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Abstract

Processing data such as spatially scattered weather measurements or point clouds generated

from 3D scans is a challenge due to the lack of an inherent structure to the data. Graphs are

convenient tools to analyze and process such unstructured data with algorithms analogous

to those in traditional signal processing, which treat the data as a graph signal. However,

measuring the whole graph signal can be expensive. Observing a limited subset of graph

nodes may be better in such cases, i.e., sampling the graph signal and inferring information

at the remaining nodes using reconstruction algorithms.

Although graph signal sampling and reconstruction algorithms exist in the literature,

making them practical enough to be used in real-life applications requires numerous theoret-

ical and fundamental improvements. One such requirement is that the algorithm should not

require substantially more execution time as the number of vertices and edges in the graph

increases. Even if the algorithm execution time scales well with the graph size, some samples

may get corrupted. Reconstruction of such data is challenging and requires knowledge of the

signal model or its parameters, which are commonly assumed to be known in the literature

but in practice have to be estimated.

In this thesis, we propose algorithms to minimize the reconstruction error when sam-

pling in the presence of signal corruption, estimate reconstruction error as a function of

the signal bandwidth and develop scalable graph sampling algorithms, in particular algo-

rithms amenable to parallelization. This makes the graph signal reconstruction algorithms

x



more flexible and increases the capabilities of the graph sampling algorithms. Through these

improvements, we push the limits of graph signal sampling and reconstruction even further.
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Chapter 1

Introduction

Graphs are a convenient way to represent and analyze data having irregular relationships

between data points [63] and can be useful in a variety of different scenarios, such as char-

acterizing the Web [40], semi-supervised learning [73], community detection [23], or traffic

analysis [16]. We call graph signal [48] the data associated with the nodes of a graph. Graph

signals are useful in analyzing real-world systems, such as sensor networks, biological data,

or machine learning systems, using tools from graph signal processing [63, 49, 26].

Due to the size of most real-world graphs, it is often unfeasible to observe all the data

points on the graph. In such scenarios, one needs to select a small subset of nodes, observe

the corresponding samples and make inferences about samples in the remaining nodes in the

network using the data obtained from the selected nodes. Such setups are also related to the

problem of active semi-supervised learning [24], where one chooses a small set of data points

to label and learns the missing labels by utilizing the labeled data along with the graph

topology. The question is then to choose the best data points to sample to reconstruct

the underlying data structure as accurately as possible. This is known as the graph signal

sampling problem [54].

Optimizing the choice of sampling set using concepts from experiment design [56] can

help minimize the effect that noise in the input signal may have on the quality of signals

reconstructed from observed samples. Many existing sampling set selection methods are

computationally intensive because they require an eigendecomposition. For large graphs,

1



even existing eigendecomposition-free methods are still much slower than random sampling

algorithms, which are the fastest available methods. In Chapter 2, through optimizing sam-

pling sets towards the D-optimal objective from experiment design, we propose a sampling

algorithm that has complexity comparable to that of random sampling algorithms while

reaching accuracy similar to existing eigendecomposition-free methods for a broad range of

graph types.

While the proposed graph signal sampling algorithm in Chapter 2 improves existing state-

of-the-art algorithms, some practical scenarios often place additional demands on a sampling

algorithm. For example, some algorithms may encounter a situation where some selected

samples are lost or unavailable due to sensor failures or adversarial erasures. To address

this setting, in Chapter 3, we formulate a robust graph signal sampling problem where

only a subset of selected samples are received, and the goal is to maximize the worst-case

performance. We propose a novel greedy robust sample selection algorithm and study its

performance guarantees. Our numerical results demonstrate the performance improvement

of the proposed algorithm over the existing schemes.

Another desirable characteristic of sampling algorithms is that they require minimal

assumptions. Data on graphs is often modeled as bandlimited graph signals. Predicting or

reconstructing the unknown signal values for such a model requires estimating the bandwidth.

In Chapter 4, we propose a signal bandwidth estimation technique. In doing so, we design

a cross-validation approach with a stable graph signal reconstruction and propose a method

for estimating the reconstruction errors for different choices of signal bandwidth. Using this

technique, we can estimate the reconstruction error on various real-world graphs.

Data such as point clouds often contain millions of data points and need to be downsized

before processing. Downsampling algorithms for point cloud data typically demand high

sampling rates and require fast processing for run-time applications. In Chapter 5, we pro-

pose parallelized algorithms for point clouds in the high sampling rate regime. We test these

2



algorithms on various point clouds and compare them to the algorithm in Chapter 2, ob-

serving only marginal loss in performance with an order of magnitude speedup in processing

times.

1.1 Graph preliminaries and notation

A graph is defined as the pair (V , E), where V is the set of nodes or vertices and E is the

set of edges [10]. The set of edges E is a subset of the set of unordered pairs of elements of

V . A graph signal is a real-valued function defined on the vertices of the graph, f : V → R.

We index the vertices v ∈ V with the set {1, · · · , n} and define wij as the weight of the edge

between vertices i and j. The (i, j)th entry of the adjacency matrix of the graph A is wij,

with wii = 0. A is n× n, where n is the number of vertices in the graph, which we also call

the graph size. The degree matrix D of a graph is an n × n diagonal matrix with diagonal

entries dii =
∑

j wij. This thesis considers weighted undirected graphs without self-loops

and with non-negative edge weights. Throughout the thesis, I is the n× n identity matrix.

The combinatorial Laplacian of a graph is given by L = D −A, with its corresponding

eigendecomposition defined as L = UΣUT since the Laplacian matrix is symmetric and

positive semidefinite. The eigenvalues of the Laplacian matrix are Σ = diag(λ1, · · · , λn),

with 0 = λ1 ≤ · · · ≤ λn representing the frequencies. The column vectors of U provide

a frequency representation for graph signals so that the operator UT is usually called the

graph Fourier transform (GFT). The eigenvectors ui of L associated with larger eigenvalues λi

correspond to higher frequencies, and the ones associated with lower eigenvalues correspond

to lower frequencies [63, 48]. The GFT of x is defined as x̃ = UTx [63].

In this thesis, we represent sets using calligraphic uppercase, e.g., X , vectors using bold

lowercase, x, matrices using bold uppercase, A, and scalars using plain uppercase or lower-

case as x or X. Table 1.1 lists additional notations. We use tr(A) to denote the trace of A.

diag(x1, · · · , xn) represents a square diagonal matrix with values x1, · · · , xn on the diagonal.

3



Table 1.1: Linear algebra notation in this thesis

Notation Description
Xi X after iteration i
|X | Cardinality of set X

AXY or AX ,Y Submatrix of A indexed by sets X and Y
Aij (i, j)th element of A
AX A:,X , selection of the columns of A
Ai A after iteration i

xi or x(i) ith element of the vector x
xX or x(X ) Subset of the vector x corresponding to indices X

xv Vector corresponding to a vertex v among a sequence of vectors
indexed over the set of vertices V

∥.∥ Two/Euclidean norm of matrix or vector
|x|, |x| Entry wise absolute value of scalar x or vector x

1.2 Problem formulation

1.2.1 Sampling problem

We consider an n-dimensional scalar real-valued signal x on the vertex set V . We assume

that only a part of this signal is known, corresponding to a subset of vertices, S ⊆ V . For

the sake of convenience, without loss of generality, for a given algorithm, the vertices are

relabeled after sampling so that their labels correspond to the order in which the vertices were

chosen, S = {1, 2, · · · }. We denote xS and xSc the known and unknown signals, respectively,

where Sc is the complement of S. Estimating xSc from xS is the graph signal reconstruction

problem [54]. We denote the reconstructed unknown signal as x̂Sc , and quantify its closeness

with the original signal, xSc , using the ℓ2 norm ∥xSc − x̂Sc∥22. A popular choice for a smooth

graph signal is the bandlimited signal model [2].

Bandlimited signals are represented as x = UFα, where F is the set {1, · · · , f}, and α is

an f -dimensional vector. We call f the bandwidth of the signal. For sampling bandlimited

signals x, a sampling set that satisfies the following two conditions: Condition i) the number

of samples requested is larger than the bandwidth, that is |S| ≥ f , and Condition ii) the

sampling set S is a uniqueness set [54] corresponding to the bandwidth support F , will allow

4



Sample Reconstruct

Figure 1.1: Pipeline for sampling and reconstruction of graph signals. Uncolored vertices
indicate unknown signal values, and colored vertices indicate known or predicted signal
values.

us to recover x exactly. Given the observed samples, xS , the reconstruction is given by the

least squares solution:

x̂ = UF(U
T
SFUSF)

−1UT
SFxS . (1.1)

In practice, signals are never exactly bandlimited. In this thesis, we consider the widely-

studied scenario of bandlimited signals with added noise and choose sampling rates that

satisfy Condition i) for the underlying noise-free signal1. While Condition ii) is difficult to

verify without computing the eigendecomposition of the Laplacian, it is likely to be satisfied

if Condition i) holds. Indeed, for most graphs, except those that are either disconnected or

have some symmetries (e.g., unweighted path or grid graphs), any sets such that |S| ≥ f

are uniqueness sets. Thus, similar to most practical sampling methods [2, 57, 59, 5], our

sampling algorithms are not designed to return uniqueness sets satisfying Condition ii), which

guarantee exact recovery, and instead, we assume that Condition i) is sufficient to guarantee

exact recovery.

We consider the signal model

f = x+ n, (1.2)

1We do not consider cases where signals are not bandlimited but can be sampled and reconstructed (refer
to [67] and references therein). Exploring more general models for signal sampling is left for future work.

5



where x is bandlimited and n is an n-dimensional noise vector. The reconstruction from the

sampled signal fS = xS + nS is then:

f̂ = UF(U
T
SFUSF)

−1UT
SF(xS + nS). (1.3)

This process is summarized in Figure 1.1. The original unknown signal is f . After sampling

it, we know a few signal values corresponding to fS . Using those values, we reconstruct

the signal, represented as f̂ . Since (1.1) allows us to reconstruct x exactly, the error in the

reconstructed signal is:

f̂ − x = UF(U
T
SFUSF)

−1UT
SFnS . (1.4)

The expected value of the corresponding error matrix, (̂f − x)(̂f − x)T , is

E[(̂f − x)(̂f − x)T ] = UF(U
T
SFUSF)

−1UT
SFE[nSn

T
S ]USF(U

T
SFUSF)

−1UF
T . (1.5)

Each choice of a sampling set S leads to a different error covariance matrix in (1.5). The

sampling problem consists of finding the sampling set S that optimizes a scalar function h

of the error covariance matrix:

S∗ = argmax
S

h
(
E[(̂f − x)(̂f − x)T ]

)
(1.6)

In the subsequent chapters, we will study the sampling problem for different functions h

of the error covariance matrix and under different assumptions on the signal and the noise

distributions.
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Chapter 2

Practical graph signal sampling with log-linear size

scaling

2.1 Introduction

Similar to traditional signals, a smooth graph signal can be sampled by making observations

on a few graph nodes so that the signal at the remaining (non-observed) nodes can be

estimated [14, 2, 67]. For this, we need to choose a set of vertices, S, called the sampling

set, on which we observe the signal values with the goal of predicting signal values on the

other vertices (the complement of S, Sc). In the presence of noise, some sampling sets lead

to better signal reconstructions than others: the goal of sampling set selection is to find the

best such sampling set.

For traditional discrete signals such as images and audio, downsampling by an integer

factor often works well because of the implicit ordering and regular spacing in the signals

(e.g., observing every other sample in a discrete-time signal). Such a structure with ordered

and evenly spaced out locations of the discretized signal is unavailable for most graph signals.

As a result, the best sampling set is also unknown. Accurately reconstructing graph signals

from observed samples usually relies on the assumption that the underlying signal is smooth.

Intuitively, this means that signal values for neighboring vertices are not drastically different.

This is a reasonable assumption in various scenarios, such as sensor networks modeling
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temperature distribution, graph signals representing labels in semi-supervised learning, or

preferences in social networks. This makes it possible to reconstruct these graph signals from

a few observed values [54].

As we saw in Chapter 2, a common model for smooth graph signals assumes that most

of their energy is localized in the subspace spanned by a subset of eigenvectors of the graph

Laplacian or other graph operators [63]. Thus, the problem of selecting the best sampling set

naturally translates to the problem of selecting a submatrix of the matrix of eigenvectors of

the graph Laplacian [2]. Specifically, the problem reduces to a row/column subset selection

similar to the linear measurement sensor selection problem [35]. In the graph signal sampling

context, several papers leverage this knowledge to propose novel algorithms — [62, 14, 69,

68, 13, 71]. We refer the reader to [67] for a recent comprehensive literature review on this

topic.

However, to solve the graph sampling set selection problem, row/column selection needs

to be applied to the matrix of eigenvectors of the graph Laplacian (or those of some other

suitable graph operator). The corresponding eigendecomposition is an O(n3) operation for

an n × n matrix1. This makes it impractical for large graphs in machine learning, social

networks, and other applications, for which the cost of eigendecomposition would be pro-

hibitive. Thus, methods that solve this subset selection problem without explicitly requiring

eigendecomposition are valuable.

2.1.1 Prior work

We can group sampling set selection methods into two main classes based on whether they

require eigendecomposition or not. Some methods compute the full eigendecomposition

[62, 14, 69], or instead require a sequential eigendecomposition, where one eigenvector is

computed at each step [2]. Alternatively, eigendecomposition-free methods do not make use
1In practice if the signal is bandlimited to the lowest f frequencies, only f eigenvectors need to be

computed, but even this can be a complex problem (e.g., a signal bandlimited to the top 10% frequencies of
a graph with millions of nodes). We describe these as full decomposition methods for simplicity, even though
in practice only a subset of eigenvectors is needed.

8



of an eigendecomposition of the Laplacian matrix [57, 71, 68, 59] and are usually faster.

Weighted Random Sampling (WRS) [57] is the fastest method but provides only guaran-

tees on average performance, which means that it may exhibit poor reconstruction accuracy

for specific instances. It also needs more samples to match the reconstruction accuracy of

other eigendecomposition-free methods. Among eigendecomposition-free methods discussed

in [67], Neumann series-based sampling [71] has a high computational complexity, Binary

Search with Gershgorin Disc Alignment (BS-GDA) [5] has low computational complexity for

smaller graphs, but cannot compete with WRS for large graphs, and Localization operator

based Sampling Set Selection (LSSS) [59] achieves good performance but requires some pa-

rameter tuning to achieve optimal performance. Our proposed method can overcome these

limitations: similar to [71, 5, 59], it is eigendecomposition-free, but it has complexity closer

to WRS while requiring fewer parameters to tune than WRS.

Other recently proposed sampling algorithms are eigendecomposition-free but involve a

different setup than what we consider in this chapter. For example, the error diffusion sam-

pling algorithm (Algorithm 5 from [50]) achieves complexity comparable to WRS. However,

the sampling set and the number of samples chosen depend on the vertex numbering in the

graph, which has to be done independently of the algorithm in question. In [50], no specific

vertex numbering suitable for Algorithm 5 was recommended. A random vertex numbering

algorithm would be fast but may lead to suboptimal sampling set choices (similar to what

may happen with random sampling). Thus, more research may be needed to identify efficient

numbering algorithms. Note that other blue noise sampling algorithms [51] do not require

vertex numbering, but they involve distance computations on the graph similar to Distance-

Coherence(DC) in [33]. In contrast, our proposed algorithm, AVM, is independent of the

vertex numbering of the graph and does not require distance computations. As another ex-

ample, the algorithms proposed in [7] and [1] are designed for sampling clustered piecewise

constant graph signals. However, this chapter focuses on a bandlimited smoothness model

for graph signals, with topologies not limited to clustered graphs.
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2.1.2 Motivation

To motivate our methods consider first WRS, where vertices are sampled with a probability

proportional to their squared local coherence [57]. However, selecting vertices having the

highest coherence may not result in the best sampling set because some vertices may be

“redundant” (e.g. if they are close to each other on the graph). Other sampling algorithms

[59] improve performance by selecting vertices based on importance but avoid redundancy

by minimizing a notion of the overlapped area between functions centered on the sampled

vertices.

In our preliminary work [33], we proposed the Distance-Coherence (DC) algorithm, which

mitigates the effect of redundancy between vertices by adding new vertices to the sampling

set only if they are at a sufficient distance on the graph from the previously selected nodes.

While this can eliminate redundancy, it leads to higher computation costs since distance

computation is expensive. As an alternative, in this chapter, we propose a novel algorithm,

Approximate Volume Maximization (AVM), that replaces the distance computation with a

filtering operation. Loosely speaking, our proposed scheme in AVM precomputes squared

coherences as [57], with an additional criterion to maintain separation between selected

vertices using a filtering operation. The resulting complexity (see Section 2.3.4) has a log-

linear dependence on the number of edges in a connected graph. The log-linear dependence

is desired because it is similar to that of WRS, which is the fastest among algorithms in the

literature that use spectral information, and second only to unweighted random sampling

from [57] in terms of overall speed. AVM can also be considered an efficient approximation to

the D-optimality criterion [4]. In this chapter, we review the main concepts in DC, introduce

AVM, and demonstrate its benefits over existing algorithms.

2.1.3 Contributions

Our main contributions are:

10



1. We describe our distance-based sampling DC algorithm (Section 2.3) to illustrate how

to balance the frequency and vertex domain information of graphs for sampling. DC

provided us with key ideas to develop the AVM algorithm and can potentially serve as

the basis for hybrid algorithms.

