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Abstract

Fingerprints provide one of the most popular biometric data, and have been widely used

in individual person identification and verification. The Automated Fingerprint Identifi-

cation System (AFIS) offers important evidences for criminal investigation, and serves

as an important tool for law enforcement. As compared with conventional exemplar

fingerprints, latent fingerprints are typically collected in a crime scene. They are often

degraded and corrupted, leading to very low identification rates. In a practical system, a

latent fingerprint has to be enhanced prior to feature extraction to ensure a reliable finger-

print matching performance. In this research, we study techniques for latent fingerprint

enhancement and orientation field estimation to achieve a higher matching rate. Our

studies include traditional image processing techniques as well as a new method based

on the emerging convolutional neural network (CNN). Several major contributions are

detailed below.

In Chapter 3, starting from traditional image processing basis, we propose a new

method using the Markov random field (MRF) model and the sparse representation (SR)

of ridges to enhance latent fingerprint. The proposed MRF-SR method is inspired by the

recent success of dictionary-based methodologies (including both the orientation field

dictionary and the ridge dictionary). The idea is detailed below. First, given a set of

training local fingerprint patches, we obtain the over-complete sparse dictionary to form

a pool of ridge patch candidates. Second, the texture component of latent fingerprints
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is extracted using two total variation (TV) models: namely, the adaptive-directional TV

(ADTV) model and the TV with the L1 fidelity regularization (TV-L1) model. Third, we

assess local image quality using the structure similarity (SSIM) index to determine the

proper total variation model to use for a local fingerprint patch in the next optimization

step. Fourth, we define an MRF model with an unary potential and a neighbor interaction

potential and use it to select the optimal patch candidates for the enhancement of a given

patch. As compared with existing fingerprint enhancement techniques based on the ridge

dictionary for denoising, the proposed MRF-SR method offers a better scheme for latent

fingerprint enhancement with sparse optimization.

In Chapter 4, we show that the MRF-SR method can also be used to extract the

orientation field. To begin with, we generalize several well-known traditional orienta-

tion estimation algorithms to the context of latent fingerprints. Then, we include the

orientation field estimation technique by adding the orientation unary potential based

on fingerprint pose to the cost function of the MRF formulation, which is MRF-SR-

Modified. It provides a valuable supplementary tool to other orientation estimation

algorithms in the literature. Finally, a fusion technique is adopted to boost the overall

performance of latent fingerprint enhancement. As an essential feature of fingerprints,

the orientation field can enhance a fingerprint image with directional and contextual fil-

tering. Experimental results on orientation field estimation as well as latent fingerprint

enhancement are given to demonstrate the effectiveness and robustness of the proposed

fusion methodology.

In Chapter 5, we explore the feasibility and study the performance of applying the

CNN to latent fingerprint enhancement. Being motivated by recent developments of

CNN in image enhancement and restoration applications, we propose a novel encoding-

decoding neural network, called the FingerNet. The FingerNet is trained in a pixelwise

end-to-end manner for direct fingerprint enhancement. In particular, we develop a novel

xiii



data augmentation method to add structured noise (lines, characters, etc.) to good quality

fingerprint patches so as to form meaningful training data. Then, we design a multi-task

encoder-decoder network that has a leading convolutional module, which is followed

by two deconvolutional branches. They are the enhancement branch and the orientation

branch. After that, the cost functions of the two branches are added to form one final cost

function. We successfully train the proposed FingerNet. The FingerNet outperforms

benchmarking methods with a fast computational speed.
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Chapter 1

Introduction

1.1 Significance of the Research

Being different from conventional exemplar fingerprints scanned from sensors or rolled

with inking, latent fingerprints can be left on any surface of objects such as guns, glass

bottles, and even newspapers unintentionally. They may not be visible directly, and

some physical/chemical enhancement techniques are required to obtain images of latent

fingerprints. Automated latent fingerprint identification can provide important evidence

in supporting law enforcement such as for criminal identifying [24]. After a tremendous

amount of efforts in last three decades, today’s automated fingerprint identification sys-

tem (AFIS) works well for plain and rolled full fingerprints with a very high rank-1 iden-

tification rate [54, 69, 70, 108]. On the other hand, it is common to have blurred ridge

structure, uneven ridge/valley contrast, overlapping fingerprints, and structured noise

(lines, stains, letters, etc.) in latent fingerprint images [19, 52, 118, 120]. Some exem-

plary latent fingerprints and their corresponding rolled fingerprint images are shown in

Fig. 1.1 for visual comparison.

However, poor quality and special characteristics of latent fingerprints make feature

extraction such as the region of interest (ROI), minutiae and singular points difficult to

be detected or extracted automatically by machines. In practice, features of latent fin-

gerprints are marked manually by expert examiners so that they can be identified against

a large fingerprint dataset using AFIS. However, manual markup of features has three

major issues: time consuming, compatibility and repeatability [30, 31, 52, 102, 101].
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Figure 1.1: Three exemplary latent fingerprint images (the top row) and their corre-
sponding rolled images (the bottom row) from NIST SD27.

The time cost is obvious since minutiae marking for a single latent image takes more

than 20 minutes while the number of expert examiners is limited. By compatibility, we

refer to the gap of feature extraction accuracy between manual markup in latent finger-

prints and automatic extraction in full fingerprints. Finally, repeatability or reproducibil-

ity is about the stability of human markup. For the same latent fingerprint, different

examiners may have different minutiae marking, and even the same examiner can have

different markups at different times. Because of these issues, manual feature marking is

not a good solution in the long term [42]. It is very much desired to develop an automatic

high-performance feature extraction technique for latent fingerprints [6, 21, 23, 35, 96].

2



To perform automatic minutiae extraction directly on latent fingerprints tends to

result in high missing and false alarm rates, which in turn decrease the identification

rate of AFIS significantly [48, 49]. To ensure the success of automatic feature extrac-

tion, effective latent fingerprint enhancement as a pre-processing step is the key. By

fingerprint enhancement, we improve the contrast between ridges and valleys, connect

breaking ridges, separate joined ridges, and remove varieties of structured noise, etc.

These efforts can enhance efficiency and robustness of automatic feature extraction such

as minutiae detection, which plays significant role in fingerprint matching [36, 14].

1.2 Review of Previous Work

Quite a few fingerprint enhancement algorithms were proposed in literature based on

directional or contextual filtering [2, 22, 38, 46, 58, 86, 95, 94]. O’Gorman et al. [86]

used anisotropic smoothing filters with their directions aligned with the ridge orienta-

tion. A fingerprint image can be contrast-enhanced in a direction perpendicular to ridges

and smoothed along ridge orientation by these filters. Sherlock et al. [94] enhanced fin-

gerprint images by contextual filtering in the Fourier domain. That is, they convolved

the fingerprint image with a directional filter whose orientation is aligned with the local

ridge orientation everywhere. Almansa et al. [2] integrated a shape adaptation process

and a scale selection process for fingerprint enhancement. The shape adaptation pro-

cess achieves smoothing according to the local ridge structure while the scale selection

process estimates the local ridge width and adjusts the smoothing level according to the

noise level. Greenberg et al. [38] proposed a structure-adaptive anisotropic filter whose

kernel can be shaped and scaled according to local features yet without local frequency

estimation. Chikkerur et al. [22] estimated the local ridge orientation and frequency

simultaneously using the 2-D Short Time Fourier Transform (STFT) in a probabilistic

3



manner and, then, applied contextual filtering in the Fourier domain to enhance finger-

print images. Since ridge flows can be viewed as sinusoidal waves with a specified local

orientation and frequency, Hong et al. [46] enhanced the fingerprint image by applying

Gabor filter banks that were tuned with the estimated local orientation and frequency

field. Gabor filters are powerful in selecting parameters of a local pattern (e.g., orien-

tation and frequency) so as to achieve joint optimization in scale, frequency and orien-

tation. Although the above-mentioned techniques work well for exemplar fingerprints,

they do not perform well for latent fingerprints since the weak fingerprint information

is buried by a variety of structured noise in the latter case. Generally speaking, it is

difficult to estimate reliable contextual information from latent fingerprint images.

Various contextual filtering methods share one thing in common, i.e. orientation

field (OF) estimation. Generally speaking, more accurate OF estimation leads to better

fingerprint enhancement, which in turn results in a higher identification rate of AFIS.

Thus, OF estimation plays a central role and attracts much attention. Several methods

were proposed for the OF estimation of a small neighborhood. Examples include the

gradient-based, the STFT-based and the Slit-based methods. The gradient-based method

[46] estimates the domain orientation of a neighborhood of size 16⇥16 by computing the

average squared-gradients. The STFT-based method defines a probability distribution

using the polar form of the Fourier spectrum in a local region, and estimates the domain

orientation as the most possible orientation or the mean [22]. The Slit-based method

tests the contrast of a parameter (e.g., the standard deviation of a neighborhood) along

16 pairs of perpendicular directions. and selects the highest contrast pair to indicate the

ridge orientation [87].

Apparently, these local orientation estimation methods are sensitive to noise. In par-

ticular, they are not robust with respect to structured noise (e.g., lines, printed letters and

handwriting) that overlaps with the underlying fingerprint. To handle this challenge,
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several smoothing methods were proposed as a post-processing step, where regulariza-

tion is applied by adding more constraints on orientation estimation. Examples include

low-pass filtering, multi-resolution smoothing with both small and large windows, and

energy minimization using the Markov Random Field (MRF) [7, 68, 87]. Although local

smoothing provides improved performance, it lacks the global constraints. To model

global OF, global parametric models such as the polynomial and the FOMFE models

[40, 105] were proposed. FOMFE treats the whole OF as a 2D matrix, and conducts

the 2D Fourier expansion on this matrix. Fourier coefficients of basis functions are esti-

mated and used to update the new OF. In general, global parametric models suffer from

over-fitting or under-fitting and their performance highly depends on the accuracy of the

initial OF.

Several OF estimation and fingerprint enhancement algorithms were proposed for

latent fingerprints with the above-mentioned techniques as their building bricks in recent

years [36, 113, 116, 117]. For example, Yoon et al. [117] proposed a hypothesize-and-

test paradigm using the randomized-RANSAC to obtain an OF model with multiple ori-

entation elements from the STFT method as the initial input. However, manually labeled

ROI’s and singular points are required for decomposing the OF into singular and resid-

ual components. Recently, the dictionary-based approach has achieved good results in

OF estimation. Feng et al. [36] used an orientation patch dictionary to smooth the initial

OF, where clean reference orientation patches are used to create a global dictionary as

the prior of the fingerprint orientation. For every initial OF patch, they looked up this

dictionary for potential candidates and, then, minimized an energy function to estimate

the final OF using loopy belief propagation, where the energy function is defined by ori-

entation similarity and neighboring compatibility. However, since this global dictionary

does not consider the location-dependent information, the estimated OF of a patch may

not be consistent with its spatial location in the fingerprint. To improve this, Yang et
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al. [113] constructed different dictionaries at different fingerprint locations. They regis-

tered a latent fingerprint with a pose estimation algorithm based on the Hough transform

and, then, estimated the OF of a patch by looking up the location-dependent dictionary.

Although being more robust, these methods still rely on the accuracy of the initial OF.

Besides, they do not incorporate the fingerprint ridge structure information in the OF

update.

Instead of working on the OF estimation problem alone, some researchers attempted

to exploit the ridge structure to help OF estimation or direct enhancement of latent fin-

gerprints. Examples include the ridge dictionary method [12, 67] and the convolutional

neural network (CNN) method [11]. The decomposition of a latent fingerprint image

into texture and cartoon components using the total variation (TV) model offers an

effective way to extract the ridge structure. That is, the ridge structure is kept as the

oscillatory and small-scale pattern in the texture component while the piecewise-smooth

content such as structured noise remains in the cartoon component. To improve the con-

ventional TV model, Zhang and Kuo et al. proposed a scale-adaptive TV model in [118]

and an adaptive directional TV (ADTV) model in [119]. The latter is adaptive to both

the direction and the scale of a local region. Though the texture component is treated

as the enhanced latent fingerprint in these methods, their performance is still limited in

the strong noise region since their scale and orientation parameters cannot be estimated

reliably.

With the texture component of latent fingerprints as the input, Cao et al. [12] pro-

posed a coarse-to-fine ridge structure dictionary for OF estimation, enhancement and

segmentation. A coarse ridge dictionary for larger patches and a set of fine ridge dictio-

naries (with each fine dictionary designed for one specified direction) for smaller patches

are learned from high quality exemplar fingerprint patches using the sparse representa-

tion. Both orientation and frequency fields are first estimated using the coarse-level
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dictionary and, then, refined by the fine-level dictionary. The final enhancement result

is achieved using Gabor filter banks with the estimated frequency and orientation field.

Being different from [12], Liu et al. [67] proposed an iterative dictionary look-up algo-

rithm with multi-scale dictionaries. The multi-scale dictionaries are constructed directly

from different sizes of Gabor element functions without learning, and they are used to

reconstruct latent fingerprints. Coherence is used to measure fingerprint quality. Low

quality reconstructed regions are improved by checking the dictionary of a larger patch

size iteratively.

Cao et al. [11] treated the OF estimation problem as a classification problem, and

proposed a convolutional neural network (ConvNet) method for its solution. A total of

128 orientation patterns were learned via ConvNet from 128,000 exemplar fingerprint

patches with added texture noise. A latent fingerprint was decomposed into overlapping

patches after pre-processing, and each patch was classified into one of the 128 orienta-

tion patterns by the trained ConvNet. All estimated orientation patches were stitched to

form a global orientation field. Then, the Gabor filter with a fixed frequency was applied

to obtain the final enhancement result. However, this method has several shortcomings.

First, the noise types added to exemplar patches in the ConvNet training contained only

lines and zero blocks, they were not sufficient in simulating rich structured noise in prac-

tical latent fingerprints. Second, simple quilting was adopted to stitch estimated orien-

tation patches without considering compatibility among neighbors. Finally, the Gabor

filter of a fixed ridge frequency has its limitation in the enhancement performance.

1.3 Contributions of the Research

Specific contributions of this research include the following.
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• In the current literature, the localized OF dictionary method proposed in [113]

offers one of the state-of-the-art enhancement results in latent fingerprint match-

ing. Being inspired by this work as well as the success of sparse representation

in image denoising [1, 32] and its application to latent fingerprints such as the

ridge structure based methods [12, 67], we propose a new fingerprint enhancement

method in this paper. Since it is based on the Markov Random Field (MRF) model

and the sparse representation (SR) of ridges, it is called the MRF-SR method.

• The MRF-SR method consists of both local enhancement and global regulariza-

tion. For local enhancement, the texture component of the latent fingerprint is

first extracted by the adaptive directional total variation (ADTV) and total vari-

ation (TV) method [118, 119] to serve as the input to the proposed MRF-SR

system. A local quality assessment is conducted to determine which method to

use based on the local quality. Then, a robust local enhancement process is con-

ducted based on Markov Random Field (MRF) modeling and loopy belief propa-

gation, where overlapping fingerprint patches are treated as random variables and

possible enhancement results of each random variable are obtained as structured

outputs from a ridge-structured dictionary. The results are further regularized by

the global information such as the estimated pose and the localized orientation

dictionary for better performance.

• The proposed MRF-SR provides a robust solution to latent fingerprint enhance-

ment by formulating the sparse representation in the MRF framework. To achieve

this, we define the unary (vertex) potential based on structural similarity (SSIM)

[106] and the interaction (or edge) potential based on combination of orientation

and frequency for the MRF modeling. Global manner such as pose of fingerprint

is also formulated in the unary potential definition. Due to this new mathematical
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treatment, one can obtain enhanced fingerprints directly without the necessity to

estimate the OF using directional filtering. It is demonstrated by extensive experi-

mental results that we can achieve significant performance improvement by fusing

various outputs of the proposed MRF-SR method and using it as the input of the

AFIS.

• The proposed MRF-SR-Modified method can estimate the OF. The resulting OF

estimation performs much better than other sparse representation methods with

the ridge dictionary. Besides, the OF estimation result from MRF-SR-Modified

can server as a diversity supplement to fingerprint orientation estimation research

community to further fuse. Then, a machine learning based fusion methodology

combining different OF estimation approaches demonstrates this by an overall

performance boosting in the OF estimation.

• We propose a CNN-based solution, called the FingerNet, to latent fingerprint

enhancement. This CNN design is tailored to the fingerprint application. The net-

work has an encoder-decoder architecture. Its encoding part uses convolutional

layers to extract fingerprint features for enhancement. To exploit two different

feature types, its decoding part consists of two branches: an enhancement branch

and an orientation branch. We train the network successfully and demonstrate the

power of CNN in the latent fingerprint enhancement problem. Several deep learn-

ing concepts such as residual learning, multi-task learning and network variation

are tested. Finally, we show the FingerNet can be executed very efficiently.

