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Abstract

Empathy is an important psychological process facilitating human interaction

through emotional simulation, perspective taking, and emotion regulation mech-

anisms. Higher empathy level of the care-provider relates to better outcome of

interactions in scenarios such as psychotherapy and medical care. However, tra-

ditional manual assessment of empathy is not scalable in practice, leaving the

quality of services largely unknown. Computational modeling of empathy is a

novel approach providing useful information to aid human decision making.

Empathy is a latent process that is difficult to measure directly. Human expert

assesses empathy level through the observation of human interactive behaviors.

Taking addiction counseling as an example scenario, this dissertation analyzes ther-

apist empathy computationally based on the observed behavioral signals. Specifi-

cally, this dissertation proposes a fully automatic system to predict expert assess-

ment of empathy based on modeling of therapist language cues. This system

integrates Voice Activity Detection, Diarization, Automatic Speech Recognition,

and speaker role matching modules to obtain machine generated transcripts of

therapist language. It then employs Natural Language Processing methods includ-

ing Maximum Entropy model, Maximum Likelihood model, and decoding lattice

rescoring to estimate empathy. It finally predicts expert assessment by integrating

the output of these methods.

xi



This dissertation also proposes modeling of empathy through prosodic, speech

rate entrainment, and turn-taking cues. These cues are correlated with expert

assessment of empathy, including interaction session level joint distribution of a

group of prosodic features; behavioral entrainment cues based on averaged turn-

by-turn similarity of speech rates; and turn taking cues based on therapist and

client speech ratio.

Experiments of empathy assessment prediction are conducted on audio record-

ings of real addiction counseling sessions in a particular treatment type named

Motivational Interviewing. Results of the experiments demonstrate that the pro-

posed automatic system and the multimodal cues can predict expert assessments

of empathy in a machine-learning framework. Fusion of these cues improves the

prediction accuracy. These findings suggest the feasibility of quantifying empathy

via automated behavioral analysis, and may offer new insights in understanding

empathy in human interactions.
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Chapter 1

Introduction

1.1 Background

In this section we review the background of empathy modeling [1].

1.1.1 Definition of Empathy

Usage of the word “empathy” in the psychology literature started in 1909 with

Titchener’s translation of the German term “Einfühlung” [2] in his 1909 lecture

notes on experimental psychology.

The term of empathy takes multiple interpretations. Hoffman defined it as

“an affective response more appropriate to another’s situation than one’s own” [3],

while Batson listed eight distinct phenomena that are all named empathy [4]. The

discussion of empathy’s definition continues in a recent summary by Cuff et al. [5].

Despite conceptual variations, consensus on the understanding of empathy consists

of three major subprocesses [4, 6, 7], including:

(a) emotional simulation — an affective response which often entails sharing the

emotional state;

(b) perspective taking — a cognitive capacity of knowing another’s internal states

including thoughts and feelings;

(c) emotion regulation — regulating personal distress from the other’s pain to

allow compassion and helping behavior.
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Interdisciplinary research on empathy modeling has broadened and deepened

the understanding of empathy. Preston suggested that a Perception-Action Model

has the explanatory power to integrate different views of empathy into a common

mechanism framework. The model states that “attended perception of the object’s

state automatically activates the subject’s representations of the state, situation,

and object, and the activation of these representations automatically primes or

generates the associated autonomic and somatic responses, unless inhibited” [8].

Decety and Jackson modeled empathy as “parallel and distributed processing in

a number of dissociable computational mechanisms”, including shared neural rep-

resentations, self-awareness, mental flexibility, and emotion regulation, which are

supported by specific neural systems [6]. De Vignemont and Singer argued that

empathic brain response may be contextual rather than automatic, modulated by

the appraisal processes, taking into account factors such as information about the

emotional stimuli, their situative context, characteristics of the empathizer and

his/her relationship with the target [9].

1.1.2 Importance of Empathy

Acquired in evolution [8, 10], empathy likely serves to motivate sympathetic,

helping, cooperative, and prosocial behaviors, and facilitates social communica-

tion [7, 9]. In the context of psychotherapy, Elliott et al. have conducted a meta-

analysis that revealed an overall positive correlation of 0.31 between therapist

empathy and client outcome. Thus empathy is among the most consistent predic-

tors of psychotherapy outcome [7].

In clinical fields of oncology and general medical practice, positive correlations

between empathy measures and patient outcomes have also been found in meta-

analyses [11,12]. Moyers and Miller also summarized the importance of empathy in
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psychotherapy, and proposed that empathic listening skills should be emphasized in

hiring and training therapists [13]. Concerning whether empathy may be taught, a

recent review concluded that empathy training tends to be effective in general [14].

1.1.3 Challenges

There are still important challenges in promoting empathy in clinical settings.

Empathy is in part an internal mental process, which is difficult to gauge directly

by observation. For example, there are four steps in each “empathy cycle” [15]:

(1) client expression of experience; (2) therapist empathic resonation; (3) therapist

expressing empathy; (4) client perceiving empathy, and continue to (1).

Measurement of empathy relies on human perception and subjective assess-

ment, either by the client, the therapist, or an outside reviewer [7]. These mea-

sures vary from the true psychological process, thus being fundamentally a prob-

abilistic estimate with associated statistical inaccuracy. They may also be biased,

exacerbating the problem of coder-reliability. Human ratings also tend to be time

consuming, and hence is prohibitive for large scale measurement of therapist empa-

thy [16]. The gain of empathy from training may decay over time, while day-to-day

monitoring and reinforcement of empathy by human experts is generally out of

reach. In addition to being relatively slow, human ratings may not be sufficiently

sensitive to capture particular nuanced and latent facets of the empathic process

(e.g., synchrony). As a result, research on how to decode human behaviors with

respect to empathy expression, perception and action is still in its early stage,

partly due to physical constrains on acquiring large amounts of data of therapist

behaviors against empathy evaluations.
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1.1.4 Empathy and Computation

Computational methods provide potential solutions to the aforementioned prob-

lems with scale and specificity. Recent technological advances have enabled low-

cost, large scale, and widely deployable audio, visual, and physiological sensing

abilities; concurrent advances in signal processing and machine learning techniques

have made possible for computers to analyze complex human behaviors from vast

amounts of diverse multimodal data. If automated computational methods are

able to discern empathy, the advantages are clear: machines provide objective

assessments and enable unconstrained sensing and computational bandwidth to

support scalability.

The method of Behavioral Signal Processing (BSP) [17] provides a holistic view

for the behavior modeling problem in a computational framework. It studies “mea-

surement, analysis, and modeling of human behavior signal that are manifested in

both overt and covert multimodal cues (expressions), and that are processed and

used by humans explicitly or implicitly (judgments and experiences)”. Following

such a framework, this dissertation focuses on studying the multimodal behavioral

cues that convey therapist empathy.

Figure 1.1 illustrates the general idea of the framework. Latent mental process

such as empathy modulates the multimodal expressions, which are perceived and

interpreted by the interlocutor. The perceived cues then influence the latent mental

process of the interlocutor. The behavioral cues in the expressions are also per-

ceived by the human expert being an observer. Computational modeling of these

cues underpins automatic assessment of empathy; and human expert assessments

are employed to train the computational model as well as to examine the outcome

of the automatic processing. Finally, automatic processing provides feedback to

human expert, and produces behavioral informatics about the interaction.

4



Figure 1.1: Illustration of the general framework of Behavioral Signal Processing

1.2 Dissertation Overview

This dissertation proposes modeling multimodal behavioral cues to predict expert

assessment of therapist empathy. It models mainly three types of behavioral cues

including prosodic, lexical, and speech rate entrainment cues.

1.2.1 Prosodic Cues

Prosody refers to the intonation of speech rather than the verbal content. It

describes “how one says it” instead of “what one says”, conveying rich emotional

and communicative cues. Several types of prosodic features are extracted from

the speech signal including energy, pitch, duration, jitter, and shimmer. These

features depict the property of prosody in short intervals. The research question

is to map time streams of prosodic features to session level assessment.

This dissertation proposes quantizing prosodic cues into three levels based on

the averages in speech segments [18]. The quantization transforms real valued
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features into discrete levels that are easier to model and interpret. The speech seg-

ments serve as cognitively coherent units of expression. Such constrains on time

and feature range enable an analysis of session level joint distributions of prosodic

cues. The joint distributions, representing an overall property of prosodic cues, are

examined for their relation to empathy. Such a modeling approach allows back-

ward interpretation of the findings, which may be pointing to certain meaningful

categories of prosodic patterns. For example, experiment shows medium duration,

high pitch, and high energy segments by the therapist are linked to lower empathy.

1.2.2 Lexical Cues in the “Sound to Code” System

Lexical cues are modeled through the property of language use by the therapist.

Compared to prosody, language is more structured and encodes more abstract

semantic information. This dissertation proposes employing competing language

models of high vs. low empathy in three different methods [19].

The first method uses Maximum Entropy model to formulate the posterior of

empathy for each speech utterance. N-grams in high vs. low empathy utterances

are used as feature functions. Model parameters are optimized based on the train-

ing data. The second method uses Maximum Likelihood language model of high

vs. low empathy. Posterior of empathy is derived based on the likelihoods following

the Bayesian theorem. In addition, when the language is derived from Automatic

Speech Recognition, high vs. low empathy language model rescoring are applied to

the decoding lattice, in order to raise empathy relevant words in the lattice, which

may not appear in the original best path due to the lower likelihood based on a

generic language model. Scores of the averaged N-best paths from the rescored

high vs. low empathy lattices are used as features indicating empathy.
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These methods evaluate empathy on the utterance level. In the experiment

only session level high vs. low empathy labels are available. One solution is to use

all utterances of therapist in high empathy sessions as positive samples, and vice

versa. In the testing case, utterance level scores of empathy are averaged to derive

session level prediction.

In practice, obtaining therapist language by human transcription is a costly pro-

cess. An automatic system directly taking audio recording as the only input would

enable large scale processing of psychotherapy. The system outputs an empathy

assessment in lieu of an empathy code given by a human coder. A prototype system

is proposed connecting several speech processing front-end modules including Voice

Activity Detection (speech vs. non-speech), Speaker Diarization (group speech seg-

ments by the same speaker), Automatic Speech Recognition (transcription), and

speaker role matching(therapist or patient). The decoded therapist language is

then used to predict empathy assessment.

1.2.3 Speech Rate Entrainment

Entrainment refers to the phenomena that behaviors of interlocutors become more

similar or coordinated as the interaction proceeds. It is a psychological process

closely tied to empathy, following the theories of Perception-Action-Link and mir-

ror neurons. Clinical evidences show that stronger empathy relates to more promi-

nent entrainment.

Entrainment is manifested through multimodal behaviors. This dissertation

proposes quantifying entrainment from one aspect — speech rates of the inter-

locutors [20]. ASR-derived forced speech-text alignment provides word level time

marks. Speech rates are then computed as the count of words, syllables, or

phonemes in a speech segment divided by its time duration. Experiment results

7



lend support to the hypotheses that empathy correlates to the averaged turn-by-

turn absolute difference of speech rates between therapist and client. Larger speech

rate difference is associated with lower empathy.

As another aspect of timing in interaction, turn taking is also modulated by

the mental processes. Turn taking cues such as the time ratio of therapist and

client speech correlate to empathy. Pause (i.e., intra-speaker silence) and gap

(i.e., inter-speaker silence) time ratios also reflect therapist empathy. For example,

experiments show that therapists tend to speak less when they show more empathy

to the client, which may be the case that they are able to invoke more client talk

through expressing empathy.

1.2.4 Multimodal Empathy Modeling

The above multimodal cues and their fusion are tested in experiments to classify

high vs. low empathy. Given limited data, the experiments are conducted in a

leave-one-therapist-out cross validation. The results demonstrate the feasibility of

quantifying therapist empathy through signal processing of the multimodal cues.

They also show that the integration of multiple features improves the classification

accuracy.

