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Abstract

Online object tracking is one of the fundamental computer vision problems. It is com-

monly used in real world applications such as traffic control and safety in video surveil-

lance, autonomous vehicle, robotic navigation, medical imaging, etc. It is a very chal-

lenging problem due to multiple time-varying attributes in video sequences. One widely

adopted online object tracking framework is tracking-by-detection (TBD), where track-

ing is treated as a detection problem. This strategy exploits the spatial information of the

image content. In this research, we investigate two different kinds of tracking problems:

single object tracking (SOT) and multiple object tracking (MOT). First, we attempt to

achieve online single object tracking using both spatial and motion cues with two novel

methods. Second, from the proposed SOT technique, we build an online multiple object

tracking system with advanced model update and matching.

First, we develop a new method, called the ”temporal prediction and spatial refine-

ment (TPSR)” tracker, to integrate spatial and temporal cues effectively. The TPSR

tracking system consists of three cascaded modules: pre-processing (PP), temporal pre-

diction (TP) and spatial refinement (SR). Illumination variation and shaking camera

movement are two challenging factors in a tracking problem. They are compensated

in the PP module. Then, a joint region-based template matching (TM) and pixel-wised

optical flow (OF) scheme is adopted in the TP module, where the switch between TM

and OF is conducted automatically. These two modes work in a complementary manner

x



to handle different foreground and background situations. Finally, to overcome the drift-

ing error arising from the TP module, the bounding box location and size are finetuned

using the local spatial information of the new frame in the SR module.

Next, we apply the deep neural network architecture to the online object track-

ing problem. The proposed method is called ”Motion-Guided Convolutional Neural

Network (MGNet) Tracker”, which is built upon the multi-domain convolutional neu-

ral network (MDNet) with two innovations: 1) adoption of a motion-guided candidate

selection (MCS) scheme based on a dynamic prediction model, and 2) usage of a RGB-

plus-motion 5-channel input to the convolutional neural network (CNN). For the former,

a dynamic motion model is adopted to estimate the probability distribution of candi-

date’s location, width and height. As a result, the MGNet can generate candidates more

accurately and efficiently. For the latter, we add the horizontal and vertical optical flow

fields to the original RGB three channels to form a 5-channel input so that the motion

information is exploited explicitly rather than implicitly by the CNN. We compare the

performance of the MGNet, the MDNet and several state-of-the-art online object track-

ers on the OTB and the VOT benchmark datasets, and demonstrate that the temporal

motion correlation between any two consecutive frames in videos can be more effec-

tively captured by the MGNet via extensive performance evaluation.

Finally, we start to explore the multiple object tracking (MOT) system based on the

CNN single object tracker. The proposed method is called ”Online CNN-based Mul-

tiple Object Tracking with Enhanced Model Updates and Identity Association”. This

method treats the MOT problem as an online tracking problem, rather than the global

optimization framework. There are three major components in this tracking system:

1) a system platform built upon multiple CNN single object trackers in MOT environ-

ment; 2) the proposed advanced online update strategy including incremental and refresh

update mode; 3) a confirmation process for identity matching based on multiple level

xi



feature representations. We evaluate our proposed framework on the commonly used

multiple object tracking dataset - MOTchallenge, and rank the top 1 position in accu-

racy/precision/IDswitch/Fragment among all the online MOT tracking methods. Exten-

sive experiments show that the proposed online update strategy is crucial to train an

accurate target tracker and control the error drifting in the future.

xii



Chapter 1

Introduction

1.1 Significance of the Research

One of the main goals of computer vision is to enable computers to replicate the basic

functions of human vision, such as object recognition, motion perception and scene

understanding. To achieve the goal of intelligent motion perception, much effort has

been spent on visual object tracking, which is one of the most important and challenging

research topics in computer vision. The tracking problem can be divided into two dif-

ferent subproblems: single object tracking (SOT) and multiple objects tracking (MOT).

Let us first look at the problem definition of the single object tracking problem.

In order to clearly understand it, we would like to first give a brief definition of this

problem: given the initial location status x0 of one single target, the goal is to estimate

the target location status xt at frame t without accessing to the information in the future

frames (t0 > t). One visual object tracking example is shown in Figure 1.1. The target

location is initialized in the first frame with green bounding box and the tracker needs

to track it in the future frame. Red bounding box indicates the tracking result.

Figure 1.1: Online visual object tracking task example. Green: ground truth labelling.
Red: Tracker prediction results.

1



Figure 1.2: Illustration of the idea of multiple object tracking.

As for multiple object tracking (MOT), there are several different aspects on the

definition comparing the SOT:

• Target of interest. In SOT, the target is general object while the focus of MOT is

pedestrian (Figure 1.2).

• Identity assignment. During the tracking, one important thing is to make sure the

identity of each target consistent.

• Initialization from detection. In SOT, system uses the ground truth location of

the target to initialize the tracker. While in MOT, the available information is the

still image pedestrian detection results.

• No ”online” constraint. Because of the availability of the detection results from

all frames, it is possible to globally optimize the detections to form the complete

target trajectory.

2



Figure 1.3: Real world applications with visual object tracking.

Many research topics, such as object detection, image/video segmentation and

behavior understanding, are all related to visual object tracking. Also, this topic finds

many real world applications such as intelligent traffic control in video surveillance,

robotics and autonomous vehicle navigation, human computer interaction, medical

imaging, etc. For example in the left image of Figure 1.3, it shows that by tracking and

counting the number of vehicles, people can control the traffic of different streets. The

right image shows the application in autonomous vehicle that by tracking and detecting

the movement of pedestrian, the vehicle can make a decision of driving or stopping.

As we can see in Figure 1.3, the tracking forms of the car and pedestrian are different,

which are ellipse and bounding box, respectively. There are also some other forms to

represent the location of a target, as shown in Figure 1.4. The most commonly used form

is still the bounding box representation. Contour form requires a pixel-wise accuracy of

the target, which is highly related to object segmentation. Articulated block focuses on

part tracking, while interest point focuses on single pixel tracking. In this dissertation,

we evaluate all our work and other methods in bounding box form.

Despite extensive research on this topic, visual object tracking is still a very difficult

problem. There are three major challenges: (1) Complex object appearance change, (2)

Partial and fully occlusion and (3) Generic object representation.

3



Figure 1.4: Illustration of object tracking forms. (a) bounding box, (b) ellipse, (c) con-
tour, (d) articulated block, (e) interest point, (f) silhouette.

Figure 1.5: Visual object tracking challenging: appearance change.

• The first one is in handling complex object appearance changes caused by many

factors of the target, such as scale variation, shape deformation, illumination

change, complicated motion, background clusters, etc. For example in Figure

1.5, we can see the pose of the skater changes along the time. In this case, it is

extremely difficult for the tracker to find a fixed representation of the target during

the tracking. Therefore, tracking system needs to dynamically update their model

along the time.
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Figure 1.6: Visual object tracking challenging: partial and fully occlusion.

• The second challenge is partial and fully occlusion. One example is shown in Fig-

ure 1.6. In this scenario, tracker cannot find a complete target region (SUV) since

it is occluded by other region. Usually, the detection/tracking score of occlusion

is very low and the system should be able to differentiate the situations between

wrong location and fully occlusion. Also, the tracker must have the ability to re-

detect the target in the future. If the problem becomes the MOT, the occlusion and

interaction between targets will be more severe.

• Besides of the complex object appearance change and occlusion, another chal-

lenge in this tracking problem is how to find the generic target representation

when a new video is given. The goal of this problem is to track any given object

in any video, no matter it is a car, pedestrian, toy, or other objects. We cannot build

a target-specific tracker. For example, a pedestrian detector/tracker definitely fails

when the target is a car. Therefore, the only opportunity for the tracker to deter-

mine the generic representation of the target is the initialization in the first frame.

At this step, the tracking system needs to learn the feature of the target and build

a model to distinguish this target from the background region. In Figure 1.7, it

shows the diversity of different target contents in a commonly used visual object

tracking benchmark dataset.

As we can see, visual object tracking plays a significant role in computer vision

applications and the diversity of the visual content makes it challenging and difficult.
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Figure 1.7: Visual object tracking challenging: different objects.

Our goal is to propose a robust object tracker, which can handle with different attributes.

For the single object tracking problem, we propose two methods (TPSR and MGNet),

trying to solve this problem from a new angle which combines both of the spatial and

temporal motion information together. For the multiple object tracking, we extend our

CNN-based single object tracker into MOT environment with advanced model update

and matching.

1.2 Methodology in SOT

A lot of research progress has been made in online object tracking in recent years. Exten-

sive experiments have been conducted in evaluating various proposed tracking methods

against a benchmarking dataset in the literature [55, 93, 112, 113]. Generally speak-

ing, existing trackers can be divided into two categories: traditional visual trackers and

convolutional neural network (CNN) trackers.
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1.2.1 Traditional Visual Trackers

Before the deep neural network architecture, most traditional tracking algorithms fall

into either generative or discriminative approaches. These different methods are cen-

tered on two basic components: the object representation scheme and the matching

mechanism.

For object representation, a holistic template matching scheme was considered in

[2, 14, 75], where the absolute pixel-wise differences in two regions, one in the previ-

ous frame (also called the reference frame) and the other in the current frame, were

summed up. The minimum that gives the smallest sum of absolute differences (SAD)

determines the new object location. The sparse representation was adopted recently to

address the large computational burden for matching in the image domain and object’s

appearance change e.g. [8, 46, 47, 76, 77, 108, 114, 128]. The part-based representation

was proposed in [1, 48, 115] to deal with occlusion. Adam et al. [1] represented an

object using a grid of fragments, and the new object position is obtained by fragments’

voting. Jia et al. [48] proposed to divide an object into smaller patches by a regular

grid. Besides template matching, people also paid attention to local feature descriptors,

such as histograms of oriented gradients (HOG) [21], Haar-like features [107] and local

scale-invariant features (SIFT) [70].

The matching mechanism depends on the object representation scheme. One widely

adopted mechanism is tracking-by-detection, where tracking is treated as a detection

task. Variants of online boosting classifiers were chosen in several tracking-by-detection

papers [4, 5, 36], where the input features can be patch histograms or local feature

descriptors. Recently, tracking-by-detection methods use robust loss functions [66, 74],
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semi-supervised learning [37, 89, 125], multiple-instance learning [5, 122], or kernel-

based support vector machine classification [10, 30, 38, 105]. Also, a cascaded proba-

bilistic tracking approach [123] was presented to solve the tracking problem by using

supervised dictionary learning.

One main challenge of the tracking-by-detection scheme is that object’s appearance

change along time. Kwon et al. [61] proposed a framework to combine multiple obser-

vation and motion models to handle this problem. Fradi et al. [32] exploited both

the temporal and spatial cues in the human tracking. Some methods [38, 39, 44, 62]

focused on object’s short-term behavior while others put emphasis on its long term

behavior [49, 64, 72, 86, 100]. Another method proposed in [43] solved the tracking

problem by exporting long term and short term modules to achieve the state-of-the-art

performance. Research has also been done on trajectory reasoning [45, 65]. Multiple

component trackers using color, texture and illumination, respectively, were developed

in [65]. The most confident tracker that maximizes the robustness score was selected by

analyzing forward and backward trajectories.

1.2.2 Convolutional Neural Network (CNN) Trackers

CNNs have demonstrated their outstanding representation power in a wide range of

computer vision applications [35, 56, 101]. AlexNet [56] brought significant perfor-

mance improvement in image classification by training a deep CNN with a large-scale

dataset. R-CNN [35] applies a CNN to an object detection task.

For visual tracking, only a limited number of tracking algorithms using the represen-

tations from CNNs have been proposed so far [28, 42, 69, 109]. [69] proposes an online

learning method based on a pool of CNNs. However, it suffers from lack of training

data to train deep networks and its accuracy is not particularly good compared to the
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methods based on hand-craft features. A few recent approaches [42, 109] transfer pre-

trained CNN features into a classification model, but the representation may not be very

effective due to the fundamental difference between classification and tracking tasks.

The multi-domain network (MDNet) tracker [85] shows a significant performance

gain with deep neural network architecture. It pretrains the network using a set of videos

with tracking ground truth annotations to obtain a generic representation for an arbi-

trary new sequence. The network is composed of two parts - shared layers and domain

specific layers, where domains correspond to individual tracking sequences and each

domain has a separate branch for binary classification. After training, a generic repre-

sentation in the shared layers across all domains is obtained. The tracking is performed

by sampling target candidates around the previous target state, evaluating them on the

CNN, and identifying the sample with the maximum score.

1.3 Methodology in MOT

Tracking-by-detection strategy is the most commonly used idea in various tracking

tasks. It shows the impressive performance improvement thanks to the development

of the objet detectors. Therefore, in MOT problem, the most popular benchmark dataset

- MOTchallenge [63,78], follows this fashion by directly providing all the targets detec-

tion results in all the frames. In this scenario, all the target initialization locations are not

labelled by human ground truth, but purely depend on the detection information. Then

the task is to link all the detections of one individual object together and form one tra-

jectory (ID assignment). In this dataset, it focuses on the multiple pedestrian tracking.

In order to build the complete trajectories of different targets, existing MOT solutions

can be roughly categorized into global optimization and online methods.
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1.3.1 Global Optimization Methods

Methods in this category [13, 59, 82, 118] focus on minimizing the total energy cost

from all the target trajectories. These methods utilize all the detections of whole frames

together to link fragmented trajectories due to occlusion. In order to build an more accu-

rate energy affinity measure, idea of ”tracklet” - several consecutive frames, is exploited

to extract the spatial and temporal features of the target. Short tracklets are generated

by linking the detections and the tracklets are globally associated to build the com-

plete trajectory of the target. Therefore, many global optimization techniques have been

proposed, such as graph cut [102,103] and flow network [87,126]. However, the perfor-

mance of the global optimization methods is still limited under some situations, such as

long-term occlusion and missing detection. There is no correct detected bounding box

for both of these cases, which increase the difficulty in distinguishing different objects

along the time. Moreover, most of the global optimization methods access to the detec-

tions for the entire sequence beforehand, and also processing all the datas requires huge

computation due to the iterative associations for generating globally optimized tracks.

Thus, it is impossible to apply them to real-time applications.

1.3.2 Online Methods

Online methods [6,12,91,96] can be applied to real-time applications because they build

each trajectory in a frame-by-frame fashion. In this case, the location and identity of one

target are determined in current frame without accessing to the information in the future

frames. However, since it is difficult to handle inaccurate (or even absent) detections

of occluded objects, online methods tend to produce fragmented trajectories and to drift

under occlusion. Therefore, the most challenging task in this kind of methods is to find

an accurate feature representation to link the detections to the previous tracks.
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1.4 Contributions of the Research

In this dissertation, we investigate the tracking system from SOT and MOT. For SOT

problem, two methods are proposed: temporal prediction and spatial refinement (TPSR)

tracking system and motion-guided CNN tracker. Both of them exploit the idea of com-

bining spatial and temporal motion cues on tracking problem, but with different frame-

works and contributions. For MOT, we extend the CNN single object tracker into the

MOT environment. The proposed model update strategy and online ID matching pro-

cess are the keys to guarantee the tracking performance.

1.4.1 Temporal Prediction and Spatial Refinement (TPSR) Track-

ing System

• We study many the state-of-the-art tracking-by-detection trackers and find out the

drawbacks of this scheme. We observe the advantages of using temporal informa-

tion in this tracking problem. TPSR is the first work that integrates both of these

two cues to build a robust visual object tracker.

• In the temporal prediction (TP) module, the use of template matching (TM) and

optical flow predictor (OF) jointly for robust temporal prediction of the bounding

box between the reference and the current frame in the TP module is new. By

examining the trajectory of the target, we automatically switch the system between

these two modes.

• In the spatial refinement (SR) module, the refinement of bounding box’s location

and size using the spatial domain information of the new frame in the SR stage is

also novel. It offers an effective mean to control cumulative errors due to temporal

prediction alone.
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1.4.2 Motion Guided Convolutional Neural Network (MGNet)

Tracker

• The use of dynamic motion model to generate the correct candidate regions is

essential for tracking since if the candidates are incorrect, it is impossible to locate

the target successfully. On another hand, an accurate target location estimation

also reduces the number of candidates and speeds up the tracking process.