1.4 Organization of the Dissertation

This dissertation is organized as follows. The background knowledge about fingerprints

is reviewed in Chapter 2. Then, the proposed MRF-SR latent enhancement method is
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presented in details in Chapter 3. Chapter 4 introduces an orientation field estimation

technique using the MRF-SR method and a fusion scheme. Chapter 5 presents the pro-

posed FingerNet, which is a CNN based method for latent fingerprint enhancement.

Finally, concluding remarks and future research directions are provided in Chapter 6.
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Chapter 2

Background Review

Comparing with other physical or behavioral biometrics, fingerprint provides a bet-

ter balance between theoretical and practical requirements for biometric information.

For example, fingerprint outperforms face and hand geometry in term of both recog-

nition performance and permanence. Although iris and retinal scan also have high

performance, their collectability and users’ acceptability are much lower than finger-

print. Therefore, fingerprint as the most popular human biometric plays an important

role in automated verification and identification systems in practical use during last two

decades. As the terrorism increasing during recent years, fingerprint is highly supporting

law enforcement agencies for identifying and convicting criminals as critical evidence.

In this Chapter, background review about fingerprint is introduced including con-

cepts and basics of fingerprint, processing techniques such as total variation models,

and fingerprint enhancement from exemplar fingerprints to latent fingerprints.

2.1 Fingerprint Basics

2.1.1 Fingerprint Features

A fingerprint is the pattern of interleaved ridges and valleys that appears on a smooth

surface when the fingertip is pressed [4, 16]. A ridge is defined as a single curved

segment with dark grayscale, whereas a valley is bright which is the region between two

adjacent ridges. Fig. 2.1 shows an visual example of ridges and valleys in a fingerprint.
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Figure 2.1: An example of fingerprint pattern showing ridges and valleys. Image Cred-
its: [55, 79].

With ridges and valleys, fingerprint features can be extracted and they classified in to

three different levels in general [79].

The global ridge details are described by Level-1 features, which include the follow-

ings. Fig. 2.2 is an illustration of some fingerprint features mentioned here.

• Pattern type: the overall ridge flow formation can be classified into the following

5 categories: Arch, Tented Arch, Left Loop, Right Loop and Whorl [13, 82].

• Singular points: they are control points named as core and delta where the ridges

are “wrapped” that results in discontinuities in ridge orientation. A core point is

the uppermost of a curved ridge, whereas a delta point is the location where three

ridge flows meet.

• Orientation field: it is a map of local ridge directions of the ridge-valley struc-

ture. The direction is defined as angle between the ridge inclination and the hori-

zontal line.
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Arch Tented Arch

Left Loop Right Loop Whorl

Core

Delta

Figure 2.2: A visual illustration about fingerprint features such as pattern type, singular
points and the orientation field (red lines indicate the local directions). Image Credit:
online resource.

• Frequency field: it is a map of local ridge frequency, that is the reciprocal of the

number of ridges per unit length along a window which is orthogonal to the local

ridge orientation [53].

Level-2 features are about local ridge characteristics, among which two most promi-

nent ones are called minutiae including ridge endings and ridge bifurcations. Ridge end-

ing happens where a ridges ends abruptly. Ridge bifurcation is defined as the location

where a ridge diverges into branch ridges. General speaking, minutiae in fingerprints are

robust and stable to environment of fingerprint collecting compared with other represen-

tations. Minutiae is the key feature for fingerprint matching. More accurate minutiae

detection offers higher matching rate for AFIS in general. Fig. 2.3 is a visual illustration

about the two types of minutiae and the minutiae detected in a fingerprint.
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(a) ridge ending (b) ridge bifurcation (c) minutiae

Figure 2.3: Minutiae illustration: (a) ridge ending. (b) ridge bifurcation. (c) a fingerprint
example with minutiae marked (red color means ridge ending and blue color means
ridge bifurcation). Image Credit: online resource.

Level-3 features of fingerprint focus on very-fine level, that is, intra-ridge details

to be detected. Intra-ridge details include width, curvature, shape, ridge contours, and

some permanent details such as tiny sweat pores and incipient ridges. However, level-3

features are not practically used in current AFIS since the requirement of good quality

fingerprint images with high-resolution in order to extract these fine-level features.

2.1.2 Fingerprint Types

There are three types of fingerprint images as shown in Fig. 2.4: rolled, plain and latent

[52]. In order to capture the whole ridge details of a fingertip, rolled fingerprint images

are obtained by rolling a finger from one side to the other; plain fingerprins images

are impressions pressed down on flat surfaces without rolling; different from rolled and

plain fingerprints collected from either impression with inking or scanned using live-

scan devices, latent fingerprints are left unintentionally on any surface of objects. Due

to invisibility, latent fingerprint images need to be obtained through some physical or

chemical processing techniques.
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(a) Rolled (b) Plain (c) Latent

Figure 2.4: Three types of fingerprint images: rolled, plain and latent fingerprint images.
Image Credit: online resource.

2.1.3 Challenges in Latent Fingerprint Processing

Latent fingerprints are usually captured from crime scenes and they are used as crucial

evidence in supporting forensic identification for decades. Due to complexity of crime

scenes when latent fingerprints are obtained, quality of these images are very poor in

general. Several challenges exist in latent fingerprints including unclear ridge struc-

ture, partial fingerprint, overlapping fingerprints, and structured noises (lines, speckles,

stains, letters, and etc.). Fig. 2.5 shows several examples to illustrate those challenges

mentioned above.
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Figure 2.5: Examples of several challenges existed in latent fingerprint.

Unclear ridge structure includes blurred ridges when smearing or ridge breaks

because of dry fingers; partial fingerprints and overlapping fingerprints exist a lot since

those fingerprints are inadvertently left on complicated object surfaces; structured noises

often occur especially in latent fingerprint. Some examples of structured noise can be

seen in Fig. 2.5. “Line” noise can appear in the format of a single line or even multiple

lines (both paralleling and crossing pattern). “Stain” noise happens if the fingertip is

not pressed properly, especially on a wet or dirty surface. Usually, stains appear with

spongy shapes. “Speckle” noise has random or regular tiny structures, in which similar

scales are shared with fingerprints. “Letter” noise is another common structured noise

in latent fingerprints. Letters can be handwritten, printed, and have varieties of font
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types. Structure noises are very easy to be confused with fingerprint signal because of

they share resemblance usually.

These challenges mentioned above make latent fingerprint quality very poor so that

feature such as minutiae for latent fingerprints can not be extracted stably and accu-

rately. This further results in a very low identification rate for latent fingerprint in AFIS.

Therefore, an effective latent fingerprint enhancement algorithm is very necessary and

important to improve feature extraction.

2.2 Total Variation Models for Fingerprint Enhance-

ment

Prior to latent fingerprint enhancement, several pre-processing techniques may help.

One of the most useful pre-processing currently is the total variation (TV) decomposi-

tion. TV decomposition has been used for image applications such as denoising, deblur-

ring and inpainting [9, 15, 114]. TV decomposition has the potential to reduce structured

noise while preserving fingerprint itself. By decomposing fingerprint image into texture

and cartoon components, most of the irrelevant contents and structured noises will be

kept into the cartoon component, that is, excluded from the texture component. More-

over, TV decomposition has been proved to offer a successful pre-processing tool for

latent fingerprint enhancement [12, 67, 11]. Among variations of TV models, TV with

L1 fidelity regularization (TV-L1) and adaptive directional TV (ADTV) models are the

most used versions for latent fingerprint pre-processing.
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2.2.1 TV-L1 Model

TV-L1 model is suitable for multi-scale image decompostion and feature selection, such

as facial recognition with illumination variance [20]. Similarly, TV-L1 model decom-

poses an input latent fingerprint image f(x), into two components:

f(x) = u(x) + v(x), (2.1)

where u(x) and v(x) are its cartoon and texture components, respectively. The cartoon

component consists of piecewise-smooth background noise while the texture component

keeps oscillatory and textured patterns such as fingerprint ridges.

This decomposed cartoon component u⇤ can be achieved by solving the optimization

problem in Eq. 2.2:

u
⇤ = argmin

u

Z
|5u| dx+ �

Z
|u� f | dx, (2.2)

where, f, u, v are image intensity about location x. Then, v⇤(x) = f(x) � u
⇤(x) is

the decomposed texture component. In Eq. 2.2, the first and the second integrations rep-

resent the total variation term and the fidelity term, respectively. The total variation term

and the fidelity term are nonlinear and nondifferentiable. Therefore, a steady approxi-

mated solution of Eq. 2.2 can be achieved by solving the Euler-Lagrange equation about

the optimization problem [17]:

5 · ( 5u

|5u|) + �
f � u

|f � u| = 0. (2.3)

Certainly, several numerical methods are proposed to improve the speed of gradient

descent such as the split Bregman iteration, alternation direction method of multipliers

(ADMM), the Douglas-Rachford spliting, and so on [110, 34, 92].
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(a) Latent (b) Cartoon (c) Texture

Figure 2.6: TV-L1 decomposition examples: (a) Latent fingerprint images, (b) Cartoon
component, (c) Texture component.

By applying TV-L1 model with proper � value, the decomposed texture layer can

extract fingerprint in a certain degree while leaving some unwanted structured noise in

the cartoon component. Fig. 2.6 shows examples of the TV-L1 decomposition, where

the printed and handwritten letters are mainly kept in the cartoon components and fin-

gerprints are remained into the texture components.

However, due to the fixing � value, there are two major problems for using TV-

L1 model directly. Firstly, some structured noises with small scales (comparable with

fingerprint) will still be kept in the texture component. Secondly, using finite differen-

tiating on the non-smoothness boundary results in boundary signals near non-smooth

edges.
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(a) Latent (b) Cartoon (c) Texture

Figure 2.7: ADTV decomposition examples: (a) Latent fingerprint images, (b) Cartoon
component, (c) Texture component.

2.2.2 Adaptive Directional TV Model

In order to overcome those limitations mentioned above, Zhang et al. [119] proposed an

Adaptive Directional Total-Variation (ADTV) method for latent fingerprint decomposi-

tion, which provides a better decomposition result over other TV models in general.

In [119], the cartoon component, u⇤(x), is obtained by optimizing the following

variation problem via modifying Eq. 2.2 to Eq. 2.4:

u
⇤ = argmin

u

Z
|5u · ~a(x)| dx+

1

2

Z
�(x) |u� f | dx, (2.4)

and v
⇤(x) = f(x)�u

⇤(x), where
R
|5u · ~a(x)| dx and 1

2

R
�(x) |u� f | dx represent the

new total variation term and the fidelity terms. ~a(x) and �(x) denote spatial-dependent

orientation and scale parameters, respectively. Parameter ~a(x) gives the direction for

texture suppression; namely, the variation is suppressed along the direction of ~a(x) but

allowed along its perpendicular direction. Parameter �(x) controls the textured amount
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at location x. It is set to a large (or small) value in the structured-noise-dominant region

(or the fingerprint-ridge-dominant region) to separate the cartoon component from the

texture component. Note that, when ~a(x) = (1, 1)T and �(x) is set to a spatially-

independent constant �, the ADTV model degenerates to the traditional TV-L1 model

with fidelity regularization in the L1-norm, which is denoted by TV-L1. For more details

on the proper choice of parameters ~a(x) and �(x), please refer to [119].

Fig. 2.7 shows some examples from the ADTV decomposition. It can be seen that

more fingerprint signal can be kept in the texture component and more structured noise

will be in the cartoon layer, which is consistent with its advantage that ADTV model is

anisotropic and spatial adaptive in scale.

2.3 Other Fingerprint Enhancement Techniques

Performance of AFIS relies a lot on fingerprint feature extraction, especially minutiae

extraction. For an ideal fingerprint image, ridges and valleys alternate and flow in a

locally constant direction. With this well-defined case, fingerprint ridges are able to be

detected easily and the minutiae can also be extracted precisely. However, fingerprint

images in practical are corrupted by noise because of the variations in environment

conditions such as wet or dry fingertip skin, senor noise, inappropriate finger pressure

and so on. For latent fingerprint, the image quality is particular poor as we introduced

before.

To ensure a feasible automatic algorithm of feature extraction such as minutiae,

latent fingerprint enhancement is the key step before extracting features. Directly using

conventional automatic minutiae extraction techniques for latent fingerprint will result in

a large amount of false positives and false negatives, which furthermore decrease identi-

fication rate of AFIS significantly. However, fingerprint enhancement as pre-processing,
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the goal of which is to enhance contrast between ridges and valleys, connect breaking

ridges, separate joined ridges, and remove varieties of structured noise, can make sure

efficiency and robustness of automatic minutiae extraction algorithm [36].

2.3.1 Contextual Filtering

General image enhancement techniques often are not proper for latent fingerprint

enhancement. A direct applying of general-purpose image enhancement is hard to pro-

vide satisfying results for latent fingerprint. The reason is obvious, that is, the goal of

fingerprint enhancement is different with general image enhancement. Reducing struc-

tured noise and enhance the definition of ridges and valleys are the extreme goal of

fingerprint enhancement. In the other hand, “noise” signal in fingerprint sometimes is

as strong as the fingerprint signal. This problem is much more serious about latent

fingerprints, in which structured noises are even much stronger than real fingerprint.

The most widely used fingerprint enhancement technique is based on contextual

filtering. In contextual filtering, the filter characteristics change according to the local

context, unlike the traditional image filtering with a single filter. Generally, a set of

filters is pre-computed and one of them is selected for each image patch. The context

for fingerprint is usually defined by the local ridge characteristics(local orientation and

frequency). Actually, ridges and valleys form a sinusoidal-shaped wave that is mainly

defined by a local orientation and frequency. Therefore, it is natural to design filter

banks that are tuned to the local ridge frequency and orientation. This can efficiently

remove the undesired noise and preserve the true ridge and valley structure.

Several techniques of contextual filtering have been proposed in literate such as [2,

22, 38, 46, 86, 94, 112]. Among these techniques, Gabor filtering proposed by Hong

et al. is the most popular one used nowadays [46]. Gabor filters have optimal joint

resolution in both spatial and frequency domains since their frequency-selective and
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orientation-selective properties. Gabor filters in the spatial domain can be defined as

Eq. 2.5:

g(m,n, ✓, w) = exp{�(
m

2
✓

2�2
m

+
n
2
✓

2�2
n

)} cos(2⇡wm✓), (2.5)

m✓ = m cos(✓) + n sin(✓), (2.6)

n✓ = �m sin(✓) + n cos(✓), (2.7)

where m,n are 2D coordinates in conventional image coordinate system; ✓ is the per-

pendicular orientation to the parallel stripes of a Gabor function; w represents the wave-

length of a sinusoidal plane wave; �m and �n are spatial constants of the Gaussian enve-

lope along the corresponding axes; and m✓ and n✓ denote the axes of the filter coordinate

frame, respectively.

With Gabor filters, a fingerprint image is filtered using the corresponding filter for

each image pixel (m,n) to get the enhanced image via

IE(m,n) =

sx
2X

i=� sx
2

sy
2X

j=� sy
2

g(i, j, O(m,n), w(m,n))I(m� i, n� j), (2.8)

where I denotes the fingerprint image, O is the estimated orientation field, w is the

ridge wavelength map obtained from frequency field, and sx and sy are the size of the

Gabor filter mask. An illustration about the Gabor filters and fingerprint enhancement

are shown in Fig. 2.8.
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Figure 2.8: An illustration from [78] about Gabor filters and the enhanced fingerprint by
Hong method.

2.3.2 Orientation Field Estimation

Since the success of contextual filtering, orientation field estimation as the key factor

of fingerprint enhancement tends to attract researchers’ great interest so much for the

last two decades [22, 46, 47, 71, 59, 99, 100, 105, 121]. Due to the space limit, it is

not possible to review too many approaches in this proposal. Only several classical and

recent algorithms are reviewed in this subsection.

• Orientation Field Local Estimation

Orientation at a pixel of fingerprint is defined as the angle between the ridge inclina-

tion and the horizontal line. Usually, the orientation field consists of local orientations

of on-overlapping blocks (such as 16 ⇥ 16 block size). Fig. 2.9 is an illustration about
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Figure 2.9: Definition illustration about orientation at fingerprint pixel and an orientation
field estimated for an exemplary fingerprint. Blue lines means the estimated orientation
in the local block. Image Credit: online resource.

local orientation of fingerprint and an orientation field map estimated for an exemplary

fingerprint.