The rest of the dissertation is organized as follows. Chapter 2 summarizes

related work on empathy modeling. Chapter 3 explains prosody modeling in more

detail. Chapter 4 introduces the “sound to code” system, its various sub-modules,

and the empathy detection algorithms using language modeling approaches. Chap-

ter 5 examines the relation of speech rate entrainment and empathy through

hypotheses testing. Chapter 6 concludes the dissertation with remarks on future

directions.
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Chapter 2

Related Work

In behavioral studies of empathy, human raters (who are often external to the

interaction and data generation setting) typically use behavioral cues of the target

to infer and annotate whether a particular empathic process has occurred (e.g., a

group of behavioral cues proposed by Riess [21]). Regenbogen et al. have exam-

ined the utility of three behavioral channels (facial expressions, prosody and speech

content) towards emotional recognition and response via “neutralizing” one chan-

nel and testing the differential effect on empathic responses. The study showed

that all three channels contributed to empathic responses [22]. This suggests that

an observer may have employed information from the above channels to draw an

conclusion of the therapist’s empathy. Still, this process of empathy evaluation is

challenging and non-scalable; computational methods may provide a useful alter-

native. Like manual evaluation, computational empathy analysis studies how to

capture and model multimodal behavioral cues for detecting empathy.

Two kinds of research methodologies are commonly applied:

• Feature analysis — finding behavioral cues that correlate with human

annotator-derived empathy ratings through statistical analyses, a common

method in behavioral sciences.

• Prediction — data driven computational learning of models using machine

learning techniques that serve as functions mapping automatically measured

behavioral cues to empathy ratings. The performance of the automated

prediction is typically evaluated by comparing machine assessments against

9



human expert ratings on new or held-out interactions not seen in model

construction [23].

The standard in clinical psychology and psychiatry is to build and evaluate

models in a complete dataset (e.g., to fit a regression model with various correlates

of empathy). In engineering approaches, prediction is a much stronger test than

correlation. It partitions data into mutually exclusive training and evaluation sets

to establish validity and generalizability of results.

As an emerging field, computational empathy analysis has been pursued most

notably in two domains. Firstly, in addiction counseling using Motivational Inter-

viewing (MI) [24], empathy is a key index for treatment fidelity [25]. Human

experts use the Motivational Interviewing Treatment Integrity (MITI) manual [26]

to code the degree of therapist empathy in an interaction on a Likert scale. MITI

defines empathy as “the extent to which the clinician understands or makes an

effort to grasp the client’s perspective and feelings”, emphasizing the cognitive

component of empathy.

Secondly, in four-person casual conversations the researchers operationally

defined empathy as emotion contagion [27], emphasizing the affective component

of empathy. Human coders marked the empathy states of each pair of interlocutors

on the time line.

Though in its early stage, computational empathy analysis has examined a

number of multimodal behavioral cues. In addition, entrainment (synchrony) —

an interaction process wherein behaviors of interlocutors becoming more similar

or coordinated — is a phenomenon that is tied closely to empathy, based on the

theory of Perception-Action Link and the function of mirror neurons [8, 10, 28].

Modeling entrainment across various modalities serves as an indirect but useful

mechanism for quantifying empathy.

10



Other related studies focused on empathy synthesis, i.e., designing Embodied

Computer Agent (ECA) that can simulate human empathic behavior [29–32].

2.1 Lexical Cues

Spoken language encodes a multitude of information including a speaker’s intent,

emotions, desires as well as other physical, cognitive and mental state and traits

(e.g., speaker age and gender). By analyzing the language transcripts of interac-

tions we may infer the empathy processes that are driving, and reflected in, the

language expressions (e.g., qualitative findings on empathic word use by Coulehan

et al. [33]).

Xiao et al. have used N-gram Language Models [34] of empathic vs. other

(background) utterances of the therapists in MI type counseling [35]. They showed

that a Maximum Likelihood classifier based on these language models were useful

to automatically identify empathic utterances. Further, utterance level evidences

of empathy can be summed to derive measures that can better correlate with

interaction session level empathy ratings (i.e., MITI codes).

Extending this work, Chakravarthula et al. proposed a model that considers the

therapist’s likelihood to transition among high vs. low empathy states over time

using a Hidden Markov Model [36], instead of assuming a static state of empathy

throughout the interaction [37]. They showed that the dynamic model provided

improved predictions of the session level assessments offered by human experts

compared to the static model while providing short-term empathy information.

The above N-gram language model based methods do not exploit the semantic

meaning of words. Linguistic features such as those generated by the Linguistic

Inquiry and Word Count (LIWC) software [38] associate words with categories of
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various psychological processes, personal concerns, spoken categories, etc. More-

over, novel computational methods afford affective text analyses to be applied

broadly beyond words specified in the lexica [39]. Computational Psycholinguis-

tic Norms (PN) [39] further expand the ability to include both affect states and

word’s relation to additional cognitive processes (e.g., age of acquisition, image-

ability, gender ladenness). Gibson et al. compared LIWC and PN features to

N-gram features in predicting therapist empathy ratings, showing that though N-

gram features performed the best, LIWC and PN features provided complementary

information resulting in boosted prediction performance by feature fusion [40].

The above methods investigate language cues that directly correlate with and

can predict empathy. Although these cues appear to be effective, their ties to

psychological theories about empathy largely remain implicit. On the other hand,

analysis of language style synchrony investigates one possible realization of the

perception-action link. Lord et al. extracted LIWC features on each speaking turn

of the therapist/client, and quantified if the same category of words appeared

both in the therapist’s turn and the client’s turn [41]. As a result, they found 11

word categories that associated with stronger synchrony in high empathy sessions.

Language style synchrony has even stronger correlation to empathy than the well

accepted traditional indicator — count of reflections by the therapist.

2.2 Vocal Cues

Human vocal expression is highly dependent on internal state, and as such it is

linked to empathy. This has been supported by diverse work: e.g., brain areas

important for prosodic mechanisms are linked to empathic ability [42], and empir-

ically prosodic continuity (e.g., therapist continued the intonation/rhythm of the
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client’s preceding turn) by the therapist has been associated with higher empa-

thy [43].

Interlocutor vocal entrainment serves as an indirect feature for empathy. Imel

et al. investigated vocal entrainment through the correlation of mean fundamen-

tal frequencies (pitch) [44] between interacting therapist and standardized patient

(SP) [45]. They found strong correlation (0.71) that did not exist in fake interac-

tions with random pairings of therapists and SPs. Moreover, this correlation was

higher in high empathy sessions compared to low empathy ones, demonstrating

the link between entrainment and empathy.

Xiao et al. modeled entrainment with a more detailed measure of acoustic simi-

larity [46]. They extracted MFCC, i.e., Mel-Frequency Cepstrum Coefficients [44],

and pitch features from the speech of interacting therapists and SPs. These features

defined the Principal Component Analysis (PCA [47]) spaces of the therapist/SP.

Kullback-Leiber divergence (KLD [48]) was employed to compute the similarity of

PCA components — one’s own PCA space and the other’s that is mapped to the

former. They found significant correlation between statistics of turn-level KLDs

and human specified empathy ratings.

2.3 Facial Expression and Reaction Timing Cues

Facial expressions also carry rich emotional information [49]. Kumano et al. inves-

tigated if the co-occurrence of facial expression patterns amongst the interlocutors

could predict the empathy labels [50]. They discretized facial expressions into six

types, and modeled empathy state in three classes as empathy, unconcern, and

antipathy. A Dynamic Bayesian Network model [51] was constructed to associate

empathy states with facial expressions and gaze directions along time. Automatic
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recognition of facial expressions was compared with manual labeling. Experiment

results showed that facial expressions were effective predictors of empathy labels.

Kumano et al. extended this framework by investigating reaction timing and

facial expression congruence information [52]. They demonstrated that these two

aspects were related to the annotated empathy labels. For example, a congruent

but delayed reaction in facial expression is less likely to have an empathy label.

By further incorporating annotations of head gesture types, they improved the

accuracy of empathy state prediction.

Moreover, Kumano et al. studied the inference of empathy labels by multiple

human annotators [53]. Instead of assigning one class label for empathy, they

estimated the distribution of empathy labels by a group of evaluators. They found

that training the model with multiple annotations outperformed training with only

the majority-voted empathy labels.
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Chapter 3

Modeling Empathy through

Prosodic Cues

3.1 Introduction

In this Chapter, we build computational models to analyze the relation of prosodic

cues and therapist empathy (as perceived by human experts) in drug addiction

counseling. Prosody refers to the non-verbal part of speech, such as intonation,

volume, and other voice quality factors, which account for “how one says” rather

than “what one says”.

Neurology studies have showed not only that the production and perception

of prosody share the same brain area, but also that this area is related to affec-

tive empathy [42]. Psychology study found empirically that prosodic continuity

(defined as continued intonation/rhythm of the client’s preceding turn, and pro-

duced with a lower and/or quieter voice and with narrower pitch span) by the

therapist points to higher empathy; whereas prosodic disjuncture (therapist evalu-

ated or challenged the client’s emotional descriptions and voice was higher and/or

louder and the pitch span wider than in the client’s previous turn) points to the

opposite [43]. Correlation between the therapist’s and the client’s mean pitch

values is higher in high empathy sessions [45].

Thus, past works have proved prosodic cues as indicators of empathy, but have

yet to include a robust analysis of prosodic feature toward automatic prediction of
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empathy. Toward this end, in this Chapter we consider five dimensions of prosodic

features: pitch, vocal energy, jitter, shimmer, and utterance duration (a result

of conversational factors and speaking rate). Pitch and vocal energy are integral

to intonation. Jitter and shimmer — measures of short-term variation in pitch

period duration and amplitude, respectively — are acoustic correlates of atypical

voice quality attributes including breathiness, hoarseness, and roughness [54]. In

addition to empathy, these prosodic features can capture important behavioral

cues in various domains [55, 56].

We describe the addiction counseling dataset and the annotation of therapist

empathy in Sec. 3.2. We explain the prosodic features as well as the extraction

and normalization in Sec. 3.3. For robustness and generalization, we quantize each

prosody feature into three levels, and analyze the values on the unit of speaking

utterances. This allows us to characterize the pattern of an utterance with a single

or multiple prosodic features, and compute the distribution of various types of

utterances in a session, as described in Sec. 3.4. We examine the relation between

these distributions and therapist empathy, and attempt to capture salient prosodic

patterns; we then carry out the prediction of “high” or “low” empathy of the

therapist using the captured patterns in experiments in Sec. 3.5. We discuss the

results in Sec. 3.6 and conclude this Chapter in Sec. 3.7. An overview of the

modeling approach is illustrated in Figure 3.1.

3.2 Dataset

For the experiments in this Chapter, we use the data from a counselor training

study that follows the Motivational Interviewing (MI) counseling approach [57].

MI is a style of counseling focused on helping people to resolve ambivalence and
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Figure 3.1: Overview of prosodic modeling of therapist empathy.

emphasizing the intrinsic motivation of changing addictive behaviors. Therapist

empathy is hypothesized to be one of the key drivers of change in patients receiving

MI [58]. In the above study, 144 therapists serving in the community participated

at the beginning, and 123 of them completed the entire process. Three researchers

acted as Standardized Patients (SP), i.e., taking the role of clients, in about half of

all the counseling sessions recorded. The rest of the sessions involved real clients.

Each interaction session is roughly 20 minutes long, recorded with a single chan-

nel far field microphone. At collection time the intended consumers were human

annotators, and as such the audio quality is challenging for machine processing.

Three human coders reviewed the recordings and assessed the performance of

the therapist using a specially designed coding system, the Motivational Inter-

viewing Treatment Integrity (MITI) [58]. The therapist in each session received

an overall rating of empathy on a Likert scale (discrete) from 1 to 7. Inter-coder

reliability assessed via Intra-Class Correlation (ICC) had a mean of 0.67±0.16,

while ICC for the same coder over time had a mean of 0.79±0.13. Correlation of

the empathy scores given at the first and second time is 0.87, based on all 182

sessions that were coded twice. No session was triple-coded.
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In this Chapter we employ 117 sessions that involve a SP and from 91 differ-

ent therapists, with empathy ratings on the two extremes (mean value if double

coded). From the 117 sessions, 71 have high-empathy scores with range 5∼7 and

mean 6.05±0.65, while 46 sessions have low-empathy scores with range 1∼3.5 and

mean 2.17±0.57. Since only overall ratings of empathy are available rather than

localized labels for empathic events, we choose sessions on the extremes where

empathic/non-empathic behaviors are more frequent and prominent, and thus

binarize our data. The above sessions are manually diarized into therapist’s speech

and client’s speech separately.