• It is the first time that the spatial RGB and temporal optical flow are combined

together as the network inputs to show the discriminative power of the tracking

system. Optical flow map indicates the motion vector for each pixel between two

adjacent frames, which provides important movement and segmentation cues for

target localization.

1.4.3 Online Multiple Object Tracking Using CNN Tracker with

Advanced Model Update and Matching

• An online MOT framework based on single CNN tracker is introduced. Each tar-

get is associated with one unique multi-domain network tracker [85]. In this MOT

pipeline, we introduce the target-in and target-out strategy to add and remove tar-

get trackers efficiently.

• The proposed online update scheme is important to build an accurate single object

tracker in MOT environment. The incremental update strategy is used for the vis-

ible target with consecutively successful tracking. The aggressive update strategy

is targeted to handle the recaption scenario after the occlusion.

• A multi-level online learned feature representation scheme is proposed to confirm

the correct ID to the targets. One is the observation cue from the feature response
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from different layers in the network. Another one is the motion cue. These two

cues are combined together and weighted by a collision factor to assign the correct

ID to each target.

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2, we first present sev-

eral challenging object tracking datasets in SOT and MOT to reveal the significance and

difficulties of the problems. Also, some important tools and key techniques in this topic

will be described. The proposed Temporal Prediction and Spatial Refinement (TPSR)

tracking system will be introduced in Chapter 3. In Chapter 4, we propose an motion

guided CNN tracker, which integrates both of spatial and temporal motion cues into one

unique multi-domain learning network. In Chapter 5, the proposed online MOT frame-

work will be explained consisting of the flowchart, model update and online matching.

In Chapters 3-5, we will explain the detailed methodologies, experimental results and

conclusions. Finally, we will summarize this work and discuss future research directions

in Chapter 6.
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Chapter 2

Visual Object Tracking

In this chapter, we would like to give more inside background of visual object tracking

problem. First, several visual object tracking datasets are provided and we will give

a brief description and discussion of them. Then, the evaluation methodology will be

described. Finally, we will explain several important tools and techniques in this field.

2.1 Datasets

2.1.1 Tracking Datasets in Surveillance Cameras

At early ages of visual object tracking, people collected the sequences from surveillance

cameras for performance evaluation. There are two main datasets.

• VIVID dataset [20]

The domain of interest of this VIVID tracking dataset is tracking ground vehicles

from airborne sensor platforms. It is a subset of public release data collected

under the DARPA VIVID program. In selecting evaluation video clips, the goal

has been to offer a representative sample of object resolution, contrast, pose and

degree of occlusion, in both visible and thermal IR imagery. The original video

clips are avi movie files encoded via motion-jpeg. All videos have been decoded

into sequences of jpeg image files to remove any potential variability due to use

of different decoders.
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Figure 2.1: Examples of VIVID object tracking dataset.

In this dataset, there are only 8 video sequences for evaluation. One example is

shown in Figure 2.1. We can see it focuses on vehicle tracking, which includes

several different attributes, such as partial/fully occlusion and multiple pieces.

• CAVIAR dataset [31]

This dataset is originally targeted for pedestrian detection. However, since it con-

tains video sequences annotated with both target position and activities, it is also

used for pedestrian tracking in early year. Altogether, there are 28 video clips

containing about 26500 labeled frames. The resolution is half-resolution PAL

standard (384 x 288 pixels, 25 frames per second) and compressed using MPEG2.

One video example is illustrated in Figure 2.2.
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Figure 2.2: Examples of CAVIAR object tracking dataset.

Here, we can see these two early datasets are targeting two specific objects, vehi-

cle and pedestrian, respectively, which are not very suitable for visual object tracking

evaluation.

2.1.2 Benchmark Datasets with Generic Objects

• Object tracking benchmark dataset (OTB) [112, 113]

Comparing to those surveillance sequences, such as VIVID and CAVIAR, whose

target objects are usually humans or small cars and the background is usually

static, the object tracking benchmark datasets (OTB50, OTB100) [112, 113] are

targeted on generic objects. In 2013, OTB50 was proposed, which contains 50

fully annotated sequences with 11 attributes. OTB100 expands the sequences
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Figure 2.3: Examples of OTB benchmark dataset.

collected in OTB50 to include 100 target objects in the benchmark dataset. To

facilitate a fair performance evaluation, OTB collects and annotates diversity of

the commonly used tracking targets, including human, face, vehicle, toy, animals,

etc, as shown in Figure 2.3.

Another feature provided with OTB dataset is the attribute distribution. Eval-

uating trackers is difficult because many factors can affect the tracking perfor-

mance. For better evaluation and analysis of the strength and weakness of track-

ing approaches, OTB categorizes the sequences by annotating them with the 11

attributes shown in Table 4.8. The attributes distribution in the dataset is shown

in Figure 2.4(a). It also shows that one sequence is often annotated with several

attributes, which can be even more challenging. For example in Figure 2.4(b), the

OCC subset contains 29 sequences which can be used to analyze the performance

of trackers to handle occlusion.

17



Table 2.1: List of attributes annotated to test sequences. The threshold values used in
the dataset are also shown.

Figure 2.4: (a) Attribute distribution of the entire testset, and (b) the distribution of the
sequences with occlusion (OCC) attribute.
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Figure 2.5: Leave example of visual object tracking challenging dataset.

• Visual object tracking challenging dataset (VOT) [54]

Besides of OTB dataset, another popular dataset is visual object tracking (VOT)

challenging [54]. This challenging is held every year since 2013 and all the test-

ing sequences are public released after the competition. The VOT2015 dataset

contains 60 sequences showing various objects in challenging backgrounds. The

sequences were annotated by the VOT committee using rotated bounding boxes

in order to provide highly accurate ground truth values.

Honestly speaking, this dataset has some extremely difficult sequences that almost

all the existing tracking solutions cannot work well on them. One example is

shown in Figure 2.5, where the target is a piece of leave. We can see it is very

challenging since of the noise from complex background clusters.
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2.1.3 Multiple Object Tracking Benchmark Dataset (MOT)

The multiple object tracking benchmark [63] is formed as a challenge competition from

2015. It focuses on multiple pedestrian tracking in a crowed street environment. The

most difficult part in this topic is the occlusion/interaction between targets. In 2015, the

Figure 2.6: Benchmark dataset-multiple object tracking challenge 2015

first version of the dataset was proposed. In total, there are 11 training and 11 testing

video sequences. Here is the statistic of the dataset in Figure 2.6.

Later in 2016 and 2017, the dataset has been modified with more accurate content,

including the ground truth labelling and detection results 2.7.

2.1.4 RGBD Princeton Tracking Benchmark Dataset

Recently, the increasing popularity of depth sensors has made it possible to obtain reli-

able depth easily. This may be a game changer for tracking, since depth can be used to

prevent model drift and handle occlusion. Therefore, group from Princeton constructs a
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Figure 2.7: Benchmark dataset-multiple object tracking challenge 2016/2017

unified benchmark dataset of 100 RGBD videos with high diversity [95], which can be

evaluated with either 2D or RGBD/3D tracking algorithms. In Figure 2.8, we can see

depth provides valuable information to predict and track the target.

Within all the datasets we have reviewed, the most commonly used one by

researchers is still object tracking benchmark dataset (OTB50/100) considering of its

diversity and regularity. The surveillance videos are too limited on the targets and the

RGBD sequences are still not so popular right now. Therefore, in our work, we focus

on OTB dataset and compare the performance with other tracking algorithms.

2.2 Evaluation Methodology

• Precision plot. One widely used evaluation metric on tracking precision is the

center location error, which is defined as the average Euclidean distance between

the center locations of the tracked targets and the manually labeled ground truths.

Then the average center location error over all the frames of one sequences is

used to summarize the overall performance for that sequence. If we set a score
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Figure 2.8: Examples from Princeton RGBD tracking benchmark dataset.

(=20 pixels) as the threshold, it shows the percentage of frames whose estimated

location is within the given threshold distance of the ground truth.

• Success plot. Another evaluation metric is the bounding box overlap. Given the

tracked bounding box bt and the ground truth bounding box bg, the overlap score

is defined as

S =
|bt \ bg|
|bt [ bg|

where \ and [ represent the intersection and union of two regions, respectively,

and |·| denotes the number of pixels in the region. To measure the performance on

a sequence of frames, we count the number of successful frames whose overlap S

is larger than the given threshold. The success plot shows the ratios of successful

frames at the thresholds varied from 0 to 1.

• Robustness evaluation. The traditional way to evaluate the performance of a

tracker is to initial the system at the first frame with ground truth target location.
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This is so called one-pass evaluation (OPE). There are also two approaches to

measure the robustness of the algorithm with respect to different initializations.

One it temporal robustness evaluation (TRE) and another is spatial robustness

evaluation (SRE). In TRE, we do not start tracking from the first frame, but from

any middle time spot. In SRE, even though we start tracking from the first frame,

the initialization bounding box is not exact the ground truth location but with some

shiftings or scalings.

2.3 Important Tools and Techniques in Object Tracking

2.3.1 Optical Flow

The optical flow methods try to calculate the motion between two image frames which

are taken at times t and t + �t at every voxel position. These methods are based on

local Taylor series approximations of the image signal and use partial derivatives with

respect to the spatial and temporal coordinates.

For a 2D+t dimensional case, a voxel at location (x, y, t) with intensity I(x, y, t)

will have moved by �x,�y and �t between the two image frames, and the following

brightness constancy constraint can be given:

I(x, y, t) = I(x+�x, y +�y, t+�t)

Assuming the movement to be small, we have:

I(x+�x, y +�y, t+�t) = I(x, y, t) +
@I

@x
�x+

@I

@y
�y +

@I

@t
�t+H.O.T
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Figure 2.9: Example to illustrate optical flow map.

From these equations it follows that:

@I

@x
�x+

@I

@y
�y +

@I

@t
�t = 0

@I

@x
Vx +

@I

@y
Vy +

@I

@t
= 0

where Vx, Vy are the x and y components of the velocity or optical flow of I(x, y, t) and
@I
@x ,

@I
@y and @I

@t are the derivatives of the image at (x, y, t).

There are many different ways to solve these equations, such as Lucas-Kanade

method, Horn-Schunck method, Black-Jepson method, etc. Figure 2.9 shows one exam-

ple [98] of what optical flow map looks like. Based on two consecutive frames (left,

middle), the pixel-wise motion vector map between them is calculated and shown in

the right figure. We can see that this optical flow map provides the temporal motion

information and the segmentation cue for the target.

2.3.2 Ensemble Tracking

Ensemble tracking [4] is one of the earliest work that considers tracking as a binary

classification problem, where an ensemble of weak classifiers is trained online to dis-

tinguish between the object and the background. The ensemble of weak classifiers is

combined into a strong classifier using AdaBoost. The strong classifier is then used to

label pixels in the next frame as either belonging to the object or the background, giving
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Figure 2.10: Ensemble update and test.

a confidence map. The peak of the map and, hence, the new position of the object, is

found using mean shift. Temporal coherence is maintained by updating the ensemble

with new weak classifiers that are trained online during tracking.

In Figure 2.10, (a) The pixels of image at time t � 1 are mapped to a feature space

(circles for positive examples and crosses for negative examples). Pixels within the solid

rectangle are assumed to belong to the object, pixels outside the solid rectangle and

within the dashed rectangle are assumed to belong to the background. The examples

are classified by the current ensemble of weak classifiers (denoted by the two separating

hyperplanes). The ensemble output is used to produce a confidence map that is fed to

the mean shift algorithm. (b) Now, train a new weak classifier (the dashed line) on the

pixels of the image at time t and add it to the ensemble.

2.3.3 Correlation Filtering

Correlation filters have been widely used in numerous applications such as object detec-

tion and recognition. Since the operator is readily transferred into the Fourier domain

as element-wise multiplication, correlation filters have attracted considerable attention

recently to visual tracking due to its computational efficiency.
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A typical tracker based on correlation filters models [39, 72] the appearance of a

target object using a filter w trained on an image patch x of M ⇥N pixels, where all the

circular shifts of xm,n, (m,n), are generated as training samples with Gaussian function

label y(m,n), i.e.,

w = argmin
w

X

m,n

|�(xm,n) ·w � y(m,n)|2 + � |w|2

where � denotes the mapping to a kernel space and � is a regularization parameter.

Since the label y(m,n) is not binary, the learned filter w contains the coefficients of a

Gaussian ridge regression rather than a binary classifier. Using the fast Fourier trans-

formation (FFT) to compute the correlation, this objective function is minimized as

w =
P

m,n a(m,n)�(xm,n), and the coefficient a is defined by

A = F(a) =
F(y)

F(�(x) · �(x)) + �

where F denotes the discrete Fourier operator. The tracking task is carried out on an

image patch z in the new frame with the search window size M ⇥N by computing the

response map as

ŷ = F�1(A� F(�(z) · �(x̂)))

where x̂ denotes the learned target appearance model and � is the Hadamard product.

Therefore, the new position of target is detected by searching for the location of the

maximal value of ŷ.

2.3.4 Sparsity-based Collaborative Model

In previous parts, we have seen that optical flow and ensemble tracking focus on deter-

mining whether a particular pixel (in the search window) belongs to the target or not,
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Figure 2.11: A system flowchart of the proposed MUSTer tracker based on the Atkinson-
Shiffrin Memory Model.

which refers to a generative model based on local features. While correlation filtering

pays attention on the whole target patch, which refers to a discriminative classifier using

holistic templates. In order to exploit the strength of both schemes, [129] proposed a

sparsity-based collaborative model. It consists of two modules:

• Sparsity-based discriminative classifier (SDC). In this module, the positive and

negative patch templates are extracted around the target location to train a clas-

sifier for object tracking. In each frame, N candidates will be drawn around the

tracked result in the previous frame with a particle filter. Then the classifier will

determine whether the candidate is a target or not.

• Sparsity-based generative model (SGM). For generative model, the feature they

use is local histogram. They form a local histogram feature vector of the searching

window and determine where the target is.
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2.3.5 MUlti-Store Tracker (MUSTer)

Inspired by the well-known Atkinson-Shiffrin memory model, author [43] proposed a

MUlti-Store Tracker (MUSTer), a dual-component approach consisting of short- and

long-term memory stores to process target appearance memories.

In Figure 2.11, we can see that the short-term processing unit contains two parts:

a correlation filtering tracker based on HoG feature and a SIFT keypoint match-

ing/tracking with RANSAC estimation. For long-term processing unit, they build a key-

point database to store the historical target information. Both the results of short-term

processing and long short-term processing are obtained by a controller, which decides

the final tracking output.

2.3.6 Visual Tracking using Convolutional Features

Recently with the development of convolutional neural network in computer vision

tasks, researchers try to use convolutional features in visual tracking [71, 109]. They

actually did not train a CNN tracking model, but exploited features extracted from

VGGNet, which trained on object recognition datasets, to improve tracking accuracy

and robustness.

Work in [71] shows that early CONV layers preserve more spatial content pattern

of the object and FC layers contain more semantics information, as shown in Figure

2.12. Based on rich hierarchical features of CNNs, the system adaptively learn linear

correlation filters on each CNN layer to alleviate the sampling ambiguity and infer the

target location using the multi-level correlation response maps in a coarse-to-fine fash-

ion. Figure 2.13 shows the main steps of their proposed tracker.
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Figure 2.12: Convolutional layers of a typical CNN model.

Figure 2.13: Main steps of the proposed algorithm. Given an image, we first crop the
search window centered at the estimated position in the previous frame. We use the
third, fourth and fifth convolutional layers as our target representations. Each layer
is then convolved with the learned linear correlation filter to generate a response map,
whose location of the maximum value indicates the estimated target position. We search
the multi-level response maps to infer the target location in a coarse-to-fine fashion.
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Chapter 3

Object Tracking with Temporal

Prediction and Spatial Refinement

(TPSR)

3.1 Introduction

Most of the state-of-the-art online object tracking algorithms adopt a model-based

approach with some features and/or representation. The models include correlation

filters, Markov Chain Monte Carlo, graph models, the conditional random field, etc.