Gradient based Method

The gradient based method was proposed by Hong et al. in [46]. A Fingerprint I is

firslty normalized to IN with the fixed mean µ0 and variance �
2
o

as follows:

IN(m,n) =

8
>><

>>:

µ0 +
q

�2
0(I(m,n)�µ)2

�2 ,if I(m,n) > µ

µ0 �
q

�2
0(I(m,n)�µ)2

�2 ,otherwise
(2.9)
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where µ and �
2 are the estimated mean and variance. Although this pixel operation does

not clear the ridge structure, the variations along ridges and valleys are reduced.

Then, the normalized fingerprint IN is divided into blocks of W ⇥W (16⇥ 16) and

the gradients are calculated as follows:

Gx(m,n) =
@IN(m,n)

@m
, (2.10)

Gy(m,n) =
@IN(m,n)

@n
. (2.11)

Finally, the orientation field O is obtained by the following equations:

Gxx(m,n) =

m+W
2X

i=m�W
2

m+W
2X

j=m�W
2

{G2
x
(i, j)�G

2
y
(i, j)}, (2.12)

Gyy(m,n) =

m+W
2X

i=m�W
2

m+W
2X

j=m�W
2

2Gx(i, j)Gy(i, j)}, (2.13)

✓(m,n) =
1

2
tan�1{Gyy(m,n)

Gxx(m,n)
}, (2.14)

O(m,n) =
1

2
tan�1{Gau(i, j) ⇤ sin(2✓(m,n))

Gau(i, j) ⇤ cos(2✓(m,n))
}, (2.15)

where Gxx and Gyy are the average squared gradients in a W ⇥ W window, and Gau

represents a smoothing Gaussian kernel to smooth the estimated orientation field.

Short-time Fourier Transformation (STFT) based method

Another popular method to estimate the orientation filed is called STFT, which views

the magnitude spectrum of the Fourier transform of a local fingerprint in polar coordi-

nate system as a probability distribution. The best local orientation can be estimated as
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the most probable orientation or the mean in the local block. This method was proposed

by Chikkerur et al. in 2007 [22].

In this method, a local region of the fingerprint image is modeled as a surface wave

according to Eq. 2.16 and then the 2D STFT is applied to the region as Eq. 2.17,

I(x, y) = A{cos(2⇡f(x cos ✓ + y sin ✓))}, (2.16)

X(⌧1, ⌧2,!1,!2) =

Z 1

�1

Z 1

�1
I(x, y)W ⇤

2d(x� ⌧1, y � ⌧2)e
�j(!1x+!2y)dxdy, (2.17)

where ⌧1, ⌧2 are the spatial position of a 2-dimension window W2d(x, y), and !1,!2

represent the spatial frequency parameters.

Then, the 2D Fourier spectrum which is only about frequency and orientation param-

eters can be expressed in the polar form as F (r, ✓), where r, ✓ represent the frequency

and orientation, respectively. A probability density function p(r, ✓) and its marginal

density function p(✓) can be defined as follows:

p(r, ✓) =
|F (r, ✓)|2R

r

R
✓
|F (r, ✓)|2

, (2.18)

p(✓) =

Z

r

p(r, ✓)dr. (2.19)

Finally, the expected value of the orientation can be obtained as Eq. 2.20 to express

the local orientation O:

O = E{✓} =
1

2
tan�1{

R
✓
p(✓) sin(2✓)d✓R

✓
p(✓) cos(2✓)d✓

}. (2.20)
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• Orientation Field Smoothing

Obviously, the local orientation estimation approaches mentioned above are sen-

sitive to noise, especially unreliable when structured noise such as lines, printed let-

ters and handwriting appear. To handle this, several smoothing methods were pro-

posed as post-processing using regularization to add more constraints on estimated

orientation. Local orientation smoothing approaches include low-pass filtering, multi-

resolution smoothing, and energy minimization using Markov Random Field (MRF)

[7, 10, 18, 27, 57, 68, 73, 87, 90].

Although local smoothing provides improved performance, it lacks the global con-

straints. For example, a MRF model with small contextual information can only have

limited prior knowledge about fingerprint ridge structure [8, 65]. To model entire orien-

tation field globally, researches proposed global parametric models such as polynomial

model and the Fingerprint Orientation Model Based on 2D Fourier Expansion (FOMFE)

method [41, 40, 105, 122, 123]. FOMEF method is used here for an example to show

the orientation smoothing.

FOMFE [105] treats the whole orientation field as 2D matrix. Each element ✓ in

the orientation field can be expressed as cos(2✓) and sin(2✓), that means the original

OF matrix O can be decomposed into one “Cos” matrix Vc = cos(2O) and one “Sin”

matrix Vs = sin(2O). 2D Fourier Expansion is conducted on Vc and Vs separately

and the Fourier coefficients of the basis functions are estimated using initial orientation

field. Then, those estimated coefficients are used to reconstruct a new orientation filed.

2D function f(x, y) can be expressed using a set of basis functions in the following

general form as Eq. 2.21 showing:

f(x, y) =
kX

i=0

�i i(x, y) + "(x, y), (2.21)
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where k 2 N is the order, "(x, y) is the residual, and { i} are the basis functions.

Since orientations behave in a periodic manner, it is reasonable to use a series of

cosine and sine function to take place the basis functions { i} in Eq. 2.21. Eq. 2.21

will become the 2D Fourier expansion as shown in Eq. 2.22:

f(x, y) =
kX

i=0

kX

j=0

 (i⌫x, j!y; �ij) + "(x, y), (2.22)

 (i⌫x, j!w; �ij) = �ij[aij cos(i⌫x) cos(j!y) + bij sin(i⌫x) cos(j!y)

+ cij cos(i⌫x) sin(j!y) + dij sin(i⌫x) sin(j!y)], (2.23)

where �l  x  l, � h  y  h, i, j 2 N , ⌫ = ⇡

l
and ! = ⇡

h
are the fundamental

frequencies, �ij is a constant scalar, and {aij, bij, cij, dij} are the Fouier coefficients to

be estimated.

Then, the two decomposed orientation matrix Vc and Vs can be expressed based

on the 2D Fourier expansions using Eq. 2.22, respectively. A more compact matrix

expression can be written as:

Vc = P(X) ·Bc ·QT(Y), (2.24)

Vs = P(X) ·Bs ·QT(Y), (2.25)

where P,Q are used to form compact matrix expression, Bc and Bc are the parameter

matrices that consist of the Fourier coefficients to be estimated. The parameter matrices

can be obtained by the various optimization techniques to solve this classical linear least

square problem.
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The gradient based OF can be estimated initially to be Vc and Vs. With the opti-

mized solution of Bc and Bc, the smoothed OF can be reconstructed using these two

parameter matrices.
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Chapter 3

Latent Fingerprint Enhancement Using

Markov Random Field and Sparse

Representation (MRF-SR) Method

3.1 Introduction

Although dictionary-based methods (e.g. the orientation dictionary [36, 113] and the

ridge dictionary [12, 67]) has improved the performance of latent fingerprint enhance-

ment, they are still far from satisfaction in challenging cases.

The methods based on the orientation dictionary only [36, 113] do not exploit the

ridge information fully. That is, the ridge structure is only used for initial OF estimation.

Afterwards, these methods only involve the manipulation and/or smoothing of the initial

OF. Without the guidance of the fingerprint ridge knowledge, the estimated OF is not

accurate. Furthermore, Gabor filtering with a fixed ridge frequency cannot offer good

enhancement results in heavily corrupted ridge regions. The methods based on the ridge

dictionary only [12, 67] attempted to resolve the above-mentioned issue by constructing

a dictionary with atoms formed by ridge patterns. However, they have the following two

drawbacks.

First, the traditional sparse representation is not suitable for fingerprint ridge images

especially in regions with heavy noise. One example is illustrated in Fig. 3.2. The results

of applying the traditional sparse representation to an exemplary fingerprint ridge image

31



Texture component with CLAHE

Latent Fingerprint

MRF modeling

Dictionary    
Lookup

Enhanced Fingerprint

FVC2002

Dictionary 
Learning

Local Quality
Assessment

HighLow

Learned Dict.

Texture from TV Texture from ADTV

Figure 3.1: The flowchart of the proposed MRF-SR latent fingerprint enhancement
method.

are shown in Fig. 3.2, where we focus on a texture patch of size 32 ⇥ 32 within a red

square, which is corrupted by a handwritten letter “X”. This patch is first enhanced by

the total variation model. Then, it is coded by the orthogonal matching pursuit (OMP)

sparse coding with trained and Gabor dictionaries [12, 67]. The top 10 corresponding

atoms whose linear combination give its closest approximation are shown from left to

right in order. The expected enhancement output is a patch consisting of four horizontal

ridges, yet a patch of this type ranks #7 and #9 in the trained and Gabor dictionaries,

respectively. The desired patch is unlikely to be selected in a practical setting.
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Trained Dictionary:

Gabor Dictionary:

Figure 3.2: A texture patch of size 32 ⇥ 32 corrupted by structured noise is shown
within a red square and the top 10 atoms, whose linear combination give its closest
approximation using the traditional sparse coding (OMP) with both trained and Gabor
dictionaries, are shown in order from left to right.

Second, their result depends on the initial reconstructed result based on sparse cod-

ing. As discussed in [12], when the coarse-level reconstruction result is wrong, it cannot

be further corrected since the fine-level dictionary is consistent with its coarse-level dic-

tionary. Similarly, as presented in [67], wrongly reconstructed regions of high coherence

cannot be fixed in further iterations since only regions of low coherence are rectified. A

better scheme that can correct inaccurate initial estimation is much in need.

3.2 System Overview

To solve the above-mentioned problems, we propose a local enhancement method by

formulating the sparse representation in the MRF framework. For MRF modeling, we

define the unary (or vertex) potential based on the SSIM measure [106] and the inter-

action (or edge) potential based on the combination of orientation and frequency. Due

to this new mathematical treatment, the loopy belief propagation process can select a

proper candidate and correct the wrong selection dynamically in the following iteration.

The flowchart of the proposed MRF-SR method is given in Fig. 3.1. With a given

ridge dictionary, it consists of the following three major modules.
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1. Decompose a latent fingerprint image into its cartoon and texture components

using the TV and ADTV decomposition [119] and, then, apply the contrast limited

adaptive histogram equalization (CLAHE) to the texture component.

2. Local quality of the latent fingerprints is assessed by measuring the SSIM between

the fingerprint and its reconstruction via sparse representation. Then, the texture

component from ADTV and TV is extracted for further processing in good and

poor quality regions, respectively.

3. Extract overlapping patches from corresponding texture image based on local

quality and use the ridge dictionary to generate a candidates pool for each patch.

A ridge dictionary can be constructed in two ways – (1) learned from high quality

fingerprint images and (2) created by the Gabor function. Both two dictionaries

are studied thoroughly in this work.

4. Set up the MRF model for latent fingerprints by treating each patch as a random

variable. The objective is to minimize the energy cost function that consists of

a data fidelity term and regularization terms so as to determine the most suitable

candidate for each patch. Afterwards, we perform simple quilting of all enhanced

patches to yield the final enhanced fingerprint image.

The details of each of the above steps will be given in the next section.
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3.3 Proposed MRF-SR Method

3.3.1 Pre-Processing of Latent Fingerprints

TV Model

The total variation (TV) decomposition has been used for image applications such as

denoising, deblurring and inpainting. Moreover, it offers a successful pre-processing

tool for latent fingerprint enhancement [12, 67, 11].

Mathematically, a latent fingerprint, denoted by f(x), can be written as

f(x) = u(x) + v(x), (3.1)

where u(x) and v(x) are its cartoon and texture components, respectively. The cartoon

component consists of piecewise-smooth background noise while the texture compo-

nent keeps oscillatory and textured patterns such as fingerprint ridges. The decomposed

cartoon component u⇤ can be achieved by solving the following optimization problem:

u
⇤(x) = argmin

u

{
Z

|5u(x)| dx+ �

Z
|f(x)� u(x)| dx}, (3.2)

where, f(x), u(x), v(x) are image intensity at location x, 5 represents the gradient

operation, the first and the second integrations in Eq. (3.2) represent the total variation

term and the fidelity term, and � is the weight for fidelity term.

Generally speaking, the above optimization procedure maintains u a smooth func-

tion using the total variation term and ensures u to be close to f using the data fidelity

term. Then, v⇤(x) = f(x) � u
⇤(x) is the decomposed texture component, which is

most likely composed of the fingerprint. The parameter, �, is highly correlated with the

scale of the decomposed texture features [17, 115]. By applying the TV model with a
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proper � value, one can separate the fingerprint in the texture component, v⇤(x), from

unwanted structured noise in the cartoon component, u⇤(x).

ADTV Model

Zhang et al. [119] proposed an Adaptive Directional Total-Variation (ADTV) method

for latent fingerprint decomposition, which is anisotropic and spatial-adaptive in scale.

In [119], the cartoon component, u⇤(x), is obtained by optimizing the following new

variation problem:

u
⇤(x) = argmin

u

{
Z

|5u(x) · ~a(x)| dx

+
1

2

Z
�(x) |u(x)� f(x)| dx},

(3.3)

where
R
|5u(x) · ~a(x)| dx and 1

2

R
�(x) |u(x)� f(x)| dx represent the new total vari-

ation and data fidelity terms, and ~a(x) and �(x) denote spatial-dependent orientation

and scale parameters at location x, respectively. Parameter ~a(x) gives the direction for

texture suppression, namely, the variation is suppressed along the direction of ~a(x) but

allowed along its perpendicular direction. Parameter �(x) controls the scale of fea-

tures extracted or amount of texture component at pixel x. It is set to a large (or small)

value in the structured-noise-dominant region (or the fingerprint-ridge-dominant region)

to separate the cartoon component from the texture component. An example of latent

fingerprint decomposition using ADTV is shown in Fig. 3.3.

Note that, when ~a(x) = (1, 1)T and �(x) is set to a spatially-independent constant

�, the ADTV model degenerates to the traditional TV model with fidelity regularization

in the L1-norm. For more details on the proper choice of parameters ~a(x) and �(x), we

refer to [119].
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f: original latent fingerprint

u: cartoon component

v: texture component

Texture After CLAHE

 CLAHE

Figure 3.3: Illustration of decomposing a latent fingerprint image, f , into a cartoon
image, u, and a texture image v, by ADTV. We see that the structured noise and the fin-
gerprint ridge pattern are split into the cartoon and the texture components, respectively.
Then, the CLAHE technique is applied to the texture component for further enhance-
ment.

TV or ADTV

Both TV and ADTV models have been applied to latent fingerprint enhancement suc-

cessfully. However, it is not always true that ADTV performs better than TV, and vice

verse. The adaptive parameters, ~a(x) and �(x), work well in fingerprint regions of good

quality since these two parameters can be estimated accurately. However, ADTV fails

in fingerprint regions of poor quality where those two adaptive parameters are wrongly

estimated. For example, structured noise such as curves and letters will result in wrong

estimation of~a(x) that is related to orientation estimation. Furthermore, structured noise

with a scale similar to that of fingerprint ridges will be kept in the texture component. In

both cases, the TV model is more robust against inaccurate guidance of adaptive param-

eters in the ADTV model. An example is illustrated in Fig. 3.4. The red and yellow

circles in Fig. 3.4 show poor- and good-quality fingerprint regions, respectively. We see

that the TV model performs better in poor quality fingerprint region but worse in the
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(a) Original (b)Texture from TV (c)Texture from ADTV

Figure 3.4: Comparison of the texture component selected using the TV model and
the ADTV model, where the red and the yellow circles show poor- and good-quality
fingerprint regions, respectively.

good quality fingerprint region. We will present a method that selects the TV model or

the ADTV model adaptively based on the local fingerprint quality in Sec. 3.3.3.

CLAHE

To further enhance the contrast of the fingerprint ridge pattern in the texture component,

we adopt the contrast limited adaptive histogram equalization (CLAHE) technique [89].

It is a useful tool for two reasons. First, the low contrast region can be enhanced by

adaptive histogram equalization. Second, it can prevent noise over-amplification in a

local neighborhood using a contrast limiting procedure. An example of latent fingerprint

decomposition and enhancement using ADTV and CLAHE is shown in Fig. 3.3. The

contrast has been improved as indicated in the two red-circled regions in Fig. 3.3.

To summarize, the fingerprint ridge pattern in the texture component becomes

cleaner and stronger by applying these pre-processing techniques. Afterwards, the ridge

dictionary can be more effectively applied to these cleaned images and, for any given

patch, a pool of candidates can be selected for further optimization using MRF. We will

discuss dictionary construction in Sec. 3.3.2, and candidates selection and optimization

via MRF in Sec. 3.3.4.
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3.3.2 Ridge Dictionary Construction

A fingerprint patch can be further enhanced by representing it using elements from a

well-designed ridge dictionary, known as the sparse representation [33, 64, 66, 75, 76,

77, 91, 103, 109]. Two ridge dictionaries are examined in this work; namely, a dictionary

learned from exemplar fingerprint patches and the Gabor dictionary.