2. We introduce a new algorithm, AVM (Algorithm 2), which can be used for any graph

size or topology while requiring only a few parameters to tune. Moreover, changing

the values of these parameters allows us to achieve different trade-offs between speed

and accuracy.

3. Using the framework of volume based sampling (Section 2.3), we interpret a series

of algorithms — exact greedy [69], WRS, Spectral Proxies (SP) [2], LSSS, DC, and

our proposed AVM as variations of the volume maximization problem formulation

(Section 2.4), and explain critical differences between existing methods and AVM.

4. AVM provides competitive reconstruction performance on a variety of graphs and sam-

pling scenarios, improving reconstruction signal-to-noise ratio (SNR) over WRS by at

least 0.6dB and frequently significantly higher (e.g., 2dB) — Section 2.5. The practical-

ity of AVM is apparent for larger graph sizes (e.g., of the order of a hundred thousand

nodes). In the graph sizes chosen for some of our experiments (see Section 2.5.1.4),

other state-of-the-art algorithms such as SP, LSSS and BS-GDA often fail, while a

complete execution is always possible for AVM. At graph sizes small enough for the

other algorithms to be applied, AVM is at least 2.5 times and often orders of magni-

tude faster compared to state-of-the-art algorithms such as SP, LSSS and BS-GDA,

while sacrificing less than 0.01dB of reconstruction SNR — Section 2.6. We explain

these advantages in terms of complexity towards the end of Section 2.3 by showing

that compared to WRS, the additional computations needed by AVM scale linearly as

a function of the number of edges in a connected graph.
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As a summary, our proposed AVM sampling algorithm has complexity comparable to

the WRS sampling algorithm along with a significantly better reconstruction accuracy. It

achieves this without requiring prior knowledge of the signal bandwidth and can be used for

different graphs while requiring a few easy-to-tune parameters.

2.2 Problem setup

2.2.1 Formulation

We follow the formulation of Section 1.2.1, with signal model (1.2) and least squares re-

construction from the signal samples as in (1.5)(see Section 1.2.1). If we assume further

individual noise entries to be independent with zero mean and equal variance, the expected

value, the error covariance matrix from (1.5) reduces to

Ke = E[(̂f − x)(̂f − x)T ] = cUF(U
T
SFUSF)

−1UF
T , (2.1)

for a constant c. Different metrics of the reconstruction error f̂ − x can be optimized by

maximizing a function h : Mn,n(R) → R of Ke, where Mn,n(R) is an n × n matrix of real

numbers. Since Ke is a function of the sampling set S, we wish to find an S that maximizes

a function of Ke:

S = argmax
S⊂V,|S|=s

h
(
UF(U

T
SFUSF)

−1UT
F
)
. (2.2)

Note that the set S achieving optimality under general criteria in the form of (2.2) is a

function of F , so that S is optimized for reconstruction with that particular bandwidth

support F . While typically we do not know the bandwidth of the original signal, in what

follows, we assume that a specific bandwidth for reconstructing the signal has been given.

This assumption can be relaxed, as will be shown in Chapter 4.

A particular choice h(Ke) of interest is h(Ke) = 1/ pdet(Ke), where pdet(·) is the pseudo

determinant [45]. Since Ke is singular, we used the pseudo-determinant instead of the
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determinant. The pseudo-determinant differs from the determinant in that it is a product

of only the non-zero eigenvalues instead of all eigenvalues. With our choice of h(·), (2.2) is

equivalent to the following maximization:

S = argmax
S⊂V,|S|=s

det(UT
SFUSF). (2.3)

This is also known as the D-optimality criterion. Maximizing the determinant leads to

minimizing the confidence interval of the solution f̂ [4], as will be seen in Appendix B.

As a further advantage, the D-optimal objective leads to a novel unified view of different

types of sampling algorithms proposed in the literature (Section 2.4.3). Moreover, the D-

optimal objective is necessary for the approximations we need to develop algorithms achieving

efficient eigendecomposition-free subset selection.

Sampling algorithms are designed to implicitly or explicitly optimize the sampling set for

a particular bandwidth support. In this chapter, we denote by R the bandwidth support

assumed by a sampling algorithm. R can be equal to the reconstruction bandwidth support

F , in which case the objective (2.3) can be rewritten as:

S = argmax
S⊂V,|S|=s

det(UT
SRUSR), with R = F . (2.4)

However, there are advantages to choosing a different R ≠ F . For example, if we consider

R = {1, · · · , s} so that |R| = |S|, we can rewrite the objective function (2.4) without

changing its value, by permuting the order of the matrices:

S = argmax
S⊂V,|S|=s

det(USRU
T
SR). (2.5)

Essentially, instead of using the reconstruction frequency f as the sampling frequency, we

use the number of samples requested, s, as a proxy for the sampling frequency. As we will

see, this new form of (2.5) is easier to interpret and use.
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Since choosing |R| = |S| is required, it raises concerns about the optimality of our

sampling set for the original objective function. This issue will be discussed in Appendix B.

2.2.2 Solving D-optimal objectives

As just discussed, D-optimal subsets for matrices are determinant maximizing subsets. The

determinant measures the volume, and selecting a maximum volume submatrix is an NP-

Hard problem [15]. Nearly-optimal methods have been proposed in the literature [29], [19],

but these are based on selecting a submatrix of rows or columns of a known matrix. Similarly,

in the graph signal processing literature, several contributions [69, 13] develop algorithms

for D-optimal selection assuming that U is available. In contrast, the main novelty of

our work is to develop greedy algorithms for approximate D-optimality, i.e., solving (2.3)

without requiring explicit eigendecomposition to obtain U. This is made possible by specific

characteristics of our problem to be studied next.

Among graph signal sampling approaches that solve the D-optimal objective, the clos-

est to our work is the application of Wilson’s algorithm for Determinantal Point Process

(WDPP) [68], which similarly does not require explicitly computing U. However, our pro-

posed technique, AVM, achieves this goal in a different way and leads to better performance.

Specifically, WDPP avoids eigendecomposition while approximating the bandlimited kernel

using Wilson’s marginal kernel upfront [68]. This is a one-time approximation, which does

not have to be updated each time nodes are added to the sampling set. This approach relies

on a relation between Wilson’s marginal kernel and random walks on the graph, leading

to a probability of choosing sampling sets that is proportional to the determinant [68]. In

contrast, AVM solves an approximate optimization at each iteration, i.e., each time a new

vertex is added to the existing sampling set. Thus, AVM optimizes the cost function (2.3)

at every iteration as opposed to WDPP which aims to optimize the expected value of the

cost function.
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The WDPP and AVM algorithms differ in their performance as well. AVM is a greedy

algorithm, and the performance greedy determinant maximization algorithms is known to

lie within a factor of the maximum determinant [15]. In contrast, WDPP samples with

probabilities proportional to the determinants, so that its average performance depends on

the distribution of the determinants. In fact, for certain graph types in [68], we observe that

WDPP has a worse average performance than WRS. In comparison, in our experiments, for

a wide variety of graph topologies and sizes, AVM consistently outperforms WRS [57] in

terms of the average reconstruction error.

2.3 Efficient sampling set selection algorithms

In what follows we assume that the conditions for equivalence between the two objective

function forms (2.4) and (2.5) are verified, so that we focus on solving (2.5).

2.3.1 Incremental subset selection

The bandwidth support for the purpose of sampling is assumed to be R = {1, · · · , s}. Let us

start by defining dv, the signal obtained by applying an ideal low pass filter to the Kronecker

delta function δv localized at vertex v:

dv = URU
T
Rδv. (2.6)
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With this definition, the objective in (2.5) can be written as:

det(USRU
T
SR) = det(USRU

T
RURU

T
SR)

= det(ITSURU
T
RURU

T
RIS)

= det

([
d1 · · · ds

]T [
d1 · · · ds

])

= Vol2(d1, · · · ,ds). (2.7)

Here IS represents the submatrix obtained by selecting the columns of I indexed by set S.

Thus, maximizing the determinant det(USRU
T
SR) is equivalent to maximizing Vol(d1, · · · ,ds),

and as a consequence the set maximizing (2.7) also maximizes (2.5).

In an iterative algorithm where the goal is to select s samples, consider a point where

m < s samples have been selected and we have to choose the next sample from among the

remaining vertices. Throughout the rest of the chapter, we denote the sampling set at the

end of the mth iteration of an algorithm by Sm. Given the first m chosen samples we define

Dm = [d1 · · ·dm] and the space spanned by the vectors in Dm as Dm = span(d1, · · · ,dm).

We denote D and D at the end of the mth iteration of an algorithm by Dm and Dm. Note

that both Dm and Dm are a function of the choice of the sampling bandwidth support R.

Next, the best column dv to be added to Dm should maximize:

det

([
Dm dv

]T [
Dm dv

])
= det


DT

mDm DT
mdv

dT
vDm dT

v dv


 (2.8a)

= det(DT
mDm) det(d

T
v dv − dT

vDm(D
T
mDm)

−1DT
mdv) (2.8b)

= det(DT
mDm)(∥dv∥2 − dT

vDm(D
T
mDm)

−1DT
mdv) (2.8c)

= det(DT
mDm)

(
∥dv∥2 − ∥PDmdv∥2

)
. (2.8d)
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The effect on the determinant of adding a column to Dm can be represented according to

a multiplicative update (Section 11.2 [4]) in our D-optimal design. (2.8b) follows from [31]

(Section 0.8.5 in Second Edition), while (2.8d) follows because

PDm = Dm(D
T
mDm)

−1DT
m (2.9)

is a projection onto the space Dm. Direct greedy determinant maximization requires selecting

a vertex that maximizes the update term in (2.8c):

v∗ = argmax
v∈Sc

m

(
∥dv∥2 − dT

vDm(D
T
mDm)

−1DT
mdv

)
(2.10)

over all possible vertices v ∈ Sc
m, which requires the expensive computation of (DT

mDm)
−1.

The first step towards a greedy incremental vertex selection is estimating the two com-

ponents, ∥dv∥2 and dT
vDm(D

T
mDm)

−1DT
mdv, of the multiplicative update. The first term

∥dv∥2 is the squared coherence introduced in [57], which is estimated here using the same

techniques as in [57], and is defined as

∥dv∥2 =
∥∥URU

T
Rδv

∥∥2 = ∥∥UT
Rδv

∥∥2 . (2.11)

For the second term, the projection interpretation of (2.8d) will be useful to develop approx-

imations to reduce complexity. Additionally, we will make use of the following property of

our bandlimited space to develop an approximation.

Lemma 2.1. The space of bandlimited signals span(UR) equipped with the dot product is a

reproducing kernel Hilbert space (RKHS).

Solution. Defining the inner product for signals f ,g ∈ span(UR) as

⟨f ,g⟩ =
∑
i

figi, (2.12)
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span(UR) is a Hilbert space. A Hilbert space further needs an existing reproducing kernel

to be an RKHS. Towards that end, consider a mapping to our bandlimited space ϕ : Rn →

span(UR) given as:

ϕ(x) = URU
T
Rx, (2.13)

where ϕ(x) is the orthogonal projection of x onto span(UR). A function K : Rn × Rn → R

that uses that mapping and the scalar product in our Hilbert space is:

∀x,y ∈ Rn, K(x,y) = ⟨ϕ(x), ϕ(y)⟩. (2.14)

Now using Theorem 4 from [8], K is a reproducing kernel for our Hilbert space, and using

Theorem 1 from [8] we conclude that our bandlimited space of signals is an RKHS.

Corollary 2.1. The dot product of a bandlimited signal f ∈ span(UR) with a filtered delta

dv is f(v), the entry at node v of signal f :

⟨f ,dv⟩ = f(v). (2.15)

Solution. The dot product ⟨f ,dv⟩ in our RHKS can be seen as the evaluation functional of

f at the point v. Using the definition of reproducing kernel K, since f ∈ span(UR) we have

that ϕ(f) = f and thus (using Section 2 definition and Theorem 1 Property b from [8]):

⟨f ,dv⟩ = ⟨ϕ(f), ϕ(δv)⟩ = ⟨f , ϕ(δv)⟩. (2.16)

An evaluation functional ⟨f , ϕ(x)⟩ for f bandlimited can be simplified as:

⟨f , ϕ(x)⟩ = ⟨f ,URU
T
Rx⟩ = ⟨URU

T
Rf ,x⟩

= ⟨f ,x⟩. (2.17)
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Thus, from (2.16) and (2.17):

⟨f ,dv⟩ = ⟨f , ϕ(δv)⟩ = ⟨f , δv⟩ = f(v).

As a consequence of (2.15), if f = dw we have:

⟨dw,dv⟩ = dv(w) = dw(v). (2.18)

2.3.2 Approximation through distances

We start by proposing a distance-based algorithm (DC) based on the updates we derived in

(2.8). While in principle those updates are valid only when s = f , in DC we apply them

even when s > f . We assume f is known. We take the bandwidth support for the purpose

of sampling to be R = {1, · · · , f}, which is the same as the signal reconstruction bandwidth

support F . To maximize the expression in (2.8d) we would like to select nodes that have:

1. Large squared graph coherence ∥dv∥2 with respect to f frequencies (the first term in

(2.8d), which is a property of each node and independent of Sm), and

2. small squared magnitude of projection onto the subspace Dm (which does depend on

Sm)
∥∥∥PDmd̂v

∥∥∥2 and thus would increase (2.8d).

∥dv∥2 varies between 0 and 1, taking the largest values at vertices that are poorly con-

nected to the rest of the graph [57]. On the other hand, the subspace Dm is a linear

combination of filtered delta signals dv corresponding to the vertices in Sm. The energy of

a signal dv is expected to decay as a function of distance from v. Therefore, for a partic-

ular energy ∥dv∥2, a vertex whose inner-product is minimum with the filtered delta signals

corresponding to vertices in Sm will have a small ∥PDmdv∥2. Thus, dv for a vertex farther

away from the already sampled vertices will have lesser overlap with their corresponding dw,
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Algorithm 1 Distance-coherence (DC)
1: function DC(L, s, f , d, ϵ)
2: S ← ∅,
3: ∆← 0.9
4: R ← {1, · · · , f}
5:

[
∥d1∥2 , · · · , ∥dn∥2

]
, λf , coeffs← Compute coherence(L, n, f, ϵ)

6: while |S| < s do
7: Vd(S)← {v ∈ Sc|d(S, v) > ∆.maxu∈V d(S, u)}
8: v∗ ← argmaxv∈Vd(S) ∥dv∥2
9: S ← S ∪ v∗

10: end while
11: return S
12: end function

which also span the space Dm. Therefore for a vertex v ∈ Sc
m whose “distance” to the vertices

Sm is large, the corresponding dv will have a small projection on the space Dm.

Our proposed DC algorithm (Algorithm 1) consists of two stages; it first identifies vertices

that are at a sufficiently large distance from already chosen vertices in Sm. This helps in

reducing the set size, by including only those v ∈ Vd(Sm) that are expected to have a small

∥PDmdv∥2. From among those selected vertices it chooses the one with the largest value of

∥dv∥2.

The nodes with a sufficiently large distance from S are defined as follows

Vd(Sm) = {v ∈ Sc
m|d(Sm, v) > ∆.max

u∈V
d(Sm, u)},

where ∆ ∈ [0 1],

d(Sm, v) = min
u∈Sm

d(u, v) (2.19)

and d is the geodesic distance on the graph. The distance between two adjacent vertices i, j

is given by

d(i, j) = 1/w(i, j). (2.20)

The parameter ∆ is used to control how many nodes can be included in Vd(Sm). With a

small ∆, more nodes will be considered at the cost of increased computations; while with a
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large ∆, lesser nodes will be considered with the benefit of reduced computations. For small

∆, the DC algorithm becomes similar to WRS, except the vertices are picked in the order of

their squared coherence, rather than randomly with probability proportional to their squared

coherence as in [57].

The DC algorithm (Algorithm 1) provides a proof-of-concept of the volume maximization

interpretation using coherences and distances for sampling. However, it involves obtaining

geodesic distances on the graph, which is a computationally expensive task. Eliminating this

bottleneck is possible by employing simpler distances such as hop distance, or doing away

with distances altogether. We leave the first approach open for future work and develop the

second approach here as the AVM algorithm (Algorithm 2).

2.3.3 Approximate volume maximization (AVM) through inner

products

In this section, we use a more efficient technique based on filtering, instead of computing the

distance between nodes as in DC, here we assumed that the signal bandwidth for sampling

was the same as the reconstruction bandwidth f . In practice, we do not know the signal

bandwidth and thus also do not know the reconstruction bandwidth. To remedy this, in

AVM, we use the number of samples, s, as a proxy for the signal’s bandwidth. As a result,

the bandwidth support used for sampling is R = {1, · · · , s}. We explained the reason behind

this decoupling of the sampling and the reconstruction bandwidth in Section 2.2.1 through

equations (2.3) and (2.4). AVM has the following advantages:

• We can use the optimization framework we defined in Section 2.3.1.

• By not assuming knowledge of the reconstruction bandwidth for sampling, AVM models

real-world sampling scenarios better.

