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Abstract

Fake multimedia has become a central problem in the last few years, especially after the

advent of neural networks. Fake multimedia are usually created by whole generation, partial

tampering or information hiding. Media forensics, on the contrary, aims to detect the

fake contents or discover the hidden information from fake objects. It leverages the fact

that manipulation actions leave detectable traces, making fake media objects statistically

distinguishable from genuine ones.

In this dissertation, we specifically study two long-standing problems in image forensics:

GAN-generated image detection and spatial image steganalysis. The former one aims to

detect images that are synthesized by generative models. The latter one focus on distin-

guishing stego and cover images in spatial domain, where stego images are generated by

various content-adaptive steganography algorithms. The stego signal that are embedded

into cover images is so weak that the difference in pixel domain in only +1 or -1.

Existing GAN-generated image detection methods are all based on deep neural networks.

However, they often need enormous amount of data or intensive data augmentation to

maintain its performance with respect to unseen dataset. This motivates us to find a green

(light-weight), robust and high-performance GAN-fake image detector. We propose RGGID,

which utilizes the assumption that generative models often fail to synthesize well on high-

quality details or complex texture regions. We make decision on blocks from those regions

and select discriminant soft scores for image-wise decision fusion. RGGID offers a green

solution for GAN-generated image detector since its model size is significantly smaller than

xii



that of deep neural networks (DNNs). We apply common manipulations to real/fake source

images, including JPEG compression, resizing and Gaussian additive noise, and demonstrate

the robustness of RGGID to these manipulations. Furthermore, we prove the generalization

ability of RGGID on 11 unseen generative architecture and dataset by training soley on

ProGAN and test on other dataset.

Compared to GAN-fake image detection, image steganalysis is a more challenging task.

There exist traditional method and deep learning-based method for steganalysis. CNN-

based models are proved to have better performance than the three-step traditional machine

learning method. However, more secure and complicated steganography schemes force CNN

architectures to go deeper and denser, which inevitably results in the insatiable need of mem-

ory and computational resources. Motivated by the disadvantages of both methods, we pro-

posed a novel learning solution to image steganalysis based on the green learning paradigm,

called Green Steganalyzer (GS). GS consists of three modules: 1) pixel-based anomaly pre-

diction, 2) embedding location detection, and 3) decision fusion for image-level detection. In

the first module, GS decomposes an image into patches, adopts Saab transforms for feature

extraction, and conducts self-supervised learning to predict an anomaly score of their center

pixel. In the second module, GS analyzes the anomaly scores of a pixel and its neighborhood

to find pixels of higher embedding probabilities. In the third module, GS focuses on pixels of

higher embedding probabilities and fuses their anomaly scores to make final image-level clas-

sification. Compared with state-of-the-art deep-learning models, GS achieves comparable

detection performance against S-UNIWARD, WOW and HILL steganography schemes with

significantly lower computational complexity and a smaller model size, making it attractive

for mobile/edge applications. Furthermore, GS is mathematically transparent because of

its modular design supported by logical arguments.

xiii



Chapter 1

Introduction

1.1 Significance of the Research

Recent years, rapid advances of image generation and manipulation techniques have pushed

manipulated content into a higher realism level. The boundary between real and synthetic

image are largely narrowed. On the one hand, it provides a new horizon to a series of

exciting applications such as creative arts, film production and game design. On the other

hand, enormous security threats from manipulated content are inevitably posed upon us.

As the prevalence of image/video editing software on social media, any individual can create

realistic fake images and videos freely. In addition, with the help of deep-learning tools like

Generative Adversarial Networks (GAN) and AutoEncoders, creating realistic manipulated

images or videos is easy as long as one can have access to large amount of data. Figure

1.1 shows some popular deepfake manipulations from YouTube where manipulated videos

(top row) are synthesized from original ones (bottom row). These videos are made for

fun and manipulations are easy to spot. However, similar deepfake videos may be used

maliciously, especially for political purposes. By altering identity or information from the

original image/video, manipulated image/video can easily mislead the public, resulting in

unconvincing journalism, even unconvincing government.
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Figure 1.1: Examples of deepfake manipulations from YouTube. Top: manipulated video
frames. Bottom: original video frames.

Figure 1.2: Examples of fake faces from https://this-person-does-not-exist.com.

Similar example of fully-synthetic face images are showed in Figure 1.2, which are ran-

domly acquired from https://this-person-does-not-exist.com. The fake faces are generated

by StyleGAN [43], a neural-network based generative model which works on style transfer

of human faces, such as gender alternation, hair style transfer, etc. The generated faces are

too realistic so that it cannot be distinguished by human eyes. If anyone falsify an identity

using fake images like Figure 1.2, social credit will be posed under serious threat. Under

this circumstances, it’s significant to develop a reliable fake-image detector for automatically

detecting fake images.

Other than GAN-fake image detection, a more challenging task in image forensics is

steganalysis. Steganalysis aims to detect the media which have secret information embed-

ded, while steganography wants to embed secret information as much as possible without

being detected by steganlyzers. Steganography is often used in encrypted communication,

especially during military operation. Cover medium used by steganography include image,

2



Figure 1.3: Example of cover (left) and stego (right) image. Difference map between cover
and stego image is shown below.

audio, video or even text. In this dissertation, we only focus on image steganalysis. Figure

1.3 presents an example of embedded image (stego) and original image (cover). A difference

map between example cover and stego image is also presented in Figure 1.3. Visually, we

cannot see any difference between the two, since the alternation in pixel domain is only

±1. Steganalysis has been a long-going topic in image forensics. In early stages, embedded

pixels are pervasive in terms of embedding location across the whole image. One of the

famous steganography scheme of this kind is LSB replacement and LSB matching, where

LSB stands for Least Significant Bit. However, this steganography technique is not secure

enough as steganalysis methods evolve. With the advances of steganography techniques,

embedded stego-signals become more challenging to be detected, as they are more concen-

trated in complex texture regions. In this case, it’s necessary to develop a steganalysis

solution for content-adaptive steganography schemes.

In this dissertation, we first focus on GAN-generated image detection. Then, we move on

to image steganalysis, which is to detect the weak noise-like embedded signal from images.

For both tasks, we aim to provide light-weight, mathematically transparent and robust

3



solutions. While we are able to achieve higher or comparable performance with CNN-based

methods, our model size and computational cost are significantly less.

1.2 Contributions of the Research

1.2.1 Robust and Green GAN-fake Image Detector

For GAN-generated image detection, there exist several deep learning-based models to solve

this problem. Existing CNN-based models usually have high performance under specific

dataset or generative architecture. However, when a new generative model or dataset comes

out, CNN-based models often fail to generalize well on it. Even if they can maintain perfor-

mance, enormous amount of data or intensive data augmentation are needed when training

models. To address this problem, we propose a light-weight, robust, and mathematically

transparent solution for GAN-fake image detection.

• We take advantage of the up-sampling architecture in GAN-based generative models.

That is, they cannot synthesize well on high-frequency components of images, such as

high-quality details, complex textures and edges. We decompose image into several

small image blocks, and select blocks from images that are from aforementioned com-

plex texture regions since they contain more discriminant high-frequency components.

• We incorporate unsupervised feature learning method called PixelHop to extract fea-

tures from selected blocks. In PixelHop unit, filter weights are derived from a variant

of PCA transform without any end-to-end training or back-propagation. The compu-

tational complexity and space complexity are largely reduced because of it.

• We propose to make decision on each feature map of block-wise features. By analyz-

ing classifier performance on each feature map, we collect soft decision scores from

discriminant feature maps, which mainly come from high frequency channels.

4



• We propose to use two-end ensemble strategy in decision fusion. Since collected soft

decision scores form a distribution and real and fake block scores are more separable

in tail regions, we sample small percentage (10%) of scores from the two-end of the

distribution and form a feature vector for ensemble classifier. In this case, feature

dimension for each image is fixed for training ensemble classifier.

• Other than evaluating our method on raw images, we design 3 image manipulation

scenarios, JPEG compression, image resize and additive noise to testify the robustness

of our method against various image manipulation. We analyze the effect of image ma-

nipulation on the fundamental assumption of our method. Robustness of our method

is demonstrated by the maintained performance under all 3 manipulation cases.

• We demonstrate the generalization ability of our method on unseen generative ar-

chitectures and dataset by training on solely ProGAN images and test on other 11

various generative models, including 6 GAN-based models, 4 CNN and 1 autoencoder

based model. Superior performance validates our method can be well generalized to

all state-of-the-art unseen dataset.

1.2.2 Green Steganalysis

There exist traditional and deep learning-based methods for image steganalysis. For tradi-

tional methods, hand-crafted filters are often utilized to suppress image content and increase

SNR of stego-signal. With the increasing security of steganography techniques, heuristically

designed filters are not capable enough to describe the complex embedding situations. Deep-

learning-based methods usually have better performance than traditional ones since the sys-

tem is unified and optimized in end-to-end manner. However, they suffer from exhausting

need of computational source to fulfill the task. To address the problem, we propose a green

steganalysis solution (GS) that does not utilize hand-crafted filters or end-to-end training.
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• We take advantage of content-adaptive steganography algorithm characteristic such

that, less pixels are altered in smooth regions. We decompose image into small patches

and partition them into several groups, where patches in each group share similar

content. In this case, filters learned from each group will be more concentrated on

‘stego-signal’ instead of image content.

• We incorporate unsupervised feature learning method called Saab transform to learn

content-adaptive filters and extract features from each group. Saab filter coefficients

are derived from Saab transform, a variant of PCA transform without any end-to-end

training or back-propagation. Because of this, computational complexity and space

complexity are largely reduced.

• We assign anomaly scores on patches according to anomaly detection classifier and

analyze the anomaly score map. We notice that difference between cover and stego

anomaly score maps are more noticeable around embedded locations. Decision fu-

sion of anomaly scores from embedded locations have great potential in image-wise

classification.

• We design an embed location detector to detect possible embed location. We utilize

matched filter to ensure the robustness and enhance the detectability of embed location

detector, where matched filter is the element-wise average of anomaly scores in a

certain neighborhood of embedding location.

• We directly use anomaly scores from detected possible embed locations as image-wise

feature. We experiment various image feature dimension, train image-level classifier

for each of them, and get the final decision by simple decision fusion.
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• Performance comparison between our method and other state-of-the-art method un-

der various payload and different steganography algorithms demonstrate the high-

performance of our method. We prove the ’green’ characteristic by comparing number

of parameters and number of FLOPs between our method and state-of-the-art neural

network-based models, where our model size rank the second smallest.

1.3 Organization of the dissertation

The rest of the dissertation is organized as follows. We first review research background of

image forensics, GAN-generated image detection, steganography and steganalysis in Chapter

2. In Chapter 3, we propose a green, robust GAN-fake image detection method based on

the fundamental assumption that GAN architectures often fail to synthesize well on high-

frequency components of images. In Chapter 4, we propose a green image steganalysis

solution where no heuristically designed filters or end-to-end training is needed. Finally, we

concluding remarks and future research directions are given in Chapter 5.
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Chapter 2

Research Background

2.1 Image Forensics

Image Forensics is the practice of collecting, analyzing, and reporting on digital evidence

so that it is admissible in the court. Image forensics is challenging to forensic investigators

such that it uses a mixture of techniques to create and conceal the intended content. Thanks

to the wide adoption of mobile devices, cheaper storage, high bandwidth, people are gener-

ating a enormous amount of data on social media every day. This growth has pushed the

development of image forensics as well. Also, neural networks open a new door of analytic

tool for forensic experts to surpass the capability of individuals and effectively analyze and

process the data.

Image forensics involves the set of techniques used for the analysis of the authenticity

and integrity of images. It aims to reveal the history of digital content, identifying the acqui-

sition device that produced the data, validating the integrity of the contents and retrieving

information from image content.

Image Forensics divides its wide coverage into 2 main categories – Passive Image Au-

thentication and Active Image Authentication. Figure 2.1 illustrates the categories of image
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Figure 2.1: Hierarchy structure of image forensics

forensics and its typical tasks. For Passive authentication, it is also known as image foren-

sics. It uses only image with no prior knowledge for accessing the integrity of the image.

Passive authentication works on the assumption that even though tampering with the image

may not leave any visual trace but they are likely to alter the underlying statistics. This

means that image forgeries may disturb the underlying properties of the image, quality of

the image, even though human eyes cannot differentiate the forgery clue. Popular tasks

which belong to this categories are: image splicing localization, copy-move detection and

image in-painting detection. Our first work, GAN-generated image detection, also belongs

to this kind. In Active Image Authentication, a known authentication code is embedded

in the image at the time of image generation. Image with authentication code are sent to

receiving end for accessing its integrity. Verification of the code authenticates the original-

ity of the image. The second work in this dissertation, image steganalysis, belongs to this

category.

There are also other fields that are widely explored in image forensics. They include:

1. Source identification
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In this field, image forensics is used to determine the source of a particular image file,

including identifying the camera or device used to capture an image. This involves

analyzing specific characteristics such as sensor noise patterns, lens aberrations, and

other unique signatures left by the capture device.

2. Authenticity verification

In this field, forensics techniques verifies the authenticity of digital image by examining

metadata, such as timestamps, geo-location information, and digital signatures. It also

involves analyzing compression artifacts, noise patterns, and inconsistencies in the file

structure to assess whether the image file has been modified or manipulated.

3. Format and compression analysis

Forensic researchers are interested in investigating the file format and compression

techniques used in digital images. By examining the compression artifacts and ana-

lyzing the file structure, it is possible to gain insights into the history and authenticity

of the image file.

4. Audio and video authentication

Other than images, the analysis of audio and video recordings is also vital in forensics

field to determine their authenticity and integrity. This includes identifying audio

manipulations, detecting voice alterations, analyzing speech patterns, and examining

video synchronization and temporal inconsistencies.

Image forensics plays a vital role in various domains, including law enforcement, jour-

nalism, intelligence agencies, digital rights management, copyright protection, and ensuring

the integrity of digital evidence in legal proceedings. By employing scientific methodologies

and advanced algorithms, image forensics contributes to the verification and authentication
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of digital images, enhancing our ability to discern between genuine and manipulated images

in an increasingly digital world.

2.2 GAN-generated Image Detection

Modern image generation models are built upon Generative Adversarial Networks (GANs)

[33]. CycleGAN [37] is a well-known GAN model that can change the image style, switch se-

mantic objects and translate images from one domain to a different domain without paired

training images. GauGAN [72] can translate human sketches to photo-realistic images.

One common application of style transfer models is face manipulation. For example, Star-

GAN [18] can change the expression of a face, alter hair style, or modify skin color. Style-

GAN [43] generates fully synthetic human faces with specific high-level attributes such as

poses or identities. ProGAN [42] synthesizes high-resolution high-variation face images by

progressively growing both the generator and discriminator. BigGAN [8] aims at generating

high-quality high-resolution images by leveraging a sequence of best practices on training

class-conditional images and scaling up batch sizes.

GAN artifacts have been carefully studied and exploited in GAN-fake image detection.

One type of artifact results from the convolutional up-sampling structure of neural networks.

Another kind of artifact appears in the form of color distortion, which was used to capture

the dissonant or asymmetric characteristics of images in [56,69]. Another source of artifacts

arises from the artificial fingerprint associated with a GAN architecture. The persistence of

these fingerprints across different GAN models, datasets and resolutions was studied in [98].

A GAN simulator, called AutoGAN, was introduced in [108] to simulate artifacts of popular

GAN models. The authors of [108] identified an artifact that manifests itself as spectral

peaks in the frequency domain, and thus proposed feeding the spectral-domain input to a

classifier for GAN-fake image detection.
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Several neural networks have been proposed for GAN-fake image detection. Nataraj et

al. [71] used the co-occurrence matrix to derive hand-crafted features and fed them to a CNN

for detection. Inspired by image steganalysis, Cozzolino et al. [21] proposed a CNN to mimic

rich models [30] in feature extraction and real/fake classification. Recently, Wang et al. [86]

trained a CNN classifier with a large number of ProGAN-generated images and evaluated

it on images synthesized by eleven other GAN models. They showed the effectiveness of

extensive data augmentation in improving the generalization ability of a CNN classifier.

Most research on GAN-fake image detectors has been developed and tested on raw

real/fake images. However, most real world images do not exist in the raw image domain.