Learned Dictionary

We use a set of high quality patches extracted from exemplar fingerprints in the

FVC2002 dataset as the training samples. Besides, we collect training patches from

the center of each fingerprint in order to include singular points such as the core as

much as possible. Each patch of size s⇥ s is normalized to be with zero mean and unit

l
2-norm. All N training samples can be denoted by a matrix X = (x1, x2, ..., xN) of

dimension s
2 ⇥N , where each column is one training sample xn, 1  n  N .

Sparse dictionary learning is usually formulated as an optimization problem in form

of:

min
D,A

kX �DAk2
F
, s.t. k↵ik00  L, 8i, (3.4)

where D = (d1,d2, ...,dM) is a dictionary of dimension s
2 ⇥ K with dk being an

atom, A = (↵1,↵2, ...,↵N) is a K ⇥N coefficient matrix with ↵n being the coefficient

of sample xn projected to D, k·k00 is the l
0 norm, k·k

F
is the Frobenius norm, and

L is a predetermined number of nonzero entries. This is not a trivial problem since

both D and A are unknowns and only training samples X are given. It can however

be effectively solved using the K-SVD dictionary learning algorithm [1] through an

iterative procedure. The dictionary, D, is often initialized using the Discrete Cosine

Transform (DCT) basis to have a good initial point. Then, the K-SVD learning process
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iterates between the sparse coding stage and the dictionary update stage until it reaches

convergence. These two stages are detailed below.

Sparse coding stage. With a given dictionary D, we apply the Orthogonal Matching

Pursuit (OMP) algorithm to find coefficient matrix Â = (↵̂1, ↵̂2, ..., ↵̂N), where

↵̂n = argmin
↵n

kD↵n � xnk22 , s.t. k↵nk00  L, (3.5)

is the sparse coefficient vector for atom xn under the constraint that no more than L

atoms are selected to represent each sample via linear combination. It is the projection

of xn onto dictionary D.

Dictionary update stage. After finding coefficient matrix A for given dictionary D,

the next step is to update the dictionary. Only one atom is updated at a time. We take

the update of atom dk as an example. Let rk be the set whose elements are indices of

samples that use atom dk as basis. Mathematically, we have

rk = {i | ↵k

T
(i) 6= 0, 1  i  N}, (3.6)

where ↵k

T
is the kth row of A. To update dk while preserving sparsity, an overall residual

matrix Ek of dimension s
2 ⇥N without the contribution of atom dk can be written as

Ek = X �
X

j 6=k

dj↵
j

T
, (3.7)

and its restricted shrinking form, if only considering samples which use dk, can be

expressed as

Ẽk = {ei}i2rk , (3.8)
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where Ẽk is a matrix of dimension s
2⇥ |rk|, |rk| is the size of set rk, and ei is the ith col-

umn of Ek. Then, dk and ↵̃
k

T
, which is the restricted shrinking version of {↵T k(i)}i2rk ,

are updated by

min
dk,↵̃

k
T

���Ẽk � dk↵̃
k

T

���
2

F

. (3.9)

The singular value decomposition (SVD) decomposition of Ẽk can be used to solve the

optimization problem in Eq. 3.9. Note that only coefficients for samples using dk are

updated to preserve sparsity. Finally, each atom in the dictionary is normalized again to

be with zero mean and unit norm.

Gabor Dictionary

Another ridge dictionary to be used in our system was proposed in [67]. Since local fin-

gerprint ridges can be approximated by 2D sinusoidal waves with specified orientation

and frequency parameters, the 2D Gabor functions parameterized by a certain orienta-

tion and frequency can be used model a local fingerprint patch. Mathematically, a 2D

Gabor function can be expressed as follows [39, 56]

g(m,n, ✓, w) = exp{�(
m

2
✓

2�2
m

+
n
2
✓

2�2
n

)} cos(2⇡wm✓ + �), (3.10)

where

m✓ = m cos(✓) + n sin(✓), (3.11)

n✓ = �m sin(✓) + n cos(✓), (3.12)
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(b) Gabor Dictionary(a) Learned Dictionary

Figure 3.5: Illustration of subsets of (a) the learned dictionary and (b) the Gabor dic-
tionary, where each atom in the dictionaries has a size of 32 ⇥ 32. Ridge patterns with
singular points and minutiae in the learned dictionary are circled in red.

where (m,n) are the 2D coordinates in the conventional image coordinate system, ✓ is

the direction perpendicular to the parallel stripes of a Gabor function, w is the wave-

length of a sinusoidal plane wave, �m and �n are spatial constants of the Gaussian enve-

lope along the corresponding axes, and � is the phase offset. We follow the same Gabor

function parameter setting in [67]: 16 values for ✓, 9 values for w and 6 values for �.

Thus, a total of 864 basis atoms is generated to construct the Gabor dictionary for sparse

representation. Each basis atom is normalized to be with zero mean and unit norm.

Dictionary Comparison

The above two dictionaries are constructed, respectively, and a subset of them are shown

in Fig. 3.5. Note that we cannot show the two entire dictionaries due to the space limita-

tion. We can see their pros and cons from this figure. For the learned dictionary, we can

obtain special ridge patterns such as minutiae, singular points and curved ridges, which

are circled in red in Fig. 3.5. Although the number of these special ridge patterns is few

as compared to ordinary ridge patterns, they are useful in approximating regions in the
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neighborhood of singular points. In addition, curve-like ridge patterns are close to actual

ridges. On the other hand, due to the limited size of training samples, it is difficult to

obtain atoms with rich frequency variations. In contrast, the Gabor dictionary has a rich

combination of frequency/orientation patterns due to its parametric form. Nevertheless,

ridge patterns in the Gabor dictionary do not look like actual ridges. Besides, they cannot

provide a good approximation to the neighborhood of singular points. These two lim-

itations of Gabor dictionary introduce artifacts, feature shifting and over-enhancement.

Although the learned and the Gabor dictionaries are studied separately in [12, 67], there

is no direct comparison of two dictionaries in the same framework. Therefore, we inves-

tigate both the dictionaries in Sec. 5.4 to show their performance.

3.3.3 Local Quality Assessment

As discussed in Sec. 3.3.1, it is desired to select between the TV model and the ADTV

model based on local fingerprint image quality. The fingerprint quality map was used

to segment background and foreground regions in [12]. By following [12], we assess

local fingerprint quality by measuring the structure similarity (SSIM) between a latent

fingerprint patch and its reconstruction from sparse representation with a minor differ-

ence. That is, a normalized SSIM value was adopted in [12] while the absolute SSIM

value is used in our work since it is possible that all local patches are with poor quality.

Recall that the SSIM index [106] is used to measure the similarity of two images (or

image patches). It is mathematically defined as

SSIM(Ia, Ib) =
(2µaµb + C1)(2�a,b + C2)

(µ2
a
+ µ2

b
+ C1)(�2

a
+ �2

b
+ C2)

, (3.13)
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0.2258 0.3304 0.3110 0.2933 0.3624

T = 1 T = 2 T = 3 T = 4 T = 5

0.5775 0.5867 0.6214 0.6263 0.6879

Figure 3.6: Illustration of two fingerprint patches in good and poor quality regions,
respectively, where the SSIM values between the original patch and its reconstructed
version using the proposed joint sparse representation of sparsity T (i.e., the number of
atoms used in reconstruction) are given.

where Ia and Ib are two images (or patches), µa and �a, µb and �b are the intensity mean

and the standard deviation of Ia and Ib, respectively, �a,b is the covariance between Ia

and Ib and C1 and C2 are constant parameters to avoid computation instability.

A latent fingerprint that has different quality values in different local regions is

shown in Fig. 3.6. In our experiments, we set the quality threshold, Tq, between good

and poor quality regions empirically to 0.4. If the SSIM value of a local patch is less

than 0.4, the region is viewed as the poor quality region and the TV model is used. Oth-

erwise, it is treated as the good quality region and the ADTV model is applied. In the

final processing, two texture components from both TV and ADTV models are gener-

ated firstly. Then, based on quality of a local region, the proposed algorithm will select

the corresponding region of texture components from TV or ADTV.
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R.V. at V(i) R.V. at V(i+1)

Edge(i, i+1)
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Output Proposal 
Space

(a) (b)

Figure 3.7: MRF modeling for latent fingerprint enhancement with overlapping patches,
where each patch is denoted by a red vertex (or node) in a 2D grid and neighboring
vertices are connected by a blue edge. The observed data is the texture component of
the corresponding patch and its output is selected from a candidate pool defined by the
ridge dictionary and circled by green.

3.3.4 MRF-Optimized Sparse Representation

Problem Formulation

Instead of applying sparse coding to each noisy patch directly and independently using

the ridge dictionary as the enhancement output, we would like to take the relationship

between neighboring patches into account. This can be achieved by casting the latent

fingerprint enhancement problem in the MRF modeling and optimization framework as

shown in Fig. 3.7. That is, we divide a fingerprint image into overlapping patches, where

each patch corresponds to a vertex (or node) in a 2D grid and two adjacent vertices are

connected by an edge.

Given observed latent fingerprint data and a ridge dictionary, D, consisting of K

atoms (with indices from 1 to K), we would like to minimize the following energy

function:

E(s1, ..., sP ) =
X

i2V

'(pi,yi,si) + �

X

(i,j)2E

�(yi,si ,yj,sj), (3.14)
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where pi is the ith normalized patch of the texture component obtained by TV or ADTV

depending on local image quality, si is the associated atom index, P is the total number

of patches in this latent fingerprint image, ' is the unary potential function used to

impose the data fidelity constraint, � is the interaction potential function used to impose

the smoothness constraint, � is a parameter that offers a trade-off between the data

fidelity term and the neighborhood smoothness term, and

yi,si = ↵i,sidsi (3.15)

denotes a possible enhanced output for the ith patch by selecting atom dsi from the ridge

dictionary, D, with coefficient ↵i,si . It is worthwhile to point out that the realization

output of optimized variables si, i = 1, · · · , K, is an atom from the ridge dictionary. We

set � = 1 in our experiment for simplicity. It is however possible to adjust � adaptively

if we can tell which term is more important at a certain spatial location.

The conventional sparse representation is optimized against the MSE measure,

which is however not robust in latent fingerprint enhancement. For example, for a heavy-

noise-corrupted region, it is possible that the closest atom measured in the MSE sense

approximates structured noise more than the fingerprint component. Due to the recent

success of the SSIM index in image quality assessment [106] and fingerprint quality

measure [12], we compute the SSIM value between the texture component of a finger-

print patch and its candidate output and use it as the quality measure. We will define

unary potential ' and interaction potential � below.

Unary Potential

We define the unary potential in Eq. (3.14) for patch pi as

'(pi,yi,si) = 1� SSIM(pi,yi,si), (3.16)
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Trained Dictionary:

Gabor Dictionary:

(a)

(b)

(c)

(d)

Figure 3.8: Advantage demonstration using the defined unary potential: the same exam-
ple in Fig. 3.2 is used. (a), (b) are the reassigned order based on MSE and defined unary
potential respectively for trained dictionary;(c), (d) are similar but for Gabor dictionary.
Order in this figure is from the closest to the farthest.

which indicates the dissimilarity between a candidate solution and texture component

of the fingerprint patch, based on the corresponding SSIM.

The well known SSIM is defined as

SSIM(Ia, Ib) =
(2µaµb + C1)(2�a,b + C2)

(µ2
a
+ µ2

b
+ C1)(�2

a
+ �2

b
+ C2)

, (3.17)

where Ia and Ib are two images or image patches; µa and �a, µb and �b are the intensity

mean and standard deviation of Ia, Ib respectively; �a,b is the covariance between Ia

and Ib; C1 and C2 are constant parameters to avoid the computation instability. Fig. 3.8

shows a order reassignment if we only consider our defined unary potential using the

same example in Fig. 3.2. Compared (b) with (a), (d) with (c) in Fig. 3.8, for both of the

dictionaries, we can see that the expected atom pops up to the top even though it seldom

has chance to be selected from conventional sparse coding strategy. This shows the

advantage of our defined unary potential that makes it more robust to select the indeed

correct atom from the ridge pattern dictionary.
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Interaction potential

Concordance in orientation is required in the overlapping region of neighboring patches.

Since candidates are obtained from the ridge dictionary with a clean ridge structure, their

orientation estimation is relatively precise. We use the interaction potential to impose

the compatibility of candidates in a local neighborhood in form of:

�(yi,si ,yj,sj) = 1� 1

N

NX

n=1

��cosOj

i,n

�� . (3.18)

It denotes the orientation potential, where Oj

i,n
represents the pixel orientation difference

of the candidate yi,si with respect to yj,sj in their corresponding overlapping region,

similar to [36]. The pixel orientation map is calculated using the gradient method in [46]

and N is the size of the overlapping area that contributes to the interaction potential.

Candidate Pool and Energy Minimization

For a given patch, it is not necessary to test all atoms in the ridge dictionary since it is

time-consuming. Instead, we use sparse coding via OMP with the MSE measure to get

the top nc candidates.

↵i = argmin
↵

kpi �D↵k22 , s.t. k↵ik00 = nc, (3.19)

↵i,ci = {↵i,k 6= 0}K
k=1 = {↵i,c1i

,↵i,c2i
, ...,↵i,c

nc
i
}, (3.20)

where ↵i is the coefficient vector when selecting nc atoms from the dictionary for patch

pi; ↵i,ci is the sub-vector of ↵i in which the elements are non-zero; ci = {c1
i
, c

2
i
, ..., c

nc
i
}
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is the indice list of the non-zero coefficient, which also represents indice of the corre-

sponding dictionary atoms as possible candidates. Therefore, the candidate enhance-

ment output pool Yi,ci respectively for patch pi can be expressed as

Yi,ci = {yi,c1i
,yi,c2i

, ...,yi,c
nc
i
}

= {↵i,c1i
· dc1i

,↵i,c2i
· dc2i

, ...,↵i,c
nc
i

· dc
nc
i
}.

(3.21)

With Candidates Pool as restriction for each patch rather than picking up any atom

from the whole dictionary, Eq. 3.15 will become to

yi,si = ↵i,sidsi , si 2 ci = {c1
i
, c

2
i
, ..., c

nc
i
}. (3.22)

From the nature and process of OMP, texture component of latent fingerprint will be

sliced into nc layers. The sum of the candidates or linear combination of the related nc

atoms will be a close approximation of the texture component by sparse representation.

More importantly, the actual fingerprint signal can be in any layer but not necessary to

be in the first few layers.

Finally, the loopy belief propagation algorithm is employed here to minimize the

cost function in Eq. (3.14). As a message passing algorithm, belief propagation can

be applied to any graphical model with any defined potential, and it will provide exact

inference when there is no loop in the graph. It can be well approximated by “loopy”

belief propagation [8, 107] for ease of implementation and parallelization.

3.4 Experimental Results

Experiments are conducted to demonstrate the effectiveness and robustness of the pro-

posed MRF-SR method on latent fingerprint image enhancement and OF estimation in
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this section. The datasets and the experimental setup will be introduced first. Then,

the effect of various TV models and ridge dictionaries on the matching performance of

latent fingerprints of three quality categories is investigated. Finally, the performance of

the proposed latent fingerprint enhancement method with a fusion strategy is presented

and compared with other state-of-the-art algorithms.

3.4.1 Experimental Datasets and Setup

Datasets FVC20021, NIST SD272 and NIST SD143 were used in our experiments [37,

84, 83]. To construct the learned dictionary via K-SVD, we selected 430 high quality

fingerprints and collected high quality patches from FVC2002. The number of training

patches varies with the patch size and the dictionary size. In our case, for a patch size

of 32⇥ 32, we used 351,905 patches to train a ridge dictionary X of size 3072. For the

Gabor dictionary, we applied the same dictionary in [67], which had 864 atoms.