Significant progress has been made with this parametric approach in recent years. How-

ever, the tracking performance of these algorithms appears to reach a plateau due to

multiple challenging attributes such as illumination variation, occlusion, deformation,

fast motion and background clutters, etc. Besides, there exist apparent visual tracking

errors which are not properly reflected by performance indices. In general, the model-

based approach has two major limitations. It is difficult to develop a robust model to

deal with a wide range of video contents. It is also difficult to identify real causes of

errors for further improvement.

As compared with state-of-the-art methods in the literature, a non-parametric online

object tracking system based on the idea of temporal prediction and spatial refinement

(TPSR) is proposed in this chapter. The proposed tracking system consists of three cas-

caded modules: pre-processing (PP), temporal prediction (TP) and spatial refinement
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(SR) of the tracking bounding box. Illumination variation and camera shaking are com-

pensated in the PP module. A joint template matching (TM) and optical flow (OF)

scheme is adopted in the TP module, where TM and OF often complement each other.

For example, TM fails when an object and its background are with textured surfaces

since there are many local minima in the matching results. OF provides a pixel-wise

motion field, and it is particularly effective in determining the movement of textured

surfaces. Finally, the drifting problem is handled in the SR module. To control error

accumulation, the location and size of the predicted bounding box from the previous

module are finetuned using the local spatial information of the new frame. It is a critical

module since the object-environment relationship frequently changes in the new frame

due to camera zoom-in/out, rotational motion and shape deformation, etc. This module

is extremely valuable in avoiding tracking error accumulation over multiple consecutive

frames.

There are two major contributions in this work. First, the use of TM and OF jointly

for robust temporal prediction of the bounding box between the reference and the current

frame in the TP module is new. Second, the refinement of bounding box’s location and

size using the spatial domain information of the new frame in the SR stage is also novel.

It offers an effective mean to control cumulative errors due to temporal prediction alone.

The two ideas, TP and SR, enhance the online object tracking performance substantially.

The rest of this chpater is organized as follows. An overview of the proposed TPSR

tracking system is presented in Section 3.2. Its tracking performance is shown and

compared with a few state-of-the-art methods against a benchmarking dataset in Section

3.3. Finally, concluding remarks are given in Section 3.4.
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Figure 3.1: The flow chart of the proposed TPSR online object tracking system.

3.2 Proposed TPSR Tracking System

3.2.1 System Overview

As shown in Figure 3.1, the TPSR method consists of the following three cascaded

modules.

1. Pre-Processing (PP). Light normalization and camera motion compensation are

conducted to reduce the impact of illumination variation and bounding box orien-

tation mismatching between two consecutive frames due to camera shaking.

2. Temporal Prediction (TP). A joint TM/OF scheme is used to establish the cor-

respondence of the object region between two consecutive frames. The com-

plementary characteristics of TM and OF enable robust tracking under various

object-environment settings.

3. Spatial Refinement (SR). Although the correspondence of the object regions

between two consecutive frames is built in the TP module, the object-environment

relationship may change in the new frame. We refine the bounding box location
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and size using the spatial information of the new frame, and use this idea to control

tracking error accumulation.

Details of each module are elaborated in the following subsections.

3.2.2 Pre-Processing (PP) Module

Lighting Normalization. Poor or rapidly changing illumination is one of the main

challenges in object tracking. There are two scenarios for consideration.

• Dark scenes. Both the object and its environment are dark. It is difficult to find a

clear boundary to separate the object from its background, even for human vision.

• Temporal illumination change. The sudden change in the lighting condition (such

as scenes with flash light and thunderstorm) will result in rapidly changing pixel

values so that both feature-based and template-based matching methods are not

accurate.

Lighting normalization is used to address these challenging lighting conditions. For

a scene with dim environmental light, rather than equalizing illumination with respect to

the reference frame, we enhance the contrast of the object and its surrounding environ-

ment by applying histogram equalization to the current frame. Then, the object becomes

more visible for extraction. For sudden illumination change, the object is difficult to

track even if the light is normalized. Then, we skip the current frame and move to the

next frame. The bounding box of the skipped frame will be interpolated based on the

reference frame and the new current frame when the global ambient change disappears.
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Let HF (t) be the histogram of a frame at time t. The skip mode is determined by the

following condition:

skip =

8
>><

>>:

1 if D(HF (t), HF (t� 1)) > T,

0 otherwise.
(3.1)

where T is a threshold and D() is a Chi-squared function used to represent the difference

between two histograms. If we decide to skip frame t, the reference frame for frame

t + 1 is still frame t � 1. The purpose of frame skipping is to ensure that the object in

the reference and the current frames share a similar illumination condition.

Camera Motion Compensation. There is irregular camera motion due to hand-

held camera shooting in some video sequences. It will confuse the following tracking

modules greatly. Thus, camera motion compensation is essential to a robust tracking

system. There exist numerous techniques to stabilize the scene. In the PP module,

camera motion estimation is estimated by finding a perspective transformation between

two frames with respect to the background scene. In our implementation, we extract

the SIFT descriptor [70] and then find the transform matrix based on RANSAC match-

ing. The obtained transform matrix aligns the views of two consecutive frames, and the

compensated frame serves as the new input to the following tracking modules. Once

the tracked object is determined, it will be transformed back to the original frame to be

displayed as the final tracking result.
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3.2.3 Temporal Prediction (TP) Module

The temporal prediction (or the tracking procedure) component of most state-of-the-art

single object tracking (SOT) methods follows the tracking-by-detection (TBD) frame-

work. It adopts a discriminative model that separates the target region from the back-

ground in the search window. It keeps updating while maintaining the long/short term

memory of the target along time. Since the TBD framework treats the tracking prob-

lem as a spatial detection problem, it is difficult to single out a temporal prediction

component from these methods. This is the reason we do not elaborate on the tempo-

ral prediction of existing methods. On the other hand, our TPSR tracking system does

contain temporal prediction as one building component, where template matching (TM)

and optical flow (OF) predictor work jointly for target localization. We allow these two

modes to work simultaneously and leverage their complementary strength.

This idea enables the TPSR system to track a target along its trajectory accurately

under various complex situations. TM offers a displacement vector of the bounding box

between the reference and the current frames based on region similarity. OF provides

a pixel-wise motion field, where a region with a consistent motion field determines the

displacement vector. TM and OF can complement each other in various situations. For

example, TM fails when an object and its background are both with textured surfaces

while OF is effective in determining the movement of textured surfaces. On the other

hand, OF may fail for an object with a large homogenous region while TM can provide

a good result if there is a reasonable boundary between the object and its environment.

Besides, the computational complexity of OF is higher.

TM Motion Predictor. Tracking an object in the pixel domain of the original image

is neither efficient nor robust due to its high pixel dimension and variation of surface

details. To address this issue, we adopt a downsized bounding box as the matching

template. The original bounding box may be of various sizes and in rectangular shape.
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Figure 3.2: The use of a downsized object region TD(t � 1) in the reference frame to
search for the best match in the downsized current frame FD(t).

Here, we set the shorter dimension of a downsized bounding box to be 16 pixels. After

that, the image within the search window is also downsized proportionally. The purpose

of downsizing is to remove unnecessary spatial details so as to make the performance of

TM more robust. An example of template down-sizing is shown in Figure 3.2. The red

box, T (t�1), in the figure represents the object region detected in frame t�1, while its

downsized version, TD(t � 1), serves as the initial position of prediction in downsized

frame t. Furthermore, we give different weights to matching errors of pixels within the

bounding box. That is, we assign more weights to the object region than the background

and choose the location of the best match with the minimum sum of weighted absolute

difference (SWAD) in the Lab color space as the TM prediction result.

OF Motion Predictor. When an object moves in front of cluttered background, the

TM motion predictor tends to give a poor prediction. Then, the OF motion predictor

36



(a) TM to OF (b) OF to TM

Figure 3.3: System switch between TM and OF. Black rectangle indicates the previous
location. Red one is the trajectory prediction. Blue ones represent the TM candidates.
(a) TM candidates do not match trajectory predication, the proposed system switches to
OF. (b) TM candidates matches the trajectory prediction, the proposed system switches
back from OF to TM.

[98] can be adopted as an alternative to acquire the pixel-wise motion of the object.

OF provides a pixel-wise motion field, where a region with a consistent motion field

determines the displacement vector.

Automatic TM/OF Switching. In the beginning of each sequence, we adopt both

TM and OF motion predictors and compare their tracking performance to decide which

motion model works better. Then, we stick to one motion model in the sebsequent

frames until a model switching criterion is met. This criterion is determined by two

factors. First, the predicted bounding box location deviates much from the motion tra-

jectory of the moving object across multiple frames in the past. Second, the alternative

predictor provides a result that is more consistent with the motion trajectory. This idea

is shown in Figure 3.3.

First, we consider to switch from TM to OF. Three locations predicted by TM with

the smallest SWAD values are considered as prediction candidates. The motion trajec-

tory can be easily computed based on the path of the bounding box center. The TM
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motion predictor chooses the candidate that is closest to the predicted trajectory as the

final prediction. The prediction result is satisfactory if the bounding box of the reference

frame has a sufficiently large overlap with that of the current frame. Otherwise, the TM

predicted result is not reliable, then it will turn on the OF motion predictor. Next, we

consider to switch from OF to TM. The strategy is similar to the first one but reverse

the role of TM and OF. The OF motion predictor will predict only one new location

instead of three. If the predicted location deviates much from the motion trajectory, we

will compute the three locations predicted by TM with the smallest SWAD values and

choose the one that is most consistent with the motion trajectory.

3.2.4 Spatial Refinement (SR) Module

The TP module provides the best predicted bounding box position based on the com-

parison of two consecutive frames (the reference and the current frame). However, a

good match does not imply an accurate object location in the current frame. There

are several reasons. First, template matching (TM) is based on the similarity matching

for downscaled target patch. The down sampling operation does not guarantee a pixel-

wised accuracy. Second, for optical flow prediction (OF), we find the average motion

vectors of all the target pixels. But the accuracy is not promised because of the part

deformation or rotation, which will not generate a correct target movement. Third, the

object-environment relationship may change between consecutive frames. For example,

an object moves from clean to cluttered background, or has rotational motion and/or

shape deformation, etc. When there is a prediction error, it tends to accumulate along

time. As a result, the object of interest will drift away from the tracking bounding box.

There is no mechanism to compensate for drifting errors in traditional online object

tracking methods.
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In the proposed TPSR method, we use the SR module to control the drifting error

based on the spatial information of the current frame. We use the structure edge detec-

tor [25] and the GrabCut segmentation algorithm [67] to achieve this goal. The input

to these two algorithms is an expanded version of the bounding box obtained in TP as

illustrated in Figure 3.4(b). The reason of using the expanded version is that the bound-

ing box obtained in TP may lose some object boundaries due to the prediction error.

Simple edge detection tools such as the Sobel edge detector and the Canny edge detec-

tor are too sensitive to noise and do not meet the purpose. As shown in Figure3.4(c),

the structure edge can provide a more accurate object boundary. Another tool to sepa-

rate the object from its background is object segmentation where the segment number is

equal to two. The GrabCut segmentation algorithm is a powerful tool that needs seeds

for the object and background. The information provided by the structure edge can

provide seeds within the object. The seeds of background can be sampled from bound-

aries of the expanded bounding box region. The result of GrabCut is shown in Figure

3.4(d). Finally, based on the boundary and segmentation results, an accurate bounding

box location can be found in Figure3.4(e).
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(a) Prediction of TP (b) Expanded patch

(c) Structure edge (d) GrabCut (e) Final location

Figure 3.4: SR Module: (a) Prediction result (black) from TP module, which contains
some potential issues, such as boundary alignment. (b) Expanded patch of the prediction
result (blue). (c) Structure Edge result of the expanded patch. (d) GrabCut segmentation
of the expanded patch. Based on the results in (c) and (d), more accurate target boundary
can be found in red(e).

40



Figure 3.5: Occlusion handling: red and blue segments indicate visible contour and
inferred contour, respectively.

3.2.5 Occluded Object Tracking

It is a major challenge to any tracking method when the tracked object is occluded par-

tially or fully. We incorporate a salient contour tracking scheme in the spatial refinement

module to address this problem. The scheme is based on one underlying assumption -

the object be tracked should have one or multiple salient contours. Examples include

the outer boundary of an object, the eye glass of a human, etc. Usually, the full view of

the object is available in the beginning of the sequence and we can extract salient con-

tours of the object. Although the contours may deform along time and could be blocked

by occluders, they should not disappear suddenly. As a result, if we do not see these

contours in the current frame, we have to infer their location based on the prior in the

reference frame.

This idea is illustrated by an example in Figure 3.5, where the car is the object to

be tracked. In the first several frames, the car has a clear outer contour which will be

extracted in the spatial refinement module. However, when the car is occluded in the

middle set of frames, its outer contour becomes confusing due to occlusion. However,

we have to make an inference on the counter location based on its prior in the reference

frame. In Figure 3.5, we use the red color to denote the visible contour segment and

the blue color to denote the inferred contour segment. Although these two segments are
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labeled by different colors, they form a complete contour jointly. Then, it will serve

as the prior for the next frame. If the object is fully occluded, none of its contour is

visible. However, if it is still being tracked, we have its whole contour in blue, indicating

a completely inferred contour. Although there is no temporal prediction and spatial

refinement in the full occlusion case, we assume that the object keeps moving along its

motion trajectory at the same speed without any shape variation. This assumption often

holds if the full occluding time is short.

3.3 Experimental Results

3.3.1 Dataset

The performance of the TPSR method is benchmarked with quite a few state-of-the-

art algorithms against a well known dataset in [112] with one pass evaluation (OPE).

This dataset contains 50 video sequences with various challenging attributes such as

fast motion, illumination variation, deformation, etc. The evaluation was conducted

on an 2.3 GHz Intel Core i7 CPU with 16 GB RAM. The current implementation has

not been optimized and its processing rate is 0.4 fps. The processing speed can be

easily improved after software optimization. Furthermore, quite a few operations such

as template matching and optical flow computation can be done in parallel. Their speed

can be even further improved by suitable supporting hardware (e.g., GPU or multi-core

CPU).

We compared more than 20 state-of-the-art methods in this work. Since all of them

were run on the same benchmarking dataset known as the Visual Tracker Benchmark

(VTB) library [112], we adopted their reported results. For example, we downloaded

pre-computed tracking results of the MEEM tracker [124] from authors’ webpage. We

also got the source code and the reported results of the LCT tracker [72] from authors’
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Figure 3.6: The location precision and success rate performance curves of top 10 track-
ing algorithms using 50 video sequences. The AUC value of the TPSR method ranks
No. 1 in the success rate plot and No. 2 in the location precision plot.

webpage. To make fair comparison, we use the default parameter setting given by the

benchmark library for our proposed algorithm.
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3.3.2 Overall Performance

Given two bounding boxes (i.e., one of the ground truth and the other of a tracking

algorithm), it is typical to evaluate the tracking algorithm with two metrics: the cen-

ter location error and the overlap success rate. The former is the averaged Euclidean

distance between two centers while the latter is the percentages of frames where the

overlapping region between two bounding boxes surpasses a threshold. Then, two per-

formance curves can be drawn by varying their threshold values as shown in Figure 3.6.

The x-axis of the location error plot is the number of pixels and that of the success rate

plot is the overlap region percentage with respect to the bounding box of the ground

truth.

We compare the performance of more than 20 methods and show the results of the

top ten. They are the proposed TPSR method, MEEM [124], KCF [39], TGPR [33],

SCM [129], Struck [38], TLD [49], ASLA [48], CXT [24], VTD [61], ALIEN [86] and

LCT [72]. The area under the curve (AUC) values of the TPSR method are 75.1% and

62.5%, which rank No. 1 and No. 2, for the location precision plot and the success rate

plot, respectively. We see that TPSR and LCT are two close competitors whose ranks

are reversed in these two plots.

Furthermore, the temporal robustness evaluation (TRE) and the spatial robustness

(SRE) evaluation are conducted. We show the overlap success plots for TRE and SRE

in Figure 3.7. The proposed tracker performs well against other state-of-the-art methods.