They are compressed for ease of storage and transmission. They may be rescaled to fit

different screen sizes. Furthermore, an attacker may add Gaussian noise to real/fake images

to make their differentiation more challenging. There is much less work on the robustness

of GAN-fake image detectors against image manipulations. Marra et al. [68] compared the

performance of multiple neural networks under Twitter’s compression. They also considered

the compression setting mismatch between training and testing datasets to evaluate the

robustness of CNN-based classifiers. Wang et al. [86] explored data augmentation to enhance

the robustness of a detector.

2.3 Image Steganography

In this section, we introduce some background knowledge of steganography. It includes the

formal definition of steganography, early steganography algorithms such as Least Significant

Bit (LSB), and recent content adaptive steganography algorithms.
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2.3.1 Definition

Steganography is a way of covert communication. Instead of communicating the actual

message, it hides or embeds the message in another object, and communicate the altered

object in via secret channel. In steganographic literature, it is often refered as steganographic

channel. The communication include three parties, sender and receiver, while a potential

eavesdropper also exists.

To ensure the security of their communication, the sender and receiver share a set of

secret keys k ∈ K in advance. They can now establish a steganograpgic system that consists

of various components: a cover source {C, P (c)}, a message source M, P (m), a set of stego

keys K, and embedding and extracting functions Emb and Ext. The cover source contains all

possible cover objects x ∈ C and their respective distribution P (c). Similarly, the message

source is comprised of all possible messages m ∈ M and their distribution P (m). S is

denoted as the set of all potential stego objects with distribution P (s). The embedding

function takes a cover object, the message to be conveyed, and the shared secret key,

Emb : C ×M×K → S (2.1)

and generates a stego object that carries the message.

y = Emb(x,m,k) ∈ S (2.2)

Conversely, the extraction function processes the stego object

Ext : S × K → M) (2.3)
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Figure 2.2: Steganographic channel.

and extracts the secret message for all cover objects x ∈ C, messages m ∈ M, and secret

keys k ∈ K.

m = Ext(x,m,k),k) (2.4)

A visualization of the steganographic system above is shown in Figure 2.2.

The security of the steganographic channel is also critical. Considering the cover source

denoted above {C, P (c)}, we can consider any cover object as an observation of a random

variable that follows the cover distribution X ∼ P (c). Similarly, a stego object can be

viewed as an observation of a random variable that follows the stego distribution Y ∼

P (s). The steganographic system is only secure when the cover and stego distributions are

statistically indistinguishable. The mathematical evaluation of ’how distinguishable are the

two distribution’ is to measure the dissimilarity between them. One metric is Kullback-

Leibler divergence (KL divergence or relative entropy) from information theory.

DKL(P
(c)||P (s)) =

∑
x∈C

P (c)(x)log
P (c)(x)

P (s)(x)
(2.5)

The stego system is considered perfectly secure (undetectable) when DKL(P
(c)||P (s)) = 0,

indicating that the distributions P (c) and P (s) are identical, thereby making it impossible for
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Figure 2.3: An exampler image (left) and its 8 bitplanes, from most significant (top left) to
least significant (bottom right) in raster order.

the eavesdropper to differentiate between cover and stego objects. Although achieving this

level of security is desirable, it is challenging in practice. Hence, the security requirements

are somewhat loosened. We say a stegano-system is ε-secure if DKL(P
(c)||P (s)) ≤ ε.

2.3.2 Early Steganography Algorithms

Among the decades history of image steganography, early algorithms hide the messages

within the Least Significant Bits (LSB) of pixel values. Figure 2.3 shows an example of

bitplanes from its Wikipedia. Among the 8 bitplanes, top left depicts the most significant

bitplane, which preserves most of the image content. The bottom right depicts the least

significant bitplane, which is almost noise. The noise pattern observed in the LSB plane

stems from various noise sources within digital imaging sensors, including shot noise and

electronic noise. However, this noise prevents us to hide information within computer-

generated images because they don’t have such noise characteristics.

The LSB steganography algorithms were once considered secure due to the noise-like

appearance it yielded. One of the simplest algorithms utilizing the LSB plane is LSB

Replacement (LSBR). This algorithm employs a secret stego key to establish a pseudo-

random path across cover pixels, embedding message bits into their LSB values. LSBR is
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a typical example of non-adaptive steganography, as the potential embedding changes can

be pervasive across the whole image. Despite LSBR resembles random noises visually, the

LSB plane is not entirely random. Numerous powerful steganalysis algorithms have been

developed against this steganography [28,29,45].

An alternative form of the embedding algorithm is known as LSB Matching (LSBM).

It involves matching the least significant bit (LSB) of the cover to a message bit by ran-

domly adjusting the pixel value by +1 or -1 when the LSB doesn’t carry the message bit.

Unlike LSBR, LSBM doesn’t introduce any noticeable artifacts into the histogram despite

the potential alteration of multiple bits in the pixel’s binary representation. Addition-

ally, LSBM maintains the pixel mean while changing its variance, which is different from

LSBR that modifies the pixel mean. Detecting changes in pixel mean is a simpler denoising

task compared to estimating variance, making LSBR more easily to be detected. Due to

these reasons, LSBM can be utilized for content-adaptive embedding. However, in its non-

adaptive form, there are still several accurate and straightforward statistical steganalysis

methods [19,44,59].

Up to now, we haven’t introduced how the message is actually been embedded. We

only introduced how steganography algorithms find the possible location to do embedding.

Once the embedding location preference have been set, message will be coded and embedded

in cover images. The coding techniques in steganography is motivated by error-correcting

codes. One of the latest development of error-correcting codes is Syndrome Trellis Codes

(STCs) [27]. It minimizes the distortion between cover and stego and achieves nearly optimal

performance on Rate-Distortion Bound. The rate distortion bound is the lower bound of

change rate, i.e. the average distortion per pixel.

β ≥ H−1
3 (α) (2.6)
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where H−1
3 is the inverse of ternary (+1, -1, 0) entropy function and α is the payload or

message length. In this dissertation, we assume that STCs can achieve the optimal coding

given by the RD bound. In this case, change rates will in turn have the following condition

n∑
i=1

H3(βi) = nα (2.7)

where βi represents the change rate for pixel i. In content-adaptive steganography, change

rate can be different for different locations in cover image. Given certain image size and

message length, RHS of equation 2.7 is deterministic, thus, researchers put more efforts in

the calculation of βi. More details of STCs, especially the derivation from equation 2.6 to

2.7 can be found in its original paper [27].

2.3.3 Content-adaptive Steganography

A significant breakthrough in steganography occurred with the introduction of content-

adaptivity. This approach involves incorporating knowledge about the content of the cover

image into the embedding scheme. The knowledge of image content ensures that modifi-

cations are avoided in parts of the image that are easy to be detected. Intuitively, this

approach is reasonal because even a small adjustment, such as +1 or -1, to a pixel in a re-

gion that is easily predictable would likely be highly detectable. To achieve this, embedding

costs are assigned to different regions of the cover image. Currently, there are three primary

approaches to content-adaptive steganography: cost-based, model-based, and adversarial.

In the following paragraphs, we will provide a brief explanation of each of these strategies.

1. cost-based steganography

This is the most widely developed content-adaptive steganography strategy. It heuris-

tically design the cost of changing the i− th element in cover image as ρi. By saying

heuristically design, the costs are typically derived through experimental evaluation as
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well as the feedback obtained from state-of-the-art steganalysis detectors. Under the

assumption that the cost of each pixel does not interact or influence with each other,

the total distortion because of the embedding can be defined as the simple summation

of all cost over cover image. There is no cost for no embedding or no change of cover

pixel.

D(x,y) =

n∑
i=1

ρi[xi ̸= yi] (2.8)

Minimizing the total distortion with the constraint in 2.7 can be done by Lagrangian.

Since we don’t have the prior knowledge that where will the embedding location be,

because of the randomness from Syndrome Trellis Codes (STCs), the minimization is

analyzed on expected distortion

E[D(x,y)] =

n∑
i=1

ρiβi (2.9)

The expected distortion is usually interchangeable with distortion. From Equation 2.9,

the optimal change rate βi that minimizing the expected distortion can be derived as

βi =
e−λρi

1 + 2e−λρi
(2.10)

λ is the lagrangian multiplier, which is decided by the payload α constraint in Equation

2.7.

There has been several successful content adaptive steganography approaches in spatial

domain. They include S-UNIWARD [35], WOW [34], HILL [54] and HUGO [26]. The

embedding procedures of these approaches are the same, but the analysis of embedding

impact or embedding cost are different.
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Specifically, in [26], Highly Undetectable steGO (HUGO) method uses weighted dif-

ference of feature vector to analyze the distortion of embedding. In [34], Holub and

Fridrich et al. proposed to analyze the change in directional high-pass filter response

after embedding and model the embedding cost in individual pixel as Wavelet Ob-

tained Weights (WOW). They further optimized the embedding cost according to

directional residuals in UNIversal WAvelet Relative Distortion (S-UNIWARD) [35],

where the residuals are calculated by a filter bank. Proposed by Li et al. in [54], HILL

method uses one high-pass filter and two low-pass filters to calculate embedding cost.

The high-pass filter is to locate the complex (low-cost) regions and the following two

low-pass filters aim to make the low-cost regions more congregated.

2. Model-based steganography

In recent years, steganographers start to lay eyes on deep learning-based solutions

for more complicated information embedding scheme. Theoretically, the steganog-

raphy/steganalysis problem is like a game between steganographer and steganalyst:

each player in the game wants to find a strategy that maximize the winning chance.

This coincides with the Generative Adversarial Networks [33] proposed by Goodfellow

et al., which also ’simulate’ a game between image generator and discriminator. For

this, GAN system is widely adopted to steganography. There are 2 categories of this

kind: (1) steganography via image synthesis. This type of approach generate cover

images from GAN, then hide message in synthetic images (Hu et al. [36]) or simply

consider synthetic image as stego (Shi et al. [81]). (2) steganography by generating

probability map of modifications. The two innovative examples are ASDL-GAN [84]

and UT-6HPF-GAN [92]. In this category, generator network of GAN generates a

modification probability map from cover image. The probability map then used to

generate the modification map via embedding simulator. The discriminator network
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of GAN takes the summation of cover image and modification map as input and aims

to detect the stego image from cover one. Different from traditional adaptive stegano-

graphic approaches, this family of steganography learns modification probability map

in an end-to-end manner.

3. Adversarial in steganography

Besides the two GAN-based steganography categories, there exist two other CNN-

based steganography categories: steganography via adversarial embedding and steganog-

raphy as 3-player game. The former has an example ADV-EMB proposed by Tang et

al. in [82]. The cost map of cover image is updated iteratively according to the gra-

dient of loss of steganalyzer network. In this case, steganalyzer network is fooled and

results in more secure steganography approach. The latter, 3-player game steganogra-

phy approach, simulates the steganography/steganalysis problem as a game between

steganographer (sender), receiver, and steganlyzer. Examples are HiDDeN [113] and

SteganoGAN [102], which utilize encoder-decoder architecture to realize information

embedding and retrieval. The role of steganalyzer is mimicked by a third-network to

improve security.

2.4 Image Steganalysis

In this section, we review several state-of-the-art steganalysis algorithms. We introduce tra-

ditional methods such as SRM and CNN-based methods, such as Xu-Net, Ye-Net, Yedroudj-

Net,SRN-Net, Zhu-Net and GBRAS-Net.

2.4.1 Traditional Image Steganalysis Methods

Before the emerging of neural networks, steganlyst have already constructed mature tech-

niques to perform steganalysis. Traditional steganalysis methods often use hand-crafted
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Figure 2.4: SRM kernels from [30].

filters to extract features from images. Then, statistical analysis tools such as histogram

or co-occurrence matrix are applied to extract higher-order information of images. At last,

machine learning classifiers are adopted to do the final decision.

As pioneers in the field, Fridrich et al. introduced Spatial Rich Model(SRM) [30], which

combines a set of rich image models (depicted in Figure 2.4 ) with ensemble SVM classifiers.

By considering various diverse relationships between pixels, they constructed the rich models

from noise component of images. Features from each rich model are then concatenated to

form a long feature vector and ensemble classifiers are used to give final decision. SRM

are proved successful against a wide spectrum of steganographic schemes. In [63], Lu et

al. proposed to use Fisher criterion to do dimension reduction on steganalytic features.

They analyzed the separability of single-dimension and multiple dimension spatial-domain

features by Euclidean distance, then used Fisher criterion to select the feature components
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with best separability as final steganalytic features. In [83], Tang et al. proposed to assign

different weights to pixels based on their embedding probabilities during feature extraction.

By doing so, pixels with higher embedding probabilities are assigned larger weights and thus

contribute more to steganalysis. The proposed scheme has been proved effective especially

under low embedding rate scenarios (lower than 0.20 bpp).

2.4.2 Deep Learning-based Image Steganalysis Methods

Arise of deep-learning based models have pushed steganalysis performance to the next level.

Qian et al. were the first to introduce a CNN-based model to the steganalysis battlefield,

which is called GNCNN [74]. It is a customized CNN model with predefined high-pass filter

as preprocessing layer. Also, it introduced Gaussian function as non-linear activation in

convolutional layers. Compared with classical steganalysis methods, GNCNN is the first

to automate feature extraction step and classification step in a unified system. It achieved

comparable performance with classical methods on three spatial domain steganography ap-

proaches under various payload (0.3-0.5 bpp). In [91], Xu et al. also used fixed high-pass

filter layer to extract noise residual. They took absolute values of feature from 5 groups of

convolutional modules and used Tanh as activation function. Ye et al. proposed Ye-Net

in [94], which utilized filter banks from Spatial Rich Model [30] as initialization of weights

in the first convolutional module. They incorporated the knowledge of selection channel

into the designed CNN architecture, and developed a novel activation function called Trun-

cated Linear Unit (TLU) to better suit the nature of stego-noise (±1). In [96], Yedroudj

et al. proposed a new CNN-based model called Yedroudj-NET, which brings together the

merits of its predecessors. They incorporated predefined high-pass filter from SRM [30] as

preprocessing step, and bind both Absolute Value activation (ABS) and Truncated Linear

Unit (TLU) in convolutional module.
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In [89], Wu et al. introduced ResNet architecture into steganalysis, which they called

DRN. Similar to previous models, it also has a high-pass filter as preprocessing step to force

the system quickly converge. They use residual learning blocks to preserve features from

weak stego signals. In [7], Boroumand et al. proposed SRNet, which is a deep residual

paradigm that minimizes the usage of heuristics elements in system. It does not use any

predefined high-pass filter as preprocessing module like previous models. It disabled pooling

step in the beginning convolutional blocks to prevent the loss of information from weak

stego signals. SRNet is currently one of the best approach for high-detection performance.

However, it suffers from large model size and computational complexity. In [97], You et al.

introduced Siamese CNN for steganalysis, which is a novel CNN architecture that has two

symmetrical subsets with shared parameters. The proposed network analyze the relationship

between the noise components from image sub-regions and make classification based upon

it.

2.5 Green Learning

Green learning aims at an energy efficient way to achieve the goal of data-driven learning.

The models should have lower training/inference computational complexity, have smaller

model sizes, and require fewer training samples while maintaining similar classification or

regression performance as deep-learning models. It is desired that their computation can

be carried out solely on CPU or small GPU. Thus, green learning solutions are suitable for

edge and mobile computing.

Distinct from the end-to-end optimization of deep learning, green learning adopts a

modularized design by following the traditional pattern recognition learning paradigm. It

consists of “unsupervised feature learning”, “supervised feature learning” and “supervised
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Figure 2.5: An overview of generic Green Learning system from [49].

Figure 2.6: Illustration of channel-wise Saab transform from [15].

decision learning”, see Figure 2.5. The idea of unsupervised feature learning has been de-

veloped in a sequence of papers [14–16, 47, 48, 50]. While filter parameters of CNNs are

obtained by back-propagation, filter parameters in green learning are determined by sta-

tistical analysis of the neighborhood of a center pixel. Specifically, a variant of Principle

Component Analysis (PCA), called the Saab (Subspace approximation via adjusted bias)

transform was proposed in [50] to achieve the task. Futhermore, in [15], a variant of Saab

transform is proposed, named channel-wise Saab transform. It aims to reduce the computa-

tional complexity and space complexity in Saab transform. An illustration of channel-wise

Saab transform is showed in Figure 2.6.