The latent fingerprint dataset, NIST SD27, is often used to evaluate the perfor-

mance of fingerprint enhancement, OF estimation and identification (or matching) by

researchers. It consists of 258 latent fingerprint images and their mated rolled fin-

gerprints. Most fingerprints in NIST SD27 are highly corrupted due to various noise

sources, including complicated background, unclear ridge patterns, overlapping finger-

prints, etc. This dataset is subjectively classified into three quality categories “Good”,

“Bad” and “Ugly” by fingerprint experts. There are 88, 85 and 85 images in the good,

bad and ugly categories, respectively. We perform our analysis experiments only using

the 258 corresponding rolled fingerprints as true mates in 3.4.2. To make latent finger-

print identification more practical and challenging, we used 27,000 rolled fingerprints

1FVC2002: http://bias.csr.unibo.it/fvc2002/

2NIST SD27: http://www.nist.gov/srd/nistsd27.cfm

3NIST SD14: http://www.nist.gov/srd/nistsd14.cfm
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from the NIST SD14 dataset as additional matching templates (called the background

dataset) in our final experiments. Thus, by including 258 mated rolled fingerprints from

NIST SD27, we had 27,258 registered rolled fingerprints in total as the final identifica-

tion dataset to evaluate the performance in Sec. 3.4.3.

The performance of latent fingerprint enhancement can be subjectively evaluated

by the human visual system (HVS). For example, clear ridge patterns, arch flows and

reliable observed features indicate better enhancement performance. It is however chal-

lenging to develop an objective metric to evaluate the enhancement performance. Since

fingerprint identification is the ultimate goal, we evaluate the identification performance

with the help of a commercial fingerprint identification software known as VeriFinger

SDK 6.2 4. That is, we compare the identification performance in terms of the cumula-

tive match characteristic (CMC) curve using different enhancement methods. The CMC

curve plots the rank-k identification rate by varying the value of k, which represents the

percentages of true mates’ appearance in the top k matches. The CMC curve is the most

widely used measure for fingerprint identification, and we plot it against the NIST SD27

dataset as our performance measure.

For fair comparison, we used manually marked ROI’s for the identification task by

following the same practice in [36, 113, 67, 117, 11]. Each latent fingerprint image

with its manual ROI was used as the query to search over the rolled fingerprint dataset.

When performing fingerprints identification, the corresponding rolled fingerprints as

true mates are not enhanced and only latent fingerprints are enhanced.

3.4.2 Effects of TV Models and Dictionaries

As mentioned in Subsection 3.3.2, the learned and the Gabor dictionaries have their

own advantages and disadvantages. Thus, there is no obvious reason to choose one over

4VeriFinger: http://www.neurotechnology.com/verifinger.html
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Figure 3.9: The CMC perfomance curves with various TV models and dictionaries for
(a) the whole NIST SD27 dataset, (b) the good category, (c) the bad category and (d) the
ugly category.

the other. Actually, Liu et al. [67] adopted the Gabor ridge dictionary while and Cao

et al. [12] used their learned ridge dictionary. Similarly, the traditional TV-L1 model

was used in [12, 67, 11] while the ADTV model was adopted in [119] to extract the

texture component. We are interested in knowing whether there is a clear winner or

they provide complementary strengths. To answer these questions, we conducted latent

fingerprint identification experiments based on the original input without any enhance-

ment (ORIG) and the enhanced input with the five enhancement schemes: 1) the ADTV

decomposition plus the learned dictionary (ADTV+L), 2) the TV-L1 decomposition plus
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the learned dictionary (TV+L), 3) the TV-L1 decomposition plus the Gabor dictionary

(TV+G), 4) the ADTV decompostion only (ADTV), and 5) the TV-L1 decomposition

only (TV). Their performance was compared for the following four scenarios: 1) the

whole NIST SD27 dataset, 2) the good category, 3) the bad category and 4) the ugly cat-

egory in the NIST SD27 dataset. The results are shown in Figs. 3.9 (a)-(d), respectively.

The CMC curves of several enhancement methods against the whole NIST SD27

dataset are shown in Fig. 3.9(a). We see that the ADTV+L scheme achieves the best

performance. The second one is TV+L, whose first rank identification rate drops by

around 3.5% in comparison with ADTV+L. Then, the performance becomes poorer in

the order of TV+G, ADTV, TV and, finally, ORIG. The proposed ADTV+L scheme

outperforms the ADTV scheme by 7.4% in the Rank-1 identification rate. Generally

speaking, the ADTV decomposition offers better results than the TV decomposition,

and the learned dictionary provides better performance than the Gabor dictionary in

the simplified MRF-SR framework. However, there are exceptions when referring to

different quality categories. Matching performance for the ugly case is too poor to

conclude useful analysis. However, performance analysis on good and bad categories

using different combination of TV models and dictionaries shows the complementary

strengths.

For example, for the good category in Fig. 3.9(b), ADTV+L outperforms TV+L and

TV+G. There are two major reasons. First, latent fingerprints in the good category is rel-

atively strong, and the parameters required by ADTV can be estimated more accurately,

which results in better texture decomposition in the ADTV model. Second, because of

the relatively clear ridge structures for good latent fingerprints, the learned dictionary is

more suitable to recover ridges while preserving features such as minutiae and singular

points.
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: An example to explain the superior performance of TV+G for the bad cate-
gory: (a) the original image of B127, (b) the texture component using the ADTV decom-
position, (c) the texture component using the TV-L1 decomposition, (d) the enhanced
image using ADTV+L, (e) the enhanced image using TV+L, (f) the enhanced image
using TV+G.

However, for the bad category in Fig. 3.9(c), TV+G offers better performance than

TV+L and ADTV+L, especially for the rank-1 identification rate. This can be explained

as follows. First, poor image quality results in wrongly estimated parameters, which in

turn degrades the performance of the ADTV decomposition. Second, structured noise

in some bad images is nip and tuck with ridge patterns so that it stays in the texture

component, which offers an erroneous query to dictionary search. The TV model offers

similar strength for both structured noise and the fingerprint signal, which provides a

higher probability in reconstructing correct ridges form the dictionary. Third, bad latent

fingerprints often have false minutiae, which tend to mislead the learned dictionary. The

Gabor dictionary is more robust to this type of errors.
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We use an example to explain the better performance of the TV+G scheme for the

bad category of the NIST SD27 dataset in Fig. 3.10(a). Its texture components extracted

by the ADTV decomposition and the TV decomposition are shown in Figs. 3.10 (b) and

(c), respectively. We observe more structured noise left with the ADTV decomposition

as compared to that with the TV decomposition. The learned dictionary can be influ-

enced by structured noise left in the texture component. For example, the letter “E”

circled in red in ADTV’s texture component is negatively affected for ridge recovery

using the learned dictionary as shown in Fig. 3.10(d). For more comparison, we can

examine another letter “E” circled in green as shown in Fig. 3.10(c). The application of

the learned dictionary leads to a false bifurcation type minutiae as shown in Fig. 3.10(e).

In contrast, the application of the Gabor dictionary yields an excellent result as shown

in Fig. 3.10(f).

To summarize, we show different results by considering different combinations of

TV/ADTV models and dictionaries. They are consistent with the analysis given in Sec.

3.3. Moreover, performance analysis on different quality categories shows the impor-

tance of integrating local quality assessment as discussed in Sec. 3.3.3. The performance

of the final MRF-SR method will be shown in Sec. 3.4.3 to illustrate the effectiveness

of the proposed enhancement method.

3.4.3 Performance Benchmarking and Fusion with the State-of-the-

Art Method

Due to the effect of different TV models and dictionaries, it is a natural choice to switch

between ADTV/TV dynamically based on local image quality and to adopt the learned

dictionary. The learned dictionary will provide good performance in general as com-

pared with the Gabor dictionary. Being similar with [12], we adopt gradient enhance-

ment as the post-processing technique to yield the final enhancement results.
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(a) Latent Fingerprint (b) Localized Dictionary (c) Proposed MRF‐SR

Figure 3.11: Enhanced latent fingerprints visual comparison: (a) the original latent fin-
gerprints, (b) the enhancement results from Localized Dictionary method, and (c) our
final enhancement results using the proposed MRF-SR method.

We first evaluate the proposed method visually against the state-of-the-art method

proposed in [113], especially the capability of removing structured noise with better

ridge connectivity. Several visual examples of the enhanced results as compared with

the localized OF dictionary method in [113] are shown in Fig. 3.11. We see that the

proposed MRF-SR method has stonger capability in removing structured noise in these

examples. Besides, we observe better ridge connectivity in regions where ridges are
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missing due to structured noise. Moreover, since our enhancement is based on atoms

from the ridge dictionary, we see a clearer ridge/valley contrast.

To have comprehensive performance comparison, we show the CMC curves for

cases with and without 27,000 background fingerprints in Fig. 3.12. In particular, we

compare the following algorithms: (1) the proposed MRF-SR method, (2) the simpli-

fied MRF-SR algorithm using ADTV+L, (3) the localized OF dictionary method in

[113] and (4) the matched score sum of (1) and (3). It is worthwhile to point out that

the performance of (3) in our evaluation is different from their reported results since

they enhanced the rolled fingerprints as well in the matching process. For fair compar-

ison, we only enhance latent fingerprints but not their mated fingerprints, and conduct

all experiments under this setting.

As shown in Fig. 3.12, the performance of the MRF-SR method outperforms the

simplified ADTV+L with or without adding background fingerprints. This demonstrates

the effectiveness of the proposed dynamic switching between texture components from

TV/ADTV. It also shows the importance of local quality assessment when handling

latent fingerprints.

The localized OF dictionary method [113] offers the state-of-the-art matching per-

formance. We see from Fig. 3.12(a) that the proposed MRF-SR method slightly outper-

forms it when no background noise is included. This is especially true for the identifica-

tion rate when the rank goes beyond 8. For latent fingerprint matching, human experts

do not rely only on top-1 results since the overall rank-1 identification rate is very low.

Therefore, a higher rank-8 identification rate is still meaningful since it can reduce the

human labor effort by providing top 8 matching results. After adding 27,000 background

rolled fingerprints from NIST SD14, the CMC curves are shown in 3.12(b). The local-

ized dictionary method performs slightly better for the rank-1 and rank-2 identification
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Figure 3.12: Performance comparison against the whole dataset with the MRF-SR
method, ADTV+L, the localized OF dictionary method, and the fusion of the MRF-
SR and the method in [113]: (a) CMC curves without 27,000 background noise; and (b)
CMC curves with 27,000 background fingerprints.

rates. However, our method does not need the precise orientation field estimation as the

input. Furthermore, it does not demand the global pose estimation either.

Finally, since there exists diversity in the ridge dictionary and the orientation dic-

tionary, there is an advantage in fusing the localized OF dictionary method and the

proposed MRF-SR method for better performance. The result of the fused solution is

labeled by the “Match Score Sum” in Fig. 3.12. The fusion idea was also conducted in

[12, 11]. We see that the fusion of the two methods offers substantial improvement over

any one of the two. With adding background fingerprints, the score sum still outper-

forms the localized method by 6.2% for the rank-1 identification rate. This score fusion

result shows the complementary strength of the proposed MSF-SR and the localized OF

dictionary method.
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3.5 Conclusion

Despite rapid developments in the automated fingerprint identification system, the iden-

tification rate in latent fingerprint matching is still far from satisfaction. In this work,

we proposed an effective and robust solution by utilizing the sparse ridge dictionary and

the MRF model to enhance latent fingerprints. Extensive studies were conducted on

the pros and cons of TV/ADTV models and learned/Gabor ridge dictionaries. Without

focusing on estimating the orientation field and/or the fingerprint pose, we developed

direct enhancement methods for improved fingerprint matching in terms of the identifi-

cation rate. The fusion of the proposed MRF-SR method and the localized OF dictionary

method offers the state-of-the-art performance. For further performance improvement,

we would like to find a robust way to estimate the global information of a local patch

and, then, incorporate this information in the local patch enhancement process. More-

over, our method only uses the single-scale ridge dictionary and it is worthwhile to

extend it to multi-scale dictionaries in the near future.
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Chapter 4

A Fusion Approach to Orientation

Field Estimation

4.1 Introduction

As one of the important fingerprint features, the orientation field (OF) plays a funda-

mental role in fingerprint analysis and recognition. It can be used to assist fingerprint

enhancement (using contextual filtering), fingerprint types classification, and singular

points detection. Although the proposed MRF-SR method can achieve good perfor-

mance for latent fingerprint enhancement without necessity of estimating orientation

field, it is still worthwhile to provide a robust solution for orientation field estimation.

The proposed MRF-SR method not only enhances latent fingerprint, but also has

the ability to estimate orientation field. Since the enhancement results are obtained by

stitching ridge dictionary atoms, the orientation field can also be estimated stitching

those atoms’ orientation. One advantage of this strategy is that the orientation estimated

for ridge atoms is accurate due to high quality. However, certain modification of MRF-

SR needs to be involved in order to fit better to the problem of orientation estimation.

With the modified MRF-SR (MRF-SR-Modified), we evaluate the performance espe-

cially on orientation estimation and compare with other existing approaches. Our pro-

posed method is demonstrated to outperform the existing ridge dictionary based method

such as [12].
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Ground Truth

FOMFESTFT

Global OF Dict.

Gradient

Localized OF Dict. MRF‐SR

Ground Truth

FOMFEGradient STFT

Global OF Dict. Localized OF Dict. MRF‐SR

Figure 4.1: Orientation Field estimated by different methods: Gradient-based, STFT,
FOMFE, Global OF Dict., Localized OF Dict., and MRF-SR. Wrong local orienations
compared with groudnt truth are marked with squares.

We further propose a fusion based approach for orientation field estimation. This

strategy is inspired by the fact that different approaches concentrate on different aspects

of fingerprint orientation. For example, gradient based method focuses much on local

derivative of spatial domain; STFT method handles orientation in the Fourier domain;

the global and localized OF dictionary based method rely on compatibility of orientation
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elements at local and global; the MRF-SR method emphasizes on the importance of

guidance of the actual fingerprint ridges for orientation estimation. Fig. 4.1 shows an

illustration about the diversity of different methods. In general, the advanced techniques

Global OF Dict., Localized OF Dict. and MRF-SR methods predict orientation better

than others. It can be shown that different approach successes at different locations,

which implies the potential to fuse them.

4.2 Related Previous Work

Different from the approaches mentioned in Chapter 1 that are mainly proposed for

exemplary fingerprints, more and more work are proposed particular for latent finger-

print such as [11, 12, 36, 113].

4.2.1 Global OF Dictionary

In [36], Feng et al. proposed a global orientation field dictionary based method to make

better smoothing of orientations of fingerprint. This work used an orientation patch

dictionary to smooth the initial OF, where clean reference orientation patches are used

to create a global dictionary as the prior of the fingerprint orientation. For every initial

OF patch, they looked up this dictionary for potential candidates and, then, minimized

an energy function to estimate the final OF using loopy belief propagation, where the

energy function is defined by orientation similarity and neighboring compatibility. The

main steps of this method as given below.

1. Dictionary construction: in the off-line stage, a global orientation field dictionary

is constructed by the greedy algorithm using orientation field patch (10 ⇥ 10 ori-

entation elements) of different good quality fingerprints.
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2. OF initialization: orientation field estimated by local Fourier analysis is used as

the initial orientation field for a latent fingerprint [51].

3. Dictionary lookup: the initial OF is divided into overlapping orientation patches.

Each initial orientation patch’s six nearest neighbors in the OF dictionary are

selected as possible candidates to replace the initial patch.

4. Contextual correction: a combination of candidates for initial orientation patch is

optimized by considering compatibility of neighboring orientation patches.

The optimization equations are given below.

E(r1, ..., rP ) = Es(r1, ..., rP ) + �cEc(r1, ..., rP ), (4.1)

Es(r1, ..., rP ) =
X

i2V

{1� S(⇥i, Oi,ri)}, (4.2)

Ec(r1, ..., rP ) =
X

(i,j)2N

{1� C(Oi,ri , Oj,rj)}, (4.3)

where ri(1  ri  nc) means the index that the orientation patch i select among nc

candidates,⇥i is the initial orientation for patch i, Oi,ri denotes the candidate orientation

when candidate ri is chosen for patch i, V is the set of all fingerprint foreground patches,

and N represents the set of 4-connected neighboring foreground fingerprint patches.

When the candidates are selected, Es means the similarity energy and Ec means the

compatibility energy with those candidates, and �c is the weight to balance these two

energy functions.

The similarity S is the proportion of similar orientation elements within a threshold

between initial orientation patch and the candidate patch. The compatibility function C

is defined as

C(Oi,ri , Oj,rj) =
1

N0

N0X

n=1

��cos(↵ri,n � �rj ,n)
�� , (4.4)
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Figure 4.2: Examples of showing registered orientation field for NIST SD4. Green
dots are the mannually marked pose and the orientation fields are registered to upright
direction in the image center.

where ↵ri,n and �rj ,n denote orientations of the overlapping orientation elements

between patch Oi,ri and Oj,rj . Loopy belief prorogation is employed to minimize the

final energy function.