Based on the successful integration of temporal prediction (TP) and spatial refinement

(SR), the proposed TPSR tracker can stabilize the target location under different initial-

izations.

The TPSR method can track the object well with a stricter requirement on the overlap

region. It outperforms other methods by a significant margin when the threshold is

chosen to be 60% or higher. It means that the TPSR method can predict the location
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Figure 3.7: Performance comparison in terms of temporal robustness evaluation (TRE)
and spatial robustness evaluation (SRE), where the overlap success plots for TRE and
SRE with respect to 50 benchmark sequences are shown in the figure.

and size of the object well. As to the location error, the TPSR method offers the best

performance when the location error is less than or equal to 7 pixels. It becomes the

second and the third best when location errors are between 7 and 14 pixels and higher

than 14 pixels. It is worthwhile to comment that the absolute location errors may not

be as informative as the relative location errors where errors along the x-axis and the
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Sequence ALIEN TPSR
David 98 96
Jumping 87 96
Pedestrian1 100 99
Car 100 99
Girl 66 92
Sylvester 98 96
FaceOcc1 99 100
FaceOcc2 100 100
Tiger 30 98
Lemming 38 99
Liquor 81 93
Trellis 92 90

Table 3.1: Comparison of success rates (%) between the ALIEN and the TPSR trackers.

y-axis are normalized by the width and the height of the ground truth bounding box,

respectively.

We conduct another experimental comparison between the ALIEN tracker [86] and

the proposed TPSR tracker in Table 3.1. Since the object bounding box is oriented

in the ALIEN tracker, there is a slight penalty of the ALIEN tracker by forcing it to

consider the smallest axis-aligned bounding box that contains the object bounding box.

Also, based on experimental results in [86], the performance of sequence-by-sequence

success overlapping rates are compared in Table 3.1. We see from the table that the

proposed TPSR tracker outperforms the ALIEN tracker significantly in five sequences;

namely, Jumping, Girl, Tiger, Lemming and Liquor. For the remaining seven sequences,

the two trackers have comparable performance.

3.3.3 Attribute-based Evaluation

The benchmarking dataset contains a wide range of video sequences with six main

attributes: 1) fast motion, 2) motion blur, 3) deformation, 4) occlusion, 5) scale variation
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and 6) illumination variation. A video sequence may have multiple attributes. It is com-

mon to evaluate the performance of different tracking methods with respect to sequences

of different attributes. This study is valuable in understanding the strength and weakness

of each tracker in the presence of different challenging conditions. We show the success

rate plot for the ten best results in each case in Figure 3.8. As shown in the figure, the

TPSR method gives the best AUC performance for video sequences with four attributes;

namely, fast motion, motion blur, deformation and scale variation. It ranks the second

for the other two attributes - occlusion and illumination. Actually, it is only second to

the LCT method by 1.3% and 0.3% in occlusion and illumination, respectively. The

robustness of the TPSR method is clearly demonstrated in the attributed-based analysis.

The success of the TPSR method can be attributed to the following four factors.

1) Motion Handling. For video sequences of fast motion and motion blur attributes,

a tracking-by-detection scheme alone usually does not work well because of unstable

feature representations. The TPSR method has two powerful tools to address these

challenges. First, it exploits a complementary strategy by integrating the TM and the

OF predictors. They do not rely on local features but pixel values in the region. With

the help of template down-sizing, the motion blur effect can be reduced to certain degree.

With a proper switch between TM and OF, the TPSR method is more robust to different

object/scene combinations. Second, the TPSR method does not take the result of the

temporal prediction as is. Instead, it adds the spatial refinement module based on the

spatial information in the current frame only. It extracts local contours and segments the

object from the background. As a result, the TPSR method tends to forget the past and

adapt to the new environment faster. This characteristics is very valuable to sequences

with fast changing scenes. It also helps avoid tracking error propagation.

2) Appearance Variation Handling. The variation of object appearance imposes another

major challenge to the tracking problem. This shows up in form of scale variation and/or
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deformation. Again, both can be well handled by the TPSR method in the spatial refine-

ment step. The TRSR adopts an expanded window to ensure the object is within the

window. Then, with the help of the structural edge detector and the Grabcut segmenta-

tion tool, the new object boundary can be determined accordingly without the constraint

of the old object boundary. Thus, as long as the TM module of the TPSR tracker can

predict a reasonable initial location of the next window, it will work well.

3) Illumination Variation Handling. The TPSR method handles illumination variation

through light normalization in the pre-processing module.

4) Occlusion Handling. The TPSR method handles partial/full occlusion through salient

contour tracking as described in Sec. 3.2.5.
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Figure 3.8: Success rate plots with respect to six attributes of video sequences: fast
motion, motion blur, deformation, occlusion, scale variation and illumination variation.
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3.3.4 Qualitative Evaluation

We select eight representative sequences from the benchmark dataset in [112] and show

the tracking results of five algorithms in Figure 3.9 for qualitative evaluation. They are

TPSR, LCT, MEEM, Struck and SCM.

The first three sequences in Figure 3.9 are Lemming, Coke and Tiger2. They all have

static background and share similar challenging attributes such as background clutter,

object deformation, scale variation and occlusion. The TPSR method captures the object

location and size well up to their rightmost frames. This is attributed to its powerful OF

predictor that offers a good initial location of the object in the current frame against static

background. After the OF predictor is selected for a couple of consecutive frames in the

beginning stage, it becomes the default one in the tracking process. When occlusion

occurs, the system can still track the object based on the occlusion handling technique

described in Sec. 3.2.5. Some competitive methods do not perform as well since they

are sensitive to the background clutter effect and the erroneous bounding box location

and size will propagate into future frames.

The fourth sequence in Figure 3.9 is CarScal. It is challenging because of occlusion

and scale variation. We see clearly from the rightmost frame that all methods lose track

of the full car except for TPSR due to its powerful spatial refinement module.

The fifth and sixth sequences in Figure 3.9 are Basketball and Skating1. The TM

predictor of the TPSR method offers a good initial bounding box for the object. Due

to human body’s deformation, existing tracking methods such as MEEM, Struck and

SCM are not robust enough to track the object for a long while. This is especially

true in the presence of occlusion. In contrast, the TPSR method uses a normalized

template matching so that it is not sensitive to shape variation. It is also worthwhile

to point out that LCT outperforms TPSR at the end of the Skating1 sequence because

50



LCT considers the long-term correlation of the object shape while TPSR only uses a

short-term representation of the object shape.

The seventh sequence in Figure 3.9 is Jumping, which has the effect of motion blur.

The TPSR method can successfully track the object based on the TM predictor across all

frames. For comparison, we observe that LCT and SCM may lose the object at certain

frames although they can recover the object locations at later frames by chance.

The eighth sequence in Figure 3.9 is Skiing. Traditional trackers such as LCT, Struck

and SCM lose the object quickly because of background clutter. Only TPSR and MEEM

can maintain the correct object location across all frames. This is an example to demon-

strate the power of using the TM and the OF predictors in a complementary fashion in

handling background clutter under the trajectory constraint. Furthermore, we see from

the last two subfigures of the Skiing sequence that TPSR can adjust the bounding box

size more flexibly to provide a more accurate size than MEEM. This advantage comes

from its spatial refinement module where the object boundary can be re-adjusted based

on the spatial information of the current frame only.
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Figure 3.9: Performance visualization of proposed TPSR, LCT, MEEM, Struck and
SCM methods on eight challenging sequences (top to down are Lemming, Coke, Tiger2,
CarScale, Basketball, Skating1, Jumping and Skiing, respectively).
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3.4 Conclusion

A robust online single object tracking (SOT) system based on temporal prediction and

spatial refinement, called the TPSR method, was proposed in this work. It has several

unique features. First, it uses two temporal predictors (TM and OF) in a complemen-

tary fashion. Second, it has a powerful spatial refinement module to make its tracking

performance more robust with respect to object shape and size variation. Third, it has

a special mechanism to handle either partial and full occlusion. Extensive experimental

results were given to demonstrate that the propsed TPSR method offers the state-of-the-

art tracking performance in solving the online SOT problem.
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Chapter 4

Online Object Tracking via

Motion-Guided Convolutional Neural

Network (MGNet)

4.1 Introduction

In previous chapter, we describe one traditional solution for visual object tracking called

TPSR, which exploits some hand-crafted features, such as color, boundary, motion vec-

tor, etc. However, with the new development of deep neural network, many computer

vision tasks have been adopted into this new trend. Convolutional neural networks

(CNNs) have recently been applied to image classification [56], semantic segmenta-

tion [41], object detection [35] and etc. Such great success of CNNs is mostly attributed

to their outstanding performance in representing visual data. Therefore, researchers start

to investigate the possibility of applying CNN architecture for visual tracking problem.

One direction is that by extracting deep CNN features from pretrained neural net-

work, such as AlexNet [56] and VGGNet [92], researchers are able to represent the tar-

get in a more discriminative way [42,71,109]. Following tracking-by-detection scheme,

these features are imported into some traditional pipelines, such as correlation filters

and SVM machines, to distinguish the target and background. This direction does not

fully exploit the power of CNN and there is no end-to-end training since it is difficult
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to collect a large amount of training data for video processing. Although these meth-

ods may be sufficient to obtain generic feature representations, its effectiveness in terms

of tracking is limited due to the fundamental inconsistency between tracking (locating

targets of arbitrary classes) and classification (predicting object class labels) problems.

To fully exploit the advantages of CNN architectures, it is desirable to train them on

large-scale data specialized for visual tracking, which cover a wide range of variations

in the combination of target and background. However, it is truly challenging to learn a

unified representation based on the video sequences that have completely different char-

acteristics. Due to such variations and inconsistencies across sequences, researchers

believe that the ordinary learning methods based on the standard classification task are

not appropriate for visual tracking. Motivated by this fact, the multi-domain network

(MDNet) tracker [84] is proposed to learn the shared representation of general targets

from multiple annotated video sequences for tracking, where each video is regarded as a

separate domain, and then online track and learn the representation of new target during

the testing process. It consists of the shared layers, which are targeted for extracting

generic object representation that invariants to environment factors, such as illumina-

tion and scale change, and domain specific layers for target localization. The MDNet

trains end-to-end in offline learning process and tests in an online tracking with update

learning fashion. Based on the MDNet tracker, [27] introduces a self-structure RNN

representation into the network to distinguish the target out of the distractors during the

tracking. [83] builds a branch of multiple CNN trackers for the target in a tree structure

to manage multiple target appearance models.

Most of the state-of-the-art tracking system focus on building a spatial detector to

find the target. For example, the MDNet tracker trains the convolutional neural network

to classify the target out of the background region. However, it has several major weak-

nesses on handling situations like articulated motion, fast motion and distractors. In
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Figure 4.1: Performance comparison for the failure cases of the MDNet (Jump, Biker
and Coupon). Green, red and blue bounding boxes denote the ground-truths, MDNet
and MGNet tracking results, respectively.

Figure 4.1, it shows the comparison between our proposed motion-guided CNN tracker

and the MDNet tracker. The reason why the MDNet fails is that the system cannot gen-

erate the correct candidate regions and the network is poor at handling different motion

scenarios. To summarize the failure cases, they are:

• Distractors. Since the MDNet focuses on spatial representation of the target, it is

very confusing when two similar objects are presented. The distractor is a trouble

maker in the pipeline of the MDNet tracker.

• Articulated motion. Human movement is a common target in videos.

Deformable parts, such as arm, leg and body, are difficult to track as one unit tar-

get. Therefore, this kind of articulated motion is very challenging for the MDNet.
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• Fast motion. With fast motion, target in next frame is very far away from previous

location. However, the search window of the MDNet is not capable of capturing

the correct target in this scenario.

Therefore, in this work, an online object tracking system called motion guided con-

volutional neural network (MGNet) is proposed to enhance the motion handling ability

in the original MDNet so that the system can successfully track the target for failure

cases as listed above.

Overall speaking, there are two major contributions in this work. First, the use of

dynamic motion model to generate the correct candidate regions is essential for tracking

since if the candidates are incorrect, it is impossible to locate the target successfully. On

another hand, an accurate target location estimation also reduces the number of candi-

dates and speeds up the tracking process. Second, it is the first time that the spatial RGB

and temporal optical flow are combined together as the network inputs to show the dis-

criminative power of the tracking system. Optical flow map indicates the motion vector

for each pixel between two adjacent frames, which provides important movement and

segmentation cues for target localization. These two ideas enhance the motion handling

ability of the original MDNet tracker.

The rest of this paper is organized as follows. Section 4.2 is a brief review of the

multi-domain network (MDNet) tracker. Then, a detailed explanation of the proposed

motion guided convolutional neural network (MGNet) tracker is presented in Section

4.3. Its overall tracking performance is shown and compared with the state-of-the-art

methods against two widely used benchmarking datasets in Section 4.4. Section 4.5

provides the detail analysis about the contributions of each component in the proposed

MGNet by comparing the tracking performance with the MDNet tracker. Finally, con-

cluding marks are given in Section 4.6.
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Figure 4.2: Network architecture of the multi domain network tracker.

4.2 Review on the Multi-Domain Network Tracker

The Multi-domain network tracker (MDNet) [84] is an effective tracking framework,

which consists of multi-domain representation learning and online visual tracking. It

learns the shared representation of targets from multiple annotated video sequences for

tracking, where each video is regarded as a separate domain. The network has separate

branches of domain-specific layers for binary classification at the end of the network,

and shares the common information captured from all sequences in the preceding lay-

ers for generic representation learning. When a test sequence is given, all the exist-

ing branches of binary classification layers, which were used in the training phase, are

removed and a new single branch is constructed to compute target scores in the test

sequence. The new classification layer and the fully connected layers within the shared

layers are then fine-tuned online during tracking to adapt to the new domain.
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4.2.1 Multi-Domain Representation Learning

• Network architecture.

The architecture of the MDNet is illustrated in Fig. 4.2. It receives a 107 ⇥ 107

RGB input, and has five hidden layers including three convolutional layers

(conv1� 3) and two fully connected layers (fc4� 5). Additionally, the network

has K branches for the last fully connected layers (fc61�fc6K) corresponding to

K domains, in other words, training sequences. The convolutional layers are iden-

tical to the corresponding parts of VGG network [92] except for the feature map

sizes. The next two fully connected layers have 512 output units and are combined

with ReLUs and dropouts. Each of the K branches contains a binary classifica-

tion layer with softmax crossentropy loss, which is responsible for distinguishing

target and background in each domain.

• Learning algorithm.

The goal of the learning algorithm is to train a multi-domain CNN disambiguat-

ing target and background in an arbitrary domain, which is not straightforward

since the training data from different domains have different notions of target and

background. However, there still exist some common properties that are desir-

able for target representations in all domains, such as robustness to illumination

changes, motion blur, scale variations, etc. To extract useful features satisfying

these common properties, MDNet separate domain-independent information from

domain-specific one by incorporating a multi-domain learning framework. This

CNN network is trained by the Stochastic Gradient Descent (SGD) method, where

each domain is handled exclusively in each iteration.

For detail implementation of this learning procedure, each frame of all the sequences

will generate 250 training samples (50 positive ones and 200 negative ones), where
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positive and negative samples have � 0.7 and  0.5 IoU overlap ratios with ground-

truth bounding boxes, respectively. Network is trained for 100K iterations with learning

rates 0.0001 for convolutional layers and 0.001 for fully connected layers.

4.2.2 Online Visual Tracking

Once the multi-domain learning complete, the multiple branches of domain-specific

layers (fc61 � fc6K) are replaced with a single branch (fc6) for a new test sequence.

Then the system fine-tune the new domain-specific layer and the fully connected layers

in the shared network online at the same time.

• Tracking control and network update. To estimate the target state in each

frame, N target candidates x1, . . . ,xN sampled around the previous target state

are evaluated using the network. The optimal target state x⇤ is given by finding

the example with the maximum positive score as

x⇤ = argmax
xi

f+(xi)

• Hard minibatch mining.