• For our chosen set of samples, we do not have to limit ourselves to one reconstruction

bandwidth.
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Algorithm 2 Approximate volume maximization (AVM)
function AVM(L, s, d, ϵ)
S ← ∅
R ← {1, · · · , s}[
∥d1∥2 , · · · , ∥dn∥2

]
, λs, coeffs← Compute coherence(L, n, s, ϵ)

while |S| < s do
v∗ ← argmaxv∈Sc ∥dv∥2 −

∑
w∈S

d2
w(v)

∥dw∥2

dv∗ ← Filter(L, coeffs, δv∗)
S ← S ∪ v∗

end while
return S

end function

AVM successively simplifies the greedy volume maximization step (2.10) in four stages:

1. Approximating squared coherences, ∥dv∥2

2. Approximating the inner product matrix, DT
mDm

3. Computing low pass filtered delta signals, ∥dv∥2

4. Fast inner product computations, ⟨dw,dv⟩

which we will study next.

2.3.3.1 Approximate squared coherence

Algorithm 2 estimates the squared coherence, ∥dv∥2 , v ∈ Sm, using the method of random

projections method from Section 4.1 in [57] in the same way as in Algorithm 1. This approach

avoids explicitly finding dv to compute ∥dv∥2.

For completeness, we include the approach from [57] to find squared coherences as Func-

tion 1. For implementations of the functions Approximate Largest Eigenvalue, Poly-

nomial Filter Coefficients, and Polynomial Filter, which Function 1 calls, we refer

the reader to the GSP toolbox [53].
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Function 1 Compute coherence [57]
1: function Compute coherence(L, n, k, ϵ)
2: L← round(10 log(n))
3:

[
r1, · · · , rL

]
← [N (0n×1, In×n), · · · ,N (0n×1, In×n)]

4: λn ← Approximate Largest Eigenvalue(L)
5: λ← 0, λ̄← λn, λ← λn/2.
6: coeffs← Polynomial Filter Coefficients(0, λn, λ, d)
7:

[
r1filt, · · · , rLfilt

]
←
[
Polynomial Filter(L, coeffs, r1), · · · ,Poly. Filter(L, coeffs, rL)

]
8: SS ←

∑n
i=1

∑L
l=1 (r

l
filt)

2
i

9: while round (SS) ̸= k or |λ− λ̄| > ε · λ̄ do
10: if round (SS) ≥ k then
11: λ̄← λ.
12: else
13: λ← λ.
14: end if
15: λ← (λ+ λ̄)/2
16: coeffs← Polynomial Filter Coefficients(0, λn, λ, d)
17:

[
r1filt, · · · , rLfilt

]
←
[
Poly. Filter(L, coeffs, r1), · · · ,Poly. Filter(L, coeffs, rL)

]
18: SS ←

∑n
i=1

∑L
l=1 (r

l
filt)

2
i

19: end while
20:

[
∥d1∥2 , · · · , ∥dn∥2

]
←
[(∑L

l=1 (r
l
filt)

2
1

)
, · · · ,

(∑L
l=1 (r

l
filt)

2
n

)]
/SS

21: return
[
∥d1∥2 , · · · , ∥dn∥2

]
, λ, coeffs

22: end function

2.3.3.2 Approximate inner product matrix

We know that the volume of the parallelepiped formed by two fixed-length vectors is maxi-

mized when the vectors are orthogonal to each other. Now, since vectors that optimize (2.10)

also approximately maximize the volume, we expect them to be close to orthogonal. Thus,

we approximate DT
mDm by an orthogonal matrix (Appendix C). That is, assuming that

the filtered delta signals corresponding to the previously selected vertices are approximately

orthogonal we can write:

DT
mDm ≈ diag

(
∥d1∥2 , · · · , ∥dm∥2

)
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and

(DT
mDm)

−1 ≈ diag

(
1

∥d1∥2
, · · · , 1

∥dm∥2

)
,

which leads to an approximation of the determinant:

det


DT

mDm DT
mdv

dT
vDm dT

v dv


 ≈ det(DT

mDm) det(d
T
v dv − dT

v D̂mD̂
T
mdv), (2.21)

where D̂m is obtained from Dm by normalizing the columns:

D̂m = Dm diag (1/∥d1∥, · · · , 1/∥dm∥) . (2.22)

The second term in (2.21) can be written as:

dT
v D̂mD̂

T
mdv =

⟨dv,d1⟩2

∥d1∥2
+ · · ·+ ⟨dv,dm⟩2

∥dm∥2
, (2.23)

which would be the signal energy of projected signal dv on to span(d1, · · · ,dm), if the vectors

d1, · · · ,dm were mutually orthogonal. This is consistent with our assumption that DT
mDm

is approximately diagonal, which would only hold exactly if the vectors form an orthogonal

set.

2.3.3.3 Computing low pass filtered delta signals

If U is known, then computing the low pass filtered delta signal dv is straightforward by

simply using the ideal low pass filter as in (2.6). However, since we would like to avoid the

cost of the eigendecomposition, U is unknown. A polynomial approximation of the ideal low

pass filter with the frequency λs can be computed using Function 1. Using this polynomial

approximation, δv is filtered to obtain dv.
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2.3.3.4 Fast inner product computations

Maximization of (2.21) requires evaluating the inner products ⟨dv,di⟩ in (2.23) for all i ∈ Sm

and all vertices v outside Sm. Suppose we knew di for sampled vertices, i ∈ Sm, and the

inner products from the past iteration. The current (m + 1)th iteration would still need to

compute n−m new inner products.

To avoid this computation, we use the inner product property of (2.18), which allows us

to simplify (2.23) as follows:

dT
v D̂mD̂

T
mdv =

d2
1(v)

∥d1∥2
+ · · ·+ d2

m(v)

∥dm∥2
.

By doing this we avoid computing ⟨dv,dm⟩ for v ∈ Sc for the newly added vertex m. Thus,

there is no need to compute n − m new inner products, while we also avoid computing

dv, v ∈ Sc
m. With this, our greedy optimization step becomes:

v∗ ← argmax
v∈Sc

m

∥dv∥2 −
∑
w∈Sm

d2
w(v)

∥dw∥2
.

2.3.3.5 Summary of approximations

In summary, thanks to the approximations from Section 2.3.3.2 to Section 2.3.3.4, we do

not need to compute distances and no longer rely on the choice of a parameter ∆, as in

Algorithm 1. Algorithm 2 only requires the following inputs:

1. The number of samples requested, s,

2. The constant c specifying the number of random projections, cs log s,

3. The scalar ϵ specifying the convergence criteria for random projection iterations while

computing squared coherences.

The last two inputs are specifically needed by Algorithm 1 in [57], which we use in Step 1

(Section 2.3.3.1) to compute squared coherences.
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While the inner product property is defined based on the assumption that we use an

“ideal” low pass filter for reconstruction, it can also be used to maximize the volume formed

by the samples of more generic kernels — see Appendix D. The approximations proposed

in this section towards designing AVM can be justified if they lead to a scalable and fast

algorithm. In what follows, we study the computational complexity of AVM to assess its

scalability.

2.3.4 Computational complexity of AVM

The computational complexity of AVM depends on the number of vertices and edges in the

graph — |V| and |E|, the degree of the polynomial d, the number of samples s, and the

number of iterations T1 to converge to the right λs for computing squared coherences. In

practice, we observe that a small number of iterations T1 are required to converge.

AVM starts by computing squared coherences, with complexity O(|E|dT1 log|V|). Find-

ing and normalizing filtered signal requires O(d(|E| + |V|)) computations. Subtraction and

finding the maximum requires O(|V|) computations. We repeat this s times which results in

O(s|V|+ s(|E|+ |V|)d) computations in Stage 2 of AVM. This leads to Algorithm 2 having a

computational complexity of O((|E|+ |V|)dT1 log|V|+ s(|E|+ |V|)d). For a connected graph

we know that |E| ≥ |V| − 1, so then the complexity is simply O(|E|dT1 log|V|+ s|E|d).

2.3.4.1 Dependence on coherence estimation accuracy

Stage 1 is the bottleneck in the AVM algorithm because it involves T1 iterations to find the

squared coherences, with computations in each iteration scaling as |E| log|V|, where both the

factors |E| and |V| scale with the graph size. A limitation in the number of computations we

can do at this stage may cap the graph sizes we can consider. In this situation, we note that

Stage 1 (computing squared coherences and λs) is an approximation, and we could select an

alternative approximation requiring fewer computations instead.
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2.3.4.2 Dependence on the number of samples

The complexity of sampling algorithms naturally depends on the number of samples re-

quested at the input, and it is reasonable to assume that an ideal sampling algorithm cannot

grow sublinearly in complexity as the number of samples increases. This is because simply

adding one sample requires O(1) computations. While a sampling algorithm’s complexity

may grow superlinearly with the number of samples requested — see Table III in [2], algo-

rithms we compare in Section 2.6.2 grow linearly with the number of samples. Additionally,

AVM’s complexity also scales linearly with the number of samples as the complexity factor

O(s|E|d) suggests.

2.3.4.3 Log-linear dependence on graph size

The computational complexity of O(|E|dT1 log|V| + s|E|d) suggests that AVM has a log-

linear dependence on the graph size, specifically with a linear dependence on the number

of edges and log dependence on the number of vertices. This can further be seen as com-

plexity with log-linear dependence on the number of edges as O(|E|dT1 log|E| + s|E|d), but

O(|E|dT1 log|V|+ s|E|d) is a more accurate estimate.

So far, approximations to the volume maximization objective (2.8d) were useful to

develop DC and AVM2 algorithms. In the following sections, we will show how other

eigendecomposition-free algorithms can also be interpreted as approximations to the greedy

volume maximization objective.

2.4 Volume maximization interpretation of sampling

We next study how existing graph signal sampling methods are related to volume maximiza-

tion. We start by focusing on the SP algorithm from [2] and show how it can be seen as

a volume maximization method. This idea is developed in Section 2.4.1 and Section 2.4.2.

2Code: https://github.com/STAC-USC/Graph-signal-sampling-AVM
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Section 2.4.3 then considers other eigendecomposition-free methods and draws parallels with

our volume maximization approach.

2.4.1 The SP algorithm as Gaussian elimination

The SP algorithm is based on the following theorem [2].

Theorem 2.1. Let L be the combinatorial Laplacian of an undirected graph. For a set Sm

of size m, let USm,1:m be full rank. Let ψ∗
k be zero over Sm and a minimizing signal in the

Rayleigh quotient of Lk for a positive integer k.

ψ∗
k = argmin

ψ,ψ(Sm)=0

ψTLkψ

ψTψ
. (2.24)

Let the signal ψ∗ be a linear combination of first m+ 1 eigenvectors such that ψ∗(Sm) = 0.

Now if there is a gap between the singular values σm+2 > σm+1, then ∥ψ∗
k −ψ∗∥2 → 0 as

k →∞.

Solution. Refer to [2]. For the proof of ℓ2 convergence, see Appendix A.

Following (2.24), the step in the SP algorithm that leads to sampling a new vertex is

v∗ = argmax
v∈Sm

c

|ψ∗
k|,

where ψ∗
k is from (2.24). Consider first the ideal SP algorithm, where k → ∞ and the

solution tends to the ideal bandlimited solution. In the ideal case, given a full rank USm,1:m,

from Theorem 2.1 we can always get another vertex v such that USm∪v,1:m+1 is also full rank.

Thus, at all iterations, any submatrix of USm,1:m will have full rank.
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d1

d2

dm

h

D̃m

(a) Orthogonality of h with D̃m.

dv

PD̃m
(dv)

D̃m

|⟨h,dv⟩|

(b) Components of dv.

Figure 2.1: Geometry of SP.

When k → ∞ and Sm vertices are selected, ψ∗ is given by the m + 1th column of U′,

where U′ is obtained by applying Gaussian elimination to the columns of U such that the

m+ 1th column has zeros at indexes given by Sm [2]. U′ can be written as:

U′ =



u1(1)
0

u
′
2(2)

. . . um+2 · · · un

u
′
m+1(m+ 1)

⋆
...

u
′
m+1(n)


, (2.25)

where ⋆ denotes arbitrary entries and 0 denotes zero entries in the corresponding matrix

regions. Because we have non-zero pivots, u1(1) to u′
m+1(m + 1), USm,1:m is full rank. The

columns in U from m+2 to n remain intact. The concept is the same as that in [62]. Next,

we explain how an iteration in the ideal SP algorithm can be seen as a volume maximization

step.

2.4.2 SP algorithm as volume maximization

Consider a single stage in the SP algorithm, where the current sampling set is Sm, |Sm| = m

is the number of sampled vertices, and the bandwidth support is Rm = {1, · · · ,m + 1}.
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At this stage, choosing a vertex v that maximizes det(USm∪v,RmU
T
Sm∪v,Rm

) is equivalent to

choosing a vertex that maximizes |det(USm∪v,Rm)|. We briefly state our results in terms of

|det(USm∪v,Rm)| as this gives us the added advantage of making the connection with the

Gaussian elimination perspective from Section 2.4.1. Now, focusing on the selection of the

(m+ 1)th sample, we have the following result.

Proposition 2.1. The sample v∗ selected in the (m+1)th iteration of the ideal SP algorithm

is the vertex v from Sc
m that maximizes |det(USm∪v,Rm)|.

Solution. The ideal SP algorithm selects the vertex corresponding to the maximum value in

|u′
m+1(m + 1)|, · · · , |u′

m+1(n)|. Since Sm is given and U′
Sm∪v,Rm

is a diagonal matrix, this

also corresponds to the selection of v such that magnitude value of the det(U′
Sm∪v,Rm

) is the

maximum among all possible v selections.

But because U′
Sm∪v,Rm

is obtained from U by doing Gaussian elimination, the two deter-

minants are equal, i.e., |det(USm∪v,Rm)| = |det(U′
Sm∪v,Rm

)|, and since the current (m+ 1)th

iteration chooses the maximum absolute value pivot, given Sm, the selected sample maxi-

mizes |det(USm∪v,Rm)|.

We now show that the vertex v∗ is selected in the (m + 1)th iteration according to the

following rule:

v∗ = argmax
v∈Sc

m

dist(dv, span(d1, · · · ,dm)),

where dist(·, ·) is the distance between a vector and its orthogonal projection onto a vector

subspace. Thus, this optimization is equivalent to selecting a vertex v that maximizes the

volume of the parallelepiped formed by d1, · · · ,dm,dv, i.e., Vol(d1, · · · ,dm,dv).

Let h be a unit vector along the direction of (m + 1)th column of U′ in (2.25). We are

interested in finding the vertex v that maximizes |h(v)|.

Proposition 2.2. The signal value h(v) is the length of projection of dv on h.
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Solution. The signal h belongs to the bandlimited space, h ∈ span(URm). Thus, using (2.15)

we have that:

h(v) = ⟨h,dv⟩.

Since h is a unit vector, the last expression in the equation above is the projection length of

dv on h.

In summary, |h(v)| is maximized when |⟨dv,h⟩| is maximized.

Proposition 2.3. The signal h is such that h ∈ span(d1, · · · ,dm)
⊥ ∩ span(URm).

Solution. All the diagonal elements in the Gaussian elimination of USm∪v,Rm are non-zero,

as seen in (2.25), so that the following equivalent statements follow:

• USm,1:m is full rank.

• URmU
T
Rm

ISm is full column rank.

• span(d1, · · · ,dm) has dimension m.

The second statement follows (Section 0.4.6 (b) [31]) from the first because URm has full

column rank and USm,1:m is nonsingular. Given that span(d1, · · · ,dm) has dimension m we

can proceed to the orthogonality arguments.

By definition, h obtained from (2.25) is zero over the set Sm so that, from Proposition

2.1:

h(1) = 0 =⇒ ⟨h,d1⟩ = 0,

...

h(m) = 0 =⇒ ⟨h,dm⟩ = 0,
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and therefore h is orthogonal to each of the vectors d1, · · · ,dm. We call the space spanned

by those vectors D̃m, defined as

D̃m = {span(di)|i ∈ {1, 2, · · · ,m}}.

Since dimension of URm is m+ 1 and h is orthogonal to

D̃m = span(d1, · · · ,dm) (2.26)

of dimension m, span (h) is the orthogonal complement of D̃m (see Fig. 2.1a for an illustra-

tion).

For this particular algorithm, R changes with the number of samples in the sampling set.

At the end of mth iteration, the bandwidth support R can be represented as

Rm = {1, · · · ,m+ 1}, (2.27)

where m is the number of samples in the current sampling set. We use D̃ and D̃m to denote

a dependence of D and Dm on Rm in addition to Sm.

Proposition 2.4. The sample v∗ selected in the (m + 1)th iteration of SP maximizes the

distance between dv and its orthogonal projection on D̃m.

Solution. Since dv ∈ span(URm), it can be resolved into two orthogonal components belong-

ing to the two orthogonal spaces D̃m and span (h) (Prop. 2.3):

dv = PD̃m
dv + ⟨dv,h⟩h,

where h has unit magnitude and PD̃m
is the projection matrix onto the subspace D̃m.
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Maximizing |h(v)| is equivalent to maximizing |⟨dv,h⟩| which can be expressed in terms

of magnitude of dv and the magnitude of its projection on D̃m as:

argmax
v
⟨dv,h⟩2 = argmax

v
∥dv∥2 −

∥∥PD̃m
dv

∥∥2 . (2.28)

Fig. 2.1b shows this orthogonality relation between dv, |⟨h,dv⟩|, and PD̃m
(dv).

