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Abstract

As in any mechanical system, entropy is continually fighting our best efforts to preserve

order. Engineers, mechanics, and pilots have all helped in the process of engine health

management by perceiving and identifying faults in aircraft. The complexity of these

systems has gradually increased, necessitating the evolution of novel methods to de-

tect engine component problems. As airlines and manufacturers have begun to develop

capabilities for the collection of ever more information in the age of "Big Data," an

opportunity for such a method has presented itself to the signal processing community.

This work will address the development of reliable fault detection and diagnosis

algorithms, built around the collection of various types of engine health data. Engine

Health Management (EHM), has so far relied on rudimentary readings, the diligence of

maintenance crews, and pilot familiarity with expected equipment behavior. While the

majority of EHM advances are inexorably tied to the field of mechanical and aerospace

engineering, signal processing approaches can make unique contributions in effectively

handling the oncoming deluge of complicated data.

During the scope of this work, two broad approaches are taken to address the chal-

lenges of such an undertaking. First, the feasibility of vibration and acoustic sensors

is examined in controlled experimental conditions to determine if such information is

useful. This in turn will be used to develop modern detection/diagnosis algorithms and

examine the importance of sampling frequency for EHM systems in this context. Here,
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this work offers several important contributions, chief among which are: excellent re-

sults for "stationary" phases of flight, a consistent fault detection rate for synthetic abrupt

changes, fast responses to component failures in high-frequency data, and well-defined

clustering for nominal samples in lower-frequency (1Hz) data.

Second, this work describes an improved Gas Path Analysis (GPA) approach that

utilizes information from traditional sensors (pressures, temperatures, speeds, etc.) to

produce relevant high-quality simulated data, develop a correspondence between simu-

lated and real-world data, and demonstrate the feasibility of fault detection in these sce-

narios. Here, the chief contribution is the establishment of a close agreement between

synthetically simulated faults and nominal data from real engines. Building on this, a re-

liable fault detection and diagnosis system for "stationary" and "transient" flight phases

is developed, while adapting high quality simulated full flight data to low-frequency

(1Hz) real world correspondences.
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Chapter 1

Introduction

Since the start of the modern age of commercial flight, safety has been a top priority

for manufacturers and carriers. While extremely rare, in-flight disasters still do occur

and are sometimes attributed to mechanical failures despite best efforts to mitigate their

cause. In the nascent days of commercial flight, prevention of such mechanical faults

was primarily a result of rigorous maintenance schedules devised by manufacturers and

knowledgeable mechanics who were trained to spot possible issues visually. With ad-

vances in digitization and the information age, more measurements could be used to

assess the state of an engine’s health, especially with the added complexity of turbofan

jet engines over the older propeller types.

Unsurprisingly, a real push for understanding this newly collected information did

not occur until the expertise of manufacturers was paired with a need to drive down

the bottom line. Originally, engine OEMs (Original Equipment Manufacturers) con-

tractually relinquished responsibility for problems with the product upon delivery to

customers, making it the responsibility of airlines to prevent mechanical failure. This

was generally limited to following suggested maintenance guidelines and trying to uti-

lize spot measurements by a growing array of digital sensors. Because of the long life

cycle of airplanes (coupled with several economic crises that prevented many carriers

from replenishing their fleet) and the reasonable prevention of failure by the traditional

combination of maintenance and visual inspections, there was a limited drive towards
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utilizing, or even collecting, much of the information these new sensors were capable of

generating.

As a result of some of the latest financial hardships many commercial airlines have

experienced, manufacturers began offering services to complement the products they

were selling, indirectly spurring research into the capabilities of this new source of data.

OEMs realized that it was profitable for them to sell maintenance services on a fleet-

wide basis, and airlines were all too happy to not only sign up for a more centralized

and experienced form of engine maintenance but to relinquish the legal responsibility

for the operational state of their engines.

One of the more interesting supply chain issues is the disconnect that exists between

engines and the rest of the plane, since the primary jet engine manufacturers (General

Motors, Pratt-Whitney, and Rolls-Royce) do not work on delivery of the whole plane.