24



Saab transform and Channel-wise Saab transform provide an unsupervised way to derive

filter weights in feature learning process. PixelHop, a modularized unit based on Saab

transform, which contains both filter learning and feature extraction process, is introduced

in [14]. It functions as a convolutional layer in CNN architecture. Similar to PixelHop,

PixelHop++ is designed upon channel-wise Saab transform and introduced in [15]. In

this dissertation, the two mentioned works both utilized PixelHop module in unsupervised

feature learning process. The filters derived from Saab transform are able to extract features

from low-frequency component to high-frequency component in images. For image forensics

tasks, high-frequency features are usually more advantageous than low-frequency features.

Saab transform naturally derive filters that are suitable for various tasks, such as object

classification, fake-image detection, etc.

Other than “unsupervised feature learning” from Saab transform, another important

aspect of Green learning is “supervised feature learning”, that is to use labels/targets to

select a subset of features that can achieve similar or even better performance than the whole

feature set. The effective utilization of labels or supervision to enhance the performance of

a learning system is a crucial aspect in machine learning (ML). Traditional ML approaches

primarily employ labels in classifier design, whereas deep learning (DL) goes a step further

by utilizing labels to adjust filter weights in both the feature subnet and the decision subnet,

leading to improved performance.

In the literature of semi-supervised and supervised feature selection methods, existing

techniques can be categorized into three classes: wrapper, filter, and embedded methods.

Wrapper methods involve creating multiple models with different subsets of input features

and selecting the model that demonstrates the best performance based on the features

utilized. Recursive feature elimination (RFE) is an example of a wrapper method. However,

this process can be computationally expensive. Filter methods, on the other hand, assess

the relationship between input and target variables using statistical measures and select the
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Figure 2.7: Block diagrams of two supervised feature selection methods: the discriminant
feature test (DFT) and the relevant feature test (RFT) [93].

variables that exhibit the strongest association with the target variables. Analysis of variance

(ANOVA) is one such filter method that efficiently identifies relevant variables with robust

performance. Embedded methods, as the name suggests, perform feature selection during

the training process and are typically specific to a particular learner. A prominent example

is the determination of ”feature importance” (FI) obtained from the training procedure of

the XGBoost classifier/regressor, also referred to as ”feature selection from model” (SFM).

Additionally, in [93], the discriminant feature test (DFT) and the relevant feature test

(RFT) were introduced for classification and regression problems, respectively, belonging to

the filter class.

Figure 2.7 presents the design of supervised feature selection in classification case: DFT

and regression case: RFT. Specifically, for the i− th feature, which is a distribution in 1-D

space, DFT measures the class distribution in Si
L and Si

R to compute the weighted entropy

as the DFT loss. Similarly, RFT measures the weighted MSE in both sets as the RFT loss.

They are used to select discriminant/relevant features from a large set of representations

learned from the source without labels.

The last essential module in green learning is “supervised decision learning”. Tradition-

ally, in machine learning applications, machine learning classifiers or regressors are applied

in this stage. In green learning, we further explore the potential of machine learning models

by “ensemble”. It includes the ensemble of features, and the ensemble of machine learning
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classifiers. In terms of feature ensemble, green learning make use of the parallel design of

PixelHops. Feature derived from different filter sizes are aggregated together for the decision

making. The parallel design can not only enrich the receptive fields in feature extraction

process, but also increase the robustness of features.

The ensemble of machine learning models is a well-developed area. It has two categories,

boosting and bagging. In this dissertation, we use XGBoost classifier [13] in the supervised

decision learning stage, which belongs to boosting category. Boosting make use of the errors

from previous learners, thus its learning is sequential. Bagging, on the other hand, trains

weak learners individually. Their final decision is the majority vote (for classification) or

average (for regression) of decisions from all weak learners. A typical example of Bagging is

Random Forest. For green learning paradigm, we developed our own boosting and bagging

learner, called SLM boost and SLM forest [31].

Green learning methodology has been successfully applied to various computer vision

tasks such as image classification [14, 15] and 3D point cloud [38, 40, 103, 105, 106], texture

synthesis [52,53,99,100], graph [61,90] and others [32,39,66,70,77–79,85,87,88,93,101,104,

109, 110]. In the area of image forensics, green learning solutions have been developed for

deepfake video detection [10] and GAN-fake image detection [115].
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Chapter 3

RGGID: A Robust and Green GAN-Fake Image

Detector

3.1 Introduction

We have witnessed the rapid development of image generation techniques based on convolu-

tional neural networks (CNNs) in general and generative adversarial networks (GANs) [33]

in particular. Various GANs have been developed to yield high quality image synthesis and

translation performance. The quality of these generated images is so good that it is difficult

to distinguish them from real images. This poses a threat to image authenticity and may

contribute to a source of dis/misinformation in our society. Effective detection of GAN-fake

images has received a lot of attention in recent years.

The challenges of GAN-fake image detection lie in two aspects. First, it is common to

apply manipulations to real/fake images in real-world application scenarios. They include

JPEG compression, resizing, Gaussian additive noise, etc. The distortions introduced by

manipulations may mask small differences between real and fake images and make it even

more difficult to perform fake image detection. Thus, it is essential to develop a robust

GAN-fake image detector. Second, most state-of-the-art GAN-fake image detectors are

built upon deep neural networks (DNNs). They offer good detection performance at the
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expense of large model sizes, a large number of training images, high training complexity,

etc. When dealing with manipulated images, DNN classifiers adopt deeper networks and

augment the training set by including all kinds of manipulated images, leading to even larger

model sizes and higher training complexity. To address these two problems, we develop a

robust and green GAN-fake image detector, named RGGID, in this chapter.

Our RGGID detector is designed based on the assumption that GANs fail to synthesize

high-frequency components in local regions, such as edges and textures, in high fidelity.

Following [108] and [86], we show real and fake horse images in the pixel- and the spectral-

domains in Fig. 3.1. As compared with the real spectral image, the fake spectral image

contains artifacts in diagonal and anti-diagonal directions. This corroborates our assump-

tion that GANs do not synthesize high-frequency components well. Here, we focus on

complex local regions that have high-frequency components and employ a set of local filters,

called filter banks or PixelHops, to extract features. We develop an ensemble scheme to

ensure robust detection under different image manipulations. The RGGID solution outper-

forms DNN-based GAN-fake image detectors in detection performance. Furthermore, it has

three additional advantages: 1) low computational and memory complexity (i.e., green), 2)

robustness against image manipulations and 3) mathematical transparency.

The main contribution of this chapter lies in the study of robustness of RGGID against

common image manipulations. Image manipulations introduce additional artifacts to real/fake

images. They tend to mask the differences between real/fake images and make the detec-

tion problem even more challenging. It is shown by experimental results that RGGID is

robust against image manipulations. Other than robustness against image manipulations,

the generalization ability of RGGID on unseen dataset is also evaluated. With the rapid

development of image generation models, generalization ability is an essential metric for

fake-image detectors. A unified fake-image detector against various generative architectures

and dataset is preferred by forensics. Experimental result showed that our RGGID method
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(a) Real/Pixel-Domain (b) Fake/Pixel-Domain

(c) Real/Spectral-Domain (d) Fake/Spectral-Domain

Figure 3.1: Examples of real/fake image pairs (top) and their associated spectral-domain
representation pairs (bottom).

can preserve high performance under 11 unseen generative models when trained solely on

ProGAN dataset.

The rest of this chapter is organized as follows. The RGGID method is presented in Sec-

tion 3.2. Experimental results are shown in Section 3.3. The effect of image manipulations

on different semantic categories is analyzed and a new experimental setting is presented

in Section 3.4. Generalization ability on unseen dataset in evaluated in Section 3.5. This

chapter concludes in Section 3.6.

3.2 Proposed RGGID Method

An overview of the proposed RGGID method is given in Fig. 3.2. It consists of the following

four modules:
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Figure 3.2: An overview of the proposed RGGID method.

1. Spatial block selection. We select blocks that contain a substantial amount of high

frequency components.

2. Feature extraction via parallel PixelHops. We conduct local spectral analysis

by studying frequency responses of multiple sets of local filters. Each set of local filters

is called a filter bank or a PixelHop.

3. Discrimant feature selection and block-level decision making. We use the

validation dataset to identify discriminant channels and use their channel responses

as features for the block-level soft decisions.

4. Image-level decision ensemble. We ensemble the block-level soft decisions to yield

the final image-level binary decision.

Each of them will be detailed below.

3.2.1 Spatial Block Selection

Since our method is developed based on the assumption that GAN generators are not

able to synthesize high-frequency components in high fidelity, we focus on spatial blocks

that contain fine details. In the implementation, we partition images into non-overlapping

blocks of size 16x16. Each block will be used as an independent unit for feature extraction,
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feature selection, and local decision making in the second and third modules. To select

blocks containing fine details, the variance of image pixels in a block is computed. That

is, we remove the block mean and sum the squares of pixel residuals. Blocks with a larger

variance are selected since they contain more energy of high frequency components. Fig.

3.3 shows examples of selected blocks overlaid with the original images. It is evident that

selected blocks are from high-frequency regions, such as the horse head and legs in the horse

image, trees in the winter image, cars and buildings in the cityscape image, etc.

Figure 3.3: Examples of selected spatial blocks from images, where masked blocks are
dropped in further analysis.

3.2.2 Feature Extraction via Parallel PixelHops

For a squared region of spatial dimension s × s and spectral dimension c, we can define a

local neighborhood of dimension s × s × c. For example, we can set s = 2 and c = 3 (due

to the R, G, B channels of color images). Then, the neighbood has a dimension of 12 (i.e.,

12 pixel values). We can consider different weighted sums of these 12 pixel values, which
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(a) Hor2zeb (b) Facade

(c) Ukiyoe (d) Hor2zeb

(e) Facade (f) Ukiyoe

Figure 3.4: The detection performance on raw images of three exemplary categories

defines a set of filters. The set of filters is called a filter bank. One specific way to define

the filter weights is described as follows.

• One DC filter, where all filter weights are set to the same value (i.e., a constant-value

vector), and then the vector length is normalized to unity. This filter is called the DC

filter and its response is called the DC response.
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• Eleven AC filters, where the DC response is subtracted from all pixel values to yield the

AC values, principal component analysis is conducted on a collection of neighborhoods,

and the eigenvectors associated with non-zero eigenvalues define eleven AC filters.

A filter bank with its filter coefficients selected by this procedure is called a PixelHop. As

shown in Fig. 3.2, a PixelHop is used as a feature extraction unit. A PixelHop system is

determined by 4 parameters:

1. neighborhood size s1 × s2, where s1 and s2 denote the width and the height, respec-

tively. Typically, we choose squared neighborhoods such that s1 = s2 = s;

2. number of spectral components of a pixel, denoted by c;

3. the stride number, denoted by d, which indicates the amount of movement of the

neighborhood horizontally or vertically.

In our design, we select three squared neighborhoods of sizes 2×2, 3×3, and 4×4. The

spectral component number, c, is equal to 3, and the stride number, d, is one. We apply

the three PixelHops to blocks of size 16× 16 in parallel without padding. As a result, they

have 12, 36 and 48 filter (or channel) responses at 15x15=225, 14x14=196, and 13x13=169

spatial locations, respectively. These responses are call joint spatial-spectral responses. We

are interested in channel responses. That is, for a given filter, we collect and order its spatial

responses to form a feature vector. For example, for the 2 × 2 × 3 PixelHop, we have 12

channel responses and each of them has a feature vector of dimension 225.

3.2.3 Discriminant Feature Selection and Block-level Decision Making

Different spectral channels have different discriminant power in real/fake image detection.

As mentioned earlier, we use the responses at different spatial locations as the feature

vector. Furthermore, we adopt a gradient boosting tree algorithm called XGBoost [13] as

the classifier. To evaluate the discriminant power of a channel, we compare the classifier
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performance on training, validation and test datasets with the area-under-the-curve (AUC)

and the accuracy (ACC) metrics. To give an example, we plot the performance curves of each

channel for three semantic categories in the CycleGAN dataset [108] with two PixelHops

in Fig. 3.4, where the x-axis indicates the channel index. In this example, the images are

raw real/fake images without any image manipulations. The x-value ranges from 0 to 11 in

(a)-(c), in which a PixelHop of size 2 × 2 × 3 is used. The x-value ranges from 0 to 26 in

(d)-(f), in which a PixelHop of size 3×3×3 is used. Each subfigure shows four performance

curves: training AUC (red dashed line), training ACC (red line), validation AUC (green

dashed line) and test ACC (blue line). It is evident from the figure that some channels are

more discriminant than others. Furthermore, the training, validation and testing datasets

share the same discriminant channels. We select those channels with higher validation

performance as target channels and train an XGBoost classifier for each channel. In the

inference stage, we apply an XGBoost classifier to the spatial responses of the associated

channel to obtain a soft decision ranging from 0 to 1, which indicates the probability of the

block to be a real or fake image block.

Figure 3.5: Illustration of the block sampling strategy for the image-level decision ensemble.

3.2.4 Image-level Decision Ensemble

Given block-level soft decisions from a single image in the third module, we develop an

ensemble scheme to yield the final image-level decision in the last module. We first arrange
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the block-level soft decisions from smallest to largest in the unit interval, i.e., [0,1]. The

decision scores at the two ends are more informative than those in the middle range. Suppose

that we plan to sample p% of blocks to train an ensemble classifier that will yield the image-

level decision. Our sampling strategy is to choose 0.5p% soft decisions from the two ends

of the distribution as shown in Fig. 3.5, where selected representative soft decisions are

denoted by red dots. The number p is a hyper-parameter that can be decided according to

the performance of the validation data.

3.3 Experiments on CycleGAN

3.3.1 CycleGAN Dataset

We evaluated our model on the CycleGAN dataset in [108]. It has 14 semantic categories:

Apple, Orange, Horse, Zebra, Yosemite summer, Yosemite winter, Facades, CityScape

Photo, Satellite Image, Ukiyo-e, Van Gogh, Cezanne, Monet and Photo. According to the

image translation content, the dataset contains 10 subsets where each subset contains both

real and translated images. For example, the hor2zeb subset includes real horse and zebra

images for training CycleGAN and corresponding fake horse and zebra images generated

from the trained model. In total, there are over 36k images in the CycleGAN dataset.

We conducted experiments using the Leave-One-Out setting, as was done in [108] and

[86]. Namely, one semantic category will be set aside for validation and the remaining

semantic categories will be used for training. In this case, our proposed method is not

restricted to a specific semantic category and can generalize well to all CycleGAN images.

We tested our model under 3 different image manipulation techniques: JPEG compression,

image resizing and additive noise. For each type of manipulation, both the training and

testing images will be processed with the same manipulation setting to avoid mismatch.

First, we discuss the detection on raw image data as reference. Then, we examine the
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scenarios in which the various manipulations are applied. We noticed that there exists a

few categories that are relatively sensitive to manipulations. In Section 3.4, we analyze the

effect of manipulations on sensitive categories and demonstrate that, by including a small

amount of images from the sensitive categories in the training stage, our RGGID method is

robust to image manipulations for all semantic categories in the CycleGAN dataset.

3.3.2 Detection on Raw Images

Table 3.1 shows the test detection results on the raw CycleGAN dataset with only 10%

training data. We compare the proposed RGGID method with six state-of-the-art models.

The highest performance we obtained is 99.0% test accuracy acquired from the fusion of 12

channels, in which we select the 4 best channels from each of the three filter banks (i.e., the

2×2×3, 3×3×3, and 4×4×3 filter banks). The second best is 98.8% from 9 channel fusion,

in which we select the 3 best channels from each filter bank. The 6 channel fusion result

is the same as the one presented in [115]. This is the case where we achieve equally good

performance but with the smallest model size. This indicates that our PixelHop solution is

very powerful even if only a few channels are selected in the ensemble process.

Table 3.1: Test accuracy on raw images with 10% training data.