3.3 Prosodic Feature Extraction

3.3.1 Audio Preprocessing

We first apply speech enhancement to reduce noise in the audio recordings due

to the challenging audio quality. We adopt the approach of minimum Mean-

Square-Error estimation of spectral amplitude [59] for denoising, implemented in

the Voicebox speech processing toolbox [60]. The effectiveness of noise reduction

was empirically confirmed on a few sessions.

The sessions were manually annotated for speakers; however, the segmentation

boundaries were not precisely aligned with speech onsets or offsets, and pauses

within the same speaker were not marked out. Therefore, we exploit our previously

designed Voice Activity Detection (VAD) system to finely segment the audio into

speech utterances [61]. The VAD system is based on a number of robust speech

features with Neural Network learning. In this Chapter, we train the model on

10 sessions of Motivational Interviewing which were manually segmented and are

disjoint to the data we use for prosody analysis. During decoding the VAD outputs
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a probability measure for the presence of speech over time with a value that varies

between 0 (non-speech) and 1 (speech). We empirically set a high threshold equal

to 0.8.

We break a speech segment belonging to a single speaker if a pause inside the

segment is longer than 0.2 seconds, otherwise we consider it as a single continuous

segment. We also set a threshold for minimum duration of speech segment as 0.5

seconds; therefore detected speech of less than that was assigned as non-speech.

No lower bound is set for the gap between speakers due to probable interruptions.

However, we ignore speech regions that are labeled as overlapped speech, since

they cannot represent the prosodic properties of a single speaker.

We denote the resultant sequence of speech utterances in a session as Un,

n = 1, 2, · · · , N , where N is the total number of utterances. Let rn ∈

{Therapist(T), Patient(P)} be the speaker of Un. Let dn in seconds be the time

duration of Un.

3.3.2 Pitch and Jitter

We compute pitch using the method in [62] that is inspired by the subharmonic

summation proposed in [63]. We suppress doubling and halving errors through

dynamic programming. Pitch values are confined to the frequency range 50-800

Hz and are computed on a 30 ms window with a 10 ms shift. In order to reduce

interference, we compute pitch values separately for the two interlocutors. We fur-

ther prune the pitch against doubling/halving errors and other noises, respectively

for the therapist and patient by the following two steps: (1) Find the central pitch

p0 for the speaker as the mode of the pitch values p(t). (2) Discard the pitch value

if p(t) > 1.5p0 or p(t) < p0/1.5 (symmetric in log domain). We observed that in

average the pruning removed 6% pitch values in time.
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Let pT be the mean pitch after pruning for the therapist in a session. For each

utterance Un, rn = T we obtain the mean-normalized log pitch feature as in (3.1):

pn =
1

K

K
∑

tn=1

log
p(tn)

pT
, (3.1)

where tn is the acoustic frame index within the time span of Un.

We denote g(tn) the reciprocal of p(tn), i.e., the fundamental period of the

glottal pulse. Based on extracted pitch values, we approximate relative jitter values

j̃n, i.e., normalized by the average fundamental period, for Un as in (3.2)∼(3.3):

j̃n =
1

K − 1

K
∑

tn=2

∣

∣

∣

∣
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∣

∣
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∣

∣

∣
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p(tn)
−

1

p(tn − 1)

∣

∣

∣

∣

(3.3)

Moreover, we compute the averaged relative jitter jT for the therapist in the

entire session (accumulating all therapist utterances) by applying (3.3), as the

individual baseline for jitter. Finally, we define the normalized jitter feature jn =

j̃n− jT for Un. We obtain the pitch and jitter features for patient utterances in the

same way.

3.3.3 Vocal Energy and Shimmer

We compute short time vocal energy over a 300 ms window with 10 ms shift as the

mean-squared value of speech signal. We denote the log scale of the energy as e(t).

Due to the variations of microphone gain and speaker-to-microphone distance, it is

necessary to normalize the energy for each interlocutor. Let the mean and variance
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of the therapist’s energy be µT and σ2
T . We define the vocal energy feature en for

Un, rn = T as in (3.4):

en =
1

K

K
∑

tn=1

e(tn)− µT

σT

, (3.4)

where tn is the acoustic frame index within the time span of Un.

We compute the averaged difference of e(tn) as shimmer value s̃n for Un, as in

(3.5):

s̃n =
1

K − 1

K
∑

tn=2

∣

∣

∣

∣

e(tn)− e(tn − 1)

σT

∣

∣

∣

∣

(3.5)

Moreover, we compute the averaged shimmer sT as an individual baseline for the

therapist by applying (3.5) over the accumulated speech signal of the therapist in

the entire session. We finally define the normalized shimmer feature as sn = s̃n−sT

for Un.

We obtain the vocal energy and shimmer features for the patient in a similar

way. In summary, (dn, pn, jn, en, sn) is the five-dimensional prosodic feature for Un.

3.4 Modeling Prosodic Features

3.4.1 Feature Quantization

We quantize each prosodic feature into Q equally populated intervals, for the ther-

apist and the patient separately. We find boundaries of the intervals on aggregated

training samples of utterances from multiple sessions involving different therapists

and patients. Such aggregate quantization is applicable due to the normalization

and subtraction of individual baselines. Note that the disparities of feature distri-

butions still exist in different sessions, hence the equally populated quantization
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does not imply that the quantized features are uniformly distributed in each ses-

sion. Unseen utterances (test set) can be quantized with the same boundaries

obtained on the training set.

Taking Q = 3 for the therapist utterances for example, we quantize each feature

by its 33 and 67 percentile into discrete values. These discrete bins conceptually

represent low, medium and high values for each feature dimension. Similarly we

carry out the quantization for patient utterances.

3.4.2 Distribution of Prosodic Patterns

We denote the quantized feature values as (d̂n, p̂n, ĵn, ên, ŝn) for utterance Un. We

compute the joint distributions of PU(rn, Fn) and PU(rn, Fn, rn+1, Fn+1), where rn

is binary in Therapist or Patient, i.e., rn ∈ {T, P}, and Fn can be any combination

drawn from the five quantized prosodic features. Because of speech segmentation

and quantization of the feature set, there are integer counts of utterances in each

pattern and finite types of prosodic patterns. We count the occurrences of each

discrete pattern of (rn, Fn) and (rn, Fn, rn+1, Fn+1), and divide by the total number

of segments. The above probabilistic model is akin to a maximum likelihood “bag-

of-words” model.

Specifically, we consider the following feature combinations in PU(rn, Fn): (1)

Fn = f 1
n where f 1

n is one of the five prosodic features. (2) Fn = (f 1
n, f

2
n) where

(f 1
n, f

2
n) is any combination of two features. (3) Fn = (f 1

n, f
2
n, f

3
n) where (f

1
n, f

2
n, f

3
n)

is any combination of three features. For PU(rn, Fn, rn+1, Fn+1), we set Fn =

f 1
n, Fn+1 = f 1

n+1, i.e., a single feature out of the five prosodic features. For the

robustness of probability estimation, we do not incorporate more complex prosodic

patterns (e.g., combination of more features) due to the limit of samples (speech

segments) in each session.
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We consider the joint rather than conditional probability with respect to the

speaker, according to the previous finding that therapist empathy is correlated with

the ratio of therapist’s speech [46]. The total dimension of different probability

entries is given in (3.6) (Cnm represents combinatorial function), which equals 930

in case of Q = 3. Note that these probability entries can also be viewed as the

frequencies of occurrence for different prosodic patterns; we examine the relation

of therapist empathy and these probabilities in the experiments.

2(QC15 +Q2C25 +Q3C35) + (2Q)2C15 (3.6)

3.5 Experiment and Results

3.5.1 Correlation of Therapist Empathy and Prosody

For the analysis of correlation between therapist empathy and prosody, we extract

prosodic features in each session and derive the quantization of Q = 3 as well as

sessions-wise distribution PU over the entire dataset. We will discuss the choice of

Q in Sec. 3.6.

The coded therapist empathy rating E, as introduced in Sec. 3.2, is in the range

of 1 to 7. We compute the Pearson’s correlation ρ between E and elements of PU ,

and test the significance using Student’s t-distribution. In Table 3.1 we report

some of the most prominent prosodic patterns associated positively and negatively

with E. We can see that high pitch and energy are negatively associated with

therapist empathy; this is consistent with the empirical findings from psychology

literature e.g., [43]. We discuss the results further in Sec. 3.6.
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Table 3.1: Prominent prosodic patterns for correlations ρ between E and PU : T
— Therapist, P — Patient, L — Low, M — Medium, H — High

rn f 1
n f 2

n f 3
n ρ p-value

T d̂n =M p̂n =H ên =H −0.47 8× 10−8

T d̂n =M p̂n =H — −0.42 2× 10−6

T d̂n =M ên =H ŝn =M −0.41 4× 10−6

T d̂n =M p̂n =H ĵn =M −0.41 5× 10−6

· · · · · ·

rn f 1
n rn+1 f 1

n+1 ρ p-value
T ên=M T ên+1=M −0.40 7× 10−6

T ĵn=M T ĵn+1=H −0.34 2× 10−4

P d̂n=H T d̂n+1=L 0.34 2× 10−4

P p̂n=M P p̂n+1=L 0.34 2× 10−4

· · · · · ·

In total 51 features |ρ| > 0.3 p < 10−3

3.5.2 Classification of Therapist Empathy Level

We carry out leave-one-therapist-out cross-validation in prediction of the binary

levels of therapist empathy Ê (Ê = 1 if E ≥ 4.5, otherwise Ê = 0) using PU .

This means we do the following operations in each round. For training (1) deter-

mine the quantization boundaries of the prosodic features; (2) quantize using these

thresholds; (3) compute PU separately for each session; (4) train the classifier of

Ê. For testing employ the test data and (1) quantize using thresholds derived at

training and compute PU ; (2) predict Ê. We use linear Support Vector Machine

(SVM) as the classifier.

For comparison, we design a baseline method for classification using functionals

of prosodic features (dn, pn, jn, en, sn) in each session, separately for the therapist

and the patient utterances. This is hypothesizing that the overall empathy is

reflected in the ensemble statistics of individual prosodic features. Specifically,

we employ the following functionals: (1) 1, 25, 50, 75, 99 percentile; (2) range of
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1∼25, 25∼50, 50∼75, 75∼99 percentile; (3) mean, variance, skewness and kurtosis

of the prosodic feature. This in total derives 14 (functional) × 5 (prosody) ×

2 (speaker) = 140 dimensional functional features for the SVM classifier. Note

that the mean value of the prosodic features are not necessarily zero, since the

normalization is applied to acoustic frames while the functional is computed over

utterances. Numerically, it is equivalent to weighting shorter utterances higher,

such that treating an utterance as a basic unit of expression.

We use a simple feature selection scheme to reduce complexity and avoid over-

fitting in the classification, by thresholding on the p-value of one-factor ANOVA

[64] test (i.e., a test of different mean values in two groups) on the training samples

for each feature. We set the threshold to 10−3 for PU , while we loosen the threshold

to 10−2 for the baseline functionals as we observe that their significances are in

general lower.

In Table 3.3 we list the classification accuracies by the different approaches with

the same data and cross-validation method. The PU features yield the best perfor-

mance that is higher than chance level (and statistically significant; binomial test

p < 10−3) and higher than the result in [46] (but not statistically significant). The

performance of the baseline method is higher than chance level but not statistically

significant. We further discuss the results in Sec. 3.6.

3.6 Discussion

An interesting scientific question is whether the prosodic patterns of the therapist

can themselves, out of contextualization of the patient behavior, provide impor-

tant information regarding the therapist empathy. To address this, we compute

the conditional distribution PU(Fn|rn = T). In comparison to the upper half of
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Table 3.1, the prominent correlations (|ρ| ≥ 0.3) between PU(Fn|T) and empathy

are listed in Table 3.2. We can see the effect of high energy and high pitch is still

negative, but the statistical significance is reduced; similarly for the other thera-

pist prosodic patterns in Table 3.1. In addition, low energy patterns show positive

correlation to empathy, which is consistent with the empirical finding [43].