Thus, the v∗ chosen at the (m + 1)th iteration is the one that maximizes the volume of

the space spanned by the filtered delta signals.

v∗ = argmax
v∈Sc

m

Vol(d1, · · · ,dm,dv).

(2.4.2) follows from using the definition of volume of parallelepiped [52]. Although Propo-

sition 2.4 could have been derived from the determinant property in Proposition 2.1 using

(2.7), we observe that the approach using the orthogonal vector to the subspace in Propo-

sition 2.2, Proposition 2.3 and Proposition 2.4 makes more explicit the geometry of the

problem.

Algorithm 3 summarizes this new volume maximization interpretation of SP. Although

Algorithm 3 requires eigendecomposition, it is helpful to see its conceptual similarity with

Algorithms 1 and 2. Algorithm 3 updates R in each iteration and that can be seen as an

approximation of a greedy volume maximization approach where R is kept fixed. Hence

Algorithm 3 is expected to have sub-optimal performance compared to the greedy volume

maximization approach for the D-optimality criteria. For an empirical comparison, in Section

2.5, we compare SP which is Algorithm 3 relaxed with a finite value of k and without requiring

the full eigendecomposition.
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Algorithm 3 Volume interpretation of SP algorithm as k →∞
function SP(L, s)
S ← ∅
R ← {1}
while |S| < s do[

d1, · · · ,d|S|
]
←
[
URU

T
Rδ1, · · · ,URU

T
Rd|S|

]
D̃ ← spanv∈S(dv)
v∗ ← argmaxv ∥dv∥2 − ∥PD̃dv∥2
S ← S ∪ v∗

R ← R∪ |R|+ 1
end while
return S

end function

2.4.3 Eigendecomposition-free methods as volume maximization

We now revisit some eigendecomposition-free graph signal sampling algorithms from the per-

spective of volume maximization. So far, we have covered existing literature on D-optimality

as it relates to graphs and proposed two fast algorithms for sampling of graph signals. From

(2.8d), note that the greedy update for approximate volume maximization is

v∗ = argmax
v∈Sc

m

∥dv∥2 − ∥PDmdv∥2 . (2.29)

For each of these eigendecomposition-free algorithms, we consider the criterion to add a

vertex to the sampling set in the (m+ 1)th iteration.

First, the WRS algorithm can be seen as neglecting the projection term in (2.29) and

sampling by considering only the ∥dv∥2 term. Alternatively, as shown in Section 2.4.2, the

SP algorithm approximates this by

v∗ = argmax
v∈Sc

m

∥dv∥2 −
∥∥PD̃m

dv

∥∥2 (2.30)
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Table 2.1: Approximation to greedy maximization of determinant. LSSS - For implementa-
tion details refer to Section 2.4.3

Sampling method Selection process Approximation
Exact greedy argmaxv∈Sc

m
∥dv∥2 − ∥PDmdv∥2 -

WRS [57] p(v) ∝ ∥dv∥2 No projection.
SP [3] argmaxv∈Sc

m
∥dv∥2 −

∥∥PD̃m
dv

∥∥2 Projec. space approximate
and increasing in size.

LSSS[5] argmaxv∈Sc
m
∥dv∥2 − 2

∑
w∈Sm

⟨|dw|, |dv|⟩ Inner product approx
for projection.

AVM [34] argmaxv∈Sc
m
∥dv∥2 −

∑
w∈Sm

d2
w(v)

∥dw∥2 Orthogonality assumption.

for a finite value of parameter k and a varying D̃m in place of Dm. The second eigen

decomposition-free approach presented in [58] (V2) proposes to maximize (using the greedy

selection in Equation (31) in [58]):

v∗ = argmax
v∈Sc

m

∥dv∥2 − 2
∑
w∈Sm

⟨|dw|, |dv|⟩,

but in practice maximizes a different expression — see (32) in [59].

The crucial difference between our proposed method and [59] is that we obtain a specific

expression to be maximized through D-optimality. Whereas [59] clearly shows the relation

between various experiment design objective functions and their corresponding localization

operators, the relation between the algorithm proposed in [59], LSSS, and the experiment

design objective functions is unclear.

We do not attempt to explain methods such as [36] under the volume maximization

framework as they define the signal smoothness through the total variation operator as op-

posed to squared differences through the graph Laplacian operator, which is necessary for

the volume maximization interpretation. The similarities in the optimization objective func-

tion for various eigendecomposition-free sampling methods that we studied are summarized

in Table 2.1. The differences between various sampling methods will be apparent when we

compare their performance for various sampling and reconstruction settings.
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2.5 Experimental settings

To evaluate our sampling algorithms, we assess their sampling performance on different graph

topologies at different sampling rates.

2.5.1 Signal, Graph Models and Sampling setups

With a perfectly bandlimited signal, most sampling schemes can reconstruct the signal ex-

actly. However, in practice, signals are rarely perfectly bandlimited and noise-free. Therefore,

it is necessary to compare the performance of the sampling methods on non-ideal signals.

2.5.1.1 Signal smoothness and graph topologies

Consider first a synthetic noisy signal model from (1.2). The resulting signal is f = x + n

which can be expressed as UF f̃F +n. The frequency components of x and the noise term are

assumed to be random variables with multivariate normal distributions, f̃F ∼ N (0, c1IFF),

n ∼ N (0, c2IVV), respectively. The constants c1 and c2 are chosen so that the expected

signal power is 1 and the expected noise power is 0.1. Since our main objective is to study

the effect of varying the number of samples, the graph topologies, and the graph size on DC

and AVM, we fix the signal bandwidth to 50.

We compare our algorithms against three established algorithms — WRS, SP, and LSSS

All methods except WRS return unique samples. For a fair comparison, all sampling methods

are evaluated under conditions where the same number of samples is obtained, irrespective of

whether the returned ones are unique or not (which could occur in the case of WRS [57]). We

use the combinatorial Laplacian for our sampling and reconstruction experiments, except for

the classification experiment where the normalized Laplacian of the nearest neighbors graph

is used, as it achieves overall better classification accuracy.
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2.5.1.2 Sampling set sizes

We use two graph sizes, 500 and 1000. Except for the Erdős Rényi graph model, we use

the Grasp [27] and GSPBox [53] MATLAB toolboxes to generate the graph instances — see

Table 2.2.

We use sampling set sizes ranging from 60 to 200 samples to compare the variation of

the reconstruction error. For comparing algorithms in this setting, we do not show the full

range of reconstruction SNRs from WRS because its SNR is usually 5-10 dBs lower than

other methods at starting sampling rate of 60 (see Tables 2.4 and 2.6 for performance at

higher sampling rates).

2.5.1.3 Classification on real-world datasets

In this experiment, we evaluate sampling algorithms in a transductive semi-supervised learn-

ing setting for a digit classification task (USPS dataset). We randomly select 10 smaller

datasets of size 1000 from the original dataset, such that each smaller dataset contains 100

elements from each category, i.e., the 10 digits. Using those smaller datasets, we construct

a nearest neighbors graph with 10 neighbors. This setup is the same as in [2]. The graph

sampling and reconstruction algorithms then select a number of samples ranging from 60 to

200. Using the one-vs-all strategy, we reconstruct the class signals and then classify them by

selecting the class which gives the maximum reconstruction in magnitude at a vertex. We

then report the average accuracy of the classification over the 10 smaller sets.

2.5.1.4 Effect of scaling graph sizes

One of our primary goals is to develop fast and scalable algorithms. To evaluate these

properties, we use a random sensor nearest neighbors graph with 20 nearest neighbors and a

community graph with 10 communities with different graph sizes (500, 1000, 2000, 4000, and

8000). For each graph size, we sample 150 vertices, and the signal model remains the same
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as in Section 2.5.1.1. We report the reconstruction SNR and the time required to sample

averaged over 50 graph and signal realizations for a given graph type.

The feasibility of different sampling algorithms on graphs with sizes that are orders of

magnitude larger than a thousand vertices is an indicator of scalability. Thus, we also test the

sampling algorithms on larger graph sizes (50,000 and 100,000). Both the graph parameters,

such as the number of nearest neighbors or the number of communities, and the signal

model parameters, such as the noise power, remain the same as those we use for smaller

graph sizes, while we use a bandwidth of 100, and sample 5000 vertices for the two larger

graphs sizes. At these graph sizes, some sampling algorithms require more than 10 times the

time required by AVM and more than 64GB of random-access memory (RAM). Because of

this, it is not possible to run 50 graph and signal realizations for all the sampling algorithms

as we did earlier. Least squares reconstruction, which we used for smaller graphs, is also

not feasible at these graph sizes, so we reconstruct using projection onto convex sets(POCS)

from [46], which is tailored for bandlimited signals on graphs. We include the execution

times and the SNRs for this setting in the tables along with smaller graphs. However, due

to fundamental differences in the reconstruction method, we do not plot the SNRs together

with those of smaller graphs. The execution times measured in seconds are rounded to one

decimal precision for display.

2.5.2 Initialization details

We wish to evaluate all the algorithms on an equal footing. Thus, for evaluating the squared

coherences using Function 1 we use the same number of random vectors 10 log(n) corre-

sponding to c = 10, ϵ = 0.01, and an order 30 polynomial wherever filtering is needed for

the WRS, DC, and AVM methods. Larger c and smaller ϵ values result in a more accurate

approximation of squared coherences but also require more computations. We choose those

particular values to achieve a good balance between the approximation accuracy and the

number of computations. The degree of the polynomial is selected to be larger than the

39



diameter of most graphs we consider. However, we get marginal returns in performance by

increasing the degree of the polynomial. Thus, in future work, it might be interesting to

study adaptive schemes where the degree of the polynomial is chosen to be similar to the

graph diameter.

The various algorithms we consider have some “hard-coded” parameters. SP has just one

parameter k to which we assign k = 4. LSSS has a few more parameters to tune such as ν, η.

In [59] the parameter ν = 75 is chosen experimentally, but in our experiments, we run the

LSSS algorithm on a wide range of ν values around 75 — ν = [0.075, 7.5, 75, 750, 75000], and

select the value of ν that maximizes SNR. We chose this wide range of values experimentally,

as we observed that for some topologies, graph sizes and Laplacians, optimal reconstruction

SNR was sometimes achieved at ν values differing from the proposed 75 by several orders of

magnitude. As for the sampling times, we choose the sampling time corresponding to the

ν achieving the maximum SNR. In most cases, there was a non-negligible increase in SNR

while choosing ν without a significant change in the execution time. We experimentally

determine η the same way as in the original implementation. For the DC algorithm, we

choose ∆ = 0.9.

2.5.3 Reconstruction techniques

We denote the sampled signal fS and the lowpass frequencies of the original signal by f̃F =

UT
F f . The ideal reconstruction which minimizes the mean square error using the sampled

signal is given by the least squares solution to
∥∥∥USF f̃F − fS

∥∥∥
2
. Other existing methods

of reconstruction are (i) using a linear combination of tailored kernels as seen in LSSS

and (ii) solving a regularized least squares problem as in BS-GDA. However, since we are

primarily interested in comparing the sampling sets generated by various algorithms on an

even footing, we use the least squares solution for reconstruction which we compute by

assuming that we know the graph Fourier basis. To achieve the best results for WRS,

instead of the least squares solution we use the recommended weighted least squares [57],
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although it is slightly different from what we use for all other algorithms. The weighted least

squares solution is tailored to account for sampling probabilities in WRS and does provide

a marginal improvement in performance compared to least squares for most graphs. We use

the Moore-Penrose pseudo inverse for all our least squares solutions.

2.6 Results

We now evaluate the performance of our algorithm based on its speed and on how well it

can reconstruct the original signal.

2.6.1 Reconstruction error

We evaluate performance based on the mean squared error in reconstructing the signal f .

Thus, we measure the error
∥∥∥f̂ − f

∥∥∥2 between the reconstructed signal and the original noisy

signal, where f̂ is the reconstructed signal.

For our experiments, we plot the SNR averaged over 50 different graph instances of each

type of graph, with a new signal generated for each graph instance (see Figure 2.2). The

two graph models where we observe a lesser SNR for the AVM algorithm are the random

sensor nearest neighbors and the community graph models, which we discuss next. For the

remaining graph models the reconstruction SNR from DC and AVM sampling is comparable

to other algorithms, such as SP and LSSS. As mentioned, we find the sampling from AVM

to be comparatively satisfactory considering that we are reporting the maximum SNRs for

LSSS over 5 different parameter values.

In Fig. 2.2f, we notice that for random-sensor nearest neighbor graphs of size 500, we

need more samples to achieve competitive performance. To better understand this, consider

a graph consisting of two communities. In the original volume maximization, a sampling

set from only one community would give a volume of zero and that sampling set would

never be selected by a greedy exact volume maximization. However, because AVM is only
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an approximation to the greedy volume maximization, sampling from only one community

is possible, although unlikely. More generally, this approximation affects weakly connected

graphs such as random sensor graphs with a kNN construction with a small number of

nearest neighbors. More specifically, this approximation affects community graphs at low

sampling rates, as shown in Figures 2.2c and 2.2h.

The issue of lower performance at lower sampling rates for smaller graphs, however, is

no longer critical for larger graphs as we see when we increase the number of samples to

150 — (Table 2.6), our algorithm performance is comparable to that of other state-of-the-

art algorithms. Note that we do not face this issue for Erdős Rényi graph instances in our

experiments since these are almost surely connected as the probability of connection exceeds

the sharp threshold [22].

For the USPS dataset classification, we observe a significant drop in the classification

accuracy for the samples chosen using the DC algorithm. However, the classification accuracy

for AVM on the USPS dataset is at par with the remaining algorithms.

Next, we evaluate how the complexity of AVM scales with the graph size.

2.6.2 Speed

Using the setup from Section 2.5.1, we compare the sampling times for WRS, SP, LSSS,

BS-GDA and AVM algorithms. We exclude the DC algorithm from these comparisons be-

cause the distance evaluations in DC, which provide good intuition, make DC significantly

slower as compared to AVM. We include BS-GDA since it is one of the lowest complexity

approaches among eigendecomposition-free algorithms. We use the random sensor graph

from the GSPbox [53] with 20 nearest neighbors.

In our comparison, we use the implementations of WRS, SP, LSSS and BS-GDA dis-

tributed by their respective authors and run them on MATLAB 2019b along with our pro-

posed algorithm. We could possibly improve on the existing implementations using spe-

cialized packages for functionalities such as eigendecomposition, but to remain faithful to
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Table 2.3: Execution time(secs.) for sampling, random sensor graphs

|V| WRS SP LSSS BS-GDA AVM Overhead(AVM)
500 0.2 2.7 0.6 0.1 0.5 2.53
1,000 0.5 7.4 2.5 0.6 0.9 1.98
2,000 1.1 21.6 9.8 3.3 1.9 1.7
4,000 2.5 65.1 38.6 18.1 4.2 1.65
8,000 6.2 165.9 115.3 96.5 9.5 1.54
50,000 71.9 – 11,066.8 1,759.3 699.5 9.73
100,000 167.8 – – – 1,525.4 9.09

Table 2.4: SNRs, random sensor graphs

|V| WRS SP LSSS BS-GDA AVM
500 6.8 9.78 9.83 8.96 9.05
1,000 7.89 9.69 9.81 9.25 9.36
2,000 8.23 9.38 9.39 9.24 9.33
4,000 7.99 9.54 9.51 9.36 9.47
8,000 8.11 8.94 8.98 8.94 8.92
50,000 2.11 – 2.14 2.13 2.13
100,000 2.86 – – – 2.88

the original papers, we use their codes with minimal changes. Wherever the theoretical

algorithms in the papers conflict with the provided implementations, we go with the imple-

mentation since that was presumably what the algorithms in the papers were timed on.

To minimize the effect of other processes running at different times, we run the sam-

pling algorithms round-robin. We do this process for multiple iterations and different graph

topologies. We time the implementations on an Ubuntu HP Z840 Workstation, which natu-

rally has plenty of background processes running. The changes in their resource consumption

affect our timing. It is impossible to stop virtually all background processes, so we try to

reduce their impact in two ways. First, we iterate over each sampling scheme 50 times and

report the averages. Second, instead of completing iterations over the sampling schemes

one by one, we call all the different sampling schemes in the same iteration. These minor

precautions help us mitigate any effects of background processes on our timing.

For 500-8,000 graph sizes, we observe that as the graph size increases, AVM is only

slightly slower compared to WRS. It is orders of magnitude faster than SP, LSSS and the
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Table 2.5: Execution time(secs.) for sampling, Community graphs

|V| WRS SP LSSS BS-GDA AVM Overhead(AVM)
500 0.2 3.9 0.6 0.1 0.5 2.59
1,000 0.4 21.7 3 0.7 0.8 1.89
2,000 1 125.9 13.5 3.9 1.8 1.72
4,000 2.6 597.2 65.8 28.6 4.3 1.66
8,000 6.8 2,377.9 272.3 188.8 9.4 1.38
50,000 89.1 – – 2,504.6 957.7 10.75
100,000 267.8 – – – 2,485.7 9.28

Table 2.6: SNRs, Community graphs

|V| WRS SP LSSS BS-GDA AVM
500 6.41 10.14 10.02 −5.61 9.42
1,000 7.09 9.7 9.62 7.13 8.61
2,000 7.16 9.61 9.65 9.13 9.16
4,000 7.53 9.43 9.44 9.06 9.3
8,000 8.04 9.58 9.56 9.16 9.48
50,000 0.92 – – 0.83 1.11
100,000 0.73 – – – 0.79

BS-GDA algorithm — see Tables 2.3 and 2.5, while having a very small impact on the SNR

of the reconstructed signal — Tables 2.4 and 2.6. The execution time also scales well with

the graph size, as shown in Fig. 2.3a.