4.2.2 Localized OF Dictionary

However, since this global dictionary does not consider the location-dependent infor-

mation, the estimated OF of a patch may not be consistent with its spatial location in

the fingerprint. To improve this, Yang et al. proposed a localized OF dictionary based

method to further smooth the local estimated orientation [113]. The two major differ-

ence between global OF dictionary based method and localized OF dictionary based

method are as follows.

1. Unlike a global OF dictionary, the localized OF dictionary is a set of dictionaries

which depends on the location to fingerprint pose. The localized OF dictionaries

are learned from a set of registered training orientation fields. Fig. 4.2 shows

examples of the registered orientation field as training samples.
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Θ

(x, y)

Figure 4.3: An illustration about finger pose (x, y, ✓)

2. Pose of fingerprint is applied in this work. Pose of a fingerprint is illustrated in

Fig. 4.3. With pose estimated for a fingerprint, the fingerprint orientation field is

registered firstly and then each orientation patch will look up the corresponding

localized OF dictionary based on its location in the finger instead of a global singe

OF dictionary.

The other procedures such as energy optimization, contextual correction are similar

with the Global OF dictionary based method. The results show an improvement on the

orientation field estimation.

4.3 Proposed Methods for OF Estimation

4.3.1 MRF-SR-Modified Orientation Field Estimation

The proposed MRF-SR method can also estimate orientation field while enhancing

latent fingerprints. The methodology is simply to make use of the facts that it is easy and
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effective to estimate orientation for atoms in the ridge dictionary. Both the learned dic-

tionary and Gabor dictionary in Chapter 3 include ridge atoms in a well-defined ridge-

valley structure. Therefore, it makes possible to utilize stitching of the optimized atom

to obtain the final estimated orientation field.

However, to make the MRF-SR method even more proper particular for the ori-

entation field estimation application, several modification can be done to the original

MRF-SR, and we call it MRF-SR-Modified.

Firstly, for orientation estimation, it is not necessary to emphasize too much on the

data fidelity. In the other hand, candidates atoms with more diversity for a fingerprint

patch tend to provide more possible ways when reconstructing a new orientation field.

Furthermore, since it is only for orientation field estimation, preserving details such as

minutiae is not as critical as fingerprint enhancement, which means a Gabor dictionary

is possible to be effective for orientation field reconstruction. Therefore, TV-L1 decom-

position with Gabor dictionary will be the proper setting for MRF-SR-Modified in order

to estimate orientation.

Secondly, the fingerprint pose is embedded in the MRF-SR method by defining a

new unary potential:

'new(pi,yi,si) = '(pi,yi,si) + 'pose(pi,yi,si), (4.5)

'pose(pi,yi,si) = 1� p(Oi|uc), (4.6)

where '(pi,yi,si) is defined in Eq. 3.16, p(Oi|uc) is the probability of the estimated

orientation of patch pi located in the whole fingerprint given the estimated pose of fin-

gerprint uc. After this modification, we follow the MRF-SR procedure in Ch. 3 but to

generate the estimated orientation.

66



Figure 4.4: An example of probability distribution of prototypes: at location (�5, 5),
the prototypes with high probability tend to be the correct orienatin patches appear in
this location. Similary for location (6, 5).

Therefore, fingerprint pose estimation will be a key factor her and it is estimated by

the Hough Voting schema as follows in [113]:

1. The k-medoids clustering algorithm is applied to the orientation training patches

so that 200 prototype orientation patches { i}, i = 1, ..., 200 can be obtained.

2. The probability distribution of prototype patch  i at location u, p( i|u) can be

approximated by the frequency of patches in cluster i occurring at location u as

follows:

p( i|u) =
Nu,i

Nf

, (4.7)

where Nu,i is the number of orientation patches at location u in the training sam-

ples belonging to cluster i, and Nf represents the number of training fingerprints.

An example of this probability distribution of prototypes is shown in Fig. 4.4.
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3. With the probability distribution p( i|u), the probability that fingerprint pose is

c = (x, y) given an initial orientation path o appearing at location v, p(c|o, v), can

be approximated as:

p(c|o, v) ⇡ p(c| ⇤
, v) = p(uc| ⇤), (4.8)

where  ⇤ is the nearest neighbor for o among all the prototypes, uc = v � c.

Note that p(uc| ⇤) is the posterior probability of Eq. 4.7 that can be estimated by

Bayes’ theorem easily.

4. The initial orientation field can be divided into overlapping patches and then

p(c|o, v) can be estimated for each patch. Then, a Hough Voting will be applied

to determine the final pose of a fingerprint.

With pose estimated, the probability of a ridge atom occurs at its location for a fin-

gerprint patch can be estimated. If the probability is smaller than a pre-defined threshold,

the unary potential for this atom will be set to 1, which means the optimization tends

not to choose this atom eventually.

4.3.2 A Learning based Fusion Strategy

For fingerprint community, few methods are proposed using machine learning tech-

niques. The reason is that feature for fingerprint(“feature” here means the machine

learning feature vector, different from fingerprint feature mentioned in previous chap-

ters) is hard to design. Zhu et al. designed 11 features based on ridge analysis for

fingerprint in [124], however, it is hard to use for latent fingerprint because of the low

quality ridge structure. Features are usually corrupted so that they can not represent

fingerprint well.
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Figure 4.5: Examples of Ground Truth orientation field for latent fingerprint in NIST
SD27.

Therefore, instead of using hand engineered features for fingerprint, we propose a

decision fusion strategy for latent fingerprint orientation estimation as follows:

1. Six experts such as Gradient based method, STFT, FOMFE, Global OF based

method, Localized OF based method and the MRF-SR-Modified based method

are used firstly to estimate orientation field.

2. Estimated orientation for each block is considered as a decision for each expert.

Then, there are 6 orientation decisions for each fingerprint block.

3. Treat decisions as features and a supervised learning technique such as Support

Vector Regression, Linear Regression and Neural Network is applied to train the

model.

4. Final testing can be conducted on the unlabeled dataset.
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Table 4.1: Fingerprint Datasets Summary

Dataset Description Major Purpose
NIST SD4 2,000 pairs of rolled fingerprint

http://www.nist.gov/srd/nistsd4.cfm
OF modeling, back-
ground dataset,other
purpose

NIST SD14 27,000 pairs of rolled fingerprint
http://www.nist.gov/srd/nistsd14.cfm

background dataset

NIST SD27 258 pairs of latent fingerprints and the mated
rolled fingerprint
http://www.nist.gov/srd/nistsd27.cfm

performance evalua-
tion

Tsinghua
Overlapped
Latent

100 latent fingerprints with overlapped, 12
mated plain fingerprints
http://ivg.au.tsinghua.edu.cn

overlapped fingerprint
separation

FOE-STD-1.0 10 good quality and 50 bad quality finger-
prints

OF evaluation

4.4 Experimental Results

4.4.1 Datasets and Performance Evaluation

For latent fingerprint, the NIST SD27 dataset is still used for the orientation field estima-

tion. However, a summary of several dabasets existed is provided in Table 4.1. Several

datasets in this table are used in this work.

For orientation estimation, the ground truth orientation was established manually

marked based on 16⇥16 block in [100]. Fig. 4.5 shows some examples of the manually

marked orientation ground truth. The performance of orientation field estimation algo-

rithms is quantitatively measured by the average Root Mean Square Deviation (RMSD)

of the estimated orientation fields from the ground truth orientation fields, as suggested

in [100].

RMSD(Dk, Gk) =

sP
i2F d�(✓k

i
, gk

i
)2

|F | , (4.9)
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d�(✓1, ✓2) =

8
>>>>><

>>>>>:

✓1 � ✓2, if � ⇡

2  ✓1 � ✓2 <
⇡

2

⇡ + ✓1 � ✓2, if ✓1 � ✓2 < �⇡

2

⇡ � ✓1 + ✓2, if ✓1 � ✓2 � ⇡

2

, (4.10)

where Gk, Dk is the ground truth orientation field and estimated orientation field for the

k
th (1  k  N ) fingerprint, F = {i}k denotes the set of foreground orientation ele-

ments, and g
k

i
, ✓

k

i
means the ground truth and estimated orientation of the ith foreground

element in the k
th fingerprint. The final average RMSD is defined as:

AgeErr =
1

N

NX

k=1

RMSD(Dk, Gk). (4.11)

4.4.2 Results Comparison

The results of different algorithms are shown here in Table 4.2, including the proposed

modified MRF-SR. It shows that the local estimation methods are far from satisfactory

for orientation estimation on latent fingerprints. The proposed modified MRF-SR pro-

vides the second best performance and the localized OF Dictionary method is the state-

of-the-art method for orientation estimation. However, the proposed MRF-SR-Modified

outperforms the global OF dictionary, which still shows the effective of the proposed

method.

For the fusion strategy, the 258 latent fingerprint images in NIST SD27 is divided

into two parts: training and testing. 129 latent fingerprint images are randomly selected

as training and the others are used for testing. As about orientation elements, there are

41,032 training elements and 40,499 testing elements in total. the results are shown

in Table 4.3 with comparing with individual approaches and the fusion approach with

different classifier. Here, linear regression, SVM regression and the Neural Network

fitting have been applied to evaluate the expert fusion on orientation field. The results
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Table 4.2: Average Error (in degree) of Different methods on NIST SD27

Method All Good Bad Ugly
Gradient 32.45 27.30 33.79 36.45
STFT 32.51 24.27 34.10 36.63
FOMFE 28.12 22.83 29.09 32.63
RidgeDict. 19.53 15.34 20.70 22.68
GlobalOFDict. 18.44 14.40 19.18 21.88
LocalizedOFDict. 14.35 11.15 15.15 16.85
MRF-SR-Modified 17.62 13.97 18.35 20.69

Table 4.3: Average Error (in degree) on testing dataset

Method All
Gradient 33.13
STFT 32.84
FOMFE 29.42
GlobalOFDict. 19.79
LocalizedOFDict. 16.53
MRF-SR-Modified 18.23
Neural Network 18.63
Linear Regression 22.23
SVM Regression 21.56

show that Neural Network fitting provides better performance than most of the individ-

ual approaches in a large margin except Localized OF Dict. method and our proposed

MRF-SR-Modified method. The fusion strategy does not perform as the best, it maybe

caused by several reasons such as lack of representative training data, over-fitting issues

and so on. However, it does show great potential as an ensemble techniques as more

strong individual methods explored.

72



4.5 Conclusion

In this chapter, the orientation field estimation is studied thoroughly. The proposed

MRF-SR-Modified can provide competitive results for orientation estimation, which

outperforms most of the current algorithms, especially the existing similar ridge dictio-

nary method. Moreover, to further boost the performance of orientation estimation, a

supervised learning based fusion strategy is proposed. In this fusion scheme, decisions

from different experts are treated as feature vector and then multiple techniques such as

linear regression, SVM regression and the Neural Network fitting are applied to train

the model. The final performance on testing shows the potential to fuse other experts in

order to boost the orientation estimation performance.
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Chapter 5

Deep Convolutional Neural Network

for Latent Fingerprint Enhancement

5.1 Introduction

Nowadays, deep learning technique particularly convolutional neural network (CNN)

has been proved to be very successful on both low-level and high-level computer vision

applications [26, 45, 63, 72, 74, 93]. In this chapter, we have a detailed study about

applying CNN on latent fingerprint application to explore capability of deep neural net-

work on this topic.

We propose a novel latent fingerprint enhancement method called “FingerNet” based

on recent development of Convolutional Neural Network (CNN). Although CNN is

achieving superior performance in many computer vision tasks from low level image

processing to high level semantic understanding, limited attention has been paid in the

fingerprint community. Our proposed neural network has three major parts: one com-

mon convolution part shared by two different deconvolution parts, that are the enhance-

ment branch and orientation branch. The convolution part is to extract fingerprint fea-

tures particularly for enhancement purpose. The enhancement deconvolution branch

is employed to remove structured noise and enhance the fingerprints as its task. The

orientation deconvolution branch performs the task of guiding fingerprint enhancement
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through a multi-task learning strategy. The network is learned in the manner of pixel-

to-pixel and end-to-end learning, that can directly enhance latent fingerprint as the out-

put. We also study some implementation details such as single task learning, multi-task

learning, and residual learning. Experimental results of our FingerNet system on latent

fingerprint dataset NIST SD27 demonstrate effectiveness and robustness of the proposed

method.

As mentioned in Chapter 3, Cao et al. proposed a CNN based OF estimation method,

that treated it as a classification problem [11]. However, there are two major limitations

for this method: First, only 128 representative orientation patterns are used to stitch the

final orientation field. Each fingerprint patch will be classified into one of the 128 rep-

resentative pattern using CNN. Therefore, the estimated orientations fall in lack of rich

variation due to the natural of classification modeling. This might be also the reason that

it needs re-estimate the orientation field again using the enhanced fingerprints. Second,

the noise types added in order to generate training samples are majorly limited to lines

and zero blocks. This is not sufficient enough to simulate the actual latent fingerprint

patches, especially ignoring one of the most important structured noise in latent case -

characters.

Our proposed FingerNet is inspired by the recent development of CNN on image

processing applications, particularly using the pixel-to-pixel and end-to-end learning

manner [74, 28, 29, 60, 61, 80, 81]. We propose a deep network architecture directly

targeting on fingerprint enhancement in the aforementioned pixel-to-pixel and end-to-

end fashion. Different from [11] that applied CNN on orientation classification in an

indirect way of enhancing fingerprint, our method is a solution in new angle to solve

enhancement more directly. In this work, training data is firstly generated via distorting

clear fingerprint patches by adding structured noise such as lines and characters. The
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distorted fingerprint patch is then used as input and its enhanced version by Gradient-

based method is used as output of the proposed FingerNet. Our network architecture

is consist of multiple convolutional layers and their corresponding symmetrical decon-

volutional (or, transposed convolutional) layers. This is also within the framework of

encoder-decoder network. Instead of increasing depth of the network to enlarge the

receptive field [60, 61, 80, 81], we apply pooling the first time for image processing

applications. Two branches of orientation classification and fingerprint enhancement

are involved via multi-task learning. In order to compensate the possible image details

lost when recovering caused by pooling, skip connections are introduced to pass image

details of different resolution.

The major contributions of our FingerNet include four folds: First, to our best knowl-

edge, we are the first one to apply pixel-to-pixel and end-to-end learning for latent finger-

print enhancement; Second, we propose a better data preparation/augmentation to have

characters, lines, and other structured noise; third, we successfully train the encoder-

decoder network with pooling and striding included. This is different from all other

image processing networks without pooling layers; Fourth, the mutli-task learning com-

bining orientation and enhancement proposed in this chapter is proved to be successful.

The rest of this chapter is organized as follows. Related work in the literate is intro-

duced in Sec. 5.2. Then, our proposed method including several implementation details

is introduced in Sec. 5.3. Experimental results are shown and analyzed in Sec. 5.4.

Finally, we summarize this chapter and point out possible future work in last section.

5.2 Related Previous Work

In this section, we are mainly focusing on related work applying CNN on image pro-

cessing and latent fingerprint enhancement. Although CNN has shown great success on
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computer vision tasks such as image classification, image segmentation, object detection

and so on [25, 43, 62, 97, 98], limited attention has been paid into lower level applica-

tions, e.g. image processing such as image super resolution, denoising, deblurring, etc.

5.2.1 CNN on Image Processing

Convolutional neural network has achieved grand success not only on high-level seman-

tic vision applications, but also on low-level image processing problems. Since fin-

gerprint enhancement naturally belongs to low-level image processing category, deep

learning research on image processing especially on image denoising, super-resolution

and restoration is more related here. Instead of using the pre-defined image priors, the

deep learning methods conduct learning directly from pixel to pixel in the end-to-end

style.

Xie et al. proposed Stacked Sparse Denoising Auto-Encoders (SSDA) for image

denoising [111]. Denoising Auto-Encoders are stacked to form the network, and then the

pre-trained technique with sparse regularization is used to solve the network. Recently,

several CNN based methods were presented on image super-resolution. Dong et al.

proposed a fully convolutional neural network SRCNN that includes 3 layers convo-

lution [28]. It shows representative and success to learn high resolution images from

low resolution ones. Kim et al. successfully trained a very deep convolutional network

(20 weight layers) with residual learning for super-resolution. Each convolutional layer

uses a simple 3⇥ 3⇥ 64 filter similar with the popular VGG net [60]. Besides, Kim et

al. also presented a deeply-recursive convolutional network (DRCN) as one solution to

super-resolution [61]. This method can increase the network depth by recursion without

having additional parameters. To make learning efficient in DRCN, the recursive lay-

ers are also under supervision and the similar one path skip connection from input to

output exists. Mao et al. proposed a fully convolutional Encoder-Decoder network for
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image restoration [80]. The symmetrical skip connections to link convolution layer and

deconvolution layer in this chapter, can make a faster and better convergence.