Table 3.2: Prominent prosodic patterns for correlations ρ between E and PU(Fn|T):
L — Low, M — Medium, H — High

f 1
n f 2

n f 3
n ρ p-value

d̂n =M p̂n =H ên =H −0.33 2× 10−4

d̂n =L ên =L ŝn =H 0.31 6× 10−4

ên =L — — 0.30 1× 10−3

Table 3.3: Therapist empathy Ê classification accuracies
Approach Accuracy

Chance level 0.61
Vocal similarity and speech ratio [46] 0.70
Distribution of prosodic patterns PU 0.75

Functionals of prosodic features 0.67

In Sec. 3.5.2 we find that the functionals of prosodic features are less effective to

infer empathy than the distribution of prosodic patterns. The most significant cor-

relation between the functionals and E is −0.3 by the median of therapist energy.

This trend of higher energy implying lower empathy is consistent with the results

by PU ; however, it is less discriminative. The quantized prosodic patterns proposed

in this Chapter on the other hand, may only focus on part of the interaction. For

example, the most significant pattern of (dn =M, pn=H, en=H) represents only

6% (range 1% to 15%) of therapist utterances in average. This suggests that it is

important to study salient behavior patterns for high level summative behavioral

characteristics like empathy. Such high level judgments are often a non-trivial
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integration of local evidences, where some cues may be more important than oth-

ers. In addition, it may be beneficial to jointly model multiple aspects of behavior

(e.g., multiple features from prosody).

The other interest is on the order of quantization Q. We tested the choices of

Q = 2, 4, 5 in addition to Q = 3. In general we observe a similar trend compared

to the findings in Sec. 3.5, however, the significances and accuracies are in general

lower than the case of Q = 3. We believe that having more quantization bins may

cause sparsity, even though fewer bins may reduce the discriminative power of the

feature set.

3.7 Conclusion

In this Chapter we have extracted, quantized and modeled the distribution of

prosodic cues in order to infer therapist empathy in Motivational Interviewing

based psychotherapy. We found salient prosodic patterns that are significantly

correlated with empathy, which was used to classify “high” and “low” empathy

ratings achieving an accuracy of 75%. The results suggest that the use of high

energy and pitch by the therapist is a negative sign of empathy. The quantization of

prosodic features enabled the capture of salient patterns that led to more accurate

inference of high level behavior like empathy, and outperformed the approach based

on functionals of prosodic features.

In the future, we aim to validate empirical settings applied in this Chapter on

larger-scale data, and in the end automate the parameter adaptation for robust

analysis in practical use. For the inference of empathy, it would be useful to jointly

model the lexical and prosodic information, in order to have a complete account

of both “what they say” and “how they say it”.
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Chapter 4

Modeling Empathy through

Lexical Cues and the Automatic

Rating System

4.1 Introduction

Addiction counseling is a type of psychotherapy, where the therapist aims to sup-

port changing the patient’s addictive behavior through face-to-face conversational

interaction. Mental health care toward drug and alcohol abuse is essential to

society. In the United States, a national survey by SAMHSA [65] showed that

there were 23.9 million illicit drug users in 2012. However, only 2.5 million per-

sons received treatment at a specialty facility [65]. Further to the gap between

the provided addiction counseling and what is needed, it is also challenging to

evaluate millions of counseling cases regarding the quality of the therapy and the

competence of the therapists.

Unlike pharmaceuticals whose quality can be assessed during design and man-

ufacturing, psychotherapy is essentially an interaction where multimodal commu-

nicative behaviors are the means of treatment, hence the quality is at best unknown

until after the interaction takes place. Traditional approaches of evaluating the

quality of therapy and therapist performance rely on manual observational coding

of the therapist-patient interaction, e.g., reviewing tape recordings and annotating
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them with performance scores. This kind of coding process often takes more than

five times real time, including initial human coder training and reinforcement [66].

The lack of human and time resources prohibits the evaluation of psychotherapy

in large scale; and moreover, it limits deeper understanding of how therapy works

due to the small number of cases evaluated. Similar issues exist in many human

centered application fields such as education and customer service.

In this Chapter, we propose computational methods for evaluating therapists

performance based on their behaviors. We focus on one type of addiction counsel-

ing called Motivational Interviewing (MI), which helps people to resolve ambiva-

lence and emphasizes the intrinsic motivation of changing addictive behaviors [24].

MI has been proved effective in various clinical trails; and theories about its mecha-

nisms have been developed [25]. Notably, Therapist empathy is considered essential

to the quality of care, in a range of health care interactions including MI, where it

holds a prominent function.

The study of the techniques that support the measurement, analysis, and mod-

eling of human behavior signals is referred to as Behavioral Signal Processing

(BSP) [17]. The primary goal of BSP is to inform human assessment and decision

making. Other examples of BSP applications include the use of acoustic, lexical,

and head motion models to infer expert assessments of married couples’ commu-

nicative behavioral characteristics in dyadic conversations [67–69], and the use of

vocal prosody and facial expressions in understanding behavioral characteristics in

Autism Spectrum Disorders [55,70–72]. Closely related to BSP, Social Signal Pro-

cessing studies modeling, analysis and synthesis of human social behavior through

multimodal signal processing [73].

However, empathy estimation in previous work (see Chapter 2) requires manual

annotations of behavioral cues not only for training the empathy model, but also
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for application on new observations. Manual annotation on new observation data

prohibits large scale deployment of therapist assessment, as it costs a large amount

of time and manual labor. A fully automatic empathy estimation system would be

very useful in real applications, even though manual annotations are still required

for training the system. The system should, for example, take the audio recording

of the interaction as input, and return the therapist empathy rating as its output,

and no manual intervention would be needed in the process. In this Chapter, we

propose a prototype system that satisfies this requirement.

We build the system by integrating state-of-the-art speech and language pro-

cessing techniques. The top level diagram of the system is shown in Figure 4.1. We

employ a Voice Activity Detection (VAD) module to separate speech from non-

speech (when they speak); we employ a diarization module to separate speakers

in the interaction (who is speaking). We setup an Automatic Speech Recognition

(ASR) system to decode spoken words from the audio (what they say); and employ

role-specific language models (i.e., therapist vs. patient) to match the speakers

with their roles (who is whom). The above four parts comprise an automatic tran-

scription system, which takes audio recording of a session as input, and provides

time-segmented spoken language as output. For therapist empathy modeling in

this chapter, we focus on the spoken language of the therapist only. We propose

three methods for empathy level estimation based on language models representing

high vs. low empathy, including using the Maximum Entropy model, the Maximum

likelihood based model trained with human-generated transcripts, and a Maximum

likelihood approach based on direct ASR lattice rescoring.

Given the access to a collection of relatively large size, well annotated databases

of MI transcripts, we train various models for each processing step, and evaluate
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the performance of intermediate steps as well as the final empathy estimation

accuracies by different models.

Figure 4.1: Overview of modules in the automatic empathy code prediction system

In the rest of this Chapter, we first describe the modules and methods in the

automatic transcription system in Sec. 4.2. We then describe the lexical modeling

of empathy in Sec. 4.3. We introduce the real application data utilized in this

Chapter in Sec. 4.4. We describe the system implementation in Sec. 4.5, and

report experiment results in Sec. 4.6. In Sec. 4.7 we discuss the findings in this

Chapter We conclude the chapter in Sec. 4.8.

4.2 Automatic Speech Recognition

4.2.1 Voice Activity Detection

Voice Activity Detection (VAD) separates speech from non-speech, e.g., silence

and background noises. It is the first module in the system, which takes the audio

recording of a psychotherapy session as input.
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We employ the VAD system developed by Van Segbroeck et al. [61]. The system

extracts four types of speech features: (i) spectral shape, (ii) spectro-temporal

modulations, (iii) periodicity structure due to the presence of pitch harmonics,

and (iv) the long-term spectral variability profile. In the next stage, these features

are normalized in variance; and a three-layer neural network is trained on the

concatenation of these feature streams.

The neural network outputs the voicing probability for each audio frame, which

requires binarization to determine the segmentation points. We use an adaptive

threshold on the voicing probability to constrain the maximum length of speech

segments. We increase the binarization threshold beginning from 0.5, until that all

segments are shorter than an upper bound of segment length (e.g., 60s). Spoken

segment longer than that is infrequent in the target dyadic interactions, and not

memory efficient to process in speech recognition. We merge neighboring segments

on condition that the gap between them is shorter than a lower bound (e.g., 0.1s)

and the combined segment does not exceed the upper bound of segment length

(e.g., 60s). After the merging we drop segments that are too short (e.g., less than

1s).

4.2.2 Speaker Diarization

Speaker diarization is a technique that provides segmentation of the audio with

information about “who spoke when”. Separating the speakers facilitates speaker

adaptation in ASR, and identification of speaker roles (patient, therapist in our

application). We assume the number of speakers is known a priori in the appli-

cation — two speakers in addiction counseling. Therefore, the diarization process

mainly includes a segmentation step (dividing speech to speaker homogeneous seg-

ments) and a clustering step (assigning each segment to one of the speakers).
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We employ two diarization methods as follows, and both of them take VAD

results and Mel-Frequency Cepstrum Coefficient (MFCC) features as inputs. The

first method uses Generalized Likelihood Ratio (GLR) based speaker segmentation,

and agglomerative speaker clustering as implemented in [74]. The second method

adopts GLR speaker segmentation and Riemannian manifold method for speaker

clustering, as implemented in [75]. This method slices each GLR derived segment

into short-time segments (e.g., 1s), so as to increase the number of samples in the

manifold space for more robust clustering (see [75] for more detail).

After obtaining the diarization results we compute session-level heuristics for

outlier detection: e.g., (i) percentage of speaking time by each speaker, (ii) longest

duration of a single speaker’s turn. These statistics can be checked against their

expected values; and we define an outlier as a value that is more than three times of

standard deviation away from the mean. For example, a 95%/5% split of speaking

time in the two clusters may be a result of clustering speech vs. silence due to

imperfect VAD. We use the heuristics and a rule based scheme to integrate the

results from different diarization methods as described further in Sec. 4.5.

4.2.3 ASR

We employ a large vocabulary, continuous speech recognizer (LVCSR), imple-

mented using the Kaldi library [76].

Feature: The input audio format is 16kHz single channel far-field recording.

The acoustic features are standard MFCCs including ∆ and ∆∆ features.

Dictionary: We combine the lexicon in Switchboard [77] and WSJ [78] cor-

pora, and manually add high frequency domain-specific words collected from the

training corpus, e.g., mm as a filler word and vicodin as an in-domain word. We
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ignore low frequency OOV words in the training corpus including misspellings and

made-up words, which in total take less than 0.03% of all word tokens.

Text training data: We tokenize the training transcripts as follows. Over-

lapped speech regions of the two speakers are marked and transcribed; we only keep

the longer utterance. Repetitions and fillers are marked and retained in the way

they are uttered. We normalize non-verbal vocalization marks into either “[laugh-

ter]” or “[noise]”. We also replace underscores by spaces, and remove punctuations

and special characters.

Acoustic Model training: For the Acoustic Model (AM), we first train a

GMM-HMM based AM, initially on short utterances with a monophone setting,

and gradually expand it to a tri-phone structure using more training data. We

then apply feature Maximum Likelihood Linear Regression (fMLLR) and Speaker

Adaptive Training (SAT) techniques to refine the model. Moreover, we train a

Deep Neural Network (DNN) AM with tanh nonlinearity, based on the alignment

information obtained from the previous model.

Language Model training: For Language Model (LM) training, we employ

SRILM to train N-gram models [79]. Initial LM is obtained from the text of

the training corpus, using trigram model and Kneser-Ney smoothing. We fur-

ther employ an additional in-domain text corpus of psychotherapy transcripts (see

Sec. 4.4) to improve the LM. The trigram model of the additional corpus is trained

in the same way and mixed with the main LM, where the mixing weight is opti-

mized on heldout data.

4.2.4 Speaker Role Matching

The therapist and patient play distinct roles in psychotherapy interaction; knowing

the speaker role hence is useful for modeling therapist empathy. The diarization
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module only identifies distinct speakers but not their roles in the conversation.

One way to automatically match roles to the speakers is by evaluating the styles of

language use. For example, a therapist may use more questions than the patient.

We expect a lower perplexity when the language content of the audio segment

matches the LM of the speaker role, and vice versa. In the following we describe

the role-matching procedure in detail.

0. Input: training transcripts with speaker-role annotated, two sets of ASR

decoded utterances U1 and U2 for diarized speakers S1 and S2.

1. Train role-specific language models for (T)herapist and (P)atient separately,

using corresponding training transcripts, e.g., trigram LMs with Kneser-Ney

smoothing, using SRILM [79].