Accuracy ap2or hor2zeb win2sum citysc. facades map2sat Ukiyoe Van Cezanne Monet average
Gogh

DenseNet 79.1 95.8 67.7 93.8 99.0 78.3 99.5 97.7 99.9 89.8 89.2
XceptionNet 95.9 99.2 76.7 100.0 98.6 76.8 100.0 99.9 100.0 95.1 94.5
InceptionNet 85.0 94.8 58.8 99.4 94.0 70.5 99.8 98.8 99.9 89.9 89.1
Cozzolino2017 99.9 99.9 61.2 99.9 97.3 99.6 100.0 99.9 100.0 99.2 95.1
Auto-Spec 98.3 98.4 93.3 100.0 100.0 78.6 99.9 97.5 99.2 99.7 97.2
Nataraj2019 99.7 99.8 99.8 80.6 92.0 97.5 99.6 100.0 99.6 99.2 96.8
RGGID (6 ch) 99.2 99.8 100.0 94.4 100.0 94.1 100.0 100.0 100.0 99.4 98.7
RGGID (9 ch) 99.2 99.7 100.0 94.4 100.0 95.8 100.0 100.0 100.0 99.2 98.8
RGGID (12 ch) 99.2 99.9 100.0 95.9 100.0 95.8 100.0 100.0 100.0 99.1 99.0
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3.3.3 JPEG Compression Manipulation

To assess the robustness of RGGID under realistic scenarios, we run experiments in which

images are compressed using different quality factors. JPEG compression creates distortions

such as blocking and ringing artifacts that interfere with the up-sampling artifact originating

from generative models. We verified the assumption that high-frequency responses are

more distinguishable than other frequencies for the raw data. However, when applying

JPEG compression, the high-frequency components of real compressed images are severely

distorted as well. As a result, the difference between real and fake images is less discernible.

Figure 3.6 shows the soft classification performance for each spectral channel on compressed

images with quality factor 85. For subfigures (a)-(c), the filter size is 2 × 2 × 3 (i.e., the

number of channels is 12), while for subfigures (d)-(f), the filter size is 3 × 3 × 3 (i.e., the

number of channels is 27). For each subfigure, we show five performance curves: train set

AUC (red dashed line), train set ACC (red line), validation set AUC (green dashed line),

test set AUC (blue dashed line) and test set ACC (blue line). We see that discriminant

channels are shifted from high-frequency bands to mid-and-low frequency bands.

We chose three commonly-used quality factors, i.e., 75, 85 and 95, in the experiments.

Table 3.2 shows the test accuracy of RGGID for JPEG compressed images. For each quality

factor, we show results for individual filter banks as well as for ensemble settings. Results

for individual filter banks are marked as 2 × 2 × 3 only, 3 × 3 × 3 only, and 4 × 4 × 3

only. Results for ensemble schemes are marked as ensemble. For example, ensemble (2&3)

means that we use only discriminant channels from the 2× 2× 3 and 3× 3× 3 filter banks.

On the other hand, ensemble (all) is the case where we use discriminant channels from all

filter banks. For each quality factor, we use bold to mark the setting with highest average

test accuracy, and underline for the setting with the second highest accuracy. Generally

speaking, 2 × 2 × 3 only tends to have better performance than other settings. This could
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be attributed to the 8 × 8 block DCT transform used in JPEG. Also, the 2 × 2 × 3 filter

bank is more favorable than the 4 × 4 × 3 filter bank. This is because we select the same

number of channels from each filter bank. Feature maps of selected channels in the 2×2×3

filter bank are more informative. This also explains the reason why ensemble schemes do

not always give the best result. Also, we see that the accuracies for the ap2or and map2sat

categories are significantly lower than other categories, which will be analyzed in Section

3.4.

Furthermore, we compare RGGID with other state-of-the-art methods in Table 3.3.

Here, we present results from 8 other state-of-the-art methods whose performance scores

are taken from [68]. In Table 3.3, the first 5 models are relatively shallow networks while

the last three (DenseNet, InceptionNet, and XceptionNet) are deeper neural networks. Their

performance scores are based on Twitter-like compression as explained in [68]. However,

their compression quality factor is not explicitly provided. For fair comparison, we average

our best result for each quality factor and present it in the last row of Table 3.3. In terms

of the average test accuracy across all semantic categories, RGGID is very close to the two

best models, DenseNet and XceptionNet, with only a 0.06% and 0.58% performance gap,

respectively.

3.3.4 Image Resizing Manipulation

Another common image manipulation is resizing. We focus on the scenario of resizing

to lower spatial resolutions, referred to as down-sizing. Since the down-sizing operation

interacts with artifacts arising from up-sampling in generative models and the differences

between real and fake images becomes obscure, down-sized fake images are more challenging

to detect.

There is little work on detecting resized real/fake images. Zhang et al. [108] chose 4

image sizes and randomly selected one as the target size. They trained a neural network
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Table 3.2: Test accuracy of RGGID on JPEG compressed images.

Quality
Setting ap2or hor2zeb win2sum citysc. facades map2sat Ukiyoe

Van
Cezanne Monet ave.

Factor Gogh

QF=75

2x2x3 only 67.58 89.21 90.31 93.78 89.50 70.98 90.53 98.83 98.97 81.40 87.11
3x3x3 only 66.11 88.25 87.32 68.74 93.75 69.98 87.80 89.53 98.87 81.96 83.23
4x4x3 only 63.43 89.09 86.16 89.06 93.38 60.40 83.53 80.47 97.50 81.03 82.40

ensemble (2&3) 68.05 90.38 90.99 81.24 93.00 60.03 89.17 93.33 99.47 80.93 84.66
ensemble (2&4) 67.08 88.28 90.58 91.29 93.13 59.35 86.83 93.37 97.70 81.36 84.90
ensemble (all) 65.91 89.96 88.90 89.58 92.88 63.91 88.43 94.80 98.03 81.08 85.34

QF=85

2x2x3 only 70.66 91.36 90.13 97.19 91.63 50.23 93.07 98.73 99.83 81.22 86.36
3x3x3 only 62.31 92.17 93.43 97.18 95.75 51.92 94.20 93.83 99.83 82.25 86.29
4x4x3 only 63.28 92.00 92.80 89.83 93.88 69.66 94.20 91.10 98.70 80.95 86.64

ensemble (2&3) 72.64 91.69 95.10 87.65 95.63 62.68 96.23 98.33 99.80 82.35 88.21
ensemble (2&4) 73.58 92.17 94.92 95.90 94.50 60.58 95.03 96.57 99.50 81.82 88.46
ensemble (all) 72.64 92.46 95.30 95.83 95.75 67.52 96.20 96.53 99.70 82.34 89.43

QF=95

2x2x3 only 66.91 92.88 97.65 96.52 95.88 50.00 98.80 99.73 99.97 89.87 88.82
3x3x3 only 64.90 95.46 97.58 91.92 95.13 50.00 99.20 97.37 99.97 89.27 88.08
4x4x3 only 63.51 95.81 96.90 88.72 96.38 53.47 98.57 92.70 99.53 85.56 87.16

ensemble (2&3) 67.08 94.29 97.72 92.37 95.88 50.00 99.20 99.17 99.97 91.10 88.68
ensemble (2&4) 68.42 94.25 97.49 93.85 95.63 51.41 98.93 97.67 99.83 88.92 88.64
ensemble (all) 64.42 94.25 97.74 91.06 96.25 51.32 99.23 98.87 99.90 89.42 88.26

Table 3.3: Test accuracy comparison of different detectors for JPEG compressed images.

Category Steganalysis GAN Cozzolino Bayar Rahmouni DenseNet Inception- Xception- RGGID
feat. discr. 2017 2016 2017 Net v3 Net

ap2or 79.39 63.29 79.57 54.64 84.96 78.27 78.6 93.52 69.04
hor2zeb 90.02 91.08 89.82 95.34 98.35 93.44 95.23 93.77 91.52
win2sum 56.66 51.9 53.74 50.27 54.30 66.94 64.54 67.07 94.42
citysc. 92.17 53.14 86.81 54.00 57.60 97.83 96.09 95.11 95.38
facades 73.62 88.75 62.88 90.63 91.88 98.19 90.14 99.22 93.71
map2sat 69.39 79.35 89.64 52.69 54.93 80.45 63.84 67.97 62.83
Ukiyoe 65.83 76.56 67.67 58.90 96.83 97.54 99.53 99.66 95.18

Van Gogh 95.30 80.32 98.80 74.27 99.63 98.53 96.31 95.18 98.36
Cezanne 94.73 96.41 99.93 99.77 99.77 99.57 100.00 99.97 99.55
Monet 80.89 81.83 87.33 78.60 89.72 83.95 86.21 84.02 84.54
average 81.09 73.33 82.62 69.17 80.97 88.51 87.37 89.03 88.45

with CycleGAN and Auto-GAN horse images, and tested it on other categories. Here, we

consider 2 resizing factors (0.5 and 0.75) and conduct experiments under the “Leave-One-

Out” setting for all categories.

Table 3.4 shows the results for individual filter banks as well as for ensemble settings.

The proposed RGGID method can achieve a maximum accuracy of 95.45% and 92.84% for

resize factors of 0.75 and 0.5, respectively. As compared with the 99% detection accuracy
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(a) Hor2zeb (b) Facade

(c) Ukiyoe (d) Hor2zeb

(e) Facade (f) Ukiyoe

Figure 3.6: Soft classification performance of exemplary categories on JPEG compressed
images (QF=85)

on raw images in Table 3.1, the accuracy degrades by 3.55% and 6.16% for resize factors of

0.75 and 0.5, respectively. Thus, RGGID is robust with respect to image resizing.

For a resize factor of 0.75, the 3× 3× 3 filter bank yields the best performance while the

ensemble of the 3× 3× 3 and 2× 2× 3 filter banks yields the second best performance. For
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Table 3.4: Test accuracy of RGGID for resized images.

Resize Setting ap2or hor2zeb win2sum citysc. facades map2sat Ukiyoe Van Cezanne Monet average
Factor Gogh

0.75

2x2x3 only 97.89 95.67 99.73 64.83 96.75 99.13 99.87 99.47 99.13 95.92 94.84
3x3x3 only 95.38 95.84 99.84 79.80 93.13 95.03 99.60 98.97 99.60 97.32 95.45
4x4x3 only 98.14 98.40 99.47 53.16 99.63 63.77 99.30 97.50 99.83 97.88 90.71

ensemble (2&3) 98.39 96.31 99.91 73.38 94.13 95.62 99.80 99.63 99.56 97.10 95.38
ensemble (all) 98.36 97.06 99.89 73.79 98.88 88.50 99.90 99.33 99.80 97.55 95.31

0.5

2x2x3 only 95.63 95.48 99.31 50.81 93.25 94.71 99.30 94.60 98.73 87.34 90.92
3x3x3 only 91.88 96.79 97.99 55.92 95.88 96.35 98.70 94.70 94.00 83.48 90.57
4x4x3 only 94.51 96.08 97.27 75.39 88.50 90.37 98.50 93.00 97.93 85.65 91.72

ensemble (2&3) 94.69 96.94 99.27 55.98 95.75 98.04 99.17 95.27 98.13 86.64 91.99
ensemble (all) 96.67 96.33 98.84 70.03 92.75 92.61 99.50 95.30 98.47 87.93 92.84

a resize factor of 0.5, individual filter banks are less effective, and the ensemble of all three

filter banks gives the best performance.

3.3.5 Additive Gaussian Noise Manipulation

The third image manipulation tested is additive Gaussian noise. Although it may not be as

common as JPEG compression and image resizing in social media, Gaussian noise could be

used to cover up certain weaknesses in synthesized images. It is essential to demonstrate the

robustness of RGGID against additive Gaussian noise. In our experiments, we normalize the

pixel values of the raw image to [0, 1] and use Gaussian noise with two noise levels (namely,

σ = 0.01 and 0.02) to simulate a realistic scenario in forensics. Because additive noise

introduces additional high-frequency information to the raw image, the source differences

between real and fake images in high-frequency regions are diminished. This phenomenon

is observed in the soft classification performance shown in Figure 3.7, where σ = 0.01. In

Figure 3.7, (a)-(c) uses the 2× 2× 3 filter bank so that the x-axis has 12 channels, (d)-(f)

uses the 3× 3× 3 filter bank so that the x-axis has 27 channels. Each subfigure shows four

performance curves: train set AUC (red dashed line), train set ACC (red line), validation

set AUC (green dashed line) and test set ACC (blue line). Similar to Figure 3.6, we see

that high-frequency channels are not as discriminant as those in the raw image dataset.

Discriminant channels are shifted from high-frequency to mid-frequency bands.
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Table 3.5 shows the test accuracy for each semantic category under different noise levels.

When σ = 0.01, RGGID can achieve a maximum average accuracy of 89.89%, which is

approximately a 10% drop as compared to the accuracy for the raw image dataset. When

the noise level is increased to σ = 0.02, noise in the smooth regions is visible to human eyes,

and detection of fake images becomes more challenging. In this case, the maximum average

accuracy of RGGID is 86.52% using the 3×3×3 filter bank. Overall, RGGID can maintain

good detection performance against additive Gaussian noise.

Table 3.5: Test accuracy of RGGID for noisy images

σ Setting ap2or hor2zeb win2sum citysc. facades map2sat Ukiyoe Van Cezanne Monet average
Gogh

σ = 0.01

2x2x3 only 64.42 91.71 95.96 92.52 95.5 52.24 93.07 99.63 99.83 99.49 88.44
3x3x3 only 65.27 94.81 99.13 75.29 96.25 52.11 99.27 99.97 99.93 99.88 88.19
4x4x3 only 59.51 96.13 98.70 53.31 95.62 72.39 98.77 99.90 99.23 98.64 87.22

ensemble (2&3) 64.70 94.69 94.12 93.28 96.38 51.93 97.33 99.63 99.87 99.81 89.17
ensemble (3&4) 64.50 93.73 98.77 92.84 96.38 53.81 99.17 99.83 99.97 99.88 89.89
ensemble (all) 62.39 94.69 94.12 93.28 96.38 53.63 97.73 99.90 99.90 99.81 89.18

σ = 0.02

2x2x3 only 68.20 90.52 94.80 51.65 90.00 63.96 97.67 98.80 98.90 96.65 85.12
3x3x3 only 66.08 89.53 96.90 64.84 91.13 65.92 97.53 97.83 98.93 96.58 86.52
4x4x3 only 69.76 93.17 94.19 51.83 89.13 76.94 95.70 97.83 97.20 97.86 86.36

ensemble (2&3) 67.85 91.84 97.10 53.31 91.13 65.10 97.63 98.07 98.47 96.62 85.71
ensemble (3&4) 65.47 92.50 93.14 64.17 87.50 67.35 96.63 98.87 99.47 98.17 86.32
ensemble (all) 64.23 92.61 94.12 53.34 86.38 63.61 96.20 98.40 99.27 98.17 84.63

3.4 Analysis

For each of the three aforementioned image manipulations, there are certain categories for

which the performance is significantly lower as compared to the remaining categories. They

are referred to as challenging categories. They are ap2or and map2sat for JPEG compres-

sion, citysc for image resizing, and ap2or, citysc and map2sat for additive Gaussian noise.

We first analyze the effect of image manipulations in Section 3.4.1. Next, we propose a new

experimental setting called Leave-None-Out in Section 3.4.2. We conduct extensive experi-

ments under the new setting and show that the performance for the challenging categories

can be increased significantly.
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(a) Hor2zeb (b) Facade

(c) Ukiyoe (d) Hor2zeb

(e) Facade (f) Ukiyoe

Figure 3.7: Soft classification performance of six exemplary semantic categories on noisy
images (σ = 0.01)

3.4.1 Image Manipulation Analysis

For JPEG compression, the two challenging categories are ap2or and map2sat. In figure

3.8, we show exemplary images from hor2zeb, Ukiyoe, ap2or and map2sat categories (in

the 1st column), JPEG compressed images (in the 2nd column), difference maps between
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original and JPEG compressed images (in the 3rd column), spectra of original images (in

the 4th column) and spectra of compressed images (in the 5th column). As revealed by the

difference maps, we observe stronger distortion on the ap2or and map2sat images caused

by JPEG compression as compared with hor2zeb and Ukiyoe images, which are considered

easy categories. Furthermore, stronger high-frequency components of original images in the

ap2or and map2sat categories are also revealed by their spectra (see the fourth column).

On one hand, these high-frequency components cannot be synthesized well in GAN-fake

images. On the other hand, they are degraded by JPEG compression for both real and fake

images as well. JPEG compression offers a masking effect on the generation artifact in fake

image detection with respect to these two challenging categories.

Similarly, we conduct frequency analysis of image resizing in Figure 3.9. We show exem-

plary images from citysc, Monet and facades categories (in the 1st column), resized images

(in the 2nd column), difference maps (in the 3rd column), spectra of original images (in the

4th column) and spectra of resized images (in the 5th column). For ease of comparison, we

resize original images to smaller size and resize them back to original size and compute the

pixel-wise difference between the two to yield the difference map. Images from the citysc

category contain street views from car cameras and its content contains many vertical edges.