The majority of negative samples are typically trivial or redundant in tracking-by-

detection approaches, while only a few distracting negative samples are effective

to training a classifier. Hence, the ordinary SGD method, where the training sam-

ples evenly contribute to learning, easily suffers from a drift problem. A popular

solution in object detection for this issue is hard negative mining [99], where train-

ing and testing procedures are alternated to identify the hard negative samples.

The MDNet adopts this idea in the online tracking procedure. As the learning

proceeds and the network becomes more discriminative, the classification in a

minibatch becomes more challenging as illustrated in Figure 4.3. This approach
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Figure 4.3: Identified training examples through hard negative mining in Bolt2 (top) and
Doll (bottom) sequences. Red and blue bounding boxes denote positive and negative
samples in each minibatch, respectively. The negative samples becomes hard to classify
as training proceeds.

examines a predefined number of samples and identifies critical negative exam-

ples effectively without explicitly running a detector to extract false positives as

in the standard hard negative mining techniques.

• Bounding box regression.

Due to the high-level abstraction of CNN-based features and the data augmen-

tation strategy which samples multiple positive examples around the target, the

network sometimes fails to find tight bounding boxes enclosing the target. In

order to improve the target localization accuracy, the bounding box regression

technique [35] is applied and this linear regression model is trained using conv3

features of the samples near the target.

4.2.3 Summary

Experimental benchmark results show that the tracking performance of MDNet is the

best among the current visual object trackers. It is the winner of 2015 Visual Object
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Tracking challenging. It is very powerful in handling video sequences that contain illu-

mination variation, scale variation and etc. However, during the study of this model, we

still find out some drawbacks and that’s why we are trying to solve them. More details

are explained and discussed in the next Section 4.3.

4.3 The Proposed MGNet Tracker

The proposed MGNet is built upon the MDNet with two innovations: 1) motion-based

candidate selection (MCS) using a dynamic prediction model, and 2) CNN with RGB-

plus-motion (RGB-M) 5-channel input. The details are elaborated in the following two

subsections.

4.3.1 Motion-based Candidate Selection (MCS)

The bounding box of a local region to be tested whether it is the desired location of an

object is called a candidate. Candidate selection plays a critical role in the MDNet. It

behaves like the object proposal in the object detection problem. If the system fails to

generate appropriate candidates, it will not be able to find the target location correctly.

However, the existing candidate selection strategy in the MDNet is very problematic for

articulated motion where the aspect ratio of width/height is changing and fast motion

where the search range is not big enough. In this scenario, system fails to generate

correct candidate, which results that the tracker either loses or inaccurately tracks the

target.

The proposed candidate selection is motivated by the classic model-based trajec-

tory prediction framework such as those used in the Kalman filter [3] and the Markov

Chain Monte Carlo prediction method [50]. These models often consist of a system
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state vector, motion dynamics modeling and description of observations (or measure-

ments). However, these models cannot be applied directly to the current problem. Some

modifications are required.

We are often interested in the first- and second-order statistics of the system state

vector, which are the mean and the co-variance matrix of the random vector. If the state

vector is multivariate Gaussian, the mean and the co-variance matrix can be used to

determine the probability distribution of the state vector. In the proposed system, four

parameters in the online object tracking problem are considered: the center location

(x, y), width w and height h of the bounding box of candidates. Those parameters

(x, y, w, h) form the state vector. To allow the maximum flexibility such as tracking

of objects of articulated motion and observing from an arbitrary viewpoint, these four

parameters are treated individually and independently. Without loss of generality, we

use the horizontal location x of the center of a bounding box as an example in the

following discussion. The same methodology applies to the other three parameters y, w

and h.

For a given bounding box of a candidate characterized by (x, y, w, h), we determine

its likelihood of being the target region based on the the output score of a trained MGNet

or MDNet. If the score is higher, the candidate is more likely to be the desired target.

Thus we choose the bounding box with the highest score as the final candidate. For this

reason, we say that the network plays the role of observation evaluation.

Let xt denote the state of the horizontal location of the target in frame t. Based on

the Markov assumption, the true state is conditionally independent of all earlier states

given the previous state.

p(xt|x1, . . . , xt�1) = p(xt|xt�1) (4.1)
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Similarly, the measurement zt in frame t is dependent only upon the current state and is

conditionally independent of all previous states given the current state.

p(zt|x1, . . . , xt) = p(zt|xt) (4.2)

Therefore, the probabilility distribution of current state xt given the previous observa-

tions Zt�1 = {z1, . . . , zt�1} can be expressed as

p(xt|Zt�1) =

Z
p(xt|xt�1)p(xt�1|Zt�1)dxt�1. (4.3)

In order to solve this equation, two basic models are considered: observation measure-

ment model and state transaction motion model. As discussed, the trained network

plays the role of observation measurement. Here we would like to examine three differ-

ent motion transaction models which are listed below. We use z⇤t to denote the optimal

observation in frame t, which is the tracking location result.

1. Zero velocity (ZV) In this motion model, the distribution of the candidates in

current frame is centered at the location in previous frame z⇤t�1, which means:

E[xt|Zt�1] = z⇤t�1 (4.4)

Notice that this is the model which is applied in the original MDNet tracker.

2. Constant velocity (CV) Different from the zero velocity model, the constant

velocity one considers the speed of the target in previous state to predict the

location in current state. Based on previous optimal observations, the velocity

in previous frame vt�1 = z⇤t�1 � z⇤t�2. Therefore, the expectation of the current

state is

E[xt|Zt�1] = z⇤t�1 + vt�1 (4.5)
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3. Constant acceleration (CA) Besides of the velocity, the acceleration in the pre-

vious frame is exploited in this model: at�1 = vt�1� vt�2. The expectation of the

current state can be computed by

E[xt|Zt�1] = z⇤t�1 + vt�1 + at�1 (4.6)

To validate the advantage of considering different motion types on expectation eval-

uation, Table 4.1 shows the mean of motion prediction error for all the sequences in the

benchmark dataset [113]. Based on the ground truth of the target locations in previous

frames, we calculate the predicted mean location of the target according to three differ-

ent motion types. Then the motion prediction error between this mean and the ground

truth locations for current frame is measured. Finally the averaged error is calculated

from all the sequences. As we can see, the constant velocity model is more accurate

to predict the target location. Therefore, in the proposed MGNet tracking system, the

constant velocity model is adopted to predict the distribution of the current state.

Table 4.1: Overall prediction error for x (mean of all sequences)

ZV CV CA
Mean prediction error (pixel) 3.2531 2.1766 3.7969

Besides of the expectation, variance is also a very important parameter to guarantee the

accuracy and efficiency of the candidate selection as it indicates the degree of movement

fluctuation of the target. The two independent variance estimations for width and height

provide more convincing information to generate the correct candidate region.

The variance prediction is based on the observation score distribution of previous

frame. Suppose we have N (=256) observations (zit�1, i = 1 . . . N ) evaluated by the

network in previous frame and each of them has been assigned with one score sit�1, i =

1 . . . N . If the candidate is close to the tracking location z⇤t�1, then it is likely to have a
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(a) Whole candidate score distribution (b) Valid candidate score distribution

Figure 4.4: (a) Scores for all the candidates (not good for Gaussian fitting). Set A is
valid; Set B is not. (b) Valid candidate set after denoising, which is suitable for Gaussian
curve fitting.

high score. Here we assume the Gaussian distribution and the curve fitting is applied to

find the variance of the score distribution. Subsequently, the variance is used to generate

the candidate set in current frame.

V ar[xt|Zt�1] = V ar[zt�1] (4.7)

However, single Gaussian is not capable of providing accurate curve fitting for all

the candidate scores. The main reason is that some candidates selected are far away

from the target region, which usually belongs to background. In other words, the scores

of those candidates become noise in curve fitting. Figure 4.4(a) shows an example of the

network decision scores of all the candidates. It is clear to see that single Gaussian does

not fit all the scattered scores. Therefore, a denoising procedure is necessary to separate

the valid and invalid candidates for variance modeling.

Candidates in region A are labeled as valid ones since they are overlapped with the

target region. Candidates in region B are considered as invalid ones since they are more

likely related to background. The denoised result is shown in Figure 4.4(b).
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4.3.2 RGB-plus-Motion 5-Channel Input (RGB-M)

In this part, we would like to enhance the discriminative power of the network deci-

sion ability by exploiting the motion optical flow cue. In the original MDNet, it uses

RGB information to build the spatial target detector. However, the performance is not

satisfactory in some cases. For a deformable object such as human, it is difficult to

find a good spatial representation. In another case, when target and background clutter

in the bounding box, the system cannot differentiate them successfully. Considering

of these, we observe that the optical flow map between two adjacent frames provides

valuable pixel-wised motion and segmentation cues for target localization, even for the

cases with background clutter. Therefore, two optical flow channels (horizontal and ver-

tical) are added as the input signal in the proposed MGNet tracking system. In other

words, we integrate both of the spatial (RGB) and motion (optical flow) cues into the

network and have great advantages from the combination. Figure 4.5 shows the network

architecture of the proposed MGNet. The input signal is modified from three channels

(3@107x107) to five channels (5@107x107). Correspondingly, the size of the filters in

the first convolutional layers needs to be changed to 7x7x5.

Also, another network modification compared with the original MDNet is that the

number of filters in the first convolutional layer is enlarged from 96 to 112. As we

can see in the first CONV layer, it combines both the spatial and motion cues through

convolution operation. Because of adding the optical flow signal, we believe that the

network needs a larger filter bank (higher feature space) to effectively present its dis-

criminative power. This idea is motivated by the ”REctified-COrrelations on a Sphere”

model in [57, 58]. It shows that after the CNN training process, the converged filter

weights define a set of anchor vectors in the RECOS model where the anchor vectors

represent the frequently occurring patterns of the training data. In the original MDNet,
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Figure 4.5: Network architecture of the proposed MGNet.

it simply represents the RGB patterns. With additional optical flow channels, the pat-

terns now are spatial-motion combined, which means the feature space becomes larger.

Therefore additional filters are required to describe the spatial-motion patterns. The final

number of filters is determined by a standard algorithm called tree structured K-means

clustering.

In order to prove the correctness of the above idea, a verification experiment is con-

ducted. In the experiments, the only modification in the original MDNet is the number

of filters in the first convolutional layer, which means the candidate selection keeps the

same. We report the number of filters versus the final converged training classification

error in Figure 4.6. This error measures the averaged detection and tracking errors after

the network training. As can be seen from the figure, the convergence error is 0.041 with

original filter number 96 in the first layer. When the number of filters reaches around

112, the error is converged to 0.03.
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Figure 4.6: Number of filters in first CONV layer V.S. converged training classification
error.

4.4 Experimental Results

The performance of the proposed motion guided convolutional neural network tracker

is evaluated with quite a few recent state-of-the-art algorithms against two well known

datasets: Object Tracking Benchmark (OTB) [112, 113] and Visual Object Tracking

challenge dataset (VOT2015) [54]. The implementation is based on original MDNet

[85] using MatConvNet toolbox [106]. All the optical flow maps [98] are calculated

and stored in memory before training and testing. The experiments and evaluations are

conducted with Intel Core i7-5930K CPU @ 3.50GHz ⇥12 and GeForce GTX TITAN

X GPU.
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(a) OTB50 result

(b) OTB100 result

Figure 4.7: The location precision and success rate performance curves of top 10 track-
ing algorithms on OTB50 and OTB100. The AUC value of the MGNet method ranks
No. 1 both in the location precision plot and success rate plot.

4.4.1 Object Tracking Benchmark (OTB) Dataset

There are 100 video sequences in OTB with various challenging attributes such as defor-

mation, rotation, fast motion, etc. In this experiment, the network is trained by Visual

Object Tracking challenge dataset (VOT2015) [54], which contains 61 video sequences.

Overall performance. According to the evaluation methodology in [112], we use

both of these two metrics: the center location error and the overlap success rate to com-

pare the tracking performance. The former measures the averaged Euclidean distance
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between the centers of the ground truth and the tracking bounding box. The latter is the

percentages of frames where the overlapping region between the ground truth and the

tracking bounding box surpasses a threshold.

Figure 4.7 shows the overall tracking performance of the proposed motion guided

convolutional neural network (MGNet) tracker on OTB50 [112] and OTB100 [113]. We

compare the performance of more than 30 methods and show the results of the top ten.

They are the proposed MGNet tracker, MDNet [85], CNN-SVM [42], MUSTer [43],

MEEM [124], LCT [72], DSST [22], KCF [39], Struck [38] and TGPR [33]. The area

under the curve (AUC) values of the proposed MGNet tracker rank No. 1 in terms of

location precision and success rate for two datasets (OTB50, OTB100). If the proposed

method is compared with MDNet, the performance improvement on OTB50 dataset are

0.8% and 1.9% for precision and success, respectively. The OTB100, where the addi-

tional 50 video sequences contain attributes such as fast motion, articulated motion, and

distractors, is more challenging to MDNet. The performance of the proposed MGNet

shows larger improvement with 2.2% in precision and 2.6% in success on this dataset.

This is benefited from considering motion models in the proposed system.

Attribute-based Evaluation. In the benchmark dataset, all video sequences are

labelled with eleven attributes. Figure 4.8 demonstrates the success rate for nine main

attributes. The other two are omitted because the number of sequences belonging to

these two categories is small and the proposed MGNet also outperforms other meth-

ods. As shown in those figures, the MGNet has better tracking results than all the

others. Particularly for attributes like deformation and background clutter, the perfor-

mance improvement is obvious: 4% and 3.7%, respectively from the original MDNet.

On one hand, the candidate selection scheme from dynamic motion model provides a

more accurate prediction of the movement of the target, including the direction and

self-rotation. Therefore, compared with the original MDNet tracker, MGNet is more
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Figure 4.8: Success rate plots with respect to night attributes of video sequences: fast
motion, motion blur, deformation, occlusion, scale variation, illumination variation, in-
plane rotation, background clutter and out-of-plane rotation.

powerful to track the deformable targets. On another hand, because of the enhanced dis-

criminative power of the network from pixel-wised motion cue, the network is able to

differentiate the target in the bounding box even though the background clutters. From

this attribute-based evaluation, we can obviously see the strength of the proposed motion

guided CNN tracker.

Qualitative evaluation. Eight representative sequences are chosen from the bench-

mark dataset in [113] to show the tracking results of six algorithms in Figure 4.9 for qual-

itative evaluation. They are the proposed MGNet, MDNet, CNN-SVM, LCT, MUSTer

and MEEM.
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Figure 4.9: Performance visualization of proposed MGNet, MDNet, CNN-SVM, LCT,
MUSTer and MEEM methods on eight representive sequences (top to down are Diving,
Trans, Skating2-1, Jump, Biker, Coupon, Skiing and David2, respectively).

The first three sequences in Figure 4.9 are Diving, Trans and Skating2-1. Targets

in them are all deformable objects. From the visual results, we can clearly see that the

proposed MGNet tracker outperforms others in accurately predicting the aspect ratio of

the bounding box of the target, which means the success overlap score is much higher.

The fourth sequence is Jump, which is combined with fast and articulate motions. For

all the other trackers, they lost the target in the middle of the sequence. However, the

MGNet tracker follows the target successfully till the end of the video clip. This shows
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the strength of our motion prediction. The fifth sequence is Biker with large motion.

We can see even though the proposed MGNet tracker seems to miss the target in frame

70, it is still the closest one to the ground truth location compared with others. More

importantly, the failure detection scheme in the proposed system can send an alert so

that the target can be re-captured in the future frames. The sixth one is Coupon, which

shows the advantage of MGNet tracker in handling distractor. Because of the guide

from motion movement, our tracker is able to correctly follow the target. The last two

clips are Skiing and David2, which demonstrate that the MGNet tracker outperforms the

MDNet tracker to find the target location with higher accuracy.

4.4.2 Visual Object Tracking (VOT) Challenge Dataset

Visual object tracking challenge (VOT2015) [54] is another commonly used dataset for

benchmarking, which contains 61 sequences. Similar to OTB100dataset, it focuses on

generic object target. In this section, the MGNet tracker is trained with OTB100 and

tested on VOT2015 dataset.