2. Mix the final LM used in ASR to the role-specific LMs by a small weight

(e.g., 0.1), for vocabulary consistency and robustness.

3. Compute ppl1,T and ppl1,P as the perplexities forU1 over the two role-specific

LMs. Similarly get ppl2,T and ppl2,P for U2.

4. Three cases: (i) (4.1) holds — we match S1 to therapist and S2 to patient;

(ii) (4.2) holds — we match S1 to patient and S2 to therapist; (iii) in all

other conditions, we take both S1 and S2 as therapist.

ppl1,T ≤ ppl1,P & ppl2,P ≤ ppl2,T (4.1)

ppl1,P < ppl1,T & ppl2,T < ppl2,P (4.2)

5. Outliers: When the diarization module outputs highly biased result in speak-

ing time for two speakers, the comparison of perplexities is not meaningful.
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If the total word count in U1 is more than 10 times of that in U2, we match

S1 to therapist; and vice versa.

6. Output: U1 and U2 matched to speaker roles.

When there is not a clear role match, e.g., in step 4, case III and step 5, we

have to make assumptions about speaker roles. Since our target is the therapist,

we tend to oversample therapist language to augment captured information, and

trade-off with the noise brought from patient language.

4.3 Therapist Empathy Models using Language

Cues

We employ manually transcribed therapist language in MI sessions with high vs.

low empathy ratings to train separate language models representing high vs. low

empathy. Given the ASR extracted therapist language, we first infer therapist

empathy at the utterance level, then integrate the local evidence towards ses-

sion level empathy estimation. We discuss more about the modeling strategies in

Sec. 4.7.1. The details of the proposed methods are described as follows.

4.3.1 Maximum Entropy Model

Maximum Entropy (MaxEnt) model is a type of exponential model that is widely

used in natural language processing tasks, and achieves good performance in these

tasks [80, 81]. We train a two-class (high vs. low empathy) MaxEnt model on

utterance level data using the MaxEnt toolkit in [82].

Let high and low empathy classes be denoted H and L respectively, and Y ∈

{H,L} be the class label. Let u ∈ U be an utterance in the set of therapist
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utterances. We use n-grams (n = 1, 2, 3) as features for the feature function

f j
n(u, Y ), where j is an index of the n-gram. We define f j

n(u, Y ) as the count of

the j-th n-gram type that appears in u if Yu = Y , otherwise 0.

MaxEnt model then formulates the posterior probability Pn(Y |u) as an expo-

nent of the weighted sum of feature functions f j
n(u, Y ), as shown in (4.3), where

we denote the weight and partition function as λj
n and Z(u), respectively. In the

training phase, λj
n is determined through the L-BFGS algorithm [83].

Pn(Y |u) =
1

Z(u)
exp

(

∑

j

λj
nf

j
n(u, Y )

)

(4.3)

Based on the trained MaxEnt model, we compute the session level empathy

score αn as the average of utterance level evidence Pn(H|u), as shown in (4.4),

where UT is the set of K therapist utterances.

αn(UT ) =
1

K

K
∑

i=1

Pn(H|ui), UT = {u1, u2, · · · , uK}, n = 1, 2, 3. (4.4)

4.3.2 Maximum Likelihood Model

Maximum Likelihood based N-gram language models (LM) can provide the likeli-

hood of an utterance conditioned on a specific style of language, e.g., P (u|H) as

the likelihood of utterance u in the empathic style. Following the Bayesian rela-

tionship, we model the posterior probability P (H|u) by the likelihoods as in (4.5),

where we assume equal prior probabilities P (H) = P (L).

P (H|u) =
P (u|H)P (H)

P (u|H)P (H) + P (u|L)P (L)
=

P (u|H)

P (u|H) + P (u|L)
(4.5)
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We train the high empathy LM (LMH) and low empathy LM (LML) using man-

ually transcribed therapist language in high empathic and low empathic sessions,

respectively. We employ trigram LMs with Kneser-Ney smoothing by SRILM in

implementation [79]. Next, for robustness we mix a large in-domain LM (e.g., the

final LM in ASR) to LMH and LML with a small weight (e.g., 0.1). Let us denote

the mixed LMs as LM
′

H and LM
′

L.

For the inference of P (H|u), we first compute the log-likelihoods ln(u|H) and

ln(u|L) by applying LM
′

H and LM
′

L, where n = 1, 2, 3 are the utilized N-gram orders.

Then Pn(H|u) is obtained as in (4.6).

Pn(H|u) =
eln(u|H)

eln(u|H) + eln(u|L)
(4.6)

We compute session level empathy score βn as the average of utterance level

evidences as shown in (4.7), where UT is the same as in (4.4).

βn(UT ) =
1

K

K
∑

i=1

Pn(H|ui) (4.7)

4.3.3 Maximum Likelihood Rescoring on ASR Decoded

Lattices

Instead of evaluating a single utterance as the best path in ASR decoding, we

can evaluate multiple paths at once by rescoring the ASR lattice. The score (in

likelihood sense) rises for the path of an highly empathic utterance when evaluated

on the empathy LM, while drops on the low empathy LM. We hypothesize that

rescoring the lattice would re-rank the paths so that empathy-related words may be

picked up, which improves the robustness of empathy modeling when the decoding

is noisy (more discussion in Sec. 4.7.4). In the following we describe the method
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in more detail. An illustration of the lattice paths re-ranking effect is shown in

Figure 4.2.

0. Input: ASR decoded lattice L, high and low empathy LMs LM
′

H , LM
′

L as

described in Sec. 4.3.2

1. Update the LM scores in L by applying LM
′

H and LM
′

L as trigram LMs, denote

the results as LH and LL, respectively.

2. Rank the paths in LH and LL according to the weighted sum of AM and LM

scores.

3. List the final scores of the R-best paths in LH and LL as sH(r) and sL(r) in

the log field, 1 ≤ r ≤ R, respectively.

4. Compute the utterance level empathy score SH(L) as in (4.8)

SH(L) =
exp

(

1
R

∑R
r=1 sH(r)

)

exp

(

1
R

∑R
r=1 sH(r)

)

+ exp

(

1
R

∑R
r=1 sL(r)

) (4.8)

5. Compute the session level empathy score γ as in (4.9), where UT is the set

of K lattices of therapist utterances.

γ(UT ) =
1

K

K
∑

i=1

SH(Li) (4.9)

6. Output: Session level empathy score γ

Note that the lattice rescoring method is a natural extension of the Maximum

Likelihood LM method in Sec. 4.3.2. When the score sH(r) denotes log-likelihood

and R = 1, (4.8) becomes equivalent to (4.6). In that case SH(L) represents a

39



Figure 4.2: Illustration of rescoring lattice by high and low empathy LMs.

similar meaning to P (H|L). The lattice is a more compact way of representing the

hypothesized utterances since there is no need to write out the pathes explicitly.

It also allows more efficient averaging of the evidence from the top hypotheses.

4.4 Data Corpora

In this section we introduce the three data corpora used in the study.

• “TOPICS” corpus — 153 audio-recorded MI sessions randomly selected from

899 sessions in five psychotherapy studies [84–88], including intervention of

college student drinking and marijuana use, as well as clinical mental health

care for drug use. Audio data are available as single channel far-field record-

ings in 16 bit quantization, 16 kHz sample rate. Audio quality of the record-

ings varies significantly as they were collected in various real clinical settings.

The selected sessions were manually transcribed with annotations of speaker,

start-end time of each turn, overlapped speech, repetition, filler words, incom-

plete words, laughter, sign, and other nonverbal vocalizations. Session length

ranges from 20 min to 1 hour.
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• “General Psychotherapy” corpus — transcripts of 1200 psychotherapy ses-

sions in MI and a variety of other treatment types [89]. Audio data are not

available.

• “CTT” corpus — 200 audio-recorded MI sessions selected from 826 sessions

in a therapist training study (namely Context Tailored Training) [57]. The

recording format and transcription scheme are the same as TOPICS corpus.

Each session is about 20 min.

All research procedures for this study were reviewed and approved by Institu-

tional Review Boards at the University of Washington (IRB 36949) and University

of Utah (IRB 00058732). During the original trials all participants provided writ-

ten consent. The UW IRB approved all consent procedures.

The details about the corpus sizes are listed in Table 4.1.

Table 4.1: Detail about size information of the data corpora
Corpus No. sessions No. talk turns No. word tokens Duration
TOPICS 153 3.69× 104 1.12× 106 104.2 hr
Gen. Psyc. 1200 3.01× 105 6.55× 106 -

CTT 200 2.40× 104 6.24× 105 68.6 hr

4.4.1 Empathy Annotation in CTT Corpus

Three coders reviewed the 826 audio recordings of the entire CTT corpus, and

annotated therapist empathy using a specially designed coding system — the

“Motivational Interviewing Treatment Integrity” (MITI) manual [26]. The empa-

thy code values are discrete from 1 to 7, with 7 being of high empathy and 1 being

of low empathy. 182 sessions were coded twice by the same or different coders,

while no session was coded three times. The first and second empathy codes of the
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sessions that were coded twice had a correlation of 0.87. Intra-Class Correlation

(ICC) is 0.67±0.16 for inter-coder reliability, and 0.79±0.13 for intra-coder relia-

bility. These statistics prove coder reliability in the annotation. We use the mean

value of empathy codes if the session is coded twice.

In the original study, three psychology researchers acted as Standardized Patient

(SP), whose behaviors were regulated for therapist training and evaluation pur-

poses. For example, SP sessions had pre-scripted situations. Sessions involving a

SP or a Real Patient (RP) were about the same size in the entire corpus. The 200

sessions used in this study are selected from the two extremes of empathy codes,

which may represent empathy more prominently. The class of low empathy ses-

sions has a range of code values from 1 to 4, with mean value of 2.16±0.55; while

that for the high empathy class is 4.5 to 7, with mean of 5.90±0.58. We show the

counts of high vs. low empathy and SP vs. RP sessions in Table 4.2. Moreover,

the selected sessions are diverse in the therapists involved. There are 133 unique

therapists, and any therapist has no more than three sessions.

Table 4.2: Counts of SP, RP, high and low empathy sessions in the CTT corpus
Patient Low emp. High emp. Total Ratio of high emp.
SP 46 78 124 62.9%
RP 33 43 76 56.6%
All 79 121 200 60.5%

4.5 System Implementation

In this section, we describe the system implementation in more detail. We sum-

marize the usage of data corpora in various modeling and application steps in

Table 4.3.
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Table 4.3: Summary of data corpora usage
Corpus Phase VAD Diar. ASR-AM ASR-LM Role Emp.

TOPICS
Train X X X X
Test

Gen. Psyc.
Train X X
Test

CTT
Train X
Test X X X X X X

VAD: We construct the VAD training and development sets by sampling

from the TOPICS corpus. The total length of the two sets are 5.2h and 2.6h,

respectively. We expect a wider coverage of heterogeneous audio conditions would

increase the robustness of the VAD. We train the neural network as described in

Sec. 4.2.1, and tune the parameters on the development set. We apply VAD on

the CTT corpus.

Diarization: We run diarization on the CTT corpus as below.

1. Result D1: apply the agglomerative clustering methods in [74].

2. Result D2: apply the Riemannian clustering method in [75].

3. Run ASR using D2 derived segmentation, obtain new VAD information

according to the alignment in the decoding, disregard the decoded words.

4. Result D3: based on the new VAD information, apply the method in [75]

again, with a scheme of slicing speech regions into 1-minute short segments.

5. ResultD4: ifD3 is an outlier that is detected using the heuristics in Sec. 4.2.2,

and D2 or D1 is not an outlier, then take D2 or D1 in turn as D4; otherwise

take D3 as D4. Such an integration scheme is informed by the performance

on the training corpus.
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ASR: We train the AM and the initial LM using the TOPICS corpus. We

employ the General Psychotherapy corpus as a large in-domain data set and mix

it in the LM for robustness. We observe that perplexity decreases on the heldout

data after the mixing. The Deep Neural Network model is trained following the

“train tanh.sh” script in the Kaldi library. The ASR is used in finding more

accurate VAD results as mentioned above. In addition, we apply the ASR to the

CTT corpus under two conditions: (i) assuming accurate VAD and diarization

conditions by utilizing the manually labeled timing and speaker information; (ii)

using the automatically derived diarization results to segment the audio.