As shown in the figure, resizing introduces stronger vertical distortion on images from the

citysc category as compared to other categories. These vertical edges in raw images offer

good cues for fake image detection. Since these cues are masked by resizing, it becomes

more challenging to differentiate real and fake images.

The same phenomenon is observed for the ap2or, citysc and map2sat categories under

the additive noise manipulation as shown in Figure 3.10. We show exemplary images from

ap2or, map2sat, citysc, Cezanne and win2sum categories (in the 1st column), noisy images

(in the 2nd column), spectra of original images (in the 3rd column), and spectra of noisy

images (in the 4th column). By comparing the spectra before and after additive noise, we
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see that ap2or, citysc and map2sat images are more affected by additive noise than Cezanne

and win2sum images. It is worthwhile to point out that the difference in spectral image for

the satellite map category is not as obvious as that for the citysc category. This is because

the satellite map images are much larger in size and the scales of their spectral images are

actually different.

3.4.2 Leave-None-Out Setting

From analysis in Section 3.4.1, we see that leaving a specific semantic category out during

training can affect the performance for certain semantic categories under image manipulation

scenarios. For example, if we leave the ap2or semantic category out in JPEG compression,

its performance becomes much worse as shown in Table 3.2.

Actually, the Leave-One-Out setting is not practical in real-world forensics. It is rea-

sonable to assume that we can have access to all semantic category images when we are

confronted with fake image attacks. For this reason, we propose another experimental set-

ting called Leave-None-Out, where all semantic categories in the CycleGAN dataset are

employed in the training process. In this setting, we enlarge the training dataset by including

10% of test category images and use the other 90% of test category images in testing.

Since this setting only includes a small number of test category images in the training

set, we can still examine the detection performance and robustness of our model with respect

to a specific semantic category. We conduct experiments under the Leave-None-Out setting

for each manipulation and show the results in Tables 3.6, 3.7 and 3.8 for JPEG compression,

resizing, and additive noise, respectively. We use ∗ to denote the result under the Leave-

None-Out setting. As compared with the Leave-One-Out setting, we observe a 3-20% test

accuracy increase for the new setting. For example, for image resizing with a resize factor

of 0.5, the test accuracy of RGGID improves from 70.03% to 93.09% for the citysc category

with an ensemble of all three filter banks.
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Figure 3.8: Frequency analysis on JPEG compression (QF=75).
.

3.4.3 Model Size, Computational Complexity andWeak Supervision

The proposed RGGID method is a green solution since it has low computational and memory

complexity and it can achieve high performance with weak supervision as discussed below.

Model Size Comparison. We compute the model size for each component in Table

3.9. The model parameters of RGGID include PixelHop filter parameters, soft classifier

parameters, and ensemble classifier parameters. The number of soft classifier parameters is

proportional to the number of selected channels. For example, for individual filter banks, if

the filter size is s×s×c and the selected channel number is k, the number of PixelHop filter

parameters is s2 × c × k. For ensemble schemes, to obtain the total number of PixelHop

filter parameters, we sum across the filter banks in the ensemble. For the soft classifier
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Figure 3.9: Frequency analysis on image resizing (Resize factor=0.75).

Table 3.6: Test accuracy for JPEG-compressed images under the Leave-None-Out setting

Setting ap2or map2sat ap2or∗ map2sat∗

QF=75

2x2x3 only 67.58 70.98 72.30 79.21
3x3x3 only 66.11 69.98 68.74 66.18
4x4x3 only 63.43 60.40 66.36 74.85

ensemble (2&3) 68.05 60.03 72.19 69.62
ensemble (2&4) 67.08 59.35 72.27 74.29
ensemble (all) 65.91 63.91 72.16 74.85

QF=85

2x2x3 only 70.66 50.23 77.21 71.55
3x3x3 only 62.31 51.92 72.46 73.63
4x4x3 only 63.28 69.66 70.25 77.43

ensemble (2&3) 72.64 62.68 76.35 72.16
ensemble (2&4) 73.58 60.58 76.88 70.59
ensemble (all) 72.64 67.52 76.38 70.59

QF=95

2x2x3 only 66.91 50.00 87.09 69.23
3x3x3 only 64.90 50.00 84.08 75.11
4x4x3 only 63.51 53.47 81.46 66.23

ensemble (2&3) 67.08 50.00 86.78 76.19
ensemble (2&4) 68.42 51.41 86.59 78.26
ensemble (all) 64.42 51.32 86.70 77.01

parameters, we train each XGBoost classifier with 100 trees, and each tree has a maximum

depth of 6. The total number of soft classifier parameters is equal to the number of channels

multiplied by 19k. The ensemble classifier is a shallow XGBoost classifier with only 10 trees
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Figure 3.10: Frequency analysis on additive Gaussian noise with σ = 0.02.

and each tree has a depth of 1. Thus, the number of ensemble classifier parameters is 40.

For the various settings, we see that the model size ranges from 76.2k to 231.2k parameters.

The model sizes of other state-of-the-art fake image detection models on the raw Cycle-

GAN dataset are given in Table 3.10. DNN models such as DenseNet, InceptionNet and

XceptionNet have millions of parameters. A shallow CNN that has two convolutional layers

and one fully connected layer was introduced by Cozzolino et al. [21]. Its model has only 1k
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Table 3.7: Test accuracy for resized images under the Leave-None-Out setting

Setting citysc. citysc.∗

resize factor 0.75

2x2x3 only 64.83 97.48
3x3x3 only 79.80 99.05
4x4x3 only 53.16 98.58

ensemble (2&3) 73.38 99.38
ensemble (all) 73.79 99.85

resize factor 0.5

2x2x3 only 50.81 82.85
3x3x3 only 55.92 67.59
4x4x3 only 75.39 91.24

ensemble (2&3) 55.98 83.69
ensemble (all) 70.03 93.09

Table 3.8: Test accuracy for noisy images under the Leave-None-Out setting

Setting ap2or citysc. map2sat ap2or∗ citysc.∗ map2sat∗

σ = 0.01

2x2x3 only 64.42 92.52 52.24 73.58 81.18 88.63
3x3x3 only 65.27 75.29 52.11 78.90 84.67 81.55
4x4x3 only 59.51 53.31 72.39 69.37 96.39 90.77

ensemble (2&3) 64.70 93.28 51.93 75.56 81.18 83.71
ensemble (3&4) 64.50 92.84 53.81 76.39 84.67 79.33
ensemble (all) 62.39 93.28 53.63 72.07 81.18 83.71

σ = 0.02

2x2x3 only 68.20 51.65 63.96 72.76 85.15 72.47
3x3x3 only 66.08 64.84 65.92 77.30 78.47 81.83
4x4x3 only 69.76 51.83 76.94 73.84 94.75 86.42

ensemble (2&3) 67.85 53.31 65.10 76.59 73.63 76.01
ensemble (3&4) 65.47 64.17 67.35 77.21 78.47 88.42
ensemble (all) 64.23 53.34 63.61 79.91 73.63 83.14

parameters. Auto-Spec [108] uses ResNet-34 as a classification network and has 21.8M pa-

rameters. Nataraj et al. [71] used a neural network for feature extraction and classification,

and its model size is 730k. In contrast, RGGID has a minimum of 76.2k parameters (with

the 2x2x3 filter bank) and a maximum of 231.2k parameters (with the ensemble of all three

filter banks). Its model size is significantly smaller than those of DNNs.

Computational Complexity. We measure the training time from scratch on CPU

Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz. The average training time for each category

is 1.9 hours, yielding a total training time of 19 hours for all 10 categories. Other existing

models need GPU and they often rely on pre-trained models.
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Table 3.9: Model size breakdown

Ensemble 2x2x3 3x3x3 4x4x3 ensemble ensemble ensemble ensemble
scheme only only only (2&3) (3&4) (2&4) (all)

No. of PixelHop
12× 12 27× 27 48× 48 873 3033 2448 3177

filter parameter
No. of selected

4 4 4 8 8 8 12
channels
No. of soft

76k 76k 76k 152k 152k 152k 228k
classifier parameters
No. of ensemble

40 40 40 40 40 40 40
classifier parameters

Total No.
76.2k 76.8k 78.3k 152.9k 155k 154.4k 231.2k

parameters

Table 3.10: Model size comparison

Method Number of parameters
DenseNet 1.0M

XceptionNet 22.9M
InceptionNet 23.8M
Cozzolino 1k
Auto-Spec 21.8M
Nataraj 730k

RGGID (raw dataset) 76.2k

Weak Supervision. As reported in Table 3.1, RGGID can achieve an accuracy of 99.0%

on the raw image dataset based on 10% of training images from each training category. We

also conducted experiments using only 1%, 2%, · · · , 8% and 9% of training data from each

semantic category and show the corresponding test accuracies in Figure 3.11 for the 2×2×3

filter bank. Its test accuracy reaches 93% even with 1% of the original training images. It

converges to 99% using only 5% of the original training images. This shows that RGGID

can perform well even under extremely weak supervision.

3.5 Generalization on Unseen Dataset

In this section, we evaluate the generalization ability of RGGID method towards unseen gen-

erative architecture and datasets. The experimental setup is adopted from [86], which aims

51



Figure 3.11: The test accuracy as a function of different percentages of the total training
images.

to testify CNN-generated images are surprisingly easy to spot as long as the model is trained

from intensive augmented data. Same as [86], the dataset we use contains images synthe-

sized by a wide variety of generative models. All of them have an upsampling-convolutional

structure. In the training set, fake images from 20 object categories are generated by the Pro-

GAN model only. There are 720K real/fake image pairs in the training set and 4K images

in the validation set. In the testing set, fake images are generated by the following eleven

models: Pro-GAN [42], Style-GAN [43], Big-GAN [8], Cycle-GAN [37], Star-GAN [18], Gau-

GAN [73], CRN [12], IMLE [57], SITD [9], SAN [22], and Deepfake [76]. Exemplar images

from the 11 generative models are exhibited in Figure 3.12 and Figure 3.13. Among the

11 generative models, CRN [12] and IMLE [57] have much larger image size than others.

Their synthesized image can be as large as 3000× 4000. While the other generative models,

especially GAN-based models have normal image size, such as 256 × 256. The variation
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of semantic categories as well as image size across all 11 generative models make it a good

source to evaluate our generalization ability and robust on unseen architectures and dataset.

Table 3.11: Comparison of the average precision of fake-image detectors against eleven
generative models in Experiment II. Boldface is used to indicate best performance.

Methods Auto-Spec Wang et al. Ours (10%) Ours (20%) Ours (30%)
Pro-GAN 75.6 100.0 99.9 99.9 99.9
Style-GAN 68.6 96.3 99.9 99.9 99.9
Big-GAN 84.9 72.2 77.1 75.2 74.4
Cycle-GAN 100.0 84 97.8 97.3 96.7
Star-GAN 100.0 100.0 100.0 100.0 99.9
Gau-GAN 61.0 67.0 94.6 94.7 94.8

CRN 80.8 93.5 76.4 86.8 91.3
IMLE 75.3 90.3 92.8 95.3 98.2
SITD 89.9 96.2 76.5 76.5 76.7
SAN 66.1 93.6 84.4 83.8 80.3

Deep-fake 39.0 98.2 94.5 93.3 91.3
mAP 76.5 90.1 90.4 91.2 91.2

In terms of experimental details, we follow the procedure specified in [86], by first training

RGGID with real and ProGAN-generated fake images, and then evaluating its detection

performance on real images or fake images generated by the aforementioned 11 generative

models. The performance comparison between RGGID and two existing methods, Auto-

Spec and the method proposed byWang et al. in [86], is shown in Table 3.11. It is worthwhile

to emphasize three points. First, since we do not include augmentation in the training of our

method, we compare against [86] under the no augmentation setting. Second, we evaluate

the performance in terms of average precision (AP) so as to be consistent with [86]. Third,

we collect a total of 10%, 20% and 30% of samples from the two ends for the image-level

ensemble and show the corresponding mean AP (mAP) values. We see from the table that

RGGID outperforms both Auto-Spec and the method from [86] in all three cases (i.e., 10%,

20% and 30% of samples) in terms of mAP. RGGID outperforms both Auto-Spec and the

method from [86] by a large margin in the case of Gau-GAN. RGGID performs worse in the
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Figure 3.12: Exemplar real and synthesized images from 11 generative models (1st part)
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Figure 3.13: Exemplar real and synthesized images from 11 generative models (2nd part)
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case of Big-GAN, SITD and SAN, indicating a weaker transferability from ProGAN to these

three generative models. We suspect that high resolution images from those two generative

models contain less discernible high-frequency components in each selected block. SITD

and SAN generate images does not match well with that of the training images generated

by ProGAN, which are of size 256 × 256. One possible fix is to rescale these large images

to smaller ones in the pre-processing step.

Based on the experimental results in Table 3.11, we can safely conclude that our RGGID

method is robust against unseen generative architecture and datasets. RGGID method

outperforms Wang et al. method by 1.1% in terms of mAP and Auto-Spec method by a large

margin. RGGID does not need intensive data augmentation to preserve high-performance.

Thus, it makes our method green and robust.

3.6 Conclusion

A green and robust CNN-generated image detector called RGGID was proposed in this

chapter. It was developed under the assumption that GAN-based generative models often

fail to generate high-frequency components of real images in high fidelity. Thus, it focuses

on complex local regions that have high-frequency components and employs a set of local

filters, called filter banks or PixelHops, to extract features. Discriminant channels were

identified and their responses were used as features and fed into the XGBoost classifier for

soft decision. Finally, various ensemble schemes were adopted to make RGGID adaptive

to different semantic categories and robust with respect to compression, resize and additive

noise manipulations.

RGGID was evaluated on the CycleGAN and other 11 generative models in this chap-

ter. Under CycleGAN dataset experiment, we successively proved our robustness against
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different manipulations such as compression, resize and additive noise. Under 11 genera-

tive models experiment, we verified RGGID’s generalization ability on unseen generative

architectures and dataset. Both experiments validates the light-weight (green), robust and

high-performance of RGGID method. In the future, it’s interesting to further explore the

feasibility of our method under high-resolution scenarios where our assumption of synthetic

images lack high-frequency components may not satisfy.
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Chapter 4

Green Steganalyzer: A Green Learning Approach to

Image Steganalysis

4.1 Introduction

Image steganography aims to embed hidden information in certain source images called cover

images. Secret information is concealed in either the pixel domain by slightly modifying the

pixel value or by tweaking the DCT coefficients in JPEG-coded images, resulting in stego

images. The most secure steganographic technique today is content-adaptive steganography.

With this approach, modification of pixels is likely to happen in complex regions such as

edges and texture regions, thus making it more difficult to differentiate cover and stego

images.

Image steganalysis is a technique to differentiate stego and cover images. The devel-

opment of more secure steganography algorithms has led to the need for more powerful

steganalysis methods. Before the advent of deep learning (DL), steganalysis was developed

by using a feed-forward design. Traditional steganalysis usually consist of three major steps:

1) noise residual computation, 2) feature extraction, and 3) binary classification. In the first

step, a variety of heuristic high-pass filters are used for noise residual computation, aim-

ing to suppress image content. In the second step, based on noise residuals, higher order
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statistics are analyzed and selected as features. In the third step, a machine-learning-based

classifier (or an ensemble of several of them) is trained to make final decision.

One famous traditional steganalysis method operating in the spatial domain is the Spa-

tial Rich Model (SRM) [30]. It builds a rich model by taking the union of diverse sub-

models learned from quantized patches of noise residuals. SRM was shown to be effective

against several simpler steganographic schemes under different payloads. However, SRM

does not perform well against more secure steganography schemes such as content-adaptive

steganography. Furthermore, SRM has an extremely large feature number, leading to a high

computational cost.

Due to the great success of DL in computer vision, DL-based steganalysis has received

attention since 2015, e.g., Qian-Net [74], Xu-Net [91], Ye-Net [94], Yedroudj-Net [96], Zhu-

Net [107], DRN [89], and GBRAS-Net [75]. Although low-, mid-, and high-frequency com-

ponents all play a role in computer vision tasks such as object classification and detection,

the high-frequency information is more relevant to the detection of weak stego-signals in

image steganalysis. Thus, DL-based methods follow the first step in traditional steganalysis

and use a high-pass filter (HPF) for image preprocessing. HPF can be viewed as a fixed-

parameter layer. It converts raw images into noise residual images as the desired input to

deep neural networks (DNNs). Through a careful architectural design, the model parameters

of a DNN can be automatically determined by the backpropagation algorithm. End-to-end

optimized DNNs yield better detection performance than traditional steganalysis methods.