We also report the relative execution times using the overhead rate, the ratio of execution

times of two algorithms. We compute this overhead for the AVM algorithm vs the WRS

algorithm pair.

Overhead(AVM) =
Execution time of proposed AVM algorithm

Execution time of WRS

Most authors consider WRS as the fastest sampling algorithm and benchmark against it.

By specifying our overhead rates relative to WRS we can indirectly compare our algorithm

with myriad others without doing so individually. We report these factors for various graph

sizes in Tables 2.3 and 2.5.
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To justify the increase in the speed of execution compared to the slight decrease in the

SNR, we plot the SNR versus the execution time for the different algorithms we compared.

Ideally, we want an algorithm with fast execution and good SNR. From Figs. 2.4a, 2.4b, we

see that our algorithm fits that requirement very well.

For experiments on graph sizes 500-8000, we reduced the variability in the execution time

and SNR observations by reporting means over 50 randomly initialized graph and signal

realizations. However, for graphs of sizes 50,000 and 100,000, running 50 realizations of each

sampling strategy is impractical because of the time required. To determine if 10 realizations

are sufficient, we compute the ratio of standard deviation to the mean for execution times

and SNRs. Except for one setting of BS-GDA where the ratio is 0.26, it does not exceed 0.12

in all experiments. So for graphs of size 50,000 and 100,000, we report the execution times

and SNRs averaged over 10 randomly initialized realizations in Tables 2.3, 2.4, 2.5, and 2.6.

In those tables of algorithm comparisons, we look for scalable algorithms with low execu-

tion times and high SNRs, or which at least finish execution within our limits as mentioned

in Section 2.5.1.4. For graphs with size 50,000, WRS, LSSS, BS-GDA, and AVM, finish

within our limits, while for graphs with size 100,000 only WRS, and AVM can finish. We fill

the table entries corresponding to the algorithms that did not finish with a −. Among the

algorithms that finish, AVM provides up to 20% improvement in SNR over that of WRS, and

at most 0.46% decrease compared to other algorithms. However, the SNRs are lower than for

smaller graph sizes because of the POCS-based reconstruction. The execution times of AVM

are at least 60% less and as much as 93% less compared to other state-of-the-art algorithms

except WRS. The overhead of AVM relative to WRS is larger compared to smaller graph

sizes because of the 5000 sampled vertices for 50,000 and 100,000 graph sizes as opposed

to 150 samples for 500 to 8,000 graph sizes. We see a further increase of about 62% in

the execution time for community graphs due to the larger number of edges. So for graph

sizes 50,000 and 100,000, AVM not only finishes execution within our limits but maintains
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SNR at par with other algorithms for two different graph topologies, while being the fastest

algorithm second only to WRS.

Of course, with different graph types, the SNR vs execution time performance of AVM

may vary. But what we always expect this algorithm to deliver is execution times similar to

WRS while having a significant improvement in the SNR. In a way, this algorithm bridges

the gap between existing Eigendecomposition-free algorithms and WRS.

2.6.3 Effect of number of samples on execution time

A fast graph signal sampling algorithm should be scalable with respect to the number of

sampled vertices. To experiment and compare the scalability of different graph signal sam-

pling algorithms, we set up sensor graphs with 20 nearest neighbors and community graphs

with 10 communities, both of size 8192. For each graph type, we sample a varying number

of vertices ranging from 64 to 4096 samples in multiples of 2 and measure the corresponding

execution times. We display the results of this scalability experiment as execution times

versus the number of samples in plots.

Doing this experiment for different sampling methods helps us compare their robustness

to a varying number of samples. In figures 2.5 and 2.7, we observe the effect of varying the

number of sampled vertices on the execution times of the algorithms WRS, SP, LSSS, BS-

GDA, and AVM. With an increase in the number of sampled vertices, WRS’s execution time

does not show a significant dependence, SP and LSSS’s execution time increases, whereas

BS-GDA’s execution time decreases. The minimal dependence of WRS’s execution time

is due to the computationally cheap random sampling step once the graph coherences are

computed by Function 1. The increase in the execution time of SP and LSSS is due to the

extra computations needed for sampling a new vertex. However, for BS-GDA, we believe

that the decrease in the execution time is due to the decrease in the coverage set sizes with

the increase in the number of requested samples. We see that AVM’s execution time is close

to WRS’s for smaller sampling sets, and it increases with the number of requested samples.
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Except for sample set sizes in the order of graph size, AVM has the second-lowest execution

times for a range of sample set sizes.

Since we saw that the execution time of AVM increases with the number of sampled

vertices, we wish to assess further the rate of increase of the execution time. For this

purpose, we consider sensor graphs with 20 nearest neighbors and community graphs with

10 communities, both of size 50,000. The number of samples requested ranges from 64

samples to 32768 samples in multiples of 2. We display the results of this experiment as

execution times versus the number of samples plots limited to AVM.

In Figures 2.6 and 2.8, apart from minor fluctuations, we see a linear relationship between

the execution times and the number of samples for a number of samples ranging from 64 to

4096. This observation agrees with our theoretical analysis of AVM complexity in Section

2.3.4.2 explaining an additional O(s|E|d) dependence on the number of samples compared

to WRS.

2.7 Conclusion

Most sampling schemes perform reasonably well when dealing with perfectly bandlimited

signals. However, in the presence of noise or the signal not being perfectly bandlimited,

some schemes perform much better. In the scenario that only a limited number of samples

can be chosen, we would like to use an algorithm that can perform well without requiring

computationally expensive procedures such as eigendecomposition.

The algorithms presented in this chapter rely on the intuition of looking at the problem

as maximizing the volume of the parallelepiped formed by the lowpass signals corresponding

to the sampled vertices. This helps us to develop intuitive and fast graph signal sampling

algorithms. The volume maximization framework also helped to connect various existing

algorithms.

47



The sampling algorithm we developed reaches speeds achieved by WRS but with a large

improvement in reconstruction accuracies. The accuracies are comparable with other con-

temporary algorithms but, at the same time, provide significant speed improvements.
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Figure 2.2: Comparison of eigendecomposition-free methods in the literature. x-axis: number
of samples selected. y-axis: average SNR of the reconstructed signals. We do not include
the entire range of SNR from WRS based reconstruction because of its comparatively wider
range.
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Figure 2.3: Visualizing average sampling times of four algorithms over 50 iterations on com-
munity graphs with 10 communities. Execution times for LSSS are averaged over executions
for different parameter values.
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Figure 2.4: Scatter plot of the SNR vs execution time for graph size 8000. Axis for execution
time is reversed, so results on the top right are desirable.
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Figure 2.5: Random sensor graphs with 8192
vertices and 20 nearest neighbour connec-
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Figure 2.6: Random sensor graphs with 50,000
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Figure 2.7: Community graphs with 8192 ver-
tices and 10 communities.
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Chapter 3

Robust graph signal sampling

3.1 Introduction

Most graph signal sampling methodologies, including those we presented in Chapter 2, as-

sume that all samples from the selected sampling set can be observed. In environments

where sensors can fail or an adversary can delete samples, however, one may receive only an

unknown subset of the selected samples. This phenomenon can also be observed in social

sensing scenarios such as crowdsourcing [44], where one may query a large group of users

only to receive answers from a small subset of them. Similarly, in the case of sample set

selection on graphs, some samples may be lost.

The effects of losing some samples depend on the application. Since the conventional

greedy sample selection algorithm is based on an iterative setup where the next sample is

chosen to maximize the performance given all the previously selected samples, the loss of

a few important samples may be highly detrimental to overall performance. On a graph

with n disconnected components, the greedy sample set so found will have one sample in

each disconnected subgraph. Losing any of these samples means the signal values over that

subgraph cannot be recovered (since there is only one sample per connected component).

Motivated by such scenarios, in this work, we consider a further generalization of the

sampling problem from Section 1.2.1 wherein one selects a set of k samples but only receives

k− τ samples, with the remaining τ samples being lost. We call this the robust graph signal
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sampling problem. Furthermore, in general, it cannot be known beforehand which τ samples

will be lost. Then, the goal should be to select the sampling set of size k that achieves the

best performance in the worst-case scenario, i.e., when out of all possible subsets of size

k − τ samples, the one leading to maximum degradation is removed from the original set of

k samples.

We propose a robust greedy sample set selection algorithm that optimizes worst-case per-

formance under sample losses, and we study its performance guarantees. Our work extends

the greedy sample set selection setup from Chapter 2 to sampling scenarios in which one

receives only a subset of the selected samples. Our robust graph signal sampling problem is

also related to existing robust optimization frameworks [39, 47, 9], which mainly focus on the

optimization of a monotone function with a given approximate submodularity parameter.

Our focus is on the functions used as an optimality criterion for graph signal sampling, and

through numerical evaluations, we demonstrate how in this setup the proposed approach

outperforms state-of-the-art robust maximization techniques.

3.2 System Model

We consider the signal model from (1.2) with additional restrictions. In particular, we study

the class of graph signals for which x̃F has mean E[x̃F ] = 0 and covariance

E[x̃F x̃
T
F ] = Γ = diag(γ1, . . . , γF) (3.1)

with added noise that can be represented by the noise vector n, which has mean E[n] = 0

and covariance

E[nnT ] = M = diag(µ1, . . . , µn). (3.2)

Without loss of generality, we assume Γ has full rank, as one can always adjust F to remove

the elements for which γi = 0 otherwise.
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We represent the sampling process explained in Section 1.2.1 by multiplication with a

sampling matrix S ∈ {0, 1}|S|×n in which the ith row corresponds to the ith row of the n× n

identity matrix I. The samples are given by:

fS = Sf . (3.3)

We represent the reconstructed signal by

f̂ = WfS , (3.4)

where W is an n× |S| reconstruction matrix. The corresponding error covariance matrix is

given by:

K = E[(f − f̂)(f − f̂)T ]. (3.5)

The optimal reconstruction matrix W is chosen as to minimize the scalar cost function

J(W) = zTKz (3.6)

over the error covariance matrix for all z ∈ Rn, as detailed in [12], leading to the following

error covariance matrix:

K = UF(Γ
−1 +UT

FS
TSM−1STSUF)

−1UT
F . (3.7)

As can be observed from (3.7), the chosen sampling set S affects the error covariance

matrix through the following term:

K(S) = (Γ−1 +UT
FS

TSM−1STSUF)
−1 (3.8)

= (Γ−1 +
∑
i∈S

µ−1
i rir

T
i )

−1. (3.9)
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where rTi is the ith row of UF . Then, the sampling set selection problem is to choose the

best sampling set S∗ of a given size k with respect to an objective function defined over the

matrix from (3.9),

S∗ = arg max
S:|S|=k

f((Γ−1 +
∑
i∈S

µ−1
i rir

T
i )

−1). (3.10)

It is useful to note that the formulation from (3.10) depends on the choice of function f(.)

In this work, we let f(.) be a monotonically non-decreasing, non-negative function with

f(∅) = 0.

Finding S∗ is in general an NP-hard problem [38]. When the objective function (3.10)

is submodular, greedy algorithms can approximate it in polynomial time. However, most

functions used as optimality criteria in graph signal sampling are not submodular. In such

cases, performance of greedy algorithms has been studied using the notion of approximate

submodularity, which measures how close a function is to being submodular [12].

3.3 Problem formulation: Lost samples

The problem defined in (3.10) identifies the best sampling set under the assumption that all

the samples from the selected set S∗ are receied. If there are sensor failures, or in adversarial

environments, not all selected sensors will provide samples. Accordingly, we define the robust

graph sampling problem as the selection of a set of k samples under the assumption that one

receives only k− τ of them, where we do not have prior knowledge of which samples will be

lost.

Problem 3.1. Select a set of samples S to maximize the worst-case performance:

S∗ = arg max
S:|S|=k

min
A:A⊆S
|A|=k−τ

f((Γ−1 +
∑
i∈A

µ−1
i rir

T
i )

−1). (3.11)

To solve Problem 3.1, we propose a greedy algorithm consisting of two stages (see Algo-

rithm 4). In the first stage, the algorithm selects τ nodes in an oblivious manner, similar to
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Algorithm 4 Robust Graph Sampling
1: Initialize graph G = (V, E) and sampling set S = ∅.
2: Stage 1:
3: for i = 1, . . . , τ
4: Choose node u∗ such that:

u∗ ← arg max
u∈V\S

f({u}) (3.12)

▷ S is the set of already selected nodes at the beginning of iteration i.
5: S = S ∪ {u∗}
6: end for
7: Set j := 0
8: Stage 2:
9: for i = τ + 1, . . . , k

10: Choose node u∗ such that:
u∗ ← arg max

u∈V\S
min
A∈Sj

f
(
A ∪ {u}

)
(3.13)

▷ Sj denotes the set of j-element subsets of S.
11: S = S ∪ {u∗}
12: j = j + 1
13: end for

the first stage of existing two-stage algorithms [47, 9]; at each step, the best node is selected

from the set of available nodes, by assuming all the previous ones may be lost. In the second

stage, we know that at least j nodes will be received from the first stage. The algorithm

then selects the next node to maximize the worst-case performance when combined with any

j nodes from the samples selected so far. This is unlike the selection criterion used in [9],

which discards the nodes selected in the first stage. For τ = 0, Algorithm 4 reduces to the

conventional greedy algorithm [12].

To study the performance of Algorithm 4, we utilize the following definitions. The first

one is the approximate submodularity notion from [12]. In the sequel, we use the shorthand

notation:

f(A) = f((Γ−1 +
∑
i∈A

µ−1
i rir

T
i )

−1). (3.14)

Definition 3.1. (Approximate submodularity) A function f is α-approximately submodular

if,

f(A ∪ {i})− f(A) ≥ α(f(B ∪ {i})− f(B)) (3.15)
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for all A ⊆ B ⊆ V and i ∈ V\B. where α ∈ [0, 1] is chosen as the largest scalar satisfying

(3.15).

Note that α = 0 always holds since f is monotonically non-decreasing, and f becomes

submodular when α = 1. Another useful property of a class of functions that puts a limit to

their growth in terms of the union of multiple input sets is their property of subadditivity.

Definition 3.2. (Bipartite subadditivity ratio)[9] The bipartite subadditivity ratio of f is the

largest θ ∈ [0, 1] such that

f(A) + f(B)
f(A ∪ B)

≥ θ, ∀A,B ⊆ V such that A ∩ B = ∅. (3.16)

Next, we provide a lower bound on the performance of the robust greedy sample set

selection Algorithm 4.

Theorem 3.1. Let S be the sampling set selected by Algorithm 4, with S0 and S1 represent-

ing the samples selected in the first and second stages, respectively. Denote the worst-case

performance of S by,

ϕ(S) = min
A:A⊆S
|A|=k−τ

f(A) (3.17)

and let ϕ(S∗) denote the optimal solution of Problem 3.1. Then,

ϕ(S) ≥
(
1− e−ᾱ

)(
θ ϕ(S∗)− τ

β

α

)
(3.18)

where ᾱ is the approximate submodularity ratio from (3.15) of the function,

gS0(S1) = min
A:A⊆S0∪S1
|A|=|S1|

f(A). (3.19)

where S1 ⊆ V\S0, and β = maxi∈V f({i}).

Solution. We wish to prove a lower bound for ϕ(S) and relate it to global optimum ϕ(S∗).

We will divide the proof into three parts,
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1. Provide an upper bound for ϕ(S∗).

2. Provide a lower bound for ϕ(S).

3. Relate the quantities ϕ(S∗) and ϕ(S).

Upper bound for ϕ(S∗): Consider the optimal sampling set S∗ from Problem 3.1, and

let W ⊆ S∗ be its worst-case subset of size k − τ , i.e., f(W) ≤ f(W ′) for all W ′ ⊆ S∗ with

|W ′| = k − τ . Then,

ϕ(S∗) = f(W) ≤ f(W ∪ S0 ∪R) (3.20)

where R ⊆ V\(W∪S0) is an arbitrary set that satisfies the condition |W ∪S0∪R| = k, and

(3.20) follows from the fact that f is monotonically non-decreasing. Let M ⊆ W ∪ S0 ∪ R

be a set of size |M| = k − τ such that f(M) ≤ f(M′) for all M′ ⊆ W ∪ S0 ∪ R with

|M′| = k − τ . Then, we have from (3.20),

f(W ∪ S0 ∪R) = f(M∪ (W ∪ S0 ∪R)\M) (3.21)

≤ 1

θ
(f(M) + f((W ∪ S0 ∪R)\M)) (3.22)

≤ 1

θ
(gS0(S∗

1 ) + f((W ∪ S0 ∪R)\M)) (3.23)

where (3.22) follows from (3.16), and gS0(S∗
1 ) in (3.23) is defined as,

gS0(S∗
1 ) = max

S1:S1⊆V\S0

|S1|=k−τ

min
A:A⊆S0∪S1
|A|=|S1|

f(A), (3.24)

hence,

gS0(S∗
1 ) ≥ min

A:A⊆S0∪T
|A|=k−τ

f(A), ∀ T ⊆ V\S0 s.t. |T |=k − τ (3.25)

≥ f(M) (3.26)
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from which (3.23) follows. By denoting (W∪S0∪R)\M ≜ {e1, . . . , eτ}, we find from (3.23)

that

1

θ
(gS0(S∗

1 ) + f((W ∪ S0 ∪R)\M))

=
1

θ
(gS0(S∗

1 ) + f({e1, . . . , eτ}) (3.27)

=
1

θ
(gS0(S∗

1 )+
τ∑

i=1

(f({ei}∪{ei+1,. . . ,eτ})−f({ei+1,. . . ,eτ})) (3.28)

≤ 1

θ
(gS0(S∗

1 ) +
τ∑

i=1

1

α
f({ei}) (3.29)

≤ 1

θ

(
gS0(S∗

1 ) + τ
β

α

)
(3.30)

where (3.28) is from telescopic sum, (3.29) is from (3.15) and f(∅) = 0.