Role matching: We use the TOPICS corpus to train role-specific LMs for

the therapist and patient. We also mix the final LM in ASR with the role-specific

LMs for robustness.

Empathy modeling: We conduct empathy analysis on the CTT corpus. Due

to data sparsity, we carry out a leave-one-therapist-out cross-validation on CTT

corpus, i.e., we use data involving all-but-one therapist’s sessions in the corpus to

train high vs. low empathy models, and test on that held-out therapist. For the

lattice LM rescoring method in Sec. 4.3.3, we employ the top 100 paths (R = 100).

Empathy model fusion: The three methods in Sec. 4.3 and different choices

of n-gram order n may provide complementary cues about empathy. This moti-

vates us to setup a fusion module. Since we need to carry out cross-validation

for empathy analysis, in order to learn the mapping between empathy scores and

codes, we conduct an internal cross-validation on the training set in each round.

For a single empathy score, we use linear regression and threshold search (minimiz-

ing classification error) for the mapping to the empathy code and the high or low

class, respectively. For multiple empathy scores, we use support vector regression

and linear support vector machine for the two mapping tasks, respectively.
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4.6 Experiment and Results

4.6.1 Experiment Setting

We examine the effectiveness of the system by setting up the experiments in three

conditions for comparison.

• ORA-T— Empathy modeling on manual transcriptions of therapist language

(i.e., using ORAcle Text).

• ORA-D — ASR decoding of therapist language with manual labels of speech

segmentation and speaker roles (i.e., using ORAcle Diarization and role

labels), followed by empathy modeling on the decoded therapist language.

• AUTO — Fully automatic system that takes audio recording as input, carries

out all the processing steps in Sec. 4.2 and empathy modeling in Sec. 4.3.

We setup three evaluation metrics regarding the performance of empathy code

estimation: Pearson’s correlation ρ, Root Mean Squared Error (RMSE) σ between

expert annotated empathy codes and system estimations, and accuracy Acc of

session-wise high vs. low empathy classification.

4.6.2 ASR System Performance

We report averaged false alarm, miss, speaker error rate (for diarization only), and

total error rate for the VAD and diarization modules in Table 4.4. We can see that

ASR derived VAD information dramatically improves the diarization results in D4

compared to D2 that is based on the initial VAD.

We report averaged ASR performance in terms of substitution, deletion, inser-

tion, and total Word Error Rate (WER) in Table 4.5 for the case of ORA-D and
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Table 4.4: VAD and diarization performance.
Results False Alarm (%) Miss (%) Speaker error (%) Total error (%)
VAD 5.8 6.8 - 12.6
D2 6.9 8.7 13.7 29.3
D4 4.2 6.7 7.3 18.1

AUTO. We can see that in the AUTO case there is a slight increase in WER, which

might be a result of VAD and diarization errors, as well as the influence on speaker

adaptation effectiveness. Using clean transcripts we were able to identify speaker

roles for all sessions. For the AUTO case, due to diarization and ASR errors, we

found a match of speaker roles in 154 sessions (78%), but failed in 46 sessions.

Table 4.5: ASR performance for ORA-D and AUTO cases.
Cases Substitution (%) Deletion (%) Insertion (%) WER (%)
ORA-D 27.1 11.5 4.6 43.1
AUTO 27.9 12.2 4.5 44.6

There are two notes about the speech processing results. First, due to the

large variability of audio conditions in different sessions, the averaged results are

affected by the very challenging cases. For example, session level ASR WER is in

the range of 19.3% to 91.6%, with median WER of 39.9% and standard deviation

of 16.0%. Second, the evaluation of VAD and diarization are based on speaking-

turn level annotations, which ignore gaps, backchannels, and overlapped regions

within turns. Therefore inherent errors exist in the reference data, but we believe

they should not affect the conclusions significantly due to the relatively low ratio

of such events.
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4.6.3 Empathy Code Estimation Performance

In Table 4.6 we show the results of empathy code estimation using the fusion of

empathy scores αn, n = 1, 2, 3, which are derived by the MaxEnt model and n-

gram features in Sec. 4.3.1. We compare the performance in ORA-T, ORA-D,

and AUTO cases, for SP, RP and all sessions separately. Note that due to data

sparsity, we conduct leave-one-therapist-out cross-validation on all sessions, and

report the performance separately for SP and RP data. The correlation ρ is in the

range of 0 to 1; the RMSE σ is in the space of empathy codes (1 to 7); and the

classification accuracy Acc is in percentage.

Table 4.6: Empathy code estimation performance using MaxEnt model
SP RP All sessions

Cases ρ σ Acc ρ σ Acc ρ σ Acc
ORA-T 0.747 1.27 87.9 0.653 1.49 80.3 0.707 1.36 85.0
ORA-D 0.699 1.38 85.5 0.651 1.51 84.2 0.678 1.43 85.0
AUTO 0.693 1.48 87.1 0.452 1.73 64.5 0.611 1.58 78.5

Similarly, in Table 4.7 we show the results by the fusion of empathy scores βn,

n = 1, 2, 3, derived by the n-gram LMs in Sec. 4.3.2. From the results in Table 4.6

and Table 4.7 we can see that the MaxEnt method and the Maximum Likelihood

LM method are comparable in performance. The MaxEnt method suffers more

from noisy data in the RP sessions than the Maximum Likelihood LM method as

the performance decreases more in the AUTO case for RP, while it is more effective

in cleaner condition like the ORA-D case. As a type of discriminative model, the

MaxEnt model may overfit more than the Maximum Likelihood LM method in the

condition of sparse training data. Thus the influence of noisy input is also heavier

for the MaxEnt model.
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Table 4.7: Empathy code estimation performance using Maximum Likelihood
method

SP RP All sessions
Cases ρ σ Acc ρ σ Acc ρ σ Acc
ORA-T 0.749 1.27 89.5 0.632 1.51 77.6 0.706 1.37 85.0
ORA-D 0.699 1.39 86.3 0.581 1.62 71.1 0.654 1.48 80.5
AUTO 0.693 1.51 87.1 0.510 1.72 73.7 0.628 1.59 82.0

In Table 4.8, we show the results using the empathy score γ that is derived by

the lattice LM rescoring method in Sec. 4.3.3, for the case of ORA-D and AUTO

that involves ASR decoding. Here we set the count of paths R for score averaging as

100. The lattice rescoring method performs comparably well in the ORA-D case.

It performs well in the AUTO case for RP sessions, but suffers in SP sessions.

For the latter, there might be a side effect that is influencing the performance —

lattice path re-ranking may pick up words in patient language that are relevant

to empathy, such that the noise (i.e., patient language mixed in) is also “colored”

and no longer neutral to empathy modeling. Since the SP sessions have similar

story setup (hence shared vocabulary) but not for the RP sessions, such effect may

be less for RP sessions.

Table 4.8: Empathy code estimation performance using lattice LM rescoring
method

SP RP All sessions
Cases ρ σ Acc ρ σ Acc ρ σ Acc
ORA-T - - - - - - - - -
ORA-D 0.673 1.41 85.5 0.654 1.47 79.0 0.661 1.43 83.0
AUTO 0.557 1.58 79.0 0.516 1.64 76.3 0.543 1.60 78.0

In Table 4.9, we show the results by the fusion of the empathy scores including

αn, βn, and γ, n = 1, 2, 3. The best overall results are achieved by such fusion

except Acc in the AUTO case. With the fully automatic system, we achieve higher

48



than 80% accuracy in classifying high vs. low empathy, and correlation of 0.643

in estimation of empathy code. The performance for SP sessions is much higher

than that for RP sessions. One reason might be that SP sessions are based on

scripted situations (e.g., Child Protective Serves takes kid away from mother who

then comes to psychotherapy), while RP sessions are not scripted, and the topics

tend to be diverse.

Table 4.9: Empathy code estimation performance by the fusion of the MaxEnt,
Maximum Likelihood, and lattice LM rescoring (for ORA-D and AUTO cases)
methods

SP RP All sessions
Cases ρ σ Acc ρ σ Acc ρ σ Acc
ORA-T 0.758 1.24 90.3 0.667 1.45 79.0 0.721 1.32 86.0
ORA-D 0.717 1.33 87.9 0.674 1.46 86.8 0.695 1.38 87.5
AUTO 0.702 1.43 87.1 0.534 1.67 71.1 0.643 1.53 81.0

4.7 Discussion

4.7.1 Empathy Modeling Strategies

In this section we will discuss more about empathy and modeling strategies. Empa-

thy is not an individual property but exhibited during interactions. More specifi-

cally, empathy is expressed and perceived in a cycle [15]: (i) patient expression of

experience, (ii) therapist empathy resonation, (iii) therapist expression of empa-

thy, and (iv) patient perception of empathy. The real empathy construct is in (ii),

while we rely on (iii) to approximate the perception of empathy by human coders.

This suggests one should model the therapist and patient jointly, as we have shown

using the acoustic and prosodic cues for empathy modeling in [18, 46].
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However, joint modeling in the lexical domain may be very difficult, since

patient language is unconstrained and highly variable, which leads to data spar-

sity. Therapist language, as in (iii) above encodes empathy expression and hence

provides the main source of information. Can et al. [90] proposed an approach to

automatically identify a particular type of therapist talk style named reflection,

which is closely linked to empathy. It showed that N-gram features of therapist

language contributed much more than those of patient language. Therefore in this

initial work we focused on the modeling of therapist language, while in the future

plan to investigate effective ways of incorporating patient language.

Human annotation of empathy in this Chapter is a session level assessment,

where coders evaluate the therapist’s overall empathy level as a gestalt. In a long

session of psychotherapy, the perceived therapist empathy may not be uniform

across time, i.e., there may be influential events or even contradicting evidence.

Human coders are able to integrate such evidence towards an overall assessment.

In this Chapter, since we do not have utterance level labels, in the training phase

we treat all utterances in high vs. low empathy sessions as representing high vs. low

empathy, respectively. We expect the model to overcome this since the N-grams

manifesting high empathy may occur more often in high empathy sessions. In the

testing phase, we found that scoring therapist language by utterances (and taking

the average) exceeded directly scoring the complete set of therapist language. This

demonstrates that the proposed methods are able to capture empathy on utterance

level.

4.7.2 Inter-human-coder Agreement

62 out of 200 sessions in the CTT corpus were coded by two human coders. We

binarize their coding with a threshold of 4.5. If the two coders annotated empathy
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codes in the same class, we consider it as coder agreement. If they annotated the

opposite, one (and only one) of them would have a disagreement to the class of

the averaged code value. In Table 4.10 we list the counts of coder disagreement.

Table 4.10: Count of human coder disagreement
Coders I II III Total

Annotated sessions 43 47 34 124 = 62× 2
Disagreement 4 3 5 12

Agreement Ratio (%) 90.7 93.6 85.3 90.3

We see that the ratio of human agreement to the averaged code is around

90% on the CTT corpus. This suggests that human judgment of empathy is not

always consistent, and the manual assessment of therapist may not be perfect.

However, human agreement is still higher than that between the average code

and automatic estimation (results in Table 4.9). In the future, we would like to

investigate if computational methods can match human accuracy. Moreover, the

computational assessment as an objective reference may be useful for studying the

subjective process of human judgment of empathy.

4.7.3 Intuition about the Discriminative Power of Lexical

Cues

Table 4.11: Bigrams associated with high and low empathy behaviors
High empathy Low empathy

sounds like it sounds kind of okay so do you in the

that you p s you were have to your children have you

i think you think you know some of in your would you

so you a lot want to at the let me give you

to do sort of you’ve been you need during the would be

yeah and talk about if you in a part of you ever

it was i’m hearing look at have a you to take care
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Table 4.12: Trigrams associated with high and low empathy behaviors
High empathy Low empathy

it sounds like a lot of during the past please answer the

do you think you think about using card a you need to

you think you you think that past twelve months clean and sober

sounds like you a little bit do you have have you ever

that sounds like brought you here some of the to help you

sounds like it’s sounds like you’re little bit about mm hmm so

p s is you’ve got a the past ninety in your life

what i’m hearing and i think first of all next questions using

one of the if you were you know what you have to

so you feel it would be the past twelve school or training

We analyze the discriminative power of N-grams to provide some intuition on

what the model captures regarding empathy. We train LM
′

H and LM
′

L similarly to

Sec. 4.3.2 on the CTT corpus. Let us denote n-gram terms as w, the log-likelihood

derived from LM
′

H and LM
′

L as ln(w|H) and ln(w|L), respectively. Let cnt(w) be

the count of w in the CTT corpus. We define the discriminative power δ of w as

in (4.10).