One new feature in VOT2015 dataset is the ground truth labeling. Different from

the OTB100 where the target location is marked with a regular bounding box, VOT2015

allows the bounding box to be rotated. Also, besides of the accuracy measurement,

VOT2015 adopts another robustness score to evaluate the performance of different track-

ers. The robustness score is defined as the number of times the tracker fails in tracking

in one individual sequence. Once the tracker drifts off the target, the system detects

a tracking failure and will re-initializes the tracker. This re-initialization is triggered

when the overlap score (intersection-over-union) drops to zero. There are two types of

experiment settings: initialized/re-initialized with either ground truth bounding boxes

(baseline) or randomly perturbed ones (region noise). For more details, please refer

to [54].

74



Here we compare the proposed MGNet tracker with six state-of-the-art methods.

They are MDNet [85], MUSTer [43], MEEM [124], DSST [22], KCF [39] and Struck

[38]. Table 4.2 and 4.3 show the average scores and ranks of accuracy and robustness

in VOT2015 [54]. The proposed MGNet method ranks the top both in accuracy and

robustness evaluations.

Table 4.2: VOT2015 baseline evaluation

Accuracy RobustnessTracker Score Rank Score Rank Expected overlap

MUSTer 0.52 4.28 2.00 3.77 0.19
MEEM 0.50 6.79 1.85 5.61 0.22

KCF 0.48 3.16 1.95 3.89 0.19
DSST 0.54 4.77 2.56 2.96 0.17
Struck 0.47 5.52 1.61 4.12 0.25
MDNet 0.60 2.89 0.69 2.06 0.38
MGNet 0.61 2.11 0.63 1.79 0.39

Table 4.3: VOT2015 region noise evaluation

Accuracy RobustnessTracker Score Rank Score Rank Expected overlap

MUSTer 0.50 5.67 2.80 4.23 0.18
MEEM 0.48 6.32 2.19 5.31 0.20

KCF 0.49 4.16 2.35 3.12 0.18
DSST 0.52 3.98 3.56 3.22 0.17
Struck 0.49 5.88 2.61 4.98 0.27
MDNet 0.57 3.11 0.98 2.86 0.35
MGNet 0.58 2.89 0.88 2.98 0.36

4.5 Further Analysis and Discussion

As discussed, the proposed motion guided convolutional neural network (MGNet)

tracker is based on multi-domain network (MDNet) tracker with two major modified

components: dynamic motion model for candidate selection and additional optical flow
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motion signal for input. To show the contribution of each component, we would like to

present the analysis by comparing MGNet with MDNet on the commonly used object

tracking benchmark (OTB100) dataset [113] and VOT2015 dataset [54].

4.5.1 Impact of Added Components

One of the major modifications in MGNet tracker is the dynamic motion model for

candidate selection. Rather than using the zero velocity model in the original MDNet

tracker, we apply the constant velocity model with variance prediction into the net-

work. Therefore, we would like to verify two advantages of this new candidate selec-

tion scheme: (1) find more accurate candidates (center location and aspect ratio of the

bounding box); (2) reduce the number of selected candidates to speed up the tracking

process. The experiment setup here is candidate selection module only, without optical

flow input.

Table 4.4 shows the comparison of accuracy/speed versus the number of selected

candidates. The accuracy here is from success overlap score plot with threshold T=0.8.

The reason not to use center location error is that success overlap accuracy is more

appropriate to indicate accurate tracking. Also, T=0.8 is a very high standard where

the original MDNet tracker reaches only 0.38 in Figure 4.7. In Table 4.4, 256 is the

default number of candidates in MDNet. If the same number of candidate is selected

in MGNet, the accuracy is higher (0.43) while the processing time increases (1.42 s/f)

due to the motion model. From another point of view, the performance of MGNet

remains similar accuracy (0.38) by considering only 64 selected candidate, which means

the computation speed (0.63 s/f) is much faster than MDNet (1.2 s/f). The strength

of the proposed candidate selection scheme is clearly demonstrated. One thing to be

mentioned here is that we use N=256 for performance comparison in this paper.
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Table 4.4: Accuracy/Speed(second/frame) V.S. Number of Candidates: (*) refers to the
original MDNet.

N 256(*) 256 128 64 32 16
Accuracy 0.38 0.43 0.40 0.38 0.25 0.12

Speed (s/f) 1.2 1.42 1.02 0.63 044 0.26

To verify the contribution of each component in the proposed MGNet tracker, we

report the internal comparison of three different structures.

• Baseline: MDNet tracker

• MDNet + Candidate Selection (CS)

• MGNet: MDNet + Candidate Selection + Optical Flow

In Figure 4.10, we can see that the modified candidate selection scheme improves

the original MDNet by about 1-2%. In this motion prediction model, it provides more

information of the target region, such as the mean location and dynamic movement

degree, for the system to select accurate candidates. Optical flow signal enhances the

discriminative power of the network to more accurately determine the candidate positive

score in the situations like background clutter and fast motion. The performance gain

of the optical flow signal from the candidate selection is around 1%, as shown in Figure

4.10.

4.5.2 Evaluation Based on Sequence Attributes

The proposed motion guided convolutional neural network tracker is based on the origi-

nal MDNet tracker. After checking the performance of different components in previous

two sections, now we would like to present another sequence-level evaluation. In this

section, all the sequences are analyzed in the benchmark OTB100/VOT2015 datasets
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Figure 4.10: Precision and success plots for internal comparison on OTB100.

and the performances between MGNet tracker and MDNet tracker are compared with

each other.

OTB100 Dataset

The sequences are grouped into three categories based on the tracking performance: (1)

MGNet is better than MDNet; (2) MGNet is similar to MDNet; (3) MGNet is worse

than MDNet. The grouping criterion is based on the overlap success plot with threshold

T=0.7 since the success accuracy is higher than 0.8 if T=0.6 and it is lower than 0.5 if

T=0.8. In other words, the performance change is obvious in the range of [0.6, 0.8].

After the threshold selection, we compare the success accuracy (SA) for each individual

sequence between MGNet and MDNet trackers.

8
>>>>><

>>>>>:

MGNet is better, if SA(MGNet)-SA(MDNet)>0.06

MGNet is worse, if SA(MGNet)-SA(MDNet)<-0.06

MGNet is similar, others
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MGNet is better than the MDNet. In this group, we target on the sequences where

the proposed MGNet tracker works better while the original MDNet either fails (lose the

target) or inaccurately tracks (wrong aspect ratio) the object. By analyzing this group,

the strength of each modified component is clearly demonstrated. In Figure 4.11, it

shows the precision and success plots for this group of sequences. The performance

gain is large which is around 7-8%. By checking the properties of these sequences, it is

interesting to find that each sequence in this group contains at least one of the following

attributes.

• Articulate motion. Deformable object is one common type of targets in the video.

One typical example is human (sequences like Diving, Jump). In the original

MDNet, deformable parts, such as arms, legs and torso are difficult to track as

one unit because of the complicated parts relation and the foreground/background

clutter within the rectangle bounding box. MDNet is a spatial detector which is

poor at tracking this kind of target since the spatial information becomes very

confusing when there are changes of internal parts and background clutter. On the

contrary, the optical flow motion signal in the proposed MGNet tracker helps the

system to differentiate the target out of the background by exploiting the pixel-

wised segmentation cue. Moreover, the MDNet assumes that the change variance

of width and height is the same, which is not capable of dealing with cases with

large target rotation. In the proposed system, we model the width and height

separately so that the bounding box of the candidate can be more flexible with

various aspect ratio in order to obtain a more accurate result.

• Fast motion. Objects with fast motion are also very challenging for the original

MDNet tracker. With this attribute, target in the next frame is very far away

from the previous location (sequences like Jump, Biker). The zero velocity model

which uses the previous location as the searching center is adopted in MDNet.
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Figure 4.11: Precision and success plots for sequence group 1 in OTB100 (40 out of
100): MGNet is better.

That means it fails to find the correct target region because of the inappropriate

search window. However, the constant velocity model proposed in MGNet is able

to predict the next location by exploiting previous movement information so that

the search window is more likely to overlap the target region.

• Distractor. Distractor means that some objects are similar to the real target

(sequences like Coupon) so that the tracker is easy to get confused and the result is

drifted to another object and never be resumed back. The MDNet tracker is a spa-

tial pattern detector so that it is not able to deal with this case properly. However,

with the help of motion cues, the MGNet can identify the correct target. Both the

motion prediction model and optical flow cue assist the system to memorize the

movement information of the target. In other words, the motion model guarantees

the target is located in the bounding box and the optical flow cue enhances the

discriminative power of the network to find the correct target.

In this group, there are 40 out of 100 sequences in total. Table 4.5 lists several

representative sequences with three major attributes labeling.
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Table 4.5: Sequences with attributes labeling in OTB100 (A: Articulated motion; F: Fast
motion; D: Distractor).

Sequence Attributes Sequence Attributes
Basketball A, D Biker F
Blurbody A Bolt A, D

Bolt2 A, D Couple A, F
Diving A Jump A, F

Jumping F Motorrolling A
Skating2 A Walking2 D
Coupon D Gym A, F
Skater A Skater2 A
Trans A Dancer A

Dancer2 A Liquor D

MGNet is similar to the MDNet. As described, the tracking performance gap of

each sequence in this group is smaller than 0.05 with overlap threshold T=0.7. There

are 56 out of 100 sequences in this group. The original MDNet tracker is a spatial target

detector based on RGB color information. In our proposed MGNet tracker, even though

the input is a 5-channel signal from RGB and optical flow, the spatial cue is retained

powerful to find the target region. The optical flow cue increases the discriminative

power of the network when the spatial cue does not work well as discussed in previous

section. However, the temporal motion information is not always helpful. One scenario

is about the static target with only camera movement. In this case, the optical flow map

indicates the global camera motion, which does not provide any object motion cue for

segmentation. Then system still relies on spatial pattern detector. Another scenario is

that both the movement of the target (deformable) and background are very complex that

sometimes the optical flow map will be confused. So summarize for this group, we can

see that for most of the cases, our proposed tracking system preserves the functionality

of spatial detector without too much damage from the additional temporal motion cue.

MGNet is worse than the MDNet. In this group, 4 out of 100 sequences that the

tracking performance of the MDNet tracker is better than the proposed MGNet tracker.
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Figure 4.12: Precision and success plots for sequence group 3 in OTB100 (4 out of 100):
MGNet is worse than the original MDNet.

These 4 video sequences are: Woman, FaceOcc2, Rubik, and Twinnings. The error

analysis is detailed in the followings to have a better understanding of the weaknesses

of the proposed MGNet tracker. First, we would like to report the center error precision

and overlap success plots in Figure 4.12. For these sequences, the performance drop

of the proposed MGNet tracker is 5.7% for center location error and 9.2% for overlap

success rate. Since there are only 4 sequences in this group, which is a small proportion

of the database, the proposed system still reach an obvious improvement on average.

Moreover, Figure 4.13 shows these four sequences to realize this performance drop.

Generally speaking, the reasons of the drop in these 4 sequences can be summarized

into two categories:

• Occlusion. The first two sequences in Figure 4.13 are Woman and FaccOcc2.

There are some partial occlusions in both of them and our proposed MGNet

tracker does not perform well compared with the MDNet tracker. Take Woman

sequence for example. Both of the MGNet and MDNet trackers works well at

the beginning (frame 102). At frame 122, when there is a car partially occlud-

ing the target, the proposed MGNet tracker selects the visible region of the target
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only while the bounding box of the MDNet is closer to the labeled ground truth.

When the occluded part shows again in frame 170, MGNet resumes to the correct

region. Similar situation happens in frame 215 and 255. There are two explana-

tions for this phenomenon: (1) The modified candidate selection scheme tries to

find the accurate candidates. However, it is difficult to say whether the occluded

part belongs to the target region or not since it depends on the problem/dataset

definition. At least, the MGNet selects out the meaningful and reasonable candi-

dates including the bounding boxes with and without the occluded part. (2) For

the selected candidates, the network needs to determine the positive score for each

bounding box. Since there is an additional optical flow map as the input, the deci-

sion making process in MGNet is more sensitive to the boundary segmentation

from the motion cue. It means that the system is more likely to treat the occluded

region (the vehicle) as the background region and selects a smaller bounding box

as the target location. Similar analysis can be applied to the FaceOcc2 sequence,

where the face is partially occluded by a book.

• Out-of-plane rotation with complex content. The other two sequences are Twin-

nings and Rubik. Both of them contain the out-of-plane rotation and the spatial

content is complex. For sequence Twinnings, the locations of MGNet and MDNet

in frame 180 are both correct. Starting from frame 190 (the second figure), the

target tilts forward. In frame 195 (the third figure), the proposed MGNet tracks

the original front view of the target rather than the whole target region. This is

because the system believes that the front view region is closest to the target region

in the initialization. From our points of view, this tracking result is reasonable and

acceptable. Also, as can be seen from frames 200 and 220, when the front view

region of the target is gone, the system claims that there is no correct region. In
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Figure 4.13: Performance visualization of proposed MGNet and MDNet methods
on four representative sequences in group 3 of OTB100 (top to down are Woman,
FaceOcc2, Twinnings and Rubik, respectively).

the last figure (frame 240), the target tilts back and the MGNet tracker re-detects

the front view region when it appears.

VOT2015 Dataset

For completeness, the sequence-level comparison analysis for visual object tracking

challenge (VOT2015) dataset is presented in this section. In this dataset, there are 61

video sequences, where a very small proportion of it are also in OTB100 dataset. The

grouping strategy for this dataset is based on the accuracy score of each sequence. Table

4.6 demonstrates the analysis comparison.

In group ”MGNet is better”, similar improvement of the proposed MGNet can be

found since it is better in handling articulated motion, fast motion and distractors. Fig-

ure 4.14 shows several representative sequences (Octopus, Bmx, Butterfly and Gymnas-

tics1) in VOT2015. It is clear to see that for cases with object deformation, the proposed
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Table 4.6: Sequence-level comparison with grouping for VOT2015 dataset

MGNet is better Two are similar Challenge
# of sequence 17 41 3

Accuracy(MDNet) 0.61 0.60 0.42
Accuracy(MGNet) 0.63 0.60 0.45

Figure 4.14: Performance visualization of proposed MGNet and MDNet methods on
four representative sequences in group ”MGNet is better in VOT2015” (top to down are
Octopus, Bmx, Butterfly and Gymnastics1, respectively).

MGNet tracker outperforms the MDNet tracker because of two modifications: dynamic

model for candidate selection and additional optical flow input signal. One thing we

should also notice is that for the third frame of Butterfly sequence, the MDNet tracker

already misses the target while MGNet still works well. Later on, if the system detects

that re-initialization is necessary, the MGNet can locate the target region accurately

since it adopts the optical flow signal as the motion segmentation cue.

Most of the sequences still fall into the second group where the tracking performance

of the proposed MGNet is similar to MDNet. There are 41 out of 61 sequences that the

tracking performance of the proposed MGNet tracker is similar to the original MDNet.
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For the third group, we name it as ”Challenging” sequences instead of ”MGNet is

worse than the MDNet”. With the setup of the VOT dataset, if there happens severe

occlusion where the tracker cannot access to the visible target region and the location

drifts away from the ground truth, the system re-initializes. In other words, it is not able

to differentiate the occlusion and tracking failure. From our experiment, even though

the performance of MGNet is not as good as MDNet, both of them have low accuracy

score and high robustness failure number. Therefore, we group several sequences such

as Fish 2,3 and Leave as ”Challenging” sequences because they have high degree of

deformation and complex foreground/background clutters where MGNet and MDNet

cannot track well.

4.6 Conclusion

To conclude this chapter, in this work, a motion guided convolutional neural network

(MGNet) tracker is proposed for online visual tracking based on the multi-domain

network (MDNet) tracker. With two important modifications, the tracking results are

improved significantly. These two modifications are the dynamic motion model for

candidate selection and the spatial-motion cue as input to the system. For candidate

selection, the proposals generated by the proposed system is more reasonable and accu-

rate. Taking the optical flow map as input further enhances the discriminative power of

the network. Through large scale data benchmarking evaluation, the advantages of the

proposed method in handling sequences with articulated motion, fast motion and distrac-

tors are clearly demonstrated. However, there are still some limitations of the proposed

MGNet method. One example is the partial occlusion issue which was explained before.