Lower bound for ϕ(S): Next, note that S0 is the set of nodes selected in the first stage

of Algorithm 4. In the second stage, the algorithm aims to solve the following set selection

problem:

gS0(S∗
1 ) = max

S1:S1⊆V\S0

|S1|=k−τ

min
A:A⊆S0∪S1
|A|=|S1|

f(A). (3.31)

in a greedy manner. That is, (3.13) constructs a set S1 of size k − τ iteratively, at each

iteration by selecting the node u that essentially maximizes the function,

u∗ = argmax
u

gS0(Ui ∪ {u}) (3.32)

= argmax
u

min
A:A⊆S0∪Ui∪{u}

|A|=|Ui|+1

f(A) (3.33)

= argmax
u

min
A:A⊆S0∪Ui
|A|=|Ui|

f(A ∪ {u}) (3.34)

where Ui denotes the already selected nodes at iteration i, accordingly, S1 = Uk−τ . Function

gS0(·) in (3.32) is monotonically non-decreasing, which can be proved by contradiction. Then,
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by letting ᾱ denote the approximate submodularity ratio of gS0(·), one can show through

similar steps from [17, 12] for bounding the performance of greedy algorithms that,

ϕ(S) = gS0(S1) ≥ (1− eᾱ)gS0(S∗
1 ). (3.35)

Relating ϕ(S∗) and ϕ(S): (3.35) when combined with (3.30), leads to (3.18).

We will now specify the f needed for our application. An important optimality criterion

based on the error covariance K(S) from (3.9) is minimizing the mean-squared error (MSE)

of the reconstructed signal. Also known as A-optimality [4], the MSE criterion is quantified

by tr(K(S)). Minimizing tr(K(S)) can be equivalently represented as the maximization of

f(S) where f(S) is defined as:

f(S) = tr(Γ)− tr(K(S)) (3.36)

= tr(Γ)− tr((Γ−1 +
∑
i∈S

µ−1
i rir

T
i )

−1) (3.37)

which is a non-negative, monotonically non-decreasing set function, with f(∅) = 0. In the

following, we study the approximate submodularity characteristics of the MSE function.

For tractability of our further analysis of maximizing f(S), we let Γ = σ2
xI and M = σ2

nI,

from which (3.37) can be written as

f(S) = σ2
x

(
|F| − tr((I+ γ

∑
i∈S

rir
T
i )

−1)

)
, (3.38)

where γ = σ2
x/σ

2
n is the SNR of the graph signals.

The submodularity ratio α for the function f in (3.38) can be bounded following the

same steps in [12][Theorem 3]. The submodularity ratio ᾱ, however, is based on function

(3.19) instead, which may be different from f in general. As such, the next result provides

a lower bound on the approximate submodularity ratio ᾱ.
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Proposition 3.1. The approximate submodularity ratio ᾱ in (3.19), where f is the MSE

criterion from (3.38), can be bounded below by,

ᾱ ≥ γ−1 + (1 + γ)−1

γ−1 + ρ
ρ(1 + γ)−2 (3.39)

where ρ = mini∈V ||ri||2.

Solution. The proof follows the lines of [12], but over the worst-case solutions in (3.19), and

is omitted due to space considerations.

We observe that ᾱ increases as SNR decreases. Hence the function becomes more sub-

modular. As a result, the greedy algorithm provides a good approximation of the optimal

solution in low SNR environments. In contrast, for the noiseless case, almost every subset

of |F| samples provides perfect reconstruction. Hence, in high SNR scenarios, the specific

choice of sampling set impacts the reconstruction error to a lesser extent [12].

3.4 Performance Evaluation

In our simulations, we let Γ = I and M = σ2
nI with σ2

n = 10−2, and |F| = 5. We compare

three algorithms, Algorithm 4, the conventional greedy set selection algorithm, and the

robust greedy optimization algorithm – termed as oblivious-greedy (OG) algorithm – from

[9, Algorithm 1]. The OG algorithm is a 2-stage algorithm as Algorithm 4. In stage 1,

nodes are selected obliviously as in Algorithm 4. In stage 2, however, the two algorithms

differ. The oblivious-greedy algorithm discards the τ nodes selected in the first stage and,

starting from an empty set, applies the conventional greedy algorithm for selecting k − τ

nodes in the second stage. On the other hand, Algorithm 4 combines the information from

samples selected in the first stage and selects the next node to maximize the performance
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of the worst-case subset. The performance of a selected set S is measured by the worst-case

performance:

min
A:A⊆S
|A|=k−τ

(tr(Γ)− tr(K(A))) ≜ tr(Γ)−MSE. (3.40)

We first consider a Barabasi-Albert graph created from 4 seed nodes, which has a scale-

free degree structure like many real-world topologies such as the web. The results, given in

Figure 3.1, show that Algorithm 4 can provide performance gains of up to 20% improvement

over the greedy algorithm and up to 12% over the OG algorithm. Next, we consider an Erdös-

Rényi graph with each edge drawn with probability p = 0.2. The results are illustrated in

Figure 3.2. In this setup Algorithm 4 can provide performance gains of up to 54% over the

conventional greedy algorithm and up to 7% improvement over the OG algorithm. In our

performances tr(Γ) = 5. Thus, in Figure 3.1 and Figure 3.2 at a performance level of 4.5,

a drop in the performance by 1 for a different method indicates a difference in the SNR

of 4.7dB between those two methods whereas at the performance level of 3 a drop in the

performance by 1 unit indicates a drop in the SNR by 1.76dB. As expected, the performance

of all three algorithms is the same when τ = 0, since in this case, both Algorithm 4 and the

OG algorithm reduce to the greedy algorithm. The performance improvement of Algorithm 4

over the OG algorithm becomes more significant for the scale-free network topology.

3.5 Conclusion

In this chapter, we considered a graph sampling problem in which one receives only a subset

of the selected samples. For this problem, we proposed a greedy robust sample selection

algorithm and investigated its performance guarantees. Numerical experiments show that the

proposed setup can significantly improve the performance over conventional greedy sample

selection algorithms and state-of-the-art robust set selection algorithms.
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Figure 3.1: Performance comparisons for Barabasi-Albert graph with (a) n = 100, (b)
n = 200.
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Figure 3.2: Performance comparisons for Erdös-Rényi graph with (a) n = 100, (b) n = 200.
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Chapter 4

Graph signal reconstruction with unknown signal

bandwidth

4.1 Introduction

In Chapter 2, we saw that the original signal can be predicted or reconstructed by solving

an inverse problem. However, note that reconstructing the signal using the bandlimited

signal model requires knowledge of the signal’s bandwidth. Most papers in the graph signal

processing literature [14, 57, 2, 34] assume this bandwidth is known. However, in many real

scenarios, the signal bandwidth is unknown. To add to this difficulty, in reality, signals are

not bandlimited to a certain maximum frequency because the signal may contain added noise.

Even if the signal is bandlimited for a particular graph construction, since the definition of

bandwidth is dependent on graph topology a slightly different graph construction may lead

to a non-bandlimited signal.

Even if the exact signal bandwidth is unknown (or if the signal is not exactly bandlim-

ited), reconstruction using the bandlimited model remains useful because it is based on

signal smoothness which is a reasonable assumption for many real-life signals like tempera-

ture. This means that it is important to optimize the choice of the bandwidth of the signal

for reconstruction, regardless of whether the original signal is bandlimited or not. Since the
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reconstruction error of the signal usually varies with the choice of the reconstruction band-

width, the bandwidth which gives us the smallest error over a choice of different bandwidths

would be the right choice for reconstruction. To select a bandwidth in such a way, we need to

know the reconstruction error for different bandwidth choices. However, we cannot calculate

the overall reconstruction error since there are unknown signal values. Thus, we need an

estimate of the actual reconstruction error.

Our main contribution is to formulate the problem of selecting a reconstruction band-

width from data, without knowledge of the actual graph signal bandwidth, a problem as yet

not considered in the graph signal sampling and reconstruction literature (see [67] for a re-

view). We propose a solution that uses a novel cross-validation methodology based on graph

signal sampling concepts. Specifically, we solve the problem of estimating the reconstruction

error which is essential to select a reconstruction bandwidth.

In a standard cross-validation setting [30], multiple random subsets are used to validate

parameter choices. In Chapter 2, we saw that random subset selection leads to poor recon-

struction performance (Figure 2.2). Similarly, using random subsets for cross-validation can

result in ill-conditioned reconstruction operators. To resolve that we propose a technique

that mitigates the effects of ill-conditioning by giving different importance to each random

subset. This approach significantly improves error estimation, and our proposed method

estimates the squared reconstruction error with good accuracy for a wide variety of both

synthetic and real-life graphs and signals.
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4.2 Problem formulation

4.2.1 Signal model

We consider the same bandlimited signal with noise model for the signal as in (1.2), with

explicitly defined bandlimited frequency coefficients given by α as follows

x = UFα+ n. (4.1)

However, for signal reconstruction, a signal model needs to be chosen in addition to the

graph.

Reconstruct

Sig model

Figure 4.1: Inputs to the reconstruction algorithm

Figure 4.1 shows the reconstruction process that we will consider in this chapter. Given

a graph G, a few known samples(colored in the figure) xS , the signal bandwidth f , the signal

is reconstructed. This reconstruction is done for every value of signal bandwidth that we

wish to test on.
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4.2.2 Model selection for reconstruction

With the signal model in (4.1) and known signal values xS , the signal on Sc can be recon-

structed as:

x̂Sc = UScF(U
T
SFUSF)

−1UT
SFxS .

This is a least squares reconstruction from Section 1.2.1 when the size of the known signal

set is larger than the signal bandwidth used for reconstruction, |S| > f , which is the setting

we consider in this chapter. Note that this reconstruction requires the signal bandwidth f

to be known, regardless of whether the signal is bandlimited or bandlimited with additional

noise. Most reconstruction algorithms assume that this bandwidth is known [14, 57, 72].

However, fundamentally this is a model selection problem where an appropriate bandlimited

signal model with a fixed bandwidth f must be chosen.

4.2.3 Bandwidth selection through reconstruction errors

Although the goal of model selection for signal reconstruction is to choose f , the signal itself

might not be bandlimited. As a result, there may not be any prior for signal bandwidth.

However, our primary goal is to minimize the reconstruction error:

ESc = ∥xSc − x̂Sc∥2 , (4.2)

where the estimate x̂Sc is a function of f , and so is ESc . To select f we propose a minimization

of ∥x̂Sc − xSc∥2 over a set of possible values of f , so that whichever bandwidth f minimized

the error will be used as the reconstruction bandwidth, f ∗ = minf ESc .

However, minimizing ∥x̂Sc − xSc∥2 is impossible without knowing xSc . For that reason,

we propose estimating the error ∥x̂Sc − xSc∥2 for different values of f using the known signal

values, xS . We limit the scope of this chapter to estimating this reconstruction error and

leave the bandwidth selection for future work. Towards that end, we propose an estimate,
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ÊSc , of the reconstruction error ESc for different values of f , such that |ESc− ÊSc | is as small

as possible. Cross-validation is a suitable tool for such estimations and we will consider that

next.

4.3 Cross-validation theory for graph signals

In order to accurately estimate the reconstruction error as a function of the signal bandwidth

f , it is essential to analyze in more detail the error with respect to subset selection on the

set of graph vertices.

4.3.1 Conventional error estimation and shortcomings

The reconstruction error, e(Sc), measured over the unknown nodes is the following:

e(Sc) = xSc − x̂Sc = xSc −UScF(U
T
SFUSF)

−1UT
SFxS .

To estimate this error we could split the set S further into the sets {S1,Sc
1},· · · , {Sk,Sc

k}

such that Si ∪ Sc
i = S for i ∈ {1, · · · , k}, estimate

e(Sc
i ) = xSc

i
−USc

i F(U
T
SiFUSiF)

−1UT
SiFxSi

,

and use the estimate

ÊSc =
∑

i∈{1,··· ,k}

∥e(Sc
i )∥

2 /k.

This would be equivalent to using the standard cross-validation approach that is typical

in linear model selection [60].
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Suppose that the noise vector has some representation,

n = UFγ +UFcβ, (4.3)

we can conveniently separate the bandlimited and non-bandlimited components of the signal

using the following representation:

x = UFα
′ +UFcβ, (4.4)

where

α′ = α+ γ. (4.5)

The bandlimited component of the signal has no effect on either e(Sc) or e(Sc
i ).

Using the new representation of the signal, to simplify the notation we define

M = UScFc −UScF(U
T
SFUSF)

−1UT
SFUSFc

Mi = USc
i Fc −USc

i F(U
T
SiFUSiF)

−1UT
SiFUSiFc .

Thus, our errors are

e(Sc) = Mβ, (4.6)

e(Sc
i ) = Miβ i ∈ {1, · · · , k}. (4.7)

The matrices M and Mi are what mainly differentiate the errors e(Sc) and e(Sc
i ). Be-

cause the subsets Si are selected randomly, Mi can be ill-conditioned although M is well-

conditioned. This ill-conditioning often causes the estimate of the cross-validation error to

be orders of magnitude higher than the actual error.

Intuitively, this can happen in cases where S is well connected to Sc but Si is poorly

connected to Sc
i . See Figure 4.2 for a toy example where all vertices in the graph are within
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Figure 4.2: Disconnected graph case for cross-validation. In this example, we sample a single
graph containing two connected components (left and right). Since the random subset Sc

i is
disconnected from Si, signal values on Sc

i cannot be inferred from signal values on Si.

one hop of S, but Si is disconnected from Sc
i . In this example, trying to reconstruct the signal

on Sc
i using the known signal values on Si is impossible because the graph is disconnected and

we only observe samples from one of the connected components. Thus, we cannot achieve a

meaningful reconstruction for nodes in the other (unobserved) connected component. This

can be viewed as an extreme case of ill-conditioning since the graph is disconnected graphs,

but this issue manifests itself for connected graphs and would be reflected as an ill-conditioned

Mi.

4.3.2 Proposed error estimation

As we noted in Section 4.3.1, averaging the error over random subsets may lead to the blowing

up of the error estimate due to the ill-conditioning of the reconstruction matrices. Such ill-

conditioning is caused when the magnitude of ∥Mi∥ in (4.7) is large. To obtain reliable

estimates in the presence of ill-conditioning, we propose a weighted averaging to estimate

the bandwidth, where we assign different importance (weight) to the reconstruction errors

estimated from different random subsets. Consider the singular value decomposition Mi and

the resulting expression for the reconstruction error on the set Sc
i :

Mi = ViΣiW
T
i , e(Sc

i ) = ViΣiW
T
i β. (4.8)
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Figure 4.3: Squared reconstruction errors vs bandwidth for bandlimited signal model. Legend
is common for all the plots.

We can see that ∥Mi∥ will be large when the singular values in Σi are large. Thus, to limit

the increase in ∥Mi∥ due to Σi, we propose to clip the singular values: We leave the singular

value σ in Σi unchanged if σ < 1, and clip it to 1 if σ ≥ 1. Define the singular value matrix

Σ′
i with the singular values as follows:

σ′ =


σ, σ > 1

1, σ ≤ 1

(4.9)

This helps in preserving the changes in the magnitude of ∥e(Sc
i )∥ due to ∥β∥ but limits

the effect of Mi having a large condition number. Although we decomposed Mi, it is worth

keeping in mind that we only have access to e(Sc
i ) and to control the magnitude of this error,

we can pre-multiply with a matrix. To achieve the transformation in the singular values, we
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multiply e(Sc
i ) with Σ′

i, the inverse of the clipped matrix of singular values, to obtain a new

error

enew(Sc
i ) = (Σ′

i)
−1VT

i e(Sc
i ), (4.10)

In (4.10), pre-multiplication of the existing error vector e(Sc
i ) by (Σ′

i)
−1VT

i can be interpreted

as giving more importance to certain vertices while ignoring others. Given that VT
i is not

diagonal, the weights in (Σ′
i)
−1 are not directly applied to individual vertices. The weights

on individual vertices can be seen as weighted averaging by the matrix Vi(Σ
′
i)
−1VT

i . Finally,

we estimate the error using

ÊSc =

∑
i∈{1,··· ,k}

∥∥(Σ′
i)
−1VT

i e(Sc
i )
∥∥2

k
(4.11)

ÊSc =

∑
i∈{1,··· ,k} ∥enew(Sc

i )∥
2

k
. (4.12)

4.4 Experiments

4.4.1 Graph construction

For the initial verification of our error estimation approach, we construct random regular

graphs with 1000 vertices according to the model RandomRegular from [18]. We define noisy

bandlimited signals with bandwidths {20, 50, 120} and power 1 and noise power levels 0.1

and 0.2 according to the model in (4.1). We call these graphs and signals synthetic graphs

and signals for our experiments.