δ(w) = (ln(w|H)− ln(w|L)) ∗ cnt(w) (4.10)

We show the bigrams and trigrams with extreme δ values, i.e., strongly indi-

cating high or low empathy, in Table 4.11 and Table 4.12, respectively. We see

that high empathic words often express reflective listening to the patient, while low

empathic words are often questioning or instructing the patient. This is consistent

with the concept of empathy as “trying on the feeling” or “taking the perspective”

of others.
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4.7.4 Robustness of Empathy Modeling Methods

In this section we demonstrate the robustness of the lattice rescoring method in

the ORA-D case (clean diarization), compared to MaxEnt and Maximum Likeli-

hood LM methods. We examine how would each method perform when the WER

increases. In order to simulate such conditions, we first generate the 1000-best

lists of paths from the decoding lattice L and the high/low empathy LM rescored

lattices LH , LL. We sample the lists at every 5 paths starting from the 1-best path,

i.e., in a sequence of 1, 6, 11, · · · , 996, and treat them as the optimal paths from

the decoding. If the sampling index exceeds the number of paths in the lattice,

we take the last one in its N-best list. Based on every sampled path in L, we

carry out empathy code estimation by the MaxEnt and Maximum Likelihood LM

methods. Based on the score of every sampled path in LH , LL, we carry out the

lattice rescoring method. We set R = 1 for comparison, i.e., taking the score of

the first available path.

We show the results in Figure 4.3. In the upper left panel we plot the cor-

responding WER by the sampled paths from lattice L. In the upper right and

lower left/right panels, we plot the performance regarding ρ, σ, and Acc by the

three methods, respectively. For figure clarity we display the mean and standard

deviation for every 10 sample points (e.g., the first point represents the statistics

of sampling indices 1, 6, · · · , 46). Meanwhile, we show the performances by using

the 1-best decoded paths, denoted by asterisks.

In Figure 4.3, the WER increases by about 3%, while the performance in gen-

eral drops accordingly. We observe that the lattice rescoring method outperforms

the other two in degraded ASR conditions. Moreover, the lattice rescoring method

tend to be more stable, while the other two methods suffer from large deviation

in performance. This demonstrates the gain of robustness by re-ranking the paths
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Figure 4.3: Comparison of robustness by MaxEnt, Maximum Likelihood, and lat-
tice LM rescoring methods

according to their relevance to empathy, where the original lattice may have uncer-

tain levels of empathy representation in the list of paths. In practice, if the empathy

LM is rich enough, one can also decode the utterance directly using the high/low

empathy LMs instead of rescoring the lattice.

4.7.5 Standard Patient and Real Patient Data

In Table 4.6 to 4.9 we have seen that the system is more effective for SP sessions

than RP sessions. There may be several reasons. First, SP sessions are based on

scripted situations (e.g., Child Protective Serves takes kid away from mother who

then comes to psychotherapy), while RP sessions are not scripted and the topics

tend to be diverse. Second, the count of SP sessions is more than that of RP, hence

more training data are available (see Table 4.2). As a result, data sparsity is less

for SP sessions. Thirdly, SP sessions are recorded in a more controlled environment
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such that the audio quality is better in average than RP sessions. This is reflected

in the ASR WER: e.g., in the ORA-D case, the mean session-wise WER for SP

and RP are 34.5% and 57.6%, respectively.

In the current experiment, the classification accuracy Acc for RP sessions is still

statistically significant with p < 0.01 in binomial test. We believe more sample

data improvements in robust speech processing can improve performance in RP

sessions.

4.8 Conclusion

In this chapter we have proposed a prototype of a fully automatic system to rate

therapist empathy from language cues in addiction counseling. We constructed

speech processing modules that include VAD, diarization, and a large vocabulary

continuous speech recognizer customized to the topic domain. We employed role-

specific language models to identify therapist’s language. We applied MaxEnt,

Maximum Likelihood LM, and lattice rescoring methods to estimate therapist

empathy codes in MI sessions, based on lexical cues of the therapist’s language. In

the end, we composed these elements and implemented the complete system.

For evaluation, we estimated empathy using manual transcripts, ASR decod-

ing using manual segmentation, and fully automated ASR decoding. Experiment

results showed that the fully automatic system achieved a correlation of 0.643

between human annotation and machine estimation of empathy codes, as well as

an accuracy of 81% in classifying high vs. low empathy scores. Using manual

transcripts we achieve a better performance of 0.721 and 86% in correlation and

classification accuracy, respectively. The experiment results show the effective-

ness of the system in therapist empathy estimation. We also observed that the

55



performance of the three modeling methods are comparable in general, while the

robustness varies for different methods and conditions.

In the future, we would like to improve the underlying techniques for speech

processing and speech transcription. We would also like to acquire more and better

training data such as by using close talking microphones in collections.

The system may be augmented by incorporating other behavioral modalities

such as the acoustic and prosodic cues from the vocal channel, as well as gestures

and facial expressions from the visual channel. A joint modeling of these dynamic

behavioral cues may provide a more accurate quantification of therapist’s empathy

characteristics.
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Chapter 5

Modeling Empathy through

Speech Rate Entrainment

5.1 Introduction

In this Chapter, we follow the track of analyzing the connection between entrain-

ment and empathy [46], by extending the dyadic patterning in speech rates.

Entrainment refers to the phenomenon that the behaviors of the interlocutors

becoming more similar during the interaction, possibly in multiple communication

channels or biometrical states [91]. In the literature, theoretical relations between

entrainment and empathy have been extensively studied [6, 8, 92, 93]. Some com-

putational models of entrainment have also been reported, e.g., Lee et al. have

modeled the vocal entrainment of couples in conversations and its relation to the

couples’ affective behavioral characteristics [70]. Delaherche et al. have surveyed

the emerging methods for capturing multimodal entrainment from behavior signals,

and summarized them into three types: correlation based, phase and spectrum

comparison, and bags-of-instances comparison [28].

Speech rate, i.e., the number of words, syllables, or phonemes a subject utters

in a unit of time, reflects many internal states of the subject. Entrainment in

speech rate has been reported. Guitar et al. have shown that children slow their

speech rate when the mothers speak slower [94]. Manson et al. have shown that

the degree of speech rate entrainment may predict the outcome of a collaborative
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task by two interlocutors [95]. However, little work has focused on computational

models of the link between speech rate entrainment and empathy, which is the aim

of this Chapter.

In this chapter, we first introduce the data sets in Sec. 5.2. We show a compu-

tational means for examining speech rate entrainment in Sec. 5.3. In Sec. 5.4 we

investigate how the dynamics of speech rate entrainment are related to therapist

empathy. In Sec. 5.5 we study the relation between speech/silence durations and

empathy. We examine the performance of classifying perceived high vs. low empa-

thy using the proposed rate cues in Sec. 5.6. We discuss the robustness of the cues

in Sec. 5.7, and conclude the study with future directions in Sec. 5.8.

5.2 Dataset and Speech Alignment

To develop and test the ideas about speech rate entrainment, we consider two data

sources: a standard telephonic human-human dialog, and a set of data drawn from

a corpus of client-therapist interaction during drug addiction counseling.

5.2.1 Switchboard Corpus

Switchboard [77] is a large collection of two-sided telephone conversation from the

United States. A robot operates the connection between the interlocutors and

introduces a topic to discuss. It also ensures no two speakers would converse

together more than once.

In our analysis we employ 2438 sessions from the corpus. We use the ASR

generated, and manually corrected word level alignment of speech and transcript

[77] to compute speech rates for each session and speaker.
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5.2.2 Motivational Interviewing Data and Automatic

Alignment

We employ the same TOPICS and CTT sets as in Section 4.4, which are recordings

of Motivational Interviewing sessions. In total there are 353 sessions.

The available manual segmentation only marks speaking turns; for more precise

timing between and within turns, we adopt an approach of force-aligning speech to

transcripts based on ASR. In the experiment we employ the ASR trained in Sec-

tion 4.2.3. We employ the Viterbi algorithm for phoneme level forced-alignment

which we transform into word level alignment for further analysis. Further discus-

sion about alignment reliability is in Sec. 5.7.

5.3 Matching of Average Speech Rate

We first investigate the proposed computational measure for entrainment in

session-level, average speech rates of the interlocutors in the Switchboard corpus.

We employ the Switchboard corpus since it is a standard database that contains

a large number of interactions, therefore strengthens the statistical power of our

hypothesis tests in addition to that obtained on the MI data. We define the aver-

age word rate Rw as in (5.1), where N is the total count of words (wi) by a subject

in the conversation. tbegin and tend are the beginning and ending time of a word.

We eliminate silence time to avoid the influence of line delay and interruption in

phone conversation. Similarly, we obtain the average syllable rate Rs and phoneme

rate Rp in (5.2), (5.3). Note that we exclude partial words and nonverbal units

such as hesitations and laughters.
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Rw =
N

∑N
i=1

(

tend(wi)− tbegin(wi)
) (5.1)

Rs =

∑N
i syllable cnt(wi)

∑N
i=1

(

tend(wi)− tbegin(wi)
) (5.2)

Rp =

∑N
i phoneme cnt(wi)

∑N
i=1

(

tend(wi)− tbegin(wi)
) (5.3)

We hypothesize that if entrainment exists in interlocutor speech rates, they

should correlate higher for pairs of true interlocutors than any randomly shuffled

pairing of speakers. Such a benchmarking approach is standard in dyadic analyses

[28].

Firstly, in Figure 5.1 we show the distribution (the darker the higher density)

of Rw by all speakers, where we see a clear trend of matching between pairs of

interlocutors (labeled as speaker A and B in each pair). We compute the correlation

of Rw (and Rs, Rp) over conversing speaker pairs to capture this trend of matching

speech rates. In Table 5.1 we show the results. Due to the large number of samples

(2438 sessions), these correlations are significant (p < 10−19 in t-test) though the

values are small. The correlations do not rely on the order of speaker labels A or

B ; the variance of the correlations obtained with random speaker labels is below

10−3.

Meanwhile, we compute the correlation of the average speech rates between

“randomly paired” pseudo-interlocutors that are not drawn from the same inter-

action. We repeat this process 1000 times. In Table 5.2 we report the mean value,

most significant p-value, and maximum absolute value of the above correlations.

We see that the lowest p-values under random pairings are dramatically larger than
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those in the cases of true interactions. The mean values are close to zero, suggest-

ing there is no correlation under random conditions. These results lend further

support to the existence of entrainment in speech rates during interactions.

Table 5.1: Correlations of average speech rates by pairs of interlocutors, and the
significance in t-test

Corpus Rw Rs Rp p-val
Switchboard 0.229 0.198 0.183 < 10−19

TOPICS + CTT 0.279 0.314 0.311 < 10−7

Rw of speaker A

R
w
o
f
sp

ea
ke
r
B

2.87 3.51 4.14 4.77 5.41

5.41

4.77

4.14

3.51

2.87

Figure 5.1: Distribution of average speech rates by pairs of interlocutors

Similarly, we conduct the analysis on the combination of the TOPICS and CTT

sets using forced-alignment based speech rates. We exclude nonverbal and out-of-

vocabulary words in computing the speech rates. As a result, we find significant

correlations of average speech rates between the therapist and the patient, shown

in Table 5.1. We also see that such correlations are not obtained in random pairings

of therapists and patients, as shown in Table 5.2.

In conclusion, the results in this section demonstrate the entrainment in inter-

locutors’ speech rates (i.e., trend toward matching) in telephone conversation and

addiction counseling scenarios.
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Table 5.2: Statistics of correlations of average speech rates by randomly shuffled
pairs of pseudo-interlocutors

Rate Mean Min. p-val. Max. Abs.