5.2.2 CNN on Latent Fingerprint Enhancement

Although the end-to-end learning shows superior performance as state-of-the-art

approach, it has not been applied successfully on latent fingerprint application to our

best knowledge. The most recent applying of CNN on latent fingerprint was proposed

in [11]. However, different from the pixel-to-pixel and end-to-end learning manner, Cao

et al. applied CNN to estimate the orientation field first and then enhance the latent

fingerprint using Gabor filter banks. The OF estimation via CNN is treated as the clas-

sification problem. 128 representative orientation patches (160 ⇥ 160 pixels, 10 ⇥ 10

orientation elements) are first obtained as 128 orientation classes by statistic analysis on

2,000 file fingerprints. Then, 1.28 million 160⇥ 160 fingerprint patches with line noise

added are used as training data, and their corresponding ground truth are labeled as the

closest orientation class. After this, one AlexNet like network is employed to train the

classification problem. Finally, the orientation patches estimated from CNN are quilted

to be the final orientation field. With this estimated orientation field, latent fingerprint

can be enhanced using Gabor filtering technique. Then, it requires re-estimating orien-

tation again using the enhanced latent fingerprint. Finally, the re-estimated orientation

field is used to enhance fingerprints and provide their final enhancement results.

Although this is the first work to apply CNN on latent fingerprint application, it has

the following three major issues:

1. It only applies CNN to estimate the orientation field from the manner of clas-

sification task. It is still indirect to enhance fingerprints without making use of

advantages of applying CNN directly on enhancement in a regression-like task.
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2. Since it treats orientation estimation as the traditional classification problem.

Whether 128 classes is enough to represent the whole orientation field space is

an potential issue. If it is not enough, there will be potential issues when enhanc-

ing fingerprints using the estimated orientation field.

3. It requires re-estimate the whole orientation field again using the enhanced results

from their network estimated orientation. This shows that the direct estimation

from their network is not very good enough, that means their network training

probably is not learning well enough.

5.3 Proposed FingerNet Method

5.3.1 Training Data Preparation

A big challenging to apply CNN on latent fingerprint application is indeed the lack of

training data, especially for the latent case. The NIST SD27 latent dataset has only

258 latent fingerprint images, and is short of the correspondence between latent finger-

prints’ region of interest (ROI) and their true mates. Therefore, it is more appropriate

to use NIST SD27 as the final inference rather than training straightly from it. Instead

of NIST SD27, we use NIST SD4 to prepare training data but for the latent case. NIST

SD4 has 2,000 rolled fingerprints with equally distributed fingerprint types (arch, tented

arch, right loop, left loop and whorl). This special property helps to cover varieties

of ridge patterns as much as possible when generating training data. Fig. 5.1 shows

the illustration of the process to generate meaningful training data from NIST SD4

for latent fingerprint application. This procedure generally includes creating training

patches, generating the corresponding enhancement ground truth image, and estimating

the orientation ground truth map.
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Augmented Fingerprint Patches

Instead of using the whole fingerprint image from NIST SD4 as one training sample, we

create multiple overlapping 109⇥ 109 fingerprint patches as training samples. By over-

lapping cropping further at resolution of 61 ⇥ 61, the same fingerprint region appears

in different sampling patches, which means different contextual information for it. This

is indeed a data augmentation process that generates much more meaningful training

data. Meanwhile, we also check reliability map of a fingerprint using algorithms in [46]

to exclude the background region and low quality patches when creating the training

data. A quality mask can be produced based on the reliability map with thresholding.

In Fig. 5.1, the region circled in red shows bad quality and will be excluded when

selecting training patches. This is important in order to avoid wrong ground truth gen-

erated because of poor quality fingerprint regions. By quality control, it ensures that the

ground truth labels (can be enhancement images or orientation classes) estimated for

both enhancement and orientation are reliable to supervise the training.

Ground Truth Labels

Fingerprint patches from Sec. 5.3.1 often have relative good quality (e.g., clean ridge

structure, few structured noise). This makes it possible to obtain reliable ground truth

labels for both the enhancement and orientation estimation. We adopt the simple but

classical Gradient-based method proposed in [46] to generate these ground truth labels.

With gradient of each pixel calculated, the orientation field can be estimated in the

range of 0� to 180�. To eliminate possible negative influence of incorrect orientation

estimation, we quantize each pixel’s orientation with 9� as the quantization step. Thus,

we finally use 20 classes as the ground truth labels of orientation map in pixel-wise

manner.

80



Quality 
Control

Noise 
Simulation

Gradient
Enhance

Texture 
Decomp.

Gradient
Orientation

Orientation
Quantizer

Reliability Map

Quality Masking

NIST SD14

Orientation
Ground Truth

Training 
Patches

Enhancement
Ground Truth

Figure 5.1: Illustration of training data preparation: overlapping patches in good quality
are extracted firstly; Then, enhancement ground truth images are created from Gradient-
based method; Orientation ground truth maps are generated based on Gradient orienta-
tion followed by quantizing; Finally, training patches are produced by a noise simulation
module and texture decomposition.

About the enhancement ground truth, the proposed contextual filtering method with

estimated orientation field in [46] is applied. The enhancement results from it are actu-

ally used as “ground truth enhancement” to be learned from the convolutional neural

network.

Training Patches in Latent Case

Structured Noise Simulation: The structured noises are added on the patches of rolled

fingerprints to simulate the latent situation, in order to generate training data of the

network. Different from [11] that lacked of characters structured noise, we also distort

rolled fingerprints with characters. Given a fingerprint patch P , its distorted version Pd

with lines and characters can be obtained as following:
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Lines: Due to strong similarity with fingerprint ridge structure, line-like noise

makes algorithms tend to fail easily. We utilize the Gabor functions to simulate mul-

tiple sets of lines as [11]. One set of lines L is determined by one Gabor function with

the corresponding parameters, and added to fingerprint patch P by

Pl = min(↵P,L), (5.1)

where ↵ controls the strength of fingerprint signal. The min operation is used here to

have a better overlaying effect by adding line noise. We generate up to 3 sets of lines in

random by a recursive version of Eq. (5.1).

Characters: Besides lines, another very common structured noise appearing in latent

fingerprint is the text including various characters. This type of noise will cause wrong

orientation estimation and enhancement if not handling well. Thus, we make use of

the case-insensitive character dataset 1 from [50] to add character noise. This dataset

includes 163k character images from ICDAR 2003, 2005, 2011, 2013 training images,

KAIST and Chars74k with cropping to 24 ⇥ 24 characters. We overlay one fingerprint

patch by random selecting characters with the expectation of one quarter region covered.

Besides, we arrange the characters in a random direction and scale them to double size

with probability 0.5. The final distorted patch Pd with characters as structured noise will

be

Pd = min(Pl, Pc), (5.2)

where Pc is the characters noise added and Pl is fingerprint patch distorted with lines.

1https://bitbucket.org/jaderberg/eccv2014 textspotting
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(b) (c) (d)(a)

Figure 5.2: Examples showing how to prepare training data: (a) Original patch P ; (b)
Adding noise and weaken fingerprint strength to be distorted Pd; (c) Texture component
P

t

d
from (b); (d) Ground truth enhancement Pe from (a).

Pre-processing: Total variation (TV) decomposition has been proved to be a proper

pre-processing for latent fingerprint [119, 12, 67]. A latent fingerprint can be decom-

posed into cartoon and texture components via TV decomposition. In general, the car-

toon component consists of piece-wise smooth background noise while the texture com-

ponent keeps oscillatory textured patterns (e.g., fingerprint ridges). Although there are

still structured noises contained in texture component, the strength of structured noises
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is relatively suppressed comparing with original latent fingerprint. Therefore, texture

component of a latent fingerprint is often used as the actual image to be enhanced.

Finally, better structured noise simulation for fingerprint, the TV decomposition pre-

processing and the augmented latent patches, can help provide abundant training data

to learn how to enhance fingerprint from the distorted patch to its enhanced patch in an

end-to-end strategy. The following notations are used in this paper: original fingerprint

patch P , its distorted version Pd, the texture component P t

d
decomposed from Pd, and

the enhanced patch Pe directly applied on P , and the quantized orientation field POF

estimated from P . In the training process, P t

d
will be used as input, while Pe and POF

is the corresponding outputs of the network. Fig. 5.2 shows some examples of these

patches.

5.3.2 Network Architecture

The proposed network architecture contains convolutional/deconvolutional layers, pool-

ing/unpooling layers, and several skip connections. There is the ReLU operation after

each convolutional/deconvolutional layer. Fig. 5.3 is an illustration about the detailed

configuration of our network. To simplify the overall network structure, we have the

same size c = 64 for channel size of each feature map, which is proved to be an effec-

tive in experiments.

Convolutional Layer

Cascading convolutional layers are fist applied to extract fingerprint features, which

is an important motivation that we apply CNN on latent fingerprint applications. For

computer vision problems, e.g., semantic understanding, there are very successful low

level features such as Scale-Invariant Feature Transform (SIFT) and Histogram of Ori-

ented Gradients (HOG). However, it is short of superior low level features particular for

latent fingerprints in the literature. Zhu et al. proposed a hand-engineered feature for

84



Figure 5.3: Illustration of the overall network architecture we proposed. The network
contains one common convolution part and two deconvolution parts: orientation branch
and enhancement branch. Skip connections are presented symmetrically to connect the
convolution part and enhancement barnch.

exemplar fingerprint based on signal analysis [124]. However, it is not robust for latent

situation because of appearance of the structured noise. Therefore,the trained deep fea-

tures for latent fingerprint could play a crucial role as one important supplement in

fingerprint community.

Deconvolutional Layer

Recently, deconvolution related techniques have been adopted into CNN to yield

the Encoder-Decoder like network. It shows success on semantic segmentation [5, 85]

and image restoration [81]. Deconvolution referred here can also be called “transpose

convolution” or “fractal stride convolution”, which is not the same as “inverse of con-

volution” defined in mathematics or signal processing. However, to be consistent and

simplified, we keep using this term “deconvolution” in this work for convenience. For
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latent fingerprint enhancement, the convolutional procedure will extract features that

can eliminate the structured noise while keeping the fingerprint ridge content. Then, the

deconvolution layers will recover image details using the extracted CNN features.

Indeed, deconvolution can also be treated as convolution. However, convolution

bundles multiple inputs with a single output, yet deconvolution bundles one input with

multiple outputs. Therefore, deconvolution layer is able to recover the resolution shrink-

ing that happens during convolution procedure. For image processing applications, it is

necessary to keep the same resolution for both the input and output images. Thus, many

networks include image padding in order to keep the resolution [28, 60]. Since decon-

volution has the property of enlarging resolution, it is possible to ignore padding during

convolution, and rely on the deconvolution to recover the same image resolution. Note

that we use the same caffe implementation as [5, 80, 81, 85] for deconvolution layers.

Pooling and Unpooling Layer

Most of the neural network for image processing applications (e.g. super-resolution,

restoration and denoising), abandon pooling or unpooling layers in their network archi-

tecture. The major concern is that pooling will discard useful image details, that will be

inappropriate for the aforementioned tasks.

However, we enable pooling and unpooling in our network structure based on several

reasons. First, fingerprint enhancement is notably different from the low-level image

processing task. The learning procedure need to distinguish fingerprint ridges and struc-

tured noise, which is indeed in semantic level of image content. Therefore, pooling can

help remove noisy activations and obtain better abstraction. Second, pooling layer can

increase the receptive field since the down-sampling property. Large receptive field is

important for image processing since enough contextual information could be counted

in. By pooling, the network architecture does not need go to very deep in order to have

the same large receptive field. Third, even though it is possible that pooling will cause
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image details lost, we can apply skip connection between input of pooling and output of

unpooling to compensate the image details.

About the unpooling, we employ the similar unpooling operation in [85] since the

spatial indexing can be used to reverse pixels back to their original location before pool-

ing. This unpooling schema is able to keep spatial information when enhancing finger-

prints through reconstruction, while expanding the resolution.

Skip Connection

Similar with [80], we also introduce skip connections in our proposed architecture.

The major motivation is to compensate the possible details lost when having deep convo-

lutions or pooling layers. Skip connections are occurring between two symmetrical con-

volution and deconvolution layers. Particularly, the input of pooling layer is connected

with the output of unpooling layer, which will help much as to overcome possible details

lost caused by pooling/unpooling operations. By connections, feature maps at different

resolutions through convolutions can be passed on to the reconstruction/enhancement

stages via deconvolutions in the forward procedure.

Additionally, gradients during the back-propagation procedure can directly flow to

previous layers going through those connections. This is demonstrated to make training

deeper architecture easier than without skip connections. Similar ideas are also applied

successfully in highway network and residual network [44].

Receptive Field Analysis

In the proposed network structure, the first convolution layer conv1 has the filter size

9⇥ 9, and the second convolution layer conv2 uses 5⇥ 5 as filter size. Then, conv3 and

conv4 have the same filter size 3 ⇥ 3. Between conv3 and conv4, there is the 2 ⇥ 2

max pooling layer. This forms the encoder part, and the decoder part has the symmetric

settings according to it. Encoder part is for extracting features and then the receptive
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field is a critical factor for it. Different from other networks, we also include stride = 4

for conv1 in order to widen the receptive field.

For each “pixel” in the feature maps, the receptive field can be calculated on different

level or resolution. The feature map after conv1 has the 9⇥ 9 receptive field. Similarly,

we can calculate that the receptive field sizes for layers after conv2, conv3, pooling and

conv4, are 25⇥ 25, 33⇥ 33, 37⇥ 37 and 53⇥ 53 respectively. Then, one “pixel” in the

final feature layer after conv4 is corresponding to a 53⇥53 patch of the fingerprint input.

Usually, 16⇥16 pixels are used to compute one direction as an orientation element in the

local orientation analysis. Therefore, one ‘’pixel” in the final feature maps is actually

the abstraction of 9 orientation elements of the input fingerprint, which provides much

contextual information. Due to skip connections, both coarse and fine resolutions are

taking into account to restore an enhanced fingerprint.

Multi-Task Learning

Traditionally as mentioned in Section 5.2, researchers directly target on the orienta-

tion field estimation and then apply it to enhance latent fingerprints. Similarly but in a

different way, we integrate fingerprint orientation information in a multi-task learning

manner. As shown in Fig. 5.3, there are two tasks learning independently with sharing

the common convolution features. One branch is for the target of directly enhancement,

yet another branch is to predict the orientations pixel-wisely. With the guidance of ori-

entation branch, the enhancement branch can be regularized in a better strategy with

orientation constraints.

For the orientation branch, we adopt a coarse orientation learning through orienta-

tion quantization. Instead of using accurate orientation in the range of 180�, we quantize

pixel orientations into 20 groups where each group is a class having 9�. This converts the

orientation branch to the classification problem which has 20 classes. This quantization

procedure employing classification for orientation branch is helpful and necessary to the
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whole learning process. First, orientation itself is higher-level semantic clue for finger-

print. Thus, it is natural to make use of classification for orientation branch. Second,

with large contextual region, a coarse estimation is good enough to eliminate structured

noise pollution to a certain degree. Moreover, this can make learning easier with relative

limited class number on the other hand.

With sharing the convolutional layers in common, representative deep features are

expected to perform good in both fingerprint enhancement and orientation estimation

tasks. Therefore, multi-task learning from end to end has the capability to abstract more

meaningful features than single task. We also evaluate this in the experimental parts.

5.3.3 Training and Inference

The loss functions in our proposed method include two objectives: the mean

squared error/euclidean loss for enhancement branch Lenh and the multinomial logis-

tic loss for the orientation branch LOF . Given fingerprint patches {Pi}Ni=1, we have

{P t

d

(i)
, P

(i)
e , P

(i)
OF

}N
i=1 as the texture component of the distorted patch, the direct enhance-

ment of Pi, and the quantized orientation field of Pi, respectively. Then, the final loss

function will be:
L{P t

d
, Pe, POF} = wenhLenh{P t

d
, Pe}

+wOFLOF{P t

d
, POF},

(5.3)

where wenh, wOF is the balance loss weights for enhancement branch and orientation

branch, respectively. We set them to 1 in the experiments.

The encoding part extracts fingerprint features by convolution layers, then two map-

pings learned are able to recover an enhanced fingerprint image through enhancement

branch, and to provide a coarse estimation on orientation through orientation branch.

Although the orientation prediction is in a coarse manner after quantization, it helps

guide the enhancement branch with semantic contextual clues. During training, we
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have skip connections for the enhancement branch in order to compensate image details.

However, we treat the orientation branch in a more traditional way without skip connec-

tions.