For the next experimental validation, we use publicly available climate data from the Na-

tional Oceanic and Atmospheric Administration (NOAA) [70] measured by sensors through-

out the United States. The sensor data consists of different weather measurements such as

average daily temperature or precipitation, along with the corresponding sensors’ latitudes,

longitudes, and altitudes.
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Geographical region Signal Number of samples
California Avg. day temperature 100

West and west north central Avg. day temperature 200
US Avg. temperature monthly normal 200

Table 4.1: Setting for cross-validation experiments on sensor networks and weather data.

Using the locations, we construct graphs by connecting the five nearest sensor locations

to each sensor. The edge weights of the graph are given by e−d2/2σ2 , where we experimentally

choose σ = 50. We calculate the distance d between the measurement locations using the

latitude, longitude, and altitude of the measuring station using
√

d2f + d2a. df is the flat

distance computed using the distance package from geopy library, and da is the altitude.

While constructing the graph, we drop sensors whose measurements are missing because

there is no way to verify our predictions for those sensors. The measurements we include as

signals are day averages measured on 3rd January 2020 and monthly normals [20], which are

average measurements for January 2010.

4.4.2 Set selection

In Section 4.2, we assume that the signal values on a vertex set S are known. To select

this set for the constructed graphs on which we assume signal values are known, we use

the AVM algorithm from Chapter 2 to sample 200 vertices from each graph and observe

the reconstruction errors on the frequencies {10, 20, · · · , 110}. The only exception is the

California sensor network graph, where we sample 100 vertices and observe the reconstruction

errors over the frequencies {10, 20, · · · , 80} because the graph contains only 300 vertices. We

summarize this in Table 4.1.

To estimate the reconstruction error using cross-validation, we partition each sampling

set S into 10 subsets using RepeatedKFold function from model_selection package of

sklearn. We measure the squared reconstruction error on each subset of the partition, for

50 different random partitions, and average the squared reconstruction errors using (4.12).
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4.4.3 Results

We can see the results of our estimation in Figure 4.3. The estimated cross-validation error

tracks the actual error in the wide variety of the graphs and graph signals that we experiment

with. We note that in 4.3a the actual error increases slightly. However, the estimated error

does not increase with it. This is due to the error weighting strategy proposed in (4.10).

Since for the problem of choosing the bandwidth we are interested in correctly locating the

lowest value of the actual error, the ability of the error estimate to track the actual error

as it increases should be of lesser importance than its ability to track the actual error as it

decreases. A more accurate error estimation could be achieved with different set selection

or error weighting strategies for cross-validation, which we reserve for future work.

4.5 Conclusion

In this chapter, we proposed a way to minimize graph signal reconstruction error without

assuming the knowledge of the signal bandwidth. In the process, we tailored the cross-

validation method for the problem of reconstruction error estimation. Our technique ac-

curately estimated the error as a function of the signal bandwidth on various bandlimited

signals with noise and also for sensor networks measuring weather.

75



Chapter 5

Subgraph-based parallel sampling for large point clouds

5.1 Introduction

Analyzing and processing 3D structures is important for many applications such as au-

tonomous driving [32], geological elevation models [65], and preserving information from

historic sites [6]. Point clouds are one of the simplest data structures created when scanning

such 3D structures. For these reasons, processing point clouds is important for success in

these applications.

To prevent loss of information at the source while capturing 3D structures, point clouds

typically consist of closely spaced points. Realistic point clouds easily contain a hundred

thousand to a million nodes. However, not all parts of a point cloud need to be rendered in

the highest resolution for various applications such as detecting defects in terrestrial scans

[66] or segmentation [41]. Moreover, transmitting the point cloud requires the bandwidth to

be minimized. Point cloud subsampling is a popular approach to reduce the size of the point

cloud to process it for downstream tasks. In the past, point cloud subsampling approaches

have been used for downsampling the geometry of the point cloud. However, point cloud

attribute subsampling is equally important for applications such as attribute compression

for immersive communication [42]. We will consider attribute subsampling in this chapter.

Point clouds are often scans of 3D objects. As a result, most points lie on the surface of

the scanned objects. Since graphs are a good representation for manifolds, we consider graphs
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for this application of subsampling point clouds. We will consider the graph sampling and

reconstruction problem for graph signals. Point clouds often contain millions of data points.

Graph sampling methods in the literature, including those presented in this thesis, are often

not scalable to the size of millions of nodes in the graph. Therefore fast graph algorithms

need to be developed for sampling point clouds. We devote this chapter to developing

such algorithms. One way to speed up the sampling of point clouds is by parallelizing the

sampling process. For that, we propose dividing the point clouds into smaller point clouds,

constructing graphs on the smaller point clouds, and sampling graph signals on those smaller

subgraphs.

This chapter makes the following contributions to the problem of sampling point cloud

attributes:

• We propose a method of parallelizing graph sampling algorithms for large graphs

through partitioning of the entire graph into subgraphs

• The proposed algorithm provides at least 0.8dB gain in performance compared to

uniform sampling for all datasets we consider

• As future work, we propose approximations to speed up the algorithm even further

over the approach from Chapter 2

5.2 Problem formulation

A point cloud is a set of coordinates (x, y, z) and their corresponding attributes. Attributes

can contain object information, such as color, or structural information, such as surface

normals. We consider the kNN graph constructed using coordinates of the point cloud and

use the conventions and notations defined in Section 1.1. For the point cloud attribute signals

that we consider, we use the bandlimited model with noise from (1.2) with the luminance

channel as our signal x. We want to be able to measure the values of the signal at a few
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nodes S and predict the entire signal x̂ from those values. We measure the error as in (4.2)

on the vertices where the signal value is unknown.

ESc = ∥x(Sc)− x̂(Sc)∥2 (5.1)

The least squares reconstruction in (1.1) is computationally expensive for the entire

graph. We will adopt a simpler reconstruction for signals on point clouds. We will use

weighted edges to connect each unknown-signal point to its k nearest known-signal points.

These weights are used for reconstruction, with each unknown value estimated as a weighted

average of the attributes of its nearest neighbors with known attributes. More specifically,

x̂i =
w1ix1 + · · ·+ wkixk

w1i + · · ·+ wki

,

where wij are the edge weights in the graph constructed for the point cloud, and xi are

luminance values at the points in the cloud.

(a) G (b) G1 and G2

Figure 5.1: Original graph and its division into subgraphs for enabling the parallelized
sampling algorithm.

5.3 Distributed sampling

Towards the goal of distributed sampling for graph signals, we propose dividing the point

cloud into smaller point clouds. We construct graphs from these smaller point clouds which

we call subgraphs and apply a graph sampling algorithm to each subgraph.
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5.3.1 Problem formulation

5.3.1.1 Local sampling global reconstruction

We will assume that the partition of the graph into subgraphs is given. In practice, in this

chapter, point clouds are partitioned using octrees with suitable depth and each subgraph

connects all points within one of the octree volumes forming the partition. For simplicity,

consider Figure 5.1 where the graph is divided into two subgraphs, G1 and G2, with corre-

sponding vertex sets V1 and V2, respectively. Instead of solving the problem of selecting the

best sampling set on the entire graph, we solve the problem of sampling in the individual

graphs such that the original objective (5.1) is minimized. For a sampling set S1 selected

from graph G1, and a sampling set S2 selected from graph G2, we can reconstruct ˆx(Sc
1) and

x̂(Sc
2). From (2.5) the sampling set selection problem for the entire graph can be formulated

as:

S∗ = argmax
S⊂V,|S|=s

det(USRU
T
SR). (5.2)

After partitioning the graph, we wish to formulate separate optimization problems on the

two subgraphs of the original graph:

S∗
1 = argmax

S1⊂V,|S1|=s1

det(US1RU
T
S1R) (5.3)

S∗
2 = argmax

S2⊂V,|S2|=s2

det(US2RU
T
S2R) (5.4)

such that, (5.5)

s = s1 + s2, and (5.6)

S∗
1 ∪ S∗

2 = S∗ = argmax
S⊂V2,|S|=s

det(USRU
T
SR) (5.7)

This leaves the problem that optimizing problem (5.3) and (5.4) generally does not provide

an optimal solution for (5.2). This is illustrated by Figures 5.3band 5.3b, where we can

see that independent sampling in each subgraph (Fig. 5.3b) would lead to inefficiencies in
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a global interpolation, since points that are neighbors in the joint graph (but happen to be

in different subgraphs) have been sampled. To ameliorate this, we propose modifying the

subgraphs so that sampling the individual subgraphs independently can better mimic the

global sampling over the entire graph.

(a) Uniformly sampled graph (b) Uniformly sampled graphs after partition-
ing

Figure 5.2: Illustration of how uniform sampling works before and after partitioning.

5.3.1.2 Proxy for optimizing the sampling over subgraphs

We designed AVM in Chapter 2 to solve (5.2). The solution S obtained through AVM

depends on the underlying graph predominantly through dvs. A proxy for obtaining similar

sampling results using AVM on G1 as that on G is to make dv the same on both the graphs.

More specifically, we would want

dv,G(V1) = dv,G1 , ∀v ∈ V1, (5.8)

where we have used an additional subscript to denote the graph that dv is evaluated on.

Note that dv,G has length n but we only wish to compare the vectors over G1. Hence, we

consider a subset of the vector that corresponds to V1. In general (5.8) cannot be achieved

exactly. Here we propose to modify the graph G1 to obtain a new graph G ′1 for which (5.8)

can be approximately satisfied, that is,

G ′∗
1 = argmin

G′
1

∑
v∈V1

∥∥dv,G(V1)− dv,G′
1

∥∥2 . (5.9)
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The operators can be seen as low-pass filters with a cut-off frequency. The first step to

having the same operators for the original graph and the subgraphs is to have the same cutoff

frequency for the operator on the subgraph and on the original graph. Using polynomials to

synthesize the filter, this can be achieved by setting the cutoff frequency before computing

the polynomial filter coefficients.

(a) AVM sampled graph (b) AVM sampled graphs after partitioning

Figure 5.3: Illustration of how AVM sampling works before and after partitioning.

(a) Issue with AVM sampling after partition-
ing

(b) Proposed graph modification for AVM
sampling after partitioning

Figure 5.4: AVM tends to favor sampling more isolated (lower degree) nodes. Our proposed
solution of adding self-loops prevents this bias towards boundary nodes.

Since we represent filters by their corresponding polynomials, we can make the filter

operator the same by using the same polynomial coefficients corresponding to a single cutoff

frequency. However, we also want the result of filtering operations on the graph signals to

be the same. This is more difficult to achieve because the domain of the filter has changed.

We still want the effects of the filter to be the same on the smaller domain. To ensure it is

enough to ensure that the signals obtained by filtering delta signals to be the same.

Consider a polynomial representation of a filter p(L1) where the order of the polynomial is

k. If the boundary of G1 is at a distance of k-hops or more from a vertex 1, p(L1)δ1 = p(L)δ1.
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However, if vertex 1 is less than k-hops away from the boundary, the effects of the filter will

not be the same. The effects of the filter only depend on two factors, the frequency response

of the filter and the graph input to the filter. If we want to use the same filter for the entire

signal, and also keep the effects of the filter the same for delta signals localized in the interior

of the graph, we have to modify the graph Laplacian.

(a) Uniformly sampled graph

1

2

3
4

(b) Uniformly sampled graphs after partition-
ing

Figure 5.5: Illustration of how uniform sampling works before and after partitioning.

5.3.2 Distributed sampling through graph modifications

To improve the performance of independent sampling of subgraphs, we propose to modify

the subgraphs such that the effect of the polynomial filtering on the subgraphs is as close as

possible to filtering on the original graph. Essentially this entails introducing graph modi-

fications at the boundaries between subgraphs, i.e., where edges were removed to partition

the original graph.

For concreteness, we will consider the graph G which is split into graphs G1 and G2 as in

Figure 5.1. Without loss of generality, we will solve the problem for G1. We consider changing

edge weights for all edges in the graph G1 and adding self-loops to all vertices. Since our

goal is to compensate for the effect of partitioning on filtering operations, we consider the

simplest possible graph filter, i.e., a first-order polynomial filter:

p(L) = c0I+ c1L. (5.10)
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Problem 5.1. We propose to modify edge weights between vertices and add self-loops to

vertices of G1 such that Laplacians of G, and the modified graph G ′1 satisfy

(c0I+ c1L)δi = (c0I+ c1L
′
1)δi, ∀i ∈ V1. (5.11)

Solution. We want to compare the effects of this filter on graph vertices in G1. Consider

Figure 5.2b, where one edge connects graph G1 with graph G2. Let the change in edge

weights be ϕij and self-loops of degrees ϕi be added to each vertex.

L′
1 =


w12 + w13 + ϕ12 + ϕ13 + ϕ1 −w12 − ϕ12 −w13 − ϕ13

−w12 − ϕ12 w12 + ϕ12 + ϕ2 0

−w13 − ϕ13 0 w13 + ϕ13 + ϕ3

 (5.12)

First, consider the case a filtered delta signal localized in the interior of G1.

L′
1δ2 =


−w12 − ϕ12

w12 + ϕ12 + ϕ2

0

 (5.13)

For these points, we can see that equality (5.1) can be achieved, i.e.,

L′
1δ2 = Lδ2(V1), (5.14)

for ϕ12 = 0 and ϕ2 = 0. This means that when comparing the effects of a first-order filter,

the edges and vertices in the interior of the subgraph should remain the same.
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Next, consider the effects of the filter on a boundary vertex.

L′
1δ1 =


w12 + w13 + ϕ12 + ϕ13 + ϕ1

−w12 − ϕ12

−w13 − ϕ13

 (5.15)

On equating the filtered delta signal using L and L′
1, where Φ is unknown,

L′
1δ1 = Lδ1(V1), (5.16)

we observe that we need to add a self-loop with edge weight w14 to achieve equality while

the edge weights remain unchanged.

L′
1 =


w12 + w13 + w14 −w12 −w13

−w12 w12 0

−w13 0 w13

 (5.17)

More generally, the weight of the self-loop added to a vertex v in G1 is the sum total of all

edges connecting v to G2 in G.

We will use the self-loop modification for vertices on the boundary of the partitioned

graphs for experiments and demonstrate that the performance comparably improves while

providing us with significant parallelization capabilities.

5.4 Experiments and Results

We consider the point clouds in the Microsoft voxelized upper bodies dataset [43] and 8i

Voxelized Full Bodies dataset [21]. The dataset consists of point clouds for different people,

with multiple point clouds of each person in different postures. For our experiments, we will
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use one point cloud for each unique person in the dataset, and we consider the luminance

channel of the point cloud as our signal.

Figure 5.6: Point clouds for experiments

Table 5.1: Reconstruction PSNRs for various sampling algorithms

Dataset Uniform AVM AVM-SL
Sarah 46.62 47.43 47.66

Andrew 34.5 35.19 35.31
Longdress 31.5 32.23 32.43

Redandblack 37.87 38.94 39.15
Soldier 35.8 37.05 37.29
Loot 39.91 40.9 41.14
David 45.4 46.36 46.53
Phil 36.62 37.33 37.42

Ricardo 46.59 47.23 47.55

We divide each point cloud using octrees in blocks of size 264 × 264. Increasing the sub-

graph sizes leads to improvement in the performance, at the expense of more computational

time however we don’t focus on that in this chapter. We construct k nearest neighbor graphs

over each of the smaller point clouds with k = 5. We sample the subgraphs created by each

block using multiple algorithms and reconstruct them using (5.2) from 10 nearest known
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Table 5.2: Algorithm execution times in secs.

Dataset Uniform AVM AVM-SL
Sarah 0.013 284 297

Andrew 0.021 457 468
Longdress 0.013 194 193

Redandblack 0.011 161 160
Soldier 0.014 226 227
Loot 0.011 141 144
David 0.023 371 380
Phil 0.024 425 398

Ricardo 0.013 229 230

samples. We compare the PSNR resulting from samples from three sampling algorithms

— Uniform sampling [64], AVM, AVM with self-loops (AVM-SL). We run all the AVM

algorithms in parallel on 8 CPU cores.

From Table 5.1, we can see that AVM outperforms uniform sampling in terms of recon-

struction performance by 1dB in most cases. Additionally, AVM SL attains about 0.3dB

gain in performance in most cases. In table 5.2 we see that Uniform sampling is faster than

all the AVM-based algorithms. AVM and AVM-SL, on the other hand, take the longest to

finish. However, it is worth noting that point clouds like Phil contain more than a million

points, and AVM and AVL-SL finish executing within 8 minutes for all datasets we consid-

ered. In comparison, executing an unparallelized version of a fast algorithm like AVM takes

time in hours and the algorithms we developed finish at least ten times faster.

5.4.1 Further approximations for faster sampling

To speed up AVM-SL even further, we propose the following modifications as future work.

