, it is

worth to try on the rich articulatory parameters. Finally, a better representation

of the articulatory parameter space can be explored. Embedding to a hidden space
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using non-linear canonical correlation analysis [Andrew et al., 2013] or restricted

Bolzmann machines [Ngiam et al., 2011] has shown its success on improving the

inverse mapping. Exploring these methods for our rich inversion framework is a

part of our on-going works.
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Jean Vroomen, René Collier, and Sylvie JL Mozziconacci. Duration and intonation
in emotional speech. In Proceedings of Eurospeech, 1993.

J Westbury. X-ray Microbeam Speech Production Database User’s Handbook. 2005.

Carl E. Williams and Kenneth N Stevens. Emotions and speech: Some acoustical
correlates. The Journal of the Acoustical Society of America, 52:1238, 1972.

Alan A. Wrench. A multichannel articulatory database and its application for
automatic speech recognition. In Proceedings of International Seminar of Speech
Production, pages 305–308, 2000.

Yi Xu and Suthathip Chuenwattanapranithi. Perceiving anger and joy in speech
through the size code. In Proceedings of the International Conference on Pho-
netic Sciences, pages 2105–2108, 2007.

S. Yildirim, M. Bulut, C. M. Lee, A. Kazemzadeh, C. Busso, Z. Deng, S. Lee,
and S. S. Narayanan. An acoustic study of emotions expressed in speech. In
Proceedings of Interspeech, pages 2193 – 2196. ISCA, 2004.

Atef Ben Youssef, Thomas Hueber, Pierre Badin, and Gérard Bailly. Toward a
multi-speaker visual articulatory feedback system. In Proceedings of Interspeech,
pages 589–592. ISCA, 2011.

162



J. Yuan and M. Liberman. Speaker identification on the scotus corpus. In Pro-
ceedings of Acoustics, pages 5687 – 5690, 2008.

Feng Zhou and Fernando De la Torre Frade. Canonical time warping for alignment
of human behavior. In Advances in Neural Information Processing Systems
Conference (NIPS), December 2009.

Igor Zlokarnik. Adding articulatory features to acoustic features for automatic
speech recognition. The Journal of the Acoustical Society of America, 97(5):
3246–3246, 1995.

163


	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Abstract
	Introduction
	Overview and goals
	Background
	Direct articulatory measurements
	Previous studies on emotional speech production

	Dissertation outline

	Data processing technologies
	Automatic parameterization of real-time MRI data
	Introduction
	Methods
	Construction of grid lines
	Lips and Larynx detection
	Airway-path detection
	Airway-tissue boundary segmentation
	Evaluation of estimated airway-tissue boundaries
	Conclusion and future work

	Co-registration of real-time MRI and EMA datasets
	Introduction
	Relation to prior work
	Data
	Spatial alignment
	Temporal alignment
	Results
	Benefits of co-registered data
	Discussion
	Conclusions and future works


	Vocal tract shaping of emotional speech
	Introduction
	The USC-EMO-MRI corpus
	Speech stimuli
	Data acquisition and processing
	Evaluation of emotion quality

	Methods
	MR image parameterization
	Principal feature analysis
	Computing the vocal tract length

	Results
	Emotional variations of principal features
	Emotional variations of the vocal tract length

	Discussion

	Articulatory variability, linguistic criticality, and emotion
	Introduction
	Data
	Linguistic criticality of articulators
	Landmarks-based analysis on syllable segments
	Selection of syllables
	Extraction of articulatory parameters
	Statistical analysis of articulatory kinematics
	Analysis at the landmark points

	Articulatory analysis at phonetic targets
	Experimental Setup
	Inter-emotion variability
	Within-emotion variability

	Simulation experiment
	Description of articulatory model
	Synthesis of non-critical trajectories
	Results

	Discussion and Conclusions

	Invariant properties and variation patterns in emotional speech production
	Introduction
	Iceberg metric
	Methods
	Data
	Parameter extraction

	Analysis on the invariant properties of the C/D model
	Iceberg point
	Shadow angle

	Analysis of emotional variability in the C/D model
	Discussion and future works

	Rich inversion using co-registered multimodal speech production data
	Introduction
	Related works
	Co-registeration
	MR image parameterization
	Rich inversion model
	Experimental setup
	Results
	Application to emotion classification
	Experimental setup
	Results

	Conclusions and future works

	Reference List