About the training strategy for multi-task, we apply two stage training. That is, we

first train the single enhancement task independently. Then, with this pre-trained model

as initial of the enhancement model, the whole multi-task network is trained again from

end to end. We take advantage of the Caffe framework developed by Berkeley Vision

and Learning Center (BVLC) 2 to have the implementation. The euclidean loss and

softmax loss are applied for enhancement branch and orientation branch, respectively.

We use Adam solver with base learning rate of 10�4 to minimize the loss function by

back propagation, since Adam optimizing converges faster than the popular stochastic

gradient descent (SGD) method [80].

Given a latent fingerprint image, we can forward the entire image into our network

to generate the enhanced fingerprint. The network is trained based on smaller resolu-

tion, however, this fully convolution and deconvolution network makes it possible to fit

images with arbitrary resolution.

5.4 Experimental Results

In this section, we show the experimental results and analysis conducted on latent fin-

gerprint dataset. First, fingerprints datasets used in this work are introduced. Then, the

experimental analysis including deep features for fingerprints, multi-task learning, and

residual learning are presented. We also compared with other algorithms in the literate

to show the effectiveness and robustness of our proposed final ensemble results. Finally,

2http://caffe.berkeleyvision.org/
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the computation and speed analysis are stated to show the real-time capability of our

method.

5.4.1 Experimental Setup

Datasets and Evaluation

In this chapter, NIST Special Database 4 (SD4), NIST Special Database 14 (SD14),

and NIST Special Database 27 (SD27) are mainly used to conduct the related experi-

ments.

As mentioned in Sec. 5.3.1, NIST SD4 is used to generate training data for the

proposed network. This dataset has 2,000 rolled fingerprint images with equally dis-

tributed fingerprint types, that makes it rich and representative to generate training data.

There are 400 fingerprint images for each of these five types: whorl, left loop, right lop,

arch and tented arch. We finally generate 224,860 patches at resolution of 109⇥ 109 to

train the network, in which one fifth portion is for validation purpose and the rest is for

training.

NIST SD27 is the public latent fingerprint dataset that is used to evaluate algorithms

for latent fingerprint applications such as enhancement, orientation estimation and fin-

gerprint identification. This dataset is composed of 258 latent fingerprint images and

their corresponding rolled fingerprints as true mates. Latent fingerprints in this dataset

are collected from crime scene and distorted with low quality issue in different degree.

Fingerprint experts classify them into three categories based on overall quality: “Good”

with 88 fingerprints, “Bad” with 85 fingerprints and “Ugly” with 85 fingerprints. The

noises include different degradation types especially structured noise such as lines, hand

written/printed letters, stains, etc. Besides, fingerprints appear with overlapping and

in partial are also presented much in this dataset. These facts make latent fingerprint

enhancement a very challenging problem in order to increase identification rate.
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NIST SD14 is used as additional background dataset in order to show robustness

of algorithms when perform matching. It has 27, 000 rolled fingerprints and will be

mixed with the 258 true mates to make fingerprint identification much more challenging.

Note that we only add NIST SD14 in Sec. 5.4.5 when comparing with state-of-the-art

algorithm in the final matching evaluation. For other experiments, NIST SD14 is not

included in order to analyze the proposed method better with different settings.

The performance evaluation for latent fingerprint enhancement is based on the final

identification rate using the enhanced fingerprints. Although this is an indirect way to

evaluate the enhancement performance, it is an objective metric to fit the ultimate goal

of enhancing fingerprints. We evaluate the matching performance using one commer-

cial fingerprint software that is well-known as VeriFinger SDK 6.2 version. Cumulative

Match Characteristic (CMC) curve is employed to compare the identification perfor-

mance of fingerprint matching. This curve plots the rank-k identification rate when

varying values of k, usually from 1 to 20 as a common setting. As the most widely used

measurement, we conduct the performance comparison by showing the CMC curves

similar with others.

Besides, all experiments are based on the identification scoring of the enhanced

latent fingerprints matching with the original rolled fingerprints without enhancement.

This is to make the comparison fair with other algorithms.

5.4.2 CNN Feature and Validation Result

Result analysis is firstly conducted on the validation dataset visually. For the validation

set, the patches are from NIST SD4 and follow the same procedure of data processing in

5.3.1. However, no validation data is used for training but only for the testing purpose.

We visualize features from CNN for some patches and also the enhancement results

performed on validation set.
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(a) (b) (c) (d)

Figure 5.4: CNN features after last convolution conv4: (a) Same patches with different
structured noise added; (b) CNNN features for the corresponding patches; (c) and (d)
are another set of examples.

Fig. 5.4 shows the CNN features after last convolution layer (conv4) for fingerprint

patches with different structured noise added. Here, the CNN features are extracted

after the convolutional part but before the deconvolutional part. It can be shown that the

CNN features are very similar for the same fingerprint patch, even though distorted with

very different structured noise. It demonstrates the robustness and effectiveness of CNN

features in terms of describing latent fingerprint with eliminating influence of structured

noise.

Additionally, we perform enhancement over the validation set to compare with the

ground truth enhancement, as shown in Fig. 5.5. Comparing the enhancement results

in Fig. 5.5 (d) with the ground truth enhancement in Fig. 5.5 (e) visually, FingerNet

shows its strength to remove structured noise and achieve close enhancing effect with

the ground truth enhancement.
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(e) GT(d) FingerNet(c) Texture(b) Degraded(a) Original

Figure 5.5: Enhancement example results over validation set: (a) Original fingerprint
patch; (b) The degraded patch with structured noise; (c) Texture component from (b);
(d) Enhancement result using FingerNet; (e) Ground truth enhancement directly from
(a).

5.4.3 Single-task or Multi-task

We then evaluate the effectiveness with multi-task learning compared with single-task.

By single-task, it means that we only consider the enhancement branch and remove the

orientation branch. This can still provide reasonable enhancement results. Moreover,

when conducting multi-task learning, there are two learning ways: one is to learn the

entire network from scratch and the other one is to utilize the pre-trained model from

single-task to fine tune the whole multi-task network. Two learning strategies are also

compared in this section. Fig. 5.6 shows the CMC curves of the above mentioned

experiments. Fig. 5.7 shows some enhancement examples of different models so that

visually difference can also be compared.
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Figure 5.6: CMC curves comparing single-task, multi-task training from scratch and
multi-task learning with pre-trained model fine tuning

As we can see from Fig. 5.6, all the proposed CNN models perform better than the

benchmark TV model. Multi-task models perform better than the single enhancement

task model. This is expected since the orientation branch can play the role as regulating

the enhancement. It shows the effectiveness on helping latent fingerprint enhancement

with the orientation branch guidance.

Comparing two learning strategies for multi-task models, it can be shown that net-

work fine-tuning performs better than training from scratch. This is consistent with the

conclusion of some other multi-task applications. The reason is that these two tasks

share the common convolution features, and will try to make a trade-off between two

branches when training together. Then, the optimum solution maybe trapped in some
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local minimum earlier to have a good balance between two tasks. However, with the

pre-trained model from single enhancement task, the optimized parameters are already

in a good point for enhancement. Starting from this point, both the two tasks learning

will contribute a better solution that will slightly tend to the enhancement task.

Fig. 5.7 shows some enhancement examples of different models so that visually dif-

ference can also be compared. Red circles mark regions where multi-task model trained

from scratch performs better than single enhancement task. Visually observing from Fig.

5.7, we can see that some ambiguous regions for single-task model can be improved by

multi-task models, especially the model with pre-trained fine tuning. Additionally, we

can see that multi-task model with fine-tuning can perform better enhancement around

some curvature regions as circled in green color.

5.4.4 Residual Learning or Non-Residual Learning

Learning the residual between the input and output is proved to be efficient to improve

super resolution performance. That means, it is not directly learning the output super-

vised by ground truth image, yet the residual to compensate the input is learned instead.

This strategy is reasonable since low resolution image lacks of image details compared

with the high resolution image. Naturally, residual learning is a good way to compensate

this lost of details.

Similarly, we explore whether learning the residual helpful for latent fingerprint

enhancement in our experiments. The comparison experiment is designed with exactly

the same network configuration such as filter number, filter size, and network depth in

order to have a fair comparison. Additionally, we compare the two multi-task learning

strategies (learn with pre-trained model and learn directly from scratch) when evalu-

ating the influence of residual learning. This will make our analysis more robust and

avoid bias. The only difference in the comparing experimental pair is that one model
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(b)(a) (c) (d)

Figure 5.7: Visual examples to show multi-task better performance: (a) original latent
image; (b) enhancement from single-task model; (c) enhancement from multi-task train-
ing from scratch; (d) enhancement via multi-task training from fine tuning pre-trained
model

applies residual learning and the other not. Figure 5.8 shows the CMC curves for their

corresponding matching performance.

From Fig. 5.8 (a), it can be shown that the non-residual learning models achieve

better performance overall than models with residual learning, for both pre-trained fine-

tuning and training from scratch. If we explore more into different quality categories,

we can see that sometimes involving residual learning can result in slightly better per-

formance than non-residual learning, especially for “Good” quality category as shown

in (b). For “Bad” and “Ugly” quality categories in (c) and (d), the trend is similar with
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(a) (b)

(c) (d)

Figure 5.8: CMC curves comparing Multi-Task with residual learning and without resid-
ual learning, in both pre-trained fine-tuning and from scratch.

the overall performance in (a). Residual learning means adding input to the network

forward prediction to generate final prediction. However, for “Bad” and “Ugly” quality

latent fingerprints, adding input back makes the network hard to learn its residual due

to the highly distorted property of the input. For “Good” quality images, it is reason-

able since the similarity between input and output of the network is higher, which is

more like the super resolution problem. However, a balance among different quality

categories should be considered. Thus, we will apply non-residual learning since most

of the latent fingerprints have poor quality. This also indicates that we should design
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Figure 5.9: Comparison with other algorithms: Localized Dictionary[Yang2014],
TV[benchmark] and ADTV[Zhang2013]. Note that Localized Dictionary is the state-
of-the-art method. (a) is the CMC curves without including NIST SD14 as background
noise images. (b) is the CMC curves including NIST SD14 as background noise images.

the network particular fitting for latent fingerprint applications, but not directly applying

existing algorithms for other vision tasks such as image super resolution.

5.4.5 Compare with State-of-the-Art Methods

Our proposed FingerNet can generate enhancement result directly as output of the net-

work. The final matching performance of FingerNet system is evaluated by forwarding

with four different convergence stages and then averaging to get the final CMC curve.

Here we compare the proposed results with state-of-the-art method [113]. Note that

NIST SD14 is included as background noise images to make the identification much

more challenging in this subsection.

Figure 5.9 shows the comparison results with different methods when evaluating

with background images and not. Comparing with both TV and ADTV methods, the

proposed network outperforms them in large margin. Moreover, the proposed method

outperforms the state-of-the-art method [113], especially on the top-1 rank identification

99



Method Inference Speed
Localized Dict. [Yang2014] 8.6
ADTV [Zhang2013] 58.2
MRF-SR [Ours] 50.3
FingerNet [Ours] 0.7

Table 5.1: Computation Speed Comparison (in Seconds)

rate if no background images involved. When adding background images, performance

of all algorithms drop significantly. However, the proposed method have similar perfor-

mance especially when rank goes higher than 3. Rank-1 identification rate is important

but not the only factor to evaluate a system. Good identification rate in higher rank

means that human labor can be reduced a lot when checking further by human experts.

Compared with our proposed MRF-SR in Chapter 3, we can see similar performance

observed about the CMC curves. This indicates that the proposed FingerNet can be used

as a good alternative of MRF-SR, which needs high cost in computation. This is similar

with some research observations that CNN approach can replace traditional methods or

traditional methods can be interpreted using CNN framework such as [28].

Moreover, one big advantage of the proposed FingerNet is that the inference speed

for each latent fingerprint is very fast. The proposed FingerNet can be trained in one day

on GPU Titan X. Since we have pooling involved in our network, the inference speed is

much faster than without pooling. We compare the computation speed for fingerprints

in 800⇥ 760 as shown in Table 5.1. The computation times is for one fingerprint in the

unit of seconds.

As we can see that the proposed method has superior advantage in inference speed

which can make the matching time much more efficient, especially when having larger

scale of fingerprints. Due to the property of calculations in convolution/deconvolution,
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paralleling computing make it possible to have fast computation speed up. It also makes

the ensemble of different network possible to improve the matching performance.

5.5 Conclusion

In this chapter, we present the CNN based method that is FingerNet to solve latent

fingerprint enhancement problem. We design the network particular for latent finger-

print applications. FingerNet includes an encoding convolutional part and two decoding

deconvolutional parts. Multi-task learning is applied to improve the performance. We

also investigate several implementation details such as training multi-task efficiently

by fine tuning, whether residual learning helps, and compare with different methods.

We have demonstrated that the proposed method can outperform the existing algorithms

with no background fingerprints involved, additionally with much faster inference speed

than others. For possible future work, more network structures could be studied and how

to train more efficiently based on fingerprint property could also be another interesting

extension.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Although the development for the automated fingerprint identification system is rapid,

the identification rate for latent fingerprint matching is still far from expectation and

its practical application is still limited. This dissertation offers a thorough research on

latent fingerprint applications, especially on pre-processing for matching, latent finger-

print enhancement and orientation field estimation. We provide solutions using a wide

range of techniques, varying from the traditional image processing techniques to modern

CNN-based methods.

The proposed MRF-SR method investigated the combination of TV models, ridge

dictionary types, and the local patch quality assessment guidance to enhance latent fin-

gerprints. Without the need of estimating the orientation field and the fingerprint pose,

a direct enhancement result was developed for fingerprint matching. It was shown by

experimental results that the MRF-SR method can remove structured noise, recover low

quality regions and improve the identification rate. It was shown by experiments that

the MRF-SR method can boost the identification rate significantly.

The MRF-SR method was generalized with some modification by including the ori-

entation field estimation. Furthermore, a supervised-learning-based fusion strategy was

adopted to provide better performance. This strategy was inspired by the fact that dif-

ferent methods concentrate on different aspects of fingerprint orientation estimation.

Decisions from different experts are treated as feature vectors, and multiple techniques
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such as linear regression, SVM regression and the neural network fitting can be used

to train the model. The performance on the test dataset showed the effectiveness of the

decision fusion scheme.

Finally, we developed an CNN-based solution called the FingerNet for latent finger-

print enhancement. The FingerNet was trained using a pixelwise end-to-end manner. It

included a convolutional network as the encoder and two deconvolutional networks as

the decoder using a multi-task learning strategy to boost the overall performance. We

also investigated techniques such as network fine-tuning, residual learning, etc. It was

shown by experimental results that the proposed FingerNet outperforms benchmarking

algorithms with a fast computational speed.

6.2 Future Work

Although several issues about latent fingerprint enhancement and orientation field have

been studied in this dissertation, there are still some open problems for future investiga-

tion.

• Automated Latent Fingerprint Segmentation. This is one important research

topic in latent fingerprint community. Most algorithms on latent fingerprint

enhancement and orientation field estimation are proposed based on the assump-

tion that fingerprint segmentation is given (e.g., directly use the ground truth for

NIST SD27). This assumption is adopted since it is a good starting point for

researchers and people can focus on actual enhancement or orientation field esti-

mation techniques. Manually providing fingerprint foreground mask is easier than

minutiae extraction by human experts, which demands much less human labor.

However, it is still worthwhile to develop algorithms for automated fingerprint

segmentation. Both the MRF-SR method and the FingerNet cen be potentially
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tailored to this purpose. For example, for the MRF-SR method, since the back-

ground in latent fingerprints usually need a higher number of atoms than the fore-

ground region in it reconstruction, it is possible to expand the MRF-SR method

to fingerprint segmentation. The FingerNet can provide robust and effective fea-

tures for fingerprints. Thus, it can learn to predict the fingerprint background and

foreground.

• Contactless 3D Fingerprint Identification. Recently, there is rapid development

in contactless fingerprint systems due to the high demand of security on mobile

applications. Contactless fingerprint ridge patterns can be acquired by cameras

without any physical contact between fingers and the sensor surface. Conven-

tional exemplar fingerprints can be easily degraded in quality due to facts such as

skin deformation, finger moisture, dry fingers, and even sensor noise. Contactless

2D fingerprint images often have even lower quality as compared with traditional

fingerprints. To make contactless fingerprint systems practical, several contact-

less 3D fingerprint recognition techniques were introduced recently [3, 88, 104].

Many challenges, including 3D fingerprint acquisition, representation fingerprint,

feature extraction, are not well addressed at this point. This is expected to be a

main topic on fingerprint research in the near future.
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