However, their underlying decision mechanism is mathematically obsecure. Furthermore,

they have a large number of trainable parameters (i.e., a large model size) and demand

higher computational complexity in both training and inference.

The shortcomings of traditional and DL-based steganalysis methods motivate this work.

Here, we propose an energy-efficient and mathematically transparent steganalysis method

and call it the Green Steganalyzer (GS). GS adopts a modular design based on the green
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learning paradigm [14,46,48–50]. It is worthwhile to emphasize that we abandon end-to-end

optimization as done in DL-based methods but go with the modular design for the purpose

of interpretability.

GS consists of three modules: 1) pixel-based anomaly prediction, 2) embedding location

detection, and 3) decision fusion for image-level classification. In the first module, GS de-

composes an image into patches, adopts Saab transforms [50] for feature extraction from

patches, and conducts self-supervised learning to predict an anomaly score of the patch cen-

ter. In the second module, GS analyzes the anomaly scores of a pixel and its neighborhood

to find pixels of higher embedding likelihood. In the third module, GS focuses on pixels of

higher embedding probabilities and fuses their abnomaly scores to make final image-level

decision.

Compared with traditional and DL-based steganalysis methods, GS has the following

three major advantages.

1. High Detection Performance

We compare the detection error rates of various steganalysis methods against S-

UNIWARD,WOW and HILL steganography schemes under two payloads in Sec. 4.4.2.

It is observed that GS outperforms SRM (a traditional non-DL-based steganalyzer) by

a significant margin. GS also outperforms many DL-based steganalyzers. Its perfor-

mance is comparable with two state-of-the-art DL-based steganalyzers (i.e. Zhu-Net

and GBRAS-Net).

2. Small Model Size and Low Complexity

We compare the model sizes and the floating point operation numbers (FLOPs) per

pixel in the inference stage of DL-based steganalyzers and GS in Sec. 4.4.3. It is

shown that GS has a substantially smaller mode size and a much lower computational

complexity.
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3. Mathematical Transparency

As compared with DL-based steganalyzers, GS is mathematically transparent due to

its modular design. One can gain a clear understanding of each individual module.

The rest of the paper is organized as follows. We give a high-level overview on three image

steganalysis approaches; namely, traditional, DL-based, and the proposed green-learning-

based (GL-based) steganalyers in Section 4.2. Then, we elaborate on the proposed GS in

Section 4.3. Experimental results on the detection performance and the model sizes and

complexity analysis are presented in Section 4.4. Finally, concluding remarks and future

extensions are given in Section 4.5.

4.2 Review of Related Work

Related previous work is reviewed in this section. First, we conduct a brief survey on

traditional and DL-based image steganalyzers in Sections 4.2.1 and 4.2.2, respectively. Then,

we present the emerging green learning paradigm in Section 4.2.3.

4.2.1 Traditional Image Steganalysis

Traditional steganalysis methods use hand-crafted filters to extract a set of basic features

from images. Afterward, statistical tools, such as the histogram or the co-occurrence matrix,

are used to derive more advanced features. Finally, image features are fed into a machine

learning classifier for the final decision of stego or cover images.

Fridrich et al. [30] proposed the Spatial Rich Model (SRM) by considering diverse re-

lationships between pixels. Rich submodels were constructed from the noise component of

images. Features from all submodels were concatenated to form a high-dimensional fea-

ture vector and fed into ensemble support vector machine (SVM) classifiers to yield the
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final decision. SRM has proven to be successful against a wide spectrum of steganographic

schemes.

Lu et al. [63] used the Fisher criterion to reduce the dimension of steganalytic feature

vector. They analyzed the separability of single-dimension and multiple-dimension spatial-

domain features by using the Euclidean distance. Furthermore, they used the Fisher crite-

rion to select feature components with best separability as the final steganalytic features.

Tang et al. [83] assigned different weights to pixels based on their embedding probabilities

in the feature extraction process. That is, pixels with higher embedding probabilities were

assigned larger weights. Their scheme was effective especially under a low embedding rate

(i.e., lower than 0.20 bpp) among traditional image steganalysis methods.

4.2.2 DL-based Image Steganalysis

4.2.2.1 Earlier Work

State-of-the-art image steganalysis methods are dominated by DL-based solutions. Qian et

al. [74] proposed one of early neural network models, called GNCNN, for image steganalysis.

It contained a learnable convolutional neural network (CNN) model with a fixed high-pass

filter as its preprocessing layer. It utilized the Gaussian function as non-linear activation in

the convolutional layers. As compared with classical steganalyzers, GNCNN was the first one

to automate the feature-extraction and classification steps in a unified system. It achieved

performance comparable with that of classical methods against HUGO, S-UNIWARD and

WOW three steganographic schemes under various payloads from 0.3 bpp to 0.5 bpp. Xu

et al. [91] also used a fixed high-pass filter layer to obtain noise residuals as the input

to learnable neural networks. Then, they computed the absolute values of features from

5 groups of convolutional modules and used Tanh as the activation function. Ye et al.

[94] proposed a solution called the Ye-Net. It utilized the filter banks from SRM as the
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initialization weights of the first convolutional module. Furthermore, it incorporated the

selection-channel aware (SCA) knowledge in the design of the CNN architecture and adopted

a novel activation, called the Truncated Linear Unit (TLU), to better suit the nature of stego-

noise (±1). Yedroudj et al. [96] proposed another CNN-based model called Yedroudj-NET.

It brought together the merits of its predecessors; e.g., the use of predefined high-pass filter

banks from SRM as a preprocessing step and the adoption of both absolute Value (ABS)

and TLU activations in the convolutional module.

4.2.2.2 Recent Work

DNNs have become popular in recent years due to their better performance. Several ad-

vanced DL-based image steganalyzers have been proposed based on DNNs to achieve higher

detection perofrmance at the expense of a higher computational cost.

Wu et al. [89] utilized the ResNet architecture for steganalysis, which they called DRN

(deep-residual-learning-based network). Again, a high-pass filter was used as a preprocessing

step. The residual learning blocks was adopted to preserve features from weak stego signals.

Boroumand et al. [7] proposed a deep residual paradigm called the SRNet that minimized

heuristic design elements in the system. It did not use any predefined high-pass filter

as a preprocessing steo. It disabled the pooling step in the first convolutional blocks to

prevent the information loss from weak stego signals. SRNet is currently one of the most

powerful steganalysis methods for high-detection performance. However, it suffers from a

large model size and high computational complexity. Zhang et al. [107] proposed the Zhu-

Net that has 3 × 3 kernels and separable convolution operations to reduce the number of

trainable parameters. The spatial pyramid pooling is utilized to enhance the representation

ability of features through multi-level pooling. More recently, Reinel et al. [75] proposed

the GBRAS-Net that combines the merits of SRN and Zhu-Net. GBRAS-Net performs well

while maintaining a relatively small model size.

63



4.2.3 Green Learning

Green learning [49] aims to provide an energy-efficient and mathematically transparent

solution to data-driven learning problems. GL-based models are modularized. They are

trained in a feed-forward manner without back-propagation. Their training complexity is

quite low that it can be carried out solely on CPU. Their model sizes are small and inference

complexity is also modest. As a result, it is suitable for mobile/edge computing.

One key module in GL is “unsupervised representation learning”. It exploits the under-

lying statistics of pixels to derive data-driven transforms such as the Saak transform [48]

and the Saab transform [50]. Multi-stage Saab transforms can be cascaded to form a Pix-

elHop system [14] for image classification. Distinct from DL-based models that determine

filter weights by back-propagation, GL-based methods derive filter weights by analyzing the

correlation structure of a local neighborhood centered at a pixel of interest.

Another key module in GL is “supervised feature learning” [93]. It is a feature selection

strategy that chooses a more powerful subset of features by analyzing the entropy loss of

each single feature dimension. Entropy loss is used to evaluate the discriminant power of

each feature for the classification task. A feature subset with low entropy loss can offer the

same or even better performance than the whole feature set. It can significantly reduce the

feature dimension for the classifier, which in turn reduces the computational cost and the

model size.

GL has been successfully applied to various vision tasks, such as image classification

[14,15], image anomaly localization [101], object tracking [109–112], image synthesis [2,51–

53,114], and 3D point cloud classification, segmentation, and registration [41,105,106]. It has

also been applied to image forensics such as deepfake video detection [10], GAN-generated

fake image detection [115], etc.
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In this work, we propose a novel GL-based image steganalyzer called GS. GS does not

use heuristically designed high-pass filters as a preprocessor. It does not adopt the end-

to-end optimized neural network, either. It differentiates stego and cover images based on

anomaly detection of image patches. Although the stego signal is weak in patches, we can

leverage pixel-based anomaly scores to zoom into fewer patches for further steganalysis.

The proposed GS method is light-weight, mathematically transparent, and computationally

efficient.

4.3 Green Steganalyzer (GS) Method

We present an overview of the proposed GS method and its rationale in Section 4.3.1. GS

consists of three modules. They are detailed in Sections 4.3.2, 4.3.3, and 4.3.4, respectively.

4.3.1 Solution Overview and Rationale

Figure 4.1: An overview of the proposed GS method.

For traditional steganalysis methods, one of the essential steps is to use predefined (or

heuristically designed) filters to extract noise residuals from input images. It helps suppress

image content and increase the signal-to-noise ratio (SNR). However, the fixed filter weights

and a limited variety of filters cannot capture all of the complex cases in cover images and
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embedded stego signals. DL-based steganalyzers can learn data-driven filters via backprop-

agation. They still use predefined high-pass filters in the pre-processing layer. Furthermore,

they use a deep network architecture, leading to a large number of trainable parameters and

heavy computational complexity.

To address the shortcomings of two prior methodologies, we propose a new pipeline and

depict it in Figure 4.1. A high-level description of each module and its rationale are given

below.

• Module 1: Pixel-based Anomaly Prediction

Motivated by anomaly detection, we consider the stego embedding, especially em-

bedding in smooth regions as ’anomaly’. We aim to predict the ‘degree of anomaly’

within local regions of images. The ‘degree of anomaly’ is named as ‘anomaly score’.

We first decompose an input image into overlapping image patches with stride equal

to one. The high patch diversity makes any machine learning task challenging. To

mitigate this problem, patches are grouped into multiple sets based on the embedding

cost of each steganographic method. Then, patch diversity in a group is reduced. For

each group, we train a binary classifier to discern two cases - anomaly patches that

contain an embedded stego-signal (labeled by “1”) and the corresponding raw patches

from cover images (labeled by “0”). We obtain content-adaptive filters through un-

supervised representation learning and the filter responses are used as features to the

classifer in each group. We conduct an iterative classification scheme to enhance the

detection performance, and derive an anomaly score for the central pixel of each patch.

• Module 2: Embedding Location Detection

We design an embedding location detector to localize potential embedding locations

based on anomaly scores. Since the anomaly score of a single pixel is noisy and

untrustworthy, it is not reliable to use simple thresholding. We need a better idea.
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That is, when a pixel is modified by a stegonagraphic scheme, it has an effect not only

on its own anomaly scores also on those of its neighboring pixels. These pixels form

an “anomaly spot”. Then, the center of the anomaly spot is chosen as the embedding

location. This strategy finds embedding locations more accurately.

• Module 3: Decision Fusion for Image-Level Classification

We obtain the anomaly scores of all pixels in Module 1 and embedding pixel locations

in Module 2. We aggregate anomaly scores of selected pixels from all groups for

ultimate binary image-level decision (a cover or a stego image) in the last module.

Figure 4.2: Comparison of the data processing pipelines: (top) traditional image steganal-
ysis, (middle) DL-based image steganalysis, and (bottom) the GS method.

We show the data processing pipelines of traditional, DL-based, and the proposed GS

steganalysis methods in Figure 4.2. There differences are summarized below.

1. Both traditional and DL-based steganalyers have a pre-processing step in the beginning

of the pipeline. GS does not have this step. It derives an anomaly score of each pixel

via supervised learning process.
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Figure 4.3: The block diagram of Module 1.

2. Both traditional and DL-based steganalyers examine image-level representations. In

contrast, GL works on local regions only (either a patch in Module 1 or a neighborhood

region in Module 2). This local processing can be parallelized easily. The memory

requirement is much less.

3. For binary image-level classification, traditional steganalyers often leverages the en-

semble of multiple classifiers (e.g., the ensemble of SVMs). The ensembled SVM

classifier is slow in practice due to the high-dimensional features. DL-based steganal-

ysis methods use the fully-connected (FC) layers and the softmax layers to make final

decision. The number of trainable parameters in the FC layers is large. In contrast,

GS uses the averaged anomaly score of anomaly spots as features to train multiple

lightweight binary classifiers and an ensemble classifier. Its computation cost is much

smaller.

4.3.2 Module 1: Pixel-based Anomaly Prediction

The block diagram of the first module is shown in Figure 4.3. The goal is to estimate the

deviation of a patch of size P ×P from its original one caused by steganographic embedding,
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where P is a user-selected parameter. The anomaly caused by a stego signal in a smooth

region is easier to tell than those in complicated textured regions. To address this challenge,

we design a patch anomaly score predictor with the following four steps.

1. Patch Grouping. Input images are decomposed into overlapping patches of size

P×P with stride 1. In the experiment, we set P = 7. Patches are grouped into multiple

sets based on the embedding cost of a steganographic scheme. Each steganographic

scheme has a specific way to compute the embedding cost of a pixel. If a pixel has

a lower embedding cost, it has a higher embedding probability. Take S-UNIWARD

steganography as an example. Its patch-wise cost varies from 0 to 11. We partition

patches into groups with narrower cost ranges such as [0, 1), [1, 2), etc. Depending on

the steganography algorithm, the group number ranges from 10 to 12.

2. Positive and Negative Patch Sampling. For each group, we select positive and

negative patch samples in this step. We choose patches from stego images that con-

tain at least one embedding bit and call them positive samples. Then, we find the

corresponding patches from cover images and use them as negative samples.

3. Feature Extraction. We apply three Saab transforms to the patch center [14, 50].

The filter sizes are 3×3, 5×5, and 7×7, respectively. The Saab transform is a variant

of the Principal Component Analysis (PCA) transform. It has two types of transform

kernels: 1) the DC kernel, which gives the local average of pixels covered by the filter,

and 2) AC kernels, which are data-driven kernels obtained by PCA. The reason to

have two kernel types is that PCA can only be applied to zero-mean random vectors.

By removing the local block mean, the block residual can be treated as a zero-mean

random vector so that PCA can be applied. For a Saab transform of size n × n, we

have n × n filters. The filter responses are used as features since they describe the

pixel local correlation structure. Compared with filters of smaller sizes, filters of larger
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Figure 4.4: Discriminant feature test loss curves for some exemplar groups. From top to
bottom, left to right, the group cost varies from low to high. For each subplot, blue curve
represents unsorted DFT loss, orange curve represents sorted DFT loss. Vertical black
dashed line indicates the 3 sets of features originating from 3× 3 filters (left region), 5× 5
filters (middle region), 7× 7 filters (right region) respectively.

sizes are more discriminant in smooth regions but less in complicated regions. The

aggregation of filter responses of different filter sizes is beneficial. By concatenating

filter responses from three Saab transforms, we have (3× 3) + (5× 5) + (7× 7) = 83

features in total.
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Figure 4.5: Discriminant feature test loss curves for some exemplar groups (cont.) From
top to bottom, left to right, the group cost varies from low to high.

We select a subset of discriminant features using the discriminant feature test (DFT)

[93] to reduce the feature dimension per group. The DFT calculates a loss value for

each individual feature dimension. The DFT loss curves of four exemplar groups are

shown in Figure 4.4 and 4.5, where their embedding costs increase from left-to-right

and top-to-bottom. In each subplot, the blue and orange curves denote the original

and sorted DFT losses, respectively. Two vertical dashed lines in black partition 83

unsorted features into 3 regions: features from 3×3 filters (the left region), 5×5 filters
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(the middle region), 7 × 7 filters (the right region), respectively. Generally speaking,

features from 7 × 7 filters are more discriminant while features from 3 × 3 filters are

less discriminant. The gap of their discriminability widens as the embedding cost

increases. To reduce the parameter number, we select 15 feature dimensions in all 10

groups. Selected feature are used to train a binary classifier to discern positive and

negative patch samples collected in Step 2.