Switchboard
Rw 0.0005 0.0002 0.075
Rs 0.0004 0.0020 0.063
Rp 0.0006 0.0009 0.067

TOPICS + CTT
Rw 0.0010 0.0011 0.173
Rs 0.0013 0.0001 0.212
Rp −0.0023 0.0005 0.184

5.4 Relating Speech Rate Entrainment Dynam-

ics and Empathy

In Sec. 5.3 we showed evidence that speech rates are part of the cues exemplifying

behavioral entrainment. In this section we study if the degree of such entrainment

contributes to the perceived therapist’s empathy level in MI. We consider the turn-

by-turn differences in speech rates as a computational measure for entrainment,

where a turn is a period that a single speaker holds the speaking floor.

We segment the audio based on the forced alignment. We keep intra-speaker

silence (defined as pause) that is longer than 0.2 seconds, while merge the oth-

ers with the speech segments. In this way we retain inter-word short pauses,

while keeping longer pauses separate from the calculation of speech rate. For

inter-speaker silence (defined as gap), we retain all measured values without any

flooring/ceiling. Overlapping speech segments exist in the corpus, but are not

accessible from the alignment, so that they are left out from the current analysis.

We use speech utterances longer than 0.5 seconds and discard the rest to improve

the robustness of speech rate estimation. We obtain the turn level speech rate r

by counting on the unit of utterances ui (1 ≤ i ≤ Nu), as in (5.4).
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r =

∑Nu

i=1 symbol cnt(ui)
∑Nu

i=1

(

tend(ui)− tbegin(ui)
) (5.4)

We compute the averaged absolute differences of speech rates between each

patient’s turn and the therapist’s turn that follows. This is because our focus

is on the therapist’s reaction to the patient’s behavior. Let rw(k) and rw(k + 1)

be the word rate of turns k and k + 1 that belong to the patient and therapist,

respectively. rw for the patient and the therapist are zero mean separately, i.e.,

subtracted the mean of the raw turn-wise speech rate, so as to remove the bias of

individual speech rate baseline. We define the averaged absolute difference Dw as

in (5.5), assuming the session contains K turns, K being an even number. We also

assume the session begins with the patient’s turn (index odd — patient, even —

therapist); otherwise one can chop the first and/or the last turn to fit the above

assumptions. Moreover, we compute DDw as in (5.6) that represents the averaged

absolute difference of the change in speech rate within the same individual. This

can be viewed as comparing the acceleration of speech rates.

Dw =
1

K/2

K/2
∑

k=1

|rw(2k − 1)− rw(2k)| (5.5)

DDw =
1

K
2
− 1

K

2
−1
∑

k=1

∣

∣

∣

(

rw(2k + 1)− rw(2k − 1)
)

−
(

rw(2k + 2)− rw(2k)
)
∣

∣

∣
(5.6)

We derive Ds, Dp and DDs, DDp in a similar manner. We hypothesize that

these cues, which reflect the degree of entrainment by the therapist, should corre-

late with therapist’s empathy level. We show the obtained correlations in Table 5.3.

All correlations are significant (based on t-test) at p < 0.001 except Dp with

63



p < 0.003, and are in negative values meaning that higher rate-differences asso-

ciate with lower perceived empathy. This lends support to our hypothesis that the

degree of entrainment is linked to therapist’s empathy level.

Table 5.3: Correlations between averaged absolute differences of speech rates and
therapist empathy

Cues Dw Ds Dp

Corr. −0.293 −0.259 −0.210
Cues DDw DDs DDp

Corr. −0.280 −0.234 −0.235

Based on the zero mean turn level speech rates, we compute their standard

deviations, e.g., σT
w and σP

w (word rate deviations) for the therapist and patient

respectively, and adopt these as additional behavioral cues. We found significant

correlations of value −0.360, −0.311, −0.293 (p < 10−4) between σP
w , σ

P
s , σ

P
p and

empathy codes. However, interestingly, no significant relation was found between

therapist’s speech rate variations (σT
w , σ

T
s , σ

T
p ) and empathy. This suggests that

an empathic therapist is more capable of regulating a patient’s behavioral states

such that the conversation goes more smoothly. The mechanism of speech rate

regulation in the MI scenario is topic for future in-depth research investigation.

5.5 Analysis of Speech and Silence Durations

The durations of speech and silence are also related to the behavioral states of

the interlocutors. We segment the audio as in Sec. 5.4, but retain short speech

utterances under 0.5 seconds. We conduct the analysis on the CTT set.

In [46] the ratio of patient utterances correlated with therapist empathy. Here

we expand this to include the segment types summarized in Table 5.4. Let the

segment durations of a particular type be denoted di, i = 1, 2, · · · , S. Let the
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total duration of the session be T , which contains Nseg segments. For each type

we consider four cues: (i)
∑S

i=1 di/T , (ii) S/Nseg, (iii) mean of di, (iv) standard

deviation of di.

We show the correlations between these cues and empathy in Table 5.4. First,

we verify that the ratios of therapist and patient speech are negatively and posi-

tively correlated with therapist empathy, respectively, as reported in [46]. Second,

we find that the ratios of pause have similar correlations to empathy. Since pauses

are within speaking turns, one possible interpretation is that therapist who tends

to stop then grab the floor more often may seem less empathic. Third, the mean

and standard deviation of therapist’s pause durations are negatively correlated

with empathy, while that for the speech utterances are correlated positively. This

suggests that long pauses and short speech utterances may be part of negative

behaviors for showing empathy. Short speech utterances like backchannels are

mostly annotated as overlapped speech and not analyzed here. In addition, we see

that the ratios of gap in both directions are negatively correlated with empathy.

This may suggest that high frequency of speaking turn exchange is associated with

low empathy.

Table 5.4: Correlations between speech/silence duration cues and therapist empa-
thy: (a) therapist’s speech, (b) patient’s speech, (c) therapist’s pause, (d) patient’s
pause, (e) gap from therapist to patient, (f) gap from patient to therapist, (g) all
pauses, (h) all gaps. Bold—p < 0.001, ∗∗p < 0.01, ∗p < 0.05, based on t-test

Cue i Cue ii Cue iii Cue iv
(a) −0.255 −0.361 ∗∗0.192 ∗∗0.192
(b) 0.305 0.362 ∗0.141 ∗0.163
(c) −0.374 −0.323 ∗∗ − 0.222 −0.239
(d) 0.310 0.382 −0.010 −0.127
(e) −0.249 −0.236 −0.081 −0.058
(f) ∗∗ − 0.196 −0.237 −0.015 −0.103
(g) 0.0420 ∗∗0.212 −0.025 ∗ − 0.164
(h) −0.246 −0.237 −0.052 −0.087
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5.6 Experiment of Empathy Classification

We examine if the cues proposed in this Chapter serve as complementary features

to the prosodic features introduced in [18] for classifying high vs. low empathy

codes. The prosodic features are joint distributions of various combinations of

quantized speech segment duration, energy, pitch, jitter, and shimmer cues. We

select the 100 top-performing features from these in terms of their correlation with

empathy codes, based on the training set. We employ the 12-dim cues of speech

rate (Dx, DDx, σ
T
x , σ

P
x , for x ∈ {w, s, p}) and 32-dim inter-word and inter-turn

duration cues in Table 5.4 as additional features. Moreover, we check the fusion

of the above features with lexical cues based on manual transcription, in order to

examine the combination of multimodal cues. These lexical cues are those proposed

in Chapter 4 based on Maximum Entropy and Maximum Likelihood models.

For the 200 sessions in the CTT set (See Sec. 5.2.2), we conduct a leave-one-

therapist-out cross-validation for the 133 unique therapists in the corpus. We use

linear SVM as the classifier.

Table 5.5: Accuracies of empathy code classification
Chance level 60.5%
Prosodic cues 72.5%

Speech rate entrainment cues 64.5%
Speaking turn duration cues 72.0%

Prosody + Speech rate + Duration 77.0%
Lexical cues 86.0%

Lexical + Prosody + Speech rate + Duration 91.0%

In Table 5.5 we report the accuracies of empathy code classification (chance

level baseline is 60.5%). The fusion of features improves upon each individual fea-

ture set, where the differences are all statistically significant at p < 0.05. These
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results suggest that the speech rate and speech/pause/gap duration features pro-

vide additional information about empathy. Fusion of the multimodal features

achieved the highest performance.

5.7 Discussion: Reliability Regarding Noise in

Speech Alignment

Speech-to-text alignment is important for our analysis, since it provides the various

timing information based cues. We have empirically verified the accuracy of the

alignment. Here we simulate noise in the alignment results, in order to check how

robust our hypotheses are to alignment errors.

To check speech rate entrainment, we add zero mean, σ2
z variance Gaussian

noise to utterance boundaries in the Switchboard corpus. To check the correlation

of speech rate difference and empathy, we add zero mean, σ2
z Gaussian noise to the

utterance length in the CTT set. Like in Sec. 5.4, we eliminate utterances shorter

than 0.5 seconds after adding the noise. For both cases, we sample σz from 0 to 1

second with a step size of 0.02 seconds. We repeat the simulation 100 times and

take the averaged correlation values.

In Figure 5.2 and Figure 5.3 we plot the correlations. We see that the results are

still significant near σz = 0.5, and the degradations of correlations are negligible for

σz < 0.2. These demonstrate that the above hypotheses are robust to alignment

precision.
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Figure 5.2: Correlations of interlocutors’ speech rates in simulation of noisy utter-
ance boundaries
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Figure 5.3: Correlations of speech rate differences and empathy in simulation of
noisy utterance lengths

5.8 Conclusion

In this Chapter we extracted word, syllable, and phoneme rates for interlocutors

engaged in telephone conversation and addiction-counseling spoken interactions.

Through statistical analyses, we showed the entrainment of interlocutors’ speech

rates by their positive session-wise correlations. The degree of entrainment — cap-

tured by the averaged absolute differences of turn-level speech rates of the therapist

and patient — correlates with therapist’s empathy rating. These relations were fur-

ther verified to be robust in a simulation of noisy speech-text alignment. Moreover,
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we tested the correlation of ratio and duration statistics of speech, pause, and gap

segments, with therapist’s empathy rating. Furthermore, we employed these cues

in an experiment classifying high vs. low empathy codes. Results showed speech

rate, inter-word pause and inter-turn gap provided useful information, comple-

menting previous prosodic cues for empathy modeling. Fusion of lexical, prosodic,

entrainment, and turn taking cues achieved the best performance.

In the future we plan to model speech rate dynamics in more detail. This

might require a joint consideration of entrainment with other factors including turn

taking dynamics, and the interlocutor emotional state. For modeling of empathy,

we will further investigate the role of vocal cues in both empathy expression and

perception. We will also work on ways to effectively fuse the various cues for more

accurate modeling.
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Chapter 6

Conclusion and Future Work

This dissertation has studied prosodic, lexical, speech rate entrainment, and turn

taking cues to model therapist empathy, and to predict expert assessment of empa-

thy. Experiment results show that the above cues based on speech and language

processing provide useful information about therapist empathy. Their relations to

empathy are represented by the correlation to expert-provided empathy code val-

ues, as well as the accuracy of binary classification of high vs. low empathy codes.

In general, lexical cues are the most prominent indicating empathy, followed by the

prosodic cues and the entrainment cues. This may suggest that although entrain-

ment links to empathy most broadly, it manifests in many ways of behavioral

expressions, so that one type of feature is not enough to represent the relation of

entrainment and empathy. Language may be more useful to evaluate empathy in a

particular application, as it is an abstract form representing human interpretable

semantic meanings; however, the model learned in one field may not directly be

applicable to other fields since the language in other scenarios are different. On

the contrary, entrainment cues, though not strongly correlated with empathy as

lexical cues, may be more generic in other human interaction scenarios.

Findings in this dissertation point out that modeling and assessing therapist

empathy through automatic signal processing is possible. Development of such a

system may contribute to large scale evaluation of psychotherapy in an objective,

evidence-driven manner. In addition, these findings may be useful in empathy

simulation for a more human-like computer agent in human-computer interaction.
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There are several directions to further develop the research on empathy mod-

eling. Firstly, there are other behavioral modalities such as facial expression, ges-

tures, and physiological measurements. Data in these modalities are not available

for the current study, but may be included in future collection and study. Empa-

thy is not constant along the session of interaction; the moments that the client

needs empathic response may be identified as empathic opportunities. Locating

these empathic opportunities and tracking the response by the care-provider may

indicate a more authentic feeling of empathy that the client perceives. The study

of empathy modeling in addiction counseling may be transfered to other mental

or physical health care scenarios, and more broadly, human interactions such as

education, customer care, and family interaction.
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