The improvement of the boundary region between the target and the occluding object is

helpful. Also, it is interesting to extend the single object tracker (SOT) to the multiple
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objects tracking (MOT) problem where the MOT problem is very challenging because

of interaction and occlusion among multiple targets.
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Chapter 5

Online CNN-based Multiple Object

Tracking with Enhanced Model

Updates and Identity Association

Online multiple objects tracking (MOT) is a challenging problem due to occlusions and

interactions among targets. An online MOT method with enhanced model updates and

identity association is presented to handle the error drift and the identity switch problems

in this work. The proposed MOT system consists of multiple single CNN(Convolutional

Neural Networks)-based object trackers, where the shared CONV layers are fixed and

used to extract the appearance representation while target-specific FC layers are updated

online to distinguish the target from background. Two model updates are developed to

build an accurate tracker. When a target is visible and with smooth movement, we per-

form the incremental update based on its recent appearance. When a target experiences

error drifting due to occlusion, we conduct the refresh update to clear all previous mem-

ory of the target. Moreover, we introduce an enhanced online ID assignment scheme

based on multi-level features to confirm the trajectory of each target. Experimental

results demonstrate that the proposed online MOT method outperforms other existing

online methods against the MOT17 and MOT16 benchmark datasets and achieves the

best performance in terms of ID association.
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5.1 Introduction

The multiple objects tracking (MOT) technique predicts locations of multiple objects

and maintains their identities to yield their individual motion trajectories throughout a

video sequence. It has many applications such as video surveillance, human-computer

interface and autonomous driving. However, it is a very challenging problem. This is

especially true for sequences with frequent occlusions and interactions among targets in

crowded scenes. The tracking-by-detection strategy is one of the most common ideas in

various tracking tasks, where the impressive performance improvement comes from the

development of a powerful object detector. For this reason, the MOT challenge [63,78],

which is the most popular MOT benchmark dataset and aims at multiple pedestrian

tracking, provides all targets detection results in each frame directly. In other words,

the initialization of target locations is not human-labelled but purely dependent upon

detection results. Then, the task is to link detected results of an individual object in all

frames to form one trajectory, which is called the ID assignment problem.

Existing MOT solutions can be categorized into two classes: 1) global optimization

methods and 2) online methods. Global optimization methods [13,59,82,118] minimize

the total energy cost from all target trajectories. They examine all detection results of

each frame and link fragmented trajectories due to occlusion. To build a more accurate

energy affinity measure, a “tracklet” is defined across multiple consecutive frames and

exploited to extract the spatial and temporal features of the target. Short tracklets are first

generated by linking the detection results. Then, they are globally associated to build a

complete trajectory of the target. Examples of global optimization methods include the

graph cut [102, 103] and the flow network [87, 110, 126]. However, their performance

is not satisfactory under challenging conditions such as long-term occlusion and missed

detection. As there is no correctly detected bounding box for the target in both cases, the

difficulty in distinguishing different objects increases along time. Moreover, in order to
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generate globally optimized tracks, most methods access detection results for the entire

sequence beforehand, and it demands intensive computation for processing video data

with iterative association. As a result, the global optimization methods are not suitable

for real-time applications.

In contrast, online MOT methods are designed for real-time applications. Online

MOT solutions have been studied in [6, 12, 91, 96]. The trajectory of each target is con-

structed frame by frame fashion, where the location and identity of one target are deter-

mined by the information of the current frame without accessing future frames. Online

methods often produce fragmented trajectories with an error drift problem since it is dif-

ficult to handle inaccurate detection (or even missed detection) of occluded objects. The

most challenging task in online MOT is to find an appropriate target model that correctly

connects detection results of the current frame to tracks obtained from previous frames.

It is intuitive to apply the single object tracker (SOT) to the MOT problem. An

online SOT can be trained and updated during the tracking process to distinguish a target

from its background. Most of the state-of-the-art SOTs are built upon the convolutional

neural network (CNN) architecture. They use the spatial information of the target to

predict its location in the next frame, and formulate it as an end-to-end optimization

problem. However, the performance is usually not satisfactory if the SOT solution is

directly applied to the MOT problem. The reason is that the MOT environment is much

more complicated. There exist occlusions and interactions between multiple targets,

and it is challenging for a single object tracker to assign a proper identity to each target

without confusion. If the identity of a target changes after occlusion/interaction, which

is called the ID switch error, the error will propagate into all following frames. Thus, the

design of a powerful target representation model to deal with error drift and ID switch

lies in the center of the MOT problem.
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To address the above-mentioned issues, we borrow ideas from human visual tracking

experience and propose two target representation models in a dynamic MOT environ-

ment. If there is no occlusion for a target, we can rely on spatial-temporal consistency of

the target for an incremental model update. Human eyes follow the target along the time

(consecutive frames) and the brain incrementally update the gradual change of the target

by comparing its appearance against the ones stored in the past. If a target is occluded,

one can conduct target re-detection in the neighborhood of its original location and use

the target appearance before occlusion as the reference. Once the target is recaptured

after occlusion, one can initialize the tracking system with the newly detected target

location and appearance, which is called the refresh update. Furthermore, we design

an enhanced ID association scheme to compensate errors caused by the SOT tracker by

exploiting multi-level features of the target. This is needed since the CNN tracker heav-

ily relies on the spatial information. However, targets are sometimes small and similar,

and an SOT tracker can be confused to make wrong ID association. Thus, we propose to

integrate the appearance, motion and interaction cues of targets to resolve this ID switch

problem.

The contributions of this work are summarized below. First, an online MOT method

using multiple CNN-based SOT trackers is proposed, where each target is associated

with one unique multi-domain network (MDNet) tracker [85]. It can add (Target-In)

and remove (Target-Out) target trackers adaptively. Second, we present two online

model update schemes: 1) the incremental update and 2) the refresh update. They work

together to provide a powerful yet efficient dynamic target model in a complicated MOT

environment. Third, multiple target cues are integrated and exploited to confirm the cor-

rect ID for each target.

The rest of this work is organized as follows. Sec. 5.2 offers a brief review of related

work. The online MOT method is proposed in Sec. 5.3. Quantitative evaluation and
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experimental results are shown in Sec. 5.4. Finally, concluding remarks are given in

Sec. 5.5.

5.2 Related Work

Global optimization methods. With the advancement of object detection techniques

[30, 34], tracking-by-detection becomes popular for multiple objects tracking. In order

to find the trajectory of each target from detection results in all frames, data association

is an essential task. It is usually conducted in a discrete space using the linear program-

ming or graph-based methods. Various optimization algorithms such as the network

flow [87, 126], the continuous energy minimization [82], the max weight independent

set [13], the k-partite graph [23, 121] and the subgraph multi-cut [102, 103] have been

proposed. Several energy cues were introduced and optimized using the standard con-

jugate gradient method in [82]. In [23], each target trajectory is generated one by one

in the optimization process from the best clique to the next. After finding the best one

in each iteration, the corresponding detections are removed from the system. All above

methods heavily rely on the detection performance. If the detection is inaccurate or

missed, it is difficult for them to recover the correct target location.

Online methods. Several online MOT methods [6, 12, 91, 111] have been proposed

recently to tackle with the practical real-time tracking applications. Under the “online”

requirement, the ID association problem is more challenging since there are occlusions

and interactions among objects. The focus has been on developing an online match-

ing model that has an accurate feature representation so as to associate the current tar-

get location with previously detected trajectory. The part-based feature tracking was

exploited in [91] to handle partial occlusion. The recurrent neural networks (RNNs)

were used in [81] and [88] to manage the spatial and temporal consistency of different
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targets. However, the tracking capability of these methods is still limited for long-term

occlusion.

Feature representations. One key component in global optimization and online

methods is to define the affinity measure between two target regions. This is highly

related to feature representations. Low-level features such as the color histogram and

the histogram of gradients (HoG) were exploited and corner features were tracked in

[9] to obtain a motion model between detection results. Supervoxels were used as the

input for tracking and matching in [16,80]. In [80], supervoxel labeling was formulated

as the inference of the conditional random field (CRF) while targets were modeled as

volumetric ”tubes” in a video sequence. The scene context information is exploited to

link bounding boxes to form trajectories in [73].

Single object tracker in MOT. Attempts have been made in applying the SOT tech-

nique to the solution of the MOT problem [12,116,117,119,127]. Target specific classi-

fiers were adopted to compute the similarity for data association based on particle filter-

ing in [12]. An ensemble method was used to find the optimal candidate from detections

and the tracking candidate pool in [117]. The CNN-based SOT with a spatial-temporal

attention mechanism was developed in [18]. However, since its model update strategy

is not good enough to train an accurate target-specific detector, the performance of the

SOT tracker is not satisfactory.

In this work, we investigate a better target representation along with enhanced model

update strategies so as to guarantee an accurate model to build a target-specific tracker

and provide meaningful features for ID association as detailed in the next section.
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Figure 5.1: The system flowchart of the proposed online MOT method. When the
Target-In condition is met, each target is initialized with a specific tracker. In the begin-
ning stage, trackers are working independently through the shared CONV layers and
target-specific FC layers. In the later stage, the system integrates the prediction score
of each tracker and multiple feature cues to assign a proper ID to each target. The
online model update module manages the way to select positive and negative samples
for finetuning and training the online tracker.

5.3 Proposed MOT Method

5.3.1 System Overview

An overview of the proposed MOT method is shown in Fig. 5.1. First, the system

uses a Target-In condition to determine whether to initialize a target-specific branch

of a CNN tracker for one object. After initialization, the system starts to track each

initialized target by processing its candidates through the shared CONV layers and the

target-specific FC layers. Then, by combining the score distribution information and the

multiple feature cues from the CONV layers and the FC layers, it assigns an ID to each

tracked target. After the location of each target in the current frame is determined, its
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positive and negative samples are extracted and stored in the memory as references for

future model update. When the Target-Out condition is met, a target tracker is removed.

The system keeps tracking remaining targets up to the end of sequence.

5.3.2 MOT CNN Tracking

In the tracking problem, the location of the mth target in frame t is denoted by a bound-

ing box

xt
m = (x, y, w, h)tm, m 2 {1, · · · ,M} ,

where M is the total number of targets in the whole video sequence, and (x, y), w and h

represent the coordinates of the top-left corner, the width and the height of the bounding

box, respectively. The start and terminating time instances of the mth target trajectory

are denoted by T S
m and T T

m, respectively. These two parameters are determined by the

Target-In and the Target-Out conditions as described in Sec. 5.3.5.

The CNN-based tracker uses the shared CONV layers and a target-specific FC layer

to track each target. The network used here is the multi-domain network (MDNet)

tracker [85]. It is a small network consisting of three CONV layers and three FC layers.

It is pre-trained by two commonly-used SOT benchmark datasets: the VOT dataset [54]

and the OTB dataset [112]. The original MDNet was designed for the SOT problem,

and it is extended to the MOT environment in this work. The shared CNN layers are

fixed during the MOT tracking while a unique FC branch is assigned to each target. The

system conducts online update on the FC branch so as to capture the appearance change

of the target along time.

To determine the location of the mth target in frame t after initialization, we search

it in the candidate pool of bounding boxes:

Ct
m = Dt

m

[
(xt,n

m )n=1:Ni
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The set, Dt
m denotes a set of detected bounding boxes in frame t that meets the following

criterion. We define an enlarged window of the bounding box of the target in frame t�1

that contains two more pixels at each of the left/right boundaries and one more pixel at

each of the top/bottom boundaries. All detected bounding boxes in frame t that overlap

with this enlarged window are members in Dt
m. The spatial continuity of the target is

preserved by set Dt
m.

The second set, (xt,n
m ) consists of candidates generated by the tracker, where n 2

{1, · · · , Ni} and Ni is the total number of candidates specified by the tracker. These

candidates are selected using the Gaussian distribution

N(xt�1
m + vt�1

m ,⌃),

where vt�1
m = xt�1

m � xt�2
m is the motion vector in the previous frame and ⌃ =

diag(�2
x, �

2
y , �

2
w, �

2
h) is a diagonal covariance matrix. The simple linear velocity model

is adopted since we focus on pedestrians with regular motion. The four variance values

in ⌃ are evaluated independently using a Gaussian fitting process based on candidate

samples in previous frames.

To estimate the target location in frame t, all candidates in pool Ct
m are evaluated

by processing them through the CONV layers and the corresponding target-specific FC

layers. The optimal target location is obtained by choosing the candidate with the max-

imum confidence score f :

x̂t
m = arg max

xt
m2Ct

m

f(xt
m,w(fc)t�1

m ,w(conv)),

where w(fc)t�1
m denotes the network parameters of the FC layers for target m in frame

t� 1 and w(conv) are parameters of the CONV layers. After determining the location
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of the target in the current frame, the system checks whether the tracker model should

be updated as explained below.

5.3.3 Model Update

We propose two model update modes in the proposed solution. They are: 1) the incre-

mental update and 2) the refresh update.

Incremental update

The incremental update is used to handle cases where there is no occlusion/interaction

between targets. The system records the gradual appearance change of a target based on

its past appearance samples as shown in Fig. 5.2(a). To track a target in each frame, the

system predicts its location as indicated by the red bounding box and generates positive

and negative samples around it. The score of each sample is calculated based on the

intersection-over-union (IoU) ratio with respect to the prediction location. The network

performs incremental update in the following two situations.

• Tracking failure. The system records the frame indices when the target is suc-

cessfully tracked. If the confidence score of a tracked bounding box is lower

than a threshold, the information in the recorded frames is retrieved to update the

tracker. For example, the target location of the previously tracked frame is set to

that of the current frame.

• Periodic update. If the tracking process goes smoothly without any failure, track-

ing errors can still accumulate after a number of frames. To avoid error accumu-

lation, we set an update frequency of 20 frames to finetune the network in the

experiment.
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(a) Incremental online update

(b) Aggressive online update

Figure 5.2: Illustration of (a) the incremental update and (b) the refresh update, where
red bounding boxes in the figures are previously tracked locations. In the incremental
update, the model trained from previous positive/negative samples is used to determine
the target location in current frame t, which is indicated by the green bounding box
in frame t as shown in (a). If the prediction based on the incremental update is not
accurate in frame t as indicated by the dashed green bounding box, the closest bounding
box obtained by the detector (in yellow) is used instead in the refresh update.

With stored positive/negative samples, target-specific FC layers of the network are

updated based on the sample importance. We assign the importance score to a sample

with two criteria.

• Confidence score. The confidence score of target m in frame t, f t
m, measures

tracking accuracy of the optimal target location. If its IoU score is higher, the

sample is more important.
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• Temporal relevance score. Since the more recent appearance is more relevant,

we define the temporal relevance score as

TI(t) = e
2t

Tupdate .

Then, for target m in frame t, we use the information in the past Tupdate frames to update

the network with the following loss function:

Lt
m =

t�TupdateX

j=t

f j
m ⇥ TI(j � t+ Tupdate)⇥ l(j),

where l(j) is the loss of all training samples in frame j.

Refresh update

The refresh update mode is used when there are occlusions and interactions between

targets. An example is illustrated in Fig. 5.2(b). Before occlusion occurs, the system

collects positive and negative samples from successfully tracked frames and conducts

the incremental update. When the target is occluded, it cannot find good candidates.

When the target appears again, the tracker cannot perform well due to spatial and tem-

poral discontinuities of the underlying target. Although the tracker might find a rough

target location as indicated by the dashed green bounding box, its accuracy is not high

and the error tends to propagate to future frames.

Being different from the SOT problem, the refresh update is feasible because detec-

tion results are available in each frame. The detection results indicate all pedestrians

in the current frame without assigning an ID to existing trajectories. We may use the

previous network tracker to assign an ID to each detected target. The predicted result

marked by the dashed green bounding box is the optimal target location selected from
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the candidate pool, Ct
m, by the network. The result bounded by the yellow box is one of

the detection results of the current frame that is closest to the predicted target location

(i.e., the dashed green bounding box). As we can see from this example, the detected

location is more accurate than the predicted one. Thus, it is chosen to be the final target

location.