5.4.1.1 Leveraging degree information

Even after sampling in parallel after the self-loop modification, there is scope for making the

sampling algorithm faster. The three sources of complexity in AVM come from

1. Frequency estimation
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(b) Eigenvalue and spectrum estimation

Figure 5.7: Estimating λk using λmax

2. Coherence estimation

3. Evaluating polynomials on the graph

To solve these issues, we propose the following modifications to the AVM algorithm:

1. First order approximation to the frequency spectrum

2. Coherence estimation using degree and neighbors

3. Reducing polynomial degrees

These modifications can also be used for applications other than point clouds.

5.4.1.2 First order approximation to frequency spectrum

The computation of coherences in Algorithm 2 involves the estimation of two frequencies -

λmax and λk. Extreme eigenvalues like λmax can be iteratively computed with the complexity

of each iteration linear in the number of edges of the graph — [37], but estimating λk is

more computationally expensive. To address this λk can be estimated as follows:

λ̂k =
kλmax

n
. (5.18)
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For graphs, such as kNN, constructed from points whose pairwise distances do not show

extreme variations such as those we study here, the frequency spectrum can be reasonably

estimated using a linear approximation. Figures 5.7a and 5.7b illustrate this estimation for

a block in the soldier point cloud.

5.4.1.3 Coherence estimation using degree and neighbors

Estimating coherence in Algorithm 2 is another computationally expensive task. However,

we note that coherences, graph vertex degrees, and neighborhoods are highly correlated.

This is because for higher filter frequencies corresponding to larger sampling rates, p(L)δi

is localized to the neighborhood around the vertex. As a result, the polynomial filters have

dominant weights corresponding to the zeroeth and first-order coefficients. These zeroeth

and first-order coefficients correspond to the edge weights of the neighbors of a vertex and

vertex degrees. We propose estimating the coherences using a function of the vertex degrees

and the 1-hop neighborhood of the vertices.

We estimate the coefficients of the polynomial using the Chebyshev polynomial approx-

imation [55]. We know that the diagonal of the filter operator matrix gives us the squared

coherence:

p(L)(i, i) = ∥di∥2 (5.19)

5.4.1.4 Reducing polynomial degrees

Finally, filtering signals using polynomials over the graph is another expensive computation.

The computational requirement is linear in the order of the polynomial. To alleviate the

computational cost, we reduce the polynomial order to 1.
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5.5 Conclusion

In this chapter, we considered applications of the AVM algorithm to a million node graphs

with high sampling rates. In the process, we extended AVM to be parallelizable. To im-

prove the performance of parallelized algorithm, we proposed modifications to the graph

of the point cloud and demostrated the performance improvements on several large-scale

point clouds. In addition, we provided modifications to speed up the existing parallelized

implementation by more than ten times.
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Chapter 6

Conclusion

The sampling problem for traditional signals like audio and images is well-studied. In this

thesis, we considered the setting of sampling and reconstruction ( Figure 6.1) of unstructured

data represented as graph signals.

Sample Reconstruct

Figure 6.1: Sampling and reconstruction pipeline

It is necessary that graph signal sampling and reconstruction algorithms should work on

a diverse set of graph types and sizes, unknown signal models, corruption of input signal,

and real-time applications. We devote various chapters — see Table 6.1, for these problems.

Table 6.1: Proposed algorithms and contributions

Chapter Problem considered
2 Computationally scalable sampling algorithm
3 Signal corruption and sample loss
4 Unknown signal model for reconstruction
5 Towards real-time sampling algorithms through parallelization
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Through considering the sampling and reconstruction problem for graph signals in various

settings such as semi-supervised learning, sensor networks, point clouds, we showed that the

sampling algorithms that traditionally existed in for structured signals can also be extended

for graph signals and made scalable and robust. We proposed several algorithms that improve

the current state-of-art sampling and reconstruction strategies. Table 6.2 summarizes those

algorithm contributions.

Table 6.2: Proposed algorithms and contributions

Algorithm Contribution
DC Sampling using graph distances

AVM Scalable graph sampling algorithm
Robust sampling Sampling preemptively against data loss
Error estimation Towards signal reconstruction with unknown signal bandwidth

AVM-SL Sampling algorithm parallelization

Through the proposed algorithms which are faster and more robust for sampling and

reconstruction for graph signals, we pushed the limits of graph signal processing in this

thesis.
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Appendices

A Proof of eigenvector convergence

Lemma 6.1. There exists a signal ϕ in the orthogonal subspace to ψ∗ with ϕ(Sm) = 0, ∥ϕ∥ =

1 whose out of bandwidth energy is a minimum value c0 ̸= 0.

Solution. The set of signals {ϕ : ϕ(Sm) = 0, ∥ϕ∥ = 1} is a closed set. Let
(
x1 · · · xn

)T

be in the set for any ϵ. Then
(
x1 + ϵ/2 x2 · · · xn

)T

is in the ϵ neighborhood. Distance

exists because it is a normed vector space. That vector does not have ∥∥ = 1 so it is not in

the set. So for every ϵ-neighborhood ∃ a point not in the set. So every point is a limit point

and the set is a closed set.

Out of bandwidth energy is a continuous function on our set. Let v1,v2 be such that

v1,v2 ⊥ ψ∗ and v1(Sm) = 0,v2(Sm) = 0. Let us suppose that the Fourier coefficients for v1

and v2 are (α1, · · · , αn)
T and (β1, · · · , βn)

T . Then we want

n∑
i=m+2

(α2
i − β2

i ) < ϵ (A.1)

for some δ where ∥v1 − v2∥ < δ. We can show that (A.1) holds when δ = ϵ/2.

Since the set is closed and the function is continuous on the set, the function attains a

minimum value. Minimum value cannot be zero because there is a unique signal ψ∗ with

that property, and we are looking in a space orthogonal to ψ∗. So there is a signal with

minimum out of bandwidth energy of c0 where c0 > 0.
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Next, this appendix shows the proof for the l2 convergence from Theorem 2.1.

Solution. Let us look at a particular step where we have already selected Sm vertices. The

solutions to the following optimization problems are equivalent.

ψ∗
k = argmin

ψ

ψTLkψ

ψTψ
= argmin

ψ,∥ψ∥=1

ψTLkψ.

Therefore, we will consider solutions with ∥ψ∥ = 1.

Let us consider the space of our signals. ϕ(Sm) = 0,ϕ ∈ Rn is a vector space. Dimension

of this vector space is n−m.

For any k, let us represent our solution for k as ψ = α1ψ
∗+α2ψ

⊥. Here ψ⊥ is a vector in

the orthogonal subspace to our vector ψ∗. We can do this because we have a vector space and

it has finite dimensions. One condition on our signal is that α2
1+α2

2 = 1, ∥ψ∗∥ = 1,
∥∥ψ⊥∥∥ = 1.

Furthermore, we know the Fourier transform of our two signal components.

ψ∗ F−→UTψ∗ =

[
γ1 · · · γm+1 0 · · · 0

]T
= γ,

ψ⊥ F−→UTψ⊥ =

[
β1

... βn

]T
= β.

Our signal can be written as

[
ψ∗ ψ⊥

]α1

α2

 =

[
ψ∗ ψ⊥

]
α.

Our objective function becomes the following:

αT

ψ∗T

ψ⊥T

Lk

[
ψ∗ ψ⊥

]
α = αT

γT

βT

Σk

[
γ β

]
α

= αT

 ∑m+1
i=1 γ2

i σ
k
i

∑m+1
i=1 γiβiσ

k
i∑m+1

i=1 γiβiσ
k
i

∑n
i=i β

2
i σ

k
i

α = αT

a b

b d

α.
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In the last equation a, b, c, d are just convenient notations for the scalar values in the 2 × 2

matrix. Note that a, d > 0 because σi > 0 and the expression is then a sum of positive

quantities. Note that we want to minimize the objective function subject to the constraint

∥α∥ = 1. We solve this optimization problem by a standard application of the KKT condi-

tions [11].

The Lagrangian function corresponding to our constrained minimization problem is as

follows:

L(α, λ) = αT

a b

b d

α+ λ(αTα− 1).

The solution which minimizes this objective function is the eigenvector of the matrix

a b

c d


with the minimum eigenvalue. To prove that we take the gradient of the equation with respect

to α and put it to 0.

This gives us two first order equations.

aα1 + bα2 + λα1 = 0, bα1 + dα2 + λα2 = 0.

α1 = 0 implies α2 = 0 unless b = 0 and vice versa. Both α1 and α2 cannot be zero at the

same time otherwise our solution does not lie in our domain of unit length vectors. However

either of α1 or α2 can be 0 only if b = 0. If b = 0, for large k the solution is given by

α2 = 0, α1 = 1 because we show next that a/d can be made less than 1/2 for k > k0. We

now analyze the case where b ̸= 0 and so a + λ ̸= 0 and d + λ ̸= 0. Writing α2 in terms of

α1 for both the equations we get:

α2 =
−(a+ λ)

b
α1, α2 =

−b
d+ λ

α1.
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Equating both the expressions for α2 (and assuming α1 ̸= 0)gives us a quadratic with two

solutions. Since a, d > 0 the positive sign gives us the λ with lower magnitude.

λ =
−(a+ d) +

√
(a− d)2 + 4b2

2
.

We now use the condition that the solution has norm one. Solution of this gives us a value

for α2.

α2 = ∓
a− d+

√
(a− d)2 + 4b2√(

a− d+
√

(a− d)2 + 4b2
)2

+ 4b2
.

We look at the absolute value of the α2.

|α2| =
2|b|√

(−(a− d) +
√

(a− d)2 + 4b2)2 + (2b)2

Let us find a k0 such that |b|/d < ϵ/2(ϵ > 0) for all k > k0. This will also make a/d < 1/2.

This will help us make the entire expression less than ϵ for k > k0 (A.3). We upper bound b

in the following way.

|b| = |
m+1∑
i=1

βiγiσ
k|

≤

√√√√m+1∑
i=1

β2
i γ

2
i

√√√√m+1∑
i=1

σ2k
i

≤ 1.
√
m+ 1σk

m+1 = b1.

Now we know that the least possible value of d is c0σ
k
m+2. So when k > k0 we get the

following upper bound for |b|/d in terms of ϵ:

|b|
d
≤
√
m+ 1σk

m+1

c0σk
m+2

.
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We want this to be less than ϵ/2, which gives us our condition on k.

√
m+ 1σk

m+1

c0σk
m+2

<
ϵ

2

k >

⌈
log(m+ 1)/2 + log 1/ϵ+ log(2/c0)

log σm+2

σm+1

⌉
. (A.2)

a/d also admits a similar analysis.

a

d
≤

σk
m+1

c0σk
m+2

k >

⌈
log(2/c0)

log σm+2

σm+1

⌉
. (A.3)

Since this value of k is equal or lesser than the value of k required for |b|/d < ϵ/2, for our

theorem we will take the value (A.2). When d divides both the numerator and denominator

of the equation it gives us the expressions we need in terms of a/d and |b|/d.

|α2| =
|2b/d|√(

1− a/d+
√

(a/d− 1)2 + 4(b/d)2
)2

+ (2b/d)2

<
ϵ

|1− a/d+
√

(1− a/d)2 + ϵ2|

<
ϵ

|2(1− a/d)|
< ϵ.

This implies that as k increases the coefficient of out-of-bandwidth component goes to

zero. Because the out-of bandwidth signal has finite energy, the signal energy goes to zero as

α2 → 0. Whether ψ∗
k converges to ψ∗ or −ψ∗ is a matter of convention. Hence as k →∞,

ψ∗
k → ψ∗.
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B Justification for ignoring target bandwidth while

sampling

We know that selecting the right USF matrix is essential to prevent a blow-up of the error

while reconstructing using (1.1). In practice for reconstruction the bandwidth is f ≤ s.

However, for our AVM sampling algorithm we chose the bandwidth to be |R| = s instead.

We next address why that is a logical choice with respect to D-optimality.

The matrix UT
SSUSS is positive definite following from our initial condition of the set S

being a uniqueness set. This provides us with the needed relations between determinants.

We can see that UT
SFUSF is a submatrix of UT

SSUSS .

UT
SSUSS =

 UT
SFUSF UT

SFUS,f+1:s

UT
S,f+1:sUSF UT

S,f+1:sUS,f+1:s

 .

This helps us to relate the matrix and its submatrix determinants using Fischer’s inequality

from Theorem 7.8.5 in [31].

det(UT
SSUSS) ≤ det(UT

SFUSF) det(U
T
S,f+1:sUS,f+1:s) (B.1)

The determinant of the matrix UT
S,f+1:sUS,f+1:s can be bounded above. The eigenvalues

of UT
S,f+1:sUS,f+1:s are the same as the non-zero eigenvalues of US,f+1:sU

T
S,f+1:s by Theorem

1.2.22 in [31]. Using eigenvalue interlacing Theorem 8.1.7 from [28], the eigenvalues of the

matrix US,f+1:sU
T
S,f+1:s are less than or equal to 1 because it is submatrix of UV,f+1:sU

T
V,f+1:s

whose non-zero eigenvalues are all 1. As the determinant of a matrix is the product of its

eigenvalues, the following bound applies:

det(UT
S,f+1:sUS,f+1:s) ≤ 1. (B.2)
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Using (B.1) and (B.2) and positive definiteness of the matrices, we now have a simple

lower bound for our criteria under consideration:

|det(UT
SSUSS)| ≤ |det(UT

SFUSF)|. (B.3)

Thus, for example it is impossible for |det(UT
SSUSS)| to be equal to some positive value while

|det(UT
SFUSF)| being half of that positive value.

To summarize, instead of aiming to maximize |det(UT
SFUSF)|, we aimed to maximize

|det(UT
SSUSS)|. This intuitively worked because optimizing for a D-optimal matrix indirectly

ensured a controlled performance of the subset of that matrix. In this way due to the relation

(B.3), we avoided knowing the precise bandwidth f and still managed to sample using the

AVM algorithm.

C Approximating Gram matrix by a diagonal matrix

Here we try to estimate how close our approximation of DT
mDm to a diagonal matrix is.

Towards this goal we define a simple metric for a general matrix A.

Fraction of energy in diagonal =
∑

i A
2
ii∑

i

∑
j A

2
ij

. (C.1)

Since this can be a property dependent on the graph topology, we take 5 different types of

graphs with 1000 vertices — Scale-free, WRS sensor nearest neighbors, Erdős Rényi, Grid,

Line. Using AVM we select a varying number of samples ranging from 1 to 50. With the

bandwidth f taken to be 50, we average the fraction of the energy (C.1) over 10 instances

of each graph and represent it in Fig. 6.2.

We observe more than 0.75 fraction of energy in the diagonal of the matrix DT
mDm, which

justifies this approximation. According to our experiments, which are not presented here, the

inverse of the matrix (DT
mDm)

−1 is not as close to a diagonal matrix as DT
mDm is to a diagonal
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Figure 6.2: Closeness to diagonal at each iteration.

matrix. Nevertheless, in place of (DT
mDm)

−1 we still use diag
(
1/∥d1∥2, · · · , 1/∥dm∥2

)
for

what it is, an approximation.

Note however that the approximation does not hold in general for any samples. It holds

when the samples are selected in a determinant maximizing conscious way by Algorithm 2.

This approximation is suited to AVM because of its choice of sampling bandwidth, R. As the

number of samples requested increases, so does the sampling bandwidth. The higher band-

width causes the filtered delta signals to become more localized causing energy concentration

in the diagonal and keeping the diagonal approximation reasonable and applicable.

D D-optimal sampling for generic kernels

Another graph signal model is a probabilistic distribution instead of a bandlimited model

[25], [73]. In such cases, the covariance matrix is our kernel. The subset selection problem is

defined as a submatrix selection of the covariance matrix. Framing the problem as entropy

maximization naturally leads to a determinant maximization approach [61].

To define our problem more formally, let us restrict space of all possible kernels to the

space of kernels which can be defined as K = g(L) with g defined on matrices but induced
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from a function from non-negative reals to positive reals g : R≥0 → R>0. An example of

such a function of L would be (L + δI)−1. Such a function can be written as a function

on the eigenvalues of the Laplacian K = Ug(Σ)UT . Motivated by entropy maximization in

the case of probabilistic graph signal model, suppose we wish to select a set S so that we

maximize the determinant magnitude |det(KSS)|.

There are a few differences for solving the new problem, although most of Algorithm

2 translates well. We now wish to maximize |det(USg(Σ)UT
S )|. The expression for the

determinant update remains the same as before.

det


DT

mDm DT
mdv

dT
vDm dT

v dv


 ≈ det(DT

mDm) det(d
T
v dv − dT

vDm(D
T
mDm)

−1DT
mdv)

Only now we have to maximize the volume of the parallelelpiped formed by the vectors

dv = Ug1/2(Σ)UTδv for v ∈ S. The squared coherences with respect to our new kernel

dT
v dv are computed in the same way as before by random projections. The diagonal of our

new kernel matrix now approximates the matrix DT
mDm.

DT
mDm ≈ diag((Ug(Σ)UT )11, · · · , (Ug(Σ)UT )nn)

The other difference is that the approximate update stage is given by

v∗ ← argmax
v∈Sc

∥dv∥2 −
∑
w∈S

(Ug1/2(Σ)UTdw)
2(v)

∥dw∥2

with the difference resulting from the kernel not being a projection operator. So for a generic

kernel with a determinant maximization objective, Algorithm 2 works the same way with

minor modifications discussed here.
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