4. Iterative Classification. In the final step, we would like to obtain the anomaly score

for each patch center using an iterative classification idea.

i) Round-1 Classification. We first train a binary XGBoost classifiers [13] using labels

and features obtained in Steps 2 and 3, respectively. In the inference stage, we keep

the soft decision whose value lies between [0, 1], which is called the round-1 anomaly

score. If the score of a patch is closer to 0 (or 1), it is more likely to be drawn from

cover (or stego) images. The predicted anomaly score distributions of positive and

negative test samples (drawn from stego and cover images, respectively) are plotted in

the left column of Figure 4.6 and 4.7. The figure has three rows. Each row indiciate

a representative group as described in Step 1. It is observed that there is a significant

overlap between positive and negative histograms. In words, they cannot be easily

separated by one round of classification. To boost the classification performance, we

adopt an iterative classification idea using the second-round classification.

ii) Round-2 Classification. For each group, we partition positive samples into sub-

groups accoording to their anomaly scores from Round 1. For example, we can divide

their anomaly scores into ten uniform intervals, [0,0.1), [0.1, 0.2), ..., [0.9, 1.0]. Then,

positive samples in the same interval form a subgroup. For each subgroup, we gather

the corresponding negative samples to build training positive/negative pairs and use

them to train the 2nd XGBoost classifier with their groundtruth labels (i.e., 1/0) by
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(a)

(b)

(c)

Figure 4.6: The anomaly score histograms of positive (in orange) and negative (in blue)
test samples of three representative groups, where the left column and right column show
results of the first- and the second-round XGBoost classifiers.

following Step 3 and Step 4.i. Then, we merge the predicted anomaly score distri-

butions of positive/negative test samples from the 10 subgroups of the same group

and plot them in the right column of Figure 4.6 and 4.7, where each row compares
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(a)

(b)

(c)

Figure 4.7: The anomaly score histograms of positive (in orange) and negative (in blue)
test samples of three representative groups, where the left column and right column show
results of the first- and the second-round XGBoost classifiers (cont.).

the positive/negative histograms after Round-1 and Round-2 classifications for three

selected representative groups.
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We can see the clear advantage of the two-round iterative classification scheme by

comparing the left and the right columns in Figure 4.6 and 4.7. First, the positive and

negative histograms are more separated from each other. Second, the highest anomaly

scores of stego patches from certain groups with round-1 classification can only reach

0.8 and 0.9 as shown in Figure 4.6(a), 4.7(a) and Figure 4.6(b), 4.7 (b), respectively.

However, they can be boosted to 1.0 after Round-2 classification.

In the inference stage without image padding, we scan all interior pixels of test images

using a window of size P × P with stride one, extract features using Step 3, and compute

the anomaly score for the center pixel using Step 4.

4.3.3 Module 2: Embedding Location Detection

Figure 4.8: Visualization of matched filters from 8 different groups (i.e., one column per
group) under the S-UNIWARD steganography algorithm with its payload equal to 0.4 bpp
(1st row), 0.3 bpp (2nd row), 0.2 bpp (3rd row), 0.1 bpp (4th row). The brighter color
indicates a larger value. The embedding cost increases from left to right in the same row
(i.e. the same payload).

We get an anomaly score for each pixel and obtain an anomaly score map after Module

1. The purpose of Module 2 is to estimate the embedding location based on the anomaly
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Figure 4.9: The block diagram of Module 2.

score map. Its block diagram is shown in Figure 4.9. It contains the following two major

steps.

1. Anomaly Spot Localization. As shown in Figure 4.6, the anomaly score of a single

pixel is still noisy, it is not reliable to use simple thresholding to decide the embedding

location. Instead, we should consider a set of connected pixels jointly, which form an

anomaly spot. Here, we set the size of anomaly spot to 3× 3. We design an anomaly

spot localizer for each individual group as follows.

i) Positive and Negative Block Sampling. A block has a size of 3 × 3. We collect

positive and negative block samples by following the same idea described in Step 2 of

Module 1.

ii) Matched Filtering for More Discriminant Features. The anomaly scores of nine

pixels in a block of size 3×3 can be used as features to classify whether it is an anomaly

spot through a binary classifier. However, these features are not discriminant enough
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to ensure good classification performance. To boost the classification performance,

we add another set of features using matched filtering. The matched filter is a 3 × 3

kernel. We collect the anomaly score maps of all positive samples and conduct element-

wise averaging to obtain one matched filter for each group. The coefficient values of

representative matched filters are visualized in Figure 4.8. All of them share similar

properties. First, its central coefficient has the largest value, four sides’ coefficients are

smaller, four corners’ coefficients are the smallest. The values of four sides are close

to each other, and the values of four corners are also close to each other. This can be

explained by the symmetrical property in space. Second, the range of coefficients is

wider for a higher embedding cost. The application of matched filtering to the anomaly

score map of a block will enhance the difference between positive and negative samples.

iii) Classification. We apply matched filters to anomaly maps to get pixel-wise

matched-filter responses for each group. A block has 9 pixels, and each pixel has

its own anomaly score and matched-filter response. Then, we use 9 anomaly scores

and 9 matched-filter responses to form an 18-D feature vector, train an XGBoost bi-

nary classifier. The soft decision score indicates the likelihood for a block to contain

embedding bits.

2. Embedding Location Selection. If the soft decision score of a block is higher than

a threshold, it serves as a candidate for consideration in the image-level decision. It is

called an anomaly spot. The threshold is selected by optimizing the F1 score, which

is a measure used to balance false positives and false negatives. The center of the

anomaly spot is the detected embedding location.

To show the importance of Module 2, we compare the distributions of anomaly scores

from Module 1 and distributions of soft decision scores of anomaly spots from Module 2 for

three representative images in Figure 4.10 and 4.11. First, we want to point out that the
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(a)

(b)

(c)

Figure 4.10: Comparison of distributions of anomaly scores from Module 1 (in the left
column) and distributions of soft decison scores of anomaly spots from Module 2 (in the
right column) for three representative images (in three rows).

number of anomaly spots is significantly less than the number of pixels in test images. Thus,

a large number of pixels are already removed in Module 2. Second, we should pay special

attention to the right tail of the histogram. Comparing with the distribution Module 1, the

distribution in Module 2 is more separable in the right-tail region. The discriminant ability
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(a)

(b)

(c)

Figure 4.11: Comparison of distributions of anomaly scores from Module 1 (in the left
column) and distributions of soft decison scores of anomaly spots from Module 2 (in the
right column) for three representative images (in three rows) (cont.).

of positive/negative samples after Module 1 is still weak. Yet, they are more distinguishable

after Module 2.
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Figure 4.12: The accurate classification rate as a function of M values applied to the vali-
dation dataset.

4.3.4 Module 3: Decision Fusion for Image-Level Classification

Recall that we obtain the anomaly scores for all pixels in Module 1 and select embedding

pixel locations in Module 2. In Module 3, we aggregate anomaly scores of selected pixels

from all groups. We sort their anomaly scores from the highest to the lowest, and use top

M anomaly scores as features for image-level decision. If M is too small, the decision is

not reliable. If M is too large, we may include unrelable pixels in the decision. Thus, a

proper value of M has to be determined based on the validation dataset. We conduct a

grid search for the optimal M values from 100 to 1000, with step size 50. We show the

accurate classification rate as a function of M for a representative validation image. We see

that the accuracy goes higher as M becomes larger. However, it is not an monotonically

increasing curve. In the experiment, we choose five M values, Mi, i = 1, · · · , 5 and conduct

an XGBoost classifier for each M value. Each XGBoost will give a binary decision - stego

or cover. The final image-level decision is made by the majority vote.
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4.4 Experiments

We conduct experiments to demonstrate the effectiveness and efficiency of the proposed GS

scheme in this section. The experimental setup is first described in Sec. 4.4.1. Then, we

compare the effectiveness of GS with 7 benchmarking methods in terms of the detection

error rate in Sec. 4.4.2. Finally, we compare the efficiency of GS with 5 benchmarking

methods by examining their model sizes and computational complexity in Sec. 4.4.3.

4.4.1 Experimental Setup

The settings of our experiments are given below.

Dataset. Experiments are conducted on the BOSSbase v1.01 dataset [3]. It contains

10,000 8-bit gray-scale images of resolution 512× 512. They are stored of the uncompressed

Portable Gray Map (pgm) format. These images are acquired with several cameras. They

cover diverse natural scenes with various texture characteristics. The BOSSbase dataset has

been widely used as a test dataset for digital image staganalysis. We split 10,000 BOSSbase

images evenly into 50% training data and 50% testing data. For fair comparison with other

benchmarking methods in [74], [91], [94], [107], we resize raw images of resolution 512× 512

to new images of resolution 256 × 256 in both training and test datasets and evaluate the

GS method on resized images.

Steganographic Schemes. We consider S-UNIWARD, WOW and HILL three content-

adaptive steganographic schemes and implement them using the Syndrome-Trellis Codes

(STC). For each steganography scheme, stego images are generated with two payloads -

0.2bpp and 0.4bpp. In steganography, the less the payload, fewer bits are embedded, making

stego images more difficult to detect.

Benchmarking Methods. We compare GS with the following representative steganal-

ysis methods:
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• Traditional Methods: Spatial Rich Model with Ensemble classifier (SRM+EC) [30];

• Earlier DL-based Methods: QianNet [74], Xu-Net [91], Ye-Net [94], and Yedroudj-

Net [96];

• Recent DL-based Methods: Zhu-Net [107] and GBRAS-Net [75].

All of them are tested under the same train/test split as ours.

Evaluation Metrics. We use the averaged detection error rate,

PE =
1

2
(PFA + PMD), (4.1)

as the performance evaluation metric, where PFA and PMD are the false alarm probability

and the missed detection probability, respectively. Besides detection accuracy of stegana-

lyzers, we also examine their model sizes measured by the number of model parameters and

computational complexity measured by the number of floating-point operations (FLOPs) in

the inference stage.

4.4.2 Detection Performance Evaluation

First, we compare detection error rates of GS against 7 benchmarking methods on the S-

UNIWARD and WOW datasets with payloads of 0.2 bpp and 0.4 bpp in Table 4.1. The

best and second best results are highlighted in bold and with an underline, respectively. As

shown in the table, the two recent DL-based methods (i.e. Zhu-Net and GBRAS-Net) and

our GS rank the top three. Among the three, GBRAS-Net has the best performance for

both S-UNIWARD and WOW steganographic embeddings. GS achieves the second best for

S-UNIWARD and the third best for WOW. Zhu-Net ranks the third for S-UNIWARD and

the second for WOW.
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Table 4.1: Comparison of detection error rates (PE) against S-UNIWARD and WOW
steganographic schemes at paylods equal to 0.2 bpp and 0.4 bpp, where the best is in
bold and the second best is underlined.

Method
Payload

S-UNIWARD S-UNIWARD WOW WOW
0.2 bpp 0.4 bpp 0.2 bpp 0.4 bpp

SRM+EC 36.6 24.7 36.5 25.5
Qian-Net 46.3 30.9 38.6 29.3
Xu-Net 39.1 27.3 32.5 20.7
Ye-Net 39.9 31.3 33.1 23.3

Yedroudj-Net 36.5 22.6 27.7 14.9
Zhu-Net 28.6 15.5 23.1 11.9

GBRAS-Net 26.4 12.9 19.7 10.2
GS (Ours) 27.86 13.63 24.05 12.18

Table 4.2: Comparison of detection error rates (PE) under the HILL steganography at
paylods equal to 0.2 bpp and 0.4 bpp, where the best is in bold and the second best is
underlined.

Method
Payload

HILL HILL
0.2 bpp 0.4 bpp

Zhu-Net 33.4 23.5
GBRAS-Net 31.5 18.1
GS (Ours) 33.13 23.29

Since no error rates are reported by Qian-Net, Xu-Net, Yedroudj-Net and Zhu-Net for

the HILL steganography, we only compare GS with Zhu-Net and GBRAS-Net with payloads

equal to 0.2 bpp and 0.4 bpp for HILL in Table 4.2. This is sufficient since GS, Zhu-Net,

and GBRAS-Net are the top three performers in Table 4.1. Again, we observe that GS

and Zhu-Net have comparable performance and their performance is inferior to that of

GBRAS-Net.

4.4.3 Model Sizes and Computational Complexity

Model sizes. We compare the model sizes of GS and three other DL-based steganalyzers

in Table 4.3, where the model size is defined as the number of trainable parameters. The

trainable parameters of GS include Saab filter parameters and anomaly patch classifier

parameters in Module 1, embedding location classifier parameters in Module 2, and decision
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fusion classifier parameters in Module 3. For a given steganography scheme, we partition

patches and blocks into 10 groups based on its embedding cost. The parameter number of

each module is calculated below.

1. Module 1

There are three parts: Saab filter banks and XGBoost classifiers.

a) Saab Filter Banks. In each group, we train with three Saab filter banks of size 3×3,

5×5, and 7×7. As mentioned in Section 4.3.2, we select 15 filters among the 83 filters.

Among the 15 selected filters, we count the number of filters from 3× 3, 5× 5, 7× 7,

respectively, and plot the bar plot in Figure 4.13. Different groups have different sets of

selected filters. They are however consistent for all three experimented steganography

algorithms. Based on the statistics in Figure 4.13, we aggregate the Saab parameters

from all groups and have 7, 364 parameters. For different steganography algorithms,

we can safely say that our Saab parameters is no more than 8k. Thus, the number of

Saab parameters for all 10 groups is reduced from (3·3·9+5·5·25+7·7·49)·10 = 31, 070

to 8K in Module 1.

b) XGBoost Classifiers. For iterative classifiers in Module 1, we use the XGBoost

classifier with 100 trees and maximum depth of 2. Each tree has a maximum depth of

2 so that it has at most 10 parameters. There are approximately 1K parameters per

XGBoost classifier. The first round has 10 classifiers (one for each of the 10 groups).

The second round has 10 × 10 = 100 classifiers. There are 110 XGBoost classifiers

with 110K parameters in total.

By combining (a) and (b), the total number of parameters in Module 1 is equal to

8K + 110K = 118K.

2. Module 2

We need 10 XGBoost classifers (one for each of the 10 groups). They have the same
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hyper-parameters as those in Module 1. Thus, the number of parameters is 1K · 10 =

10K.

3. Module 3

As mentioned in Sec. 4.3.4, we need 5 classifiers with Mi features, i = 1, · · · , 5. Thus,

the total number of parameters in Module 3 is 1K · 5 = 5K.

Then, the total number of parameters of the GS method is 118K + 10K + 5K = 132K.

We measure the model sizes of 3 high-performance DL-based steganalyzers and list them

in Table 4.3. Among them, Yedroudj-Net and Zhu-Net have larger model sizes because of

deep-layer architectures and denser FC layers. GS has the smallest model size. It is typical

to assign 4 bytes to each parameter. Then, the GS model demands 528K byte memory.

Figure 4.13: Comparison of selected channel distributions for 10 groups based on embedding
costs, where “cost 1” denotes the lowest embedding cost group, “cost 10” denotes the highest
embedding cost group, and blue, orange, and gray denote filters of size 3 × 3, 5 × 5, and
7× 7, respectively.

Computational Complexity. We measure the number of floating-point operations

(FLOPs) per pixel in the inference stage as an indicator of computational complexity. There
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Table 4.3: Comparison of model sizes and computational complexities of 6 steganalyzers,
where we use “X” to demonstrate the ratio of numbers with respect to the reference (denoted
by 1X).

Method Number of parameters KFLOPs/pixel
Yedroudj-Net 252,459 (1.91X) 190.73 (54.03X)

Zhu-Net 277,156 (2.10X) 45.62 (12.92X)
GBRAS-Net 166,598 (1.26X) 90.79 (25.72X)
GS (Ours) 132,000 (1.00X) 3.53 (1.00X)

are several APIs in PyTorch or Keras to measure FLOPs. The numbers of FLOPs for the

DL-based methods in Table 4.3 are measured using the keras-flops package for each image

and then divided by 256 · 256, which is the total number of pixels per image.

Since the GS model is not a neural-network-based model, the keras-flops package cannot

be directly used. Instead, we compute its number of FLOPs analytically as follows.