The refresh update mode is detailed below.

• Step 1. Use the previous tracker model to evaluate the current candidate pool Ct
m.

The temporary target location is

ext
m = arg max

xt
m2Ct

m

f(xt
m,w(fc)t�1

m ,w(conv)).

• Step 2. Calculate the IoU score between the temporary target location ext
m and all

detection results in Dt
m. Let

d⇤ = arg max
d2Dt

m

IoU(d, ext
m),

the final target location is set to

x̂t
m =

8
>><

>>:

d⇤ if IoU(d⇤, ext
m) > 0.8;

ext
m otherwise..

• Step 3. Refresh the tracker memory by deleting all previous samples and storing

positive/negative samples generated from the current frame. The FC layers of the

network is retrained based on a regression model to find a tight boundary of the

target.
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To summarize, the tracker is periodically finetuned in the incremental update to gen-

erate a more accurate target model to alleviate the effect of inaccurate and missed detec-

tions while a new target-specific branch is initialized to track the target by leveraging

the detection result in the refresh update.

5.3.4 Enhanced ID Association

The proposed online MOT method has multiple independent target-specific branches

and each of them tracks one target. For pedestrian targets in a crowed street scene,

they may be small and in similar appearance. Sometimes, a tracker may jump to the

location of another target as shown in Fig. 5.3, where the red and the yellow bounding

boxes indicate two different targets in frame t � 1 (see the left sub-figure) while two

predicted bounding boxes merge together because of the similar appearance in frame t

(see the right sub-figure). This results in an ID switch error, which will propagate to

future frames. In order to handle this error, we propose an enhanced ID association

mechanism that adopts multiple feature cues after independent tracking. The affinity

measure between predicted bounding box xt
i in frame t and previously tracked bounding

box xt�1
j in frame t � 1 is defined by considering the following four factors (see Fig.

5.4).

• Appearance cue. Responses from different layers of the tracker network are uti-

lized. Features from the CONV3 layer (of dimension 512 ⇥ 3 ⇥ 3) capture the

visual appearance cue while features from the FC5 layer (of dimension 512) con-

tain semantic appearance cues. The appearance feature vector of target m in frame

t, denoted as At
m, is formed by cascading the above two feature vectors together

of dimension 512⇥ 10.
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Figure 5.3: Illustration of the ”jump-merge” tracking error, where the left image shows
two correct tracking boxes for two similar targets in frame t � 1 and the right image
shows the tracking result in frame t, where the yellow target region merges into the red
target region resulting in an ID switch error.

• Motion cue. When a predicted bounding box from the tracker has an ID of target

m in both frames t� 1 and t, its motion cue is vt
m = xt

m � xt�1
m .

• Tracking confidence score. The tracking confidence score, denoted by f t
m, indi-

cates the tracking accuracy of one specific target tracker m in frame t. It is used

as a weighting parameter in the final affinity measure.

• Collision factor. To maintain spatial consistency, we compute the spatial overlap-

ping ratio of two different objects of IDs m and m0. If the IoU between bounding

box xt
m of ID m and the motion-predicted location of object of ID m0 based on

frame (t-1) is positive, we have to conduct the affinity measure. Mathematically,

we can write the condition in form of

IoU(xt
m,x

t�1
m0 + vt�1

m0 ) > 0.

Based on the discussion, the affinity measure (AM) between the predicted bounding

box xt
m in frame t and previously tracked bounding box xt�1

m0 in frame t � 1 is defined

as

AM(xt
m,x

t�1
m0 ) =

��At
m �At�1

m0

��2

2

��vt
m � vt�1

m0

��2

2

f t
mf

t�1
m0 IoU(xt

m,x
t�1
m0 + vt�1

m0 )
.
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Figure 5.4: For enhanced online ID association, multiple feature cues are integrated to
measure the affinity score between predicted bounding box xt

i in frame t and previously
tracked bounding box xt�1

j in frame t � 1. The appearance cue is extracted from the
responses of different network layers. The motion cue is estimated from the previous
target location. The final affinity measure is combined with the tracking confidence
score and the collision factor between bounding boxes.

This affinity measure considers both appearance similarity and physical movement. For

each tracked bounding box in current frame t, we attempt to find the most similar one

in previous trajectories and then remove the matched pair in the matching procedure in

future rounds.

5.3.5 Target-In and Target-Out Criteria

To manage a target tracker, we develop target-in and target-out criteria in the proposed

online MOT method. The target-in criteria (to determine T S
m) are used to initialize a

target-specific tracker. They help remove the false negatives in the tracking. The target-

out criteria (to determine T T
m) are used to deactivate a tracker to avoid false positives.
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Target-In Criteria

For the SOT problem, the ground truth of a target location is available in the first frame to

initialize the tracker. However, for the MOT problem, only detection results are acces-

sible in the tracking process. Inaccurate or missed detection will result in inaccurate

initilization of a tracker. Two criteria are used to introduce a new tracker.

• Confidence score. Generally speaking, a detected target of a high score will be

initialized with a tracker. However, to incorporate different score thresholds from

different detectors, a filtering method based on the score distribution is proposed

to choose trustworthy detection regions. Our method chooses detections with top

10% scores to initialize trackers.

• Temporal consistency. The confidence score of a detected target may change

abruptly along time. This phenomenon often indicates a false positive, which

should be eliminated in the process of initializing a new tracker. Based on the

adopted constant velocity model, we set the evaluation window to five consecutive

frames.

Target-Out Criteria

When a target is out of view, we should deactivate its tracker to avoid false positives. By

observing sequences in the dataset, we treat the following two cases differently.

• Out of image boundaries. This occurs where a target moves out of image bound-

aries. We can conduct a simple boundary check to remove the associated tracker.

If a target leaves the image frame and returns again, it will be treated as a new

target.

• Into Background Occluders. There are two kinds of occluders: another moving

target and a background occluder such as a building. For the latter, a target may
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go into a building which is located in the middle of an image. If a tracker fails to

find the target in several consecutive frames and there is no detection overlapping

region with the tracker, the tracker is deactivated.

5.4 Experimental Results

5.4.1 Implementation Details

The proposed online MOT method consists of multiple CNN-based single object track-

ers, implemented in MATLAB with the MatConvNet [106]. They have three shared

CONV layers and three target-specific FC layers. The network is pretrained from two

SOT benchmark datasets (i.e., the VOT dataset [54] and the OTB dataset [112]) using

the multi-domain learning with the stochastic gradient descent (SGD) optimization tech-

nique. In the testing, the tracker is initialized with positive (IoU > 0.8) and negative (IoU

< 0.2) samples generated from frame T S
m. The numbers of positive and negative sam-

ples are Np = 500 and Nn = 5000, respectively. Also, a bounding box regression model

is trained to find a tight boundary for the target. For the incremental model update, the

periodic update time is Tupdate = 20 frames. That is, the previous 20 frames are used to

finetune network layers FC4-6 with Np = 50 and Nn = 200 in each frame. We select 64

candidates from the tracking to form the candidate pool of each tracker. For the refresh

update, we select Np = 200 and Nn = 1000 samples to finetune the network.

5.4.2 Dataset and Evaluation

The proposed MOT method is evaluated on the MOT challenge dataset [79]. There

are seven training and seven testing sequences. They contain multiple pedestrians and

the detection results of all frames are provided for reference. Three different detection
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results are available in the dataset. They are generated using the DPM detector [29],

the Fast RCNN detector [34] and the SDP detector [120]. For evaluation, we follow the

CLEAR metrics [97]. Those include: the multiple objects tracking accuracy (MOTA),

the multiple objects tracking precision (MOTP), the false positives (FP), the false neg-

atives (FN), most tracked (MT), most lost (ML), the identity switch error (IDs) and the

total fragments of all the trajectories (Frag).

5.4.3 Performance Comparison

We compare the proposed MOT method with several state-of-the-art methods on testing

sequences of MOT2017 and MOT2016. All benchmarking methods and our method

use the same public detection results for fair comparison. Our method does not need

the training sequences to finetune the parameters while most of existing methods utilize

the training sequences in the dataset. Table 5.1 shows the averaged performance results

with respect to the MOT17 dataset with three public detectors. Among all published

online methods for the MOT17 dataset evaluation, the proposed MOT system achieves

the best performance in MOTA (44.9%), MOTP (78.9%), ID switches (1537 times) and

Frag (3295 times). With the enhanced online update mode, our tracker gains a higher

precision score since it can capture the target appearance more accurately. Moreover, it

offers better feature representation for ID matching after target’s interaction and occlu-

sion. This advantage is clearly demonstrated in the columns of ”IDs” and ”Frag” in

Table 5.1 even we compare its performance with those of offline methods. However,

our false positives (FP) and false negatives (FN) are higher, which may be caused by

different detectors. Actually, our FP and FN are low in average for more accurate detec-

tors such as the FRCNN and the SDP. For the DPM detector, our tracker generates some

false positives or misses some true positives due to inaccurate tracker initialization in
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Table 5.1: MOT17 tracking performance in the test set with the averaged performance
using three public detectors. In each mode (online/offline), the best performance is
marked in bold text.

MOT17 - Test Set
Tracker Mode MOTA MOTP MT ML FP FN IDs Frag

IOU17 [11] Offline 45.5 76.9 15.7% 40.5% 19993 281643 5988 7404
EDMT17 [15] Offline 50.0 77.3 21.6% 36.3% 32279 247297 2264 3260

MHT DAM [53] Offline 50.7 77.5 20.8% 36.9% 22875 252889 2314 2865
jCC [51] Offline 51.2 75.9 20.7% 37.4% 24986 248328 1851 2991
FWT [40] Offline 51.3 77.0 21.4% 35.2% 24101 247921 2648 4279

GM PHD [26] Online 36.2 76.1 4.2% 56.6% 23682 328526 8025 11972
GMPHD KCF [60] Online 40.3 75.4 8.6% 43.1% 47056 283923 5734 7576

Ours Online 44.9 78.9 13.8% 44.2% 22085 287267 1537 3295

Table 5.2: MOT16 tracking performance in the test set with one public DPM detector.
In each mode (online/offline), the best performance is marked in bold text.

MOT16 - Test Set
Tracker Mode MOTA MOTP MT ML FP FN IDs Frag

QuadMOT16 [94] Offline 44.1 76.4 14.6% 44.9% 6388 94775 745 1096
NOMT [17] Offline 46.4 76.6 18.3% 41.4% 9753 87565 359 504
MCjoint [51] Offline 47.1 76.3 20.4% 46.9% 6703 89368 370 598
NLLMPa [68] Offline 47.6 78.5 17.0% 40.4% 5844 89093 629 768

LMP [104] Offline 48.8 79.0 18.2% 40.1% 6654 86245 481 595
OVBT [7] Online 38.4 75.4 7.5% 47.3% 11517 99463 1321 2140

EAMTT pub [90] Online 38.8 75.1 7.9% 49.1% 8114 102452 965 1657
oICF [52] Online 43.2 74.3 11.3% 48.5 6651 96515 381 1404

STAM16 [19] Online 46.0 74.9 14.6% 43.6% 6895 91117 473 1422
AMIR [88] Online 47.2 75.8 14.0% 41.6% 2681 92856 774 1675

Ours Online 44.0 78.3 15.2% 45.7% 7912 93215 560 1212

a wrongly detected location. As compared with offline methods, the proposed online

method offers the competitive performance in MOTA, MOTP, IDs and Frag.

For the MOT16 dataset that has the DPM detector only, similar comparison can be

conducted among online methods. As shown in Table 5.2, the proposed MOT method

ranks the 3rd in MOTA, the 1st in MOTP, the 1st in MT, the 3rd in IDs, and the 1st in

Frag. Overall, our tracker has higher FP and FN as compared with those in MOT17 since

the DPM detector is not as accurate as the FRCNN or the SDP. However, if the target is
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assigned a tracker correctly, it can be tracked successfully for the whole sequence. Its

precision is even higher than most offline methods.

5.5 Conclusion

In this work, an online MOT method using multiple CNN-based single object trackers

was proposed. The most challenging problem in applying the SOT solution to online

MOT is that the tracker can be easily confused by occlusion and interaction between

targets, resulting in error drifting. Both incremental and refresh model updates were

developed to address this problem. Furthermore, an ID association scheme was designed

to avoid the ”jump-merge” error. It was shown by experimental results that our proposed

method achieves high accuracy and precision with low ID switches.
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Chapter 6

Conclusion and Future Work

6.1 Summary of the Research

In this dissertation, we studied the visual object tracking problem from two aspects:

single object tracking (SOT) and multiple object tracking (MOT). In SOT, a traditional

temporal prediction and spatial refinement (TPSR) tracking system, and a motion guided

convolutional neural network tracker are proposed. Both of them share the idea of com-

bining spatial and temporal motion cues into consideration. Later on, we extend the

SOT technique into the MOT environment by introducing some new components, such

as advanced model update and identity association, to train the tracker and control the

error during the tracking.

In Chapter 3, TPSR tracking system is described, which consists of three cascaded

modules: pre-processing (PP), temporal prediction (TP) and spatial refinement (SR). It

has several unique features: (1) two temporal predictors (TM and OF) are working in

a complementary fashion; (2) a powerful spatial refinement module makes the tracking

more robust with respect to object shape and size variation; (3) it has a special mecha-

nism to handle either partial or full occlusion. From extensive experiments, we can see

the performance improvement from TPSR compared with existing the state-of-the-art

methods and its advantages of handling different attributes, such as fast motion, defor-

mation, scale variation, etc.
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From a new trend of deep neural network, we investigated an tracker called motion

guided convolutional neural network tracker based on a multi-domain learning frame-

work in Chapter 4. We analyzed the drawbacks of original MDNet tracker and inte-

grated a temporal motion cue into the network so that it can handle even more difficult

scenarios, such as fast motion, articulated rotation motion and distractor. The network

structure is modified to fully exploit the advantages of motion cue. With the help of

optical flow map, the tracking accuracy is improved.

Based on the understanding of SOT, the MOT problem has been studied from an

online fashion in Chapter 5. The most challenging task in MOT is the ID association

and matching. In order to do a good job in this part, we need to find the accurate feature

representation for the target so that the system can differentiate the identities. Therefore,

the proposed online update strategy analyzes the two scenarios in the tracking using

incremental learning and aggressive learning. It has been showed that our proposed

framework is better to find the more accurate target location without ID switch.

6.2 Future Research Directions

To extend our research, we have the following research directions to further improve the

proposed approaches.

• More accurate temporal prediction in TPSR tracking system. There are still

limitations of the TPSR method. For example, it cannot provide satisfactory track-

ing performance for several challenging sequences in the benchmark dataset such

as Ironman and Matrix due to the strong background noise, fast motion and poor

quality of tracked objects. Further improvement of the TPSR tracking system in

the area of temporal prediction will be helpful.
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• Long-term full occlusion in MGNet. As we can see, short-term full occlusion is

not a big issue with MGNet. However, long-term full occlusion is still a trouble

maker. In this scenario, system is easy to be confused by keeping receiving incor-

rect target region information for a long time. Therefore, a long-term memory

store needs to be integrated into the system.

• Sensitivity of the boundary in partial occlusion. Even though our proposed

MGNet tracker can restore the correct target location after the partial occlusion, it

is still sensitive to the boundaries of the target and occlusion object compared with

original MDNet. One possible solution for this is to consider the spatial content of

occlusion object in the network. If it is very different from the target region, then

we need to let the system know there is a partial occlusion to keep the boundary of

the target at original location, not be affected by the boundary of occlusion object.

• Possibility of applying Recurrent Neural Network (RNN). As we known, CNN

is powerful to represent the spatial 2D feature in the image domain while the

RNN is good at modeling the sequential reasoning. Considering that tracking is

a dynamic process along the time, we can do more investigations on the temporal

domain modeling using RNN architecture to find the correlation between targets

in different frames. In this direction, CNN and RNN will be combined together in

two different domains to handle the tracking problem.

• Improvement on the speed. When facing the real-world application, there will

be always a trade-off between performance and speed. Currently, the CNN based

tracking solution is not that fast enough for practical usage. Therefore, it is possi-

ble to do some future study on improving the speed of the solutions.
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