Carrier airlines and aircraft manufacturers (chief among them Boeing and Airbus) both

act as clients for engine manufacturers, who specialize in producing this key component

in the context of the desired airframe. This means that any module that the OEM would

like to include as part of the main body (such as data collection storage or transmission

circuitry) becomes optional if it is not essential to proper engine function. Understand-

ably, many carriers have opted out of these add-ons for cost-reduction purposes and to

simplify the workflow around their fleet. Fortunately, with the recent rise in fleet man-

agement programs, OEMs can require these add-ons be included in the service package

and the stagnation in data collection seems to be subsiding.

It should be noted that there is also an important shift taking place as this, more

active approach to engine health management, develops. Under the direction of OEM

guidelines, airlines were obligated to perform routine maintenance that was scheduled

on a "worst-case-scenario" basis; it was generally overly conservative in order to account
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for the most extreme conditions that engines may operate in. As this responsibility, and

the associated costs, are moving back to the OEMs, more liberal and profit-maximizing

strategies are being developed. Rather than blindly overhauling every engine assuming

the most brutal degradation profiles, it is economically preferable to tailor each mainte-

nance schedule to actual usage and let engines degrade to the farthest operational point

possible. New methods will need to incorporate this type of risk assessment into algo-

rithms that handle individual component problems.

Methods for monitoring relevant engine health information, particularly in the case

of jet engines that operate at extremely high speeds within a variety of harsh environ-

ments, have progressed to include a collection of metrics such as pressures, tempera-

tures, speeds, and vibrations. Acoustic information has also recently been tested as a

means of evaluating engine fitness, owing to the ability of mechanics to hear when an

engine just doesn’t "sound" right. The typical approach to evaluating these mounts of

information is for a maintenance technicial to scan for glaring abnormalities and do a

physical inspection of the engine itself, trusting that the trained eye is worth more than

a confusing jumble of numerical values. [Vol13]

Up until the turn of the century, the standard protocols for airlines were to gather

the instantaneous values that the gagues for certain parameters (pressure, temperature)

were indicating and either have the pilots monitor them during the flight, or periodically

transmit them to maintenance crews on the ground [TB99]. Cited among the chief prob-

lems with these approaches were the difficulties associated with transmitting the data

and the unrealiable conclusions to be drawn from its rudimentary analysis (mostly com-

paring values to manufacturer-provided operating norms). In recent years, increasingly

successful approaches to analysis of this data have been making headway in improving

the capabilities of detecting and diagnosing problems that may occur during or after use
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of such engines [RK00] [RI05] [BOS09] [BSOA09]. While each method has had its

mixture of benefits and drawbacks, the general trend continues to be towards a more

data-driven and automated approach to EHM.

1.1 Motivations for Research

Airlines operate vast fleets of planes whose health is carefully monitored and recent

global financial woes have put a strain on an already-complex industry. With the histori-

cally low costs of processing power and physical hardware, the abundance of data being

collected by a multitude of devices in on each plane is consistently more of a problem

than a benefit without proper tools to interpret an overwhelming floot of information.

New maintenance solutions that can supplement and potentially replace a large portion

of the mechanical work done to keep planes in the air are sorely needed. [Saf13]

Despite having an extremely low chance of breaking down, commercial arilines have

a high burden of proof to meet in order to placate worried customers. Airline operators

themselves can only put forward their best effort in keeping their fleets of planes in

reasonable working condition while meeting demand. In order to ensure the safety of

these planes, a more objective approach to maintenance requirements and necessities is

needed. Although automated safety systems in many fields are and should be secondary

to human judgement, they tend to serve as a rational and rigid boundary on what will and

won’t cause harm, or lead to catastrophes. An automated fault detection and diagnosis

system, whether it operates in real-time or offline, will significantly improve the iden-

tification of issues that may be missed by routine maintenance and may even anticipate

problems before they fully manifest themselves. [