1. Module 1

There are three parts: patch cost calculation, Saab filter banks and XGBoost classi-

fiers. a) patch cost. For each pixel location, there needs 8 additions and 1 division,

resulting in 9 FLOPs.

a) Saab Filter Banks. For Saab filters of size n × n, the total number of operations

per filter is about 2 × n × n since the inner product of two 9-D vectors involve 9

multiplications and 8 additions. There are three Saab filter sizes. The number of

FLOPs for all three Saab filters per pixel is equal to 2×(3×3×9+5×5×25+7×7×49) =

6214. As explained in both Section 4.3.2 and Section 4.4.3 model size part, we select

15 filters among all of them. Based on Figure 4.13, we calculate number of FLOPs for

each group and sum them up to be 2, 512. Thus, the FLOPs/pixel number is actually

reduced to 2, 512.

b) XGBoost Classifiers. We conduct Round-1 and Round-2 two XGBoost classifiers

at each pixel location. The computational complexity of an XGBoost is a subtraction

at each node and one sample will trace only one path. Thus, the complexity for all
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trees is the tree depth multiplied by the tree number and number of classes. All trees

prediction need to be summed up via addition. Thus, the total complexity is equal to

2× 100× 2 + 100 = 500.

By combining (a) and (b), the FLOPs/pixel number in Module 1 is 2512+500 = 3, 012.

2. Modules 2

Module 2 computation involves the convolution with matched filters and XGBoost

classification. Since we choose anomaly spot size as 3 × 3, for each pixel location,

convolution needs 9 multiplications and 8 additions. As for XGBoost classifier, the

number of FLOPs/pixel is 2 × 100 × 2 + 100 = 500. Thus, the total FLOPs/pixel

number in Module 2 is 517.

3. Modules 3

There are five XGBoost classifiers in Module 3 per image. Thus, the number of

FLOPs is equal to 5 × (2 × 100 × 2 + 100) = 25K. We need to divide this number

by 250 × 250 pixel locations per image since no image padding is used. The number

of FLOPs/pixel is equal to 0.4, which is neglible as compared to the numbers of

FLOPs/pixel in Modules 1 and 2.

The total number of FLOPs/pixel of GS is about 3, 012 + 517 = 3, 529, which is far less

than that of benchmarking DL models.

4.5 Conclusion and Future Work

A GL-based image steganalysis method, called Green Steganalyzer (GS), was proposed in

this work. GS is a lightweight modularized image steganalysis method. It contains three

modules. First, it assigns an anomaly score to a center pixel of a patch. Next, it studies the

relationship of anomaly scores between a pixel and its neighbors to estimate the embedding
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likelihood of the center pixel. Finally, it selects pixels of higher embedding probabilities

and conducts decision that error detection rates of GS are competitive with state-of-the-

art DL-based steganalyzers against S-UNIWARD, WOW and HILL three steganographic

schemes. At the same time, it demands a smaller model size and lower computational

complexity than DL-based methods. Furthermore, GS is mathematically transparent due

to its modular design.

As for future extensions, we would like to test GS on the ALASKA 2 dataset. It is a

more challenging dataset than BOSSbase v1.01 since it contains more natural scenes and

images of various resolutions. DL- based steganlyzers are restrained on a certain input image

size because of their architecture design. In contrast, our GS model can handle different

image sizes between training and testing dataset. Also, it is desired to improve the detection

performance of GS furthermore with slightly higher complexity.
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Chapter 5

Conclusion and Future Work

5.1 Summary of the Research

In this dissertation, we focus on two tasks of image forensics: GAN-generated image de-

tection and image steganalysis. For both works, we provide green (light-weight), high-

performance and mathematically transparent solutions to deal with the tasks.

In the first work, we propose RGGID, which is a robust, green GAN-fake image detec-

tor. We take advantage of the assumption that GAN architectures usually fail to synthesize

well on high-frequency components of images, such as high-quality details, complex tex-

tures, edges, etc. We decompose image into small blocks and select ones from complex

regions since they are more discriminant in terms of high-frequency components. By uti-

lizing unsupervised feature learning method, PixelHop, we extract feature of blocks in a

computationally efficient way. We measure the discriminant ability of each feature channel

of blocks by training classifier on it, and select classification soft decision from more discrim-

inant ones. By designing the two-end decision fusion strategy, image-wise classification is

made by ensemble classifier based on fused feature. RGGID offers a green solution for GAN-

generated image detector since its model size is significantly smaller than that of deep neural

networks (DNNs). We apply common manipulations to real/fake source images, including
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JPEG compression, resizing and Gaussian additive noise, and demonstrate the robustness

of RGGID to these manipulations. Furthermore, we demonstrate the generalization ability

of RGGID on 11 unseen generative architecture and dataset by training solely on ProGAN

image and testing on other 11 dataset.

In the second work, we propose Green steganlyzer(GS), which is a green steganalysis

method for detecting content-adaptive spatial steganography. Different from traditional

steganalysis and deep learning-based steganalysis methods, GS does not contain any heuris-

tically designed components and does not need end-to-end training. It contains three mod-

ules. First, it assigns an anomaly score to a center pixel of a patch. Next, it studies the

relationship of anomaly scores between a pixel and its neighbors to estimate the embedding

likelihood of the center pixel. Finally, it selects pixels of higher embedding probabilities

and conducts decision that error detection rates of GS are competitive with state-of-the-

art DL-based steganalyzers against S-UNIWARD, WOW and HILL three steganographic

schemes. At the same time, it demands a smaller model size and lower computational com-

plexity than DL-based methods. Furthermore, GS is mathematically transparent due to its

modular design.

5.2 Future Research Topics

The proposed green learning methods in image forensics applications are proved advanta-

geous in binary classification tasks like GAN-fake image detection and image steganalysis.

We are interested in exploring its potential in more complicated image manipulation sce-

narios. We bring up the following research problems:

• Image Splicing Localization. This is a localization task which requires localization

of areas of spliced in spliced images. Given an image with some spliced region, can we

output a mask of spliced region over authentic region?
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Figure 5.1: Examples of spliced images and corresponding ground truth masks from four
different datasets: (a) the Nimble Science (SCI) dataset, (b) the Columbia Uncompressed
dataset, (c) the Carvalho dataset, and (d) the CASIA v1.0 dataset. For the ground truth
mask, pixels that were manipulated are represented by a value of 0 (the black region) and
pixels that were not manipulated are represented by a value of 255 (the white region).

• Image Forgery Detection. This is a detection task which requires classification

of images as forged or pristine (never manipulated). Given an image, it may include

manipulations like splicing, copy-move, in-painting, or combinations of them, can we

classify whether it’s forged or pristine?

5.2.1 Image Splicing Localization

Image splicing is one of the most common type of image forgery. It manipulates images

by copying a region from one image (the donor image) and pasting it onto another image

(host image). The output is often called spliced images. Image splicing forgery is often

used to give false impression to the audience or potentially used to generate false agenda for

political purposes. With the advent of image manipulation techniques on the web, image

splicing localization remains an interesting yet challenging topic nowadays. Figure 5.1 shows

4 example spliced images are their corresponding ground truth masks.
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Many splicing localization techniques are proposed by researchers and they can be

roughly divided into three classes based on the pattern or trace types used to separate

the spliced region from the rest of the image. They exploit the following traces (or fea-

tures): (1) noise patterns, (2) Color Filter Array (CFA) interpolation patterns, and (3)

JPEG-related traces.

All three classes focus on exploiting the statistical difference between spliced region and

remaining region of host image. The first class [11, 17, 20, 55, 65, 67] exploits noise patterns

under the assumption that different images have different noise patterns as a result of a

combination of different camera makes/models, the capture parameters of each image, and

post-processing techniques. Since the spliced region originated from a different image (the

donor image) than the host image, the spliced region may have a noise pattern that is

different than the noise pattern in the remaining region of the host image. The second class

of algorithms [23, 25] exploits CFA interpolation patterns. Most digital cameras acquire

images using a single image sensor overlaid with a CFA that produces one value per pixel.

CFA interpolation is a process to reconstruct the full color image by transforming the

captured output into three channels (RGB). Splicing can disrupt the CFA interpolation

patterns in multiple ways. Thus, it can be exploited to localize spliced regions. The third

class of algorithms exploits the traces left by JPEG compression [1, 4–6, 24, 58, 60, 64, 95].

Most of these methods use features from JPEG quantization artifacts or JPEG compression

grid discontinuities. Original image are assumed to undergo consecutive JPEG compression,

while the spliced portion may have lost its initial JPEG compression characteristics due to

smoothing or resampling of the spliced portion. These incongruous features can help localize

a spliced region.

Back in 2017, Salloum et al. proposed a splicing localization method based on fully

convolutional neural networks (FCN) [62]. Motivated by the coarse localization output

of single-task FCN (SFCN), they propose the use of a multi-task FCN (MFCN) [80] that
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Figure 5.2: Output mask examples of SFCN, MFCN and edge-enhanced MFCN methods

utilizes two output branches for multi-task learning. One branch is used to learn the surface

label, while the other branch is used to learn the edge or boundary of the spliced region.

Output mask examples are showed in Figure 5.2. The number below each output example

is the corresponding F1 score. MFCN is a successful splicing localization solution and it can

provide finer localization output.

Different from neural-network based methods, we plan to solve this problem based on

green learning methodology. Since we are not training the system in end-to-end manner,

pixel-wise classification decision has to be made and form an output spliced region mask.

Preliminary design of our method is showed in Figure 5.3. We will still use unsupervised

feature learning method, PixelHop++ unit to extract features within certain neighborhood
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Figure 5.3: Preliminary design of green learning based approach for image splicing localiza-
tion.
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of center pixel. Note that the spatial dimension is preserved after two PixelHop++ units,

so that we can make decision on all pixel locations from original spliced image.

In order to reduce the computational complexity of this design, we plan to make decision

only on edge pixels. Edge pixels include spliced region edges and authentic edges from

both spliced region and authentic region. Since we are aiming to localize spliced region,

only spliced region boundary should be considered as positive samples in our classification

model. Furthermore, instead of using binary labels as edge pixels ground truth, we plan to

use continuous label between -1 to 1. Feature extracted between neighborhood pixels will

be very similar to each other. If we use totally different label for adjacent pixels, classifier

may be too confused to give good prediction. In this case, the problem will be altered to a

regression problem. Multiple regression model will be trained to better adapt to different

image content. Then, we will apply post-processing on the binary edge map and finally

output spliced region masks.

This preliminary design still needs careful analysis and modifications. For example,

since we are making decision on edge pixels only, the coarseness of our output mask is

hugely dependent on the edge detection performance at the very beginning. Also, in post-

processing step, there inevitably exist edge pixels that are mis-classified. When we are

filling (dyeing) the spliced contour to generate spliced region mask, those pixels may result

in too much false alarms, thus dragging the performance of current method. Addressing

aforementioned issues will be our main focus of this work in the future.

5.2.2 Image Forgery Detection

Different from image splicing localization, image forgery detection is a yes or no question

for answering whether forgery exists in image. It seems to be more accessible than image

splicing localization. However, other than splicing, there may be more than one kind of

image forgery exist in the manipulated image. Figure 5.4 presents examples of three kinds
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Figure 5.4: Examples of image forgeries carried out using conventional media editing tools.
Images come from the dataset of the first IEEE Image Forensics Challenge organized in
2013. From left to right: splicing (alien material has been inserted in the image), copy-move
(an object has been cloned), inpainting (an object has been hidden by background patches).

of image forgeries carried out using conventional media editing tools. From left to right,

they are: splicing, copy-move and inpainting.

Copy-Move forgery Copy-move forgery is one of the most commonly performed ma-

nipulations on digital images. In copy-move forgery, a region from the image is copied and

pasted to another region in the same image. Copy-move forgery is performed in order to

hide an existing object in the image, to create a duplicate of the object or to change the

meaning of the image completely. Copy-move forgery can be easy to perform but it is diffi-

cult to detect. First, the duplicated regions often share similar visual characteristics, such

as texture, color, and lighting conditions, making it difficult to visually detect the tampered

regions. Second, Copy-Move forgery can be achieved using basic image editing tools, such

as copy-paste or cloning tools, which are widely available and easy to use. The simplic-

ity of these techniques makes it accessible for individuals with minimal technical expertise

to carry out such forgeries. Third, Copy-Move forgery operates at a local level within an
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image, typically involving a small region or object. This localized nature makes it challeng-

ing to detect the tampered regions, especially when they are seamlessly blended into the

surrounding content. Unlike some other types of image forgery, copy-move manipulations

may not leave distinct artifacts or traces that can be easily detected by traditional forensic

techniques. The forgery often involves copying and pasting regions without introducing

noticeable inconsistencies in noise patterns, sharpness, or compression artifacts. Lastly, ex-

isting post-processing tools make it harder to detect copy-move forgeries. Perpetrators of

copy-move forgery may employ various post-processing techniques to further conceal their

manipulations. This can include applying blurring, noise addition, or color adjustments to

the tampered regions, making it harder to detect the duplicated content.

In terms of the detection methods of copy-move forgery, neural networks have proved its

potential. Siamese Networks can identify duplicated regions by comparing patches within

the same image. This approach is effective in detecting copy-move forgeries even when the

duplicated regions are subjected to geometric transformations or slight modifications. Deep

Attention Models are able to allocate attention to distinctive and discriminative parts of the

image, making them robust to varying lighting conditions, background clutter, and occlu-

sions. Attention mechanisms enable the model to effectively locate and classify manipulated

regions. Capsule Networks have shown promise in copy-move forgery detection by capturing

hierarchical relationships between image elements. These models can recognize object in-

stances and spatial arrangements, making them well-suited for detecting duplicated regions

in copy-move forgeries. These models have shown good performance in copy-move forgery

detection, but they may not be able to tackle the combination of forgeries of splicing, copy-

move and inpainting. Also, these models are too large to be considered in actual products.

It shows a promising starting point to for us to adopt green learning methodology.

Inpainting Image inpainting was initially used for reconstructing the deteriorated por-

tions of the image by considering neighbouring areas of the distorted regions. But the
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forgers are trying their finest to attempt a kind of forgery such that it seems real. Using

image inpainting to perform manipulations on the image is one such technique. The process

of inpainting involves analyzing the surrounding information and utilizing it to estimate

the missing pixels. Both traditional and deep learning based method have been proved to

achieve plausible performance.

Traditionally, people use Exemplar-based methods to do inpainting. These methods

rely on finding similar patches or regions in the image and copying them to fill in the

missing areas. Examples include the PatchMatch algorithm and exemplar-based texture

synthesis. Other than Exemplar-based methods, partial differential equation (PDE)-based

methods is also proved successful. These methods use mathematical equations to propagate

information from the known regions to the unknown areas. The Navier-Stokes equation and

the heat equation are commonly used for inpainting. The inpainting algorithm proposed by

Bertalmio et al. is a well-known PDE-based approach.

With the advancements in deep learning, neural network-based approaches have shown

remarkable performance in inpainting tasks. These methods leverage large-scale training

datasets to learn the underlying structures and context in images, enabling them to generate

visually plausible and realistic inpainted results. Some state-of-the-art deep learning-based

inpainting methods include Context Encoder (CE), GANs, EdgeConnect and Generative

Query Network. CE is an autoencoder-based network that is trained to inpaint missing

regions conditioned on the surrounding context. GANs utilize adversarial training frame-

work helps in generating more realistic and visually convincing inpainting results. Notable

GAN-based inpainting models include DeepFill, Global and Local Consistent Image Com-

pletion (GLCIC), and Partial Convolutional Neural Network (PCNN). EdgeConnect focuses

on maintaining the structure and edges of the missing regions. It utilizes an edge generation

network and an inpainting network to generate high-quality inpainted images with coher-

ent edges. Generative Query Network (GQN) is a more recent inpainting approach that
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leverages a neural network to learn the representation of scenes and their underlying 3D

structure. It can inpaint missing parts of images by predicting the plausible content based

on the learned scene representation.

There are many successful models to do inpainting. However, for inpainting forgery

detection, it is often merged in image forgery detection together with copy-move detection

and image splicing localization. It shows a promising starting point to for us to adopt green

learning methodology in combined or multiple image forgery detection.
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[34] Vojtěch Holub and Jessica Fridrich. Designing steganographic distortion using di-
rectional filters. In 2012 IEEE International workshop on information forensics and
security (WIFS), pages 234–239. IEEE, 2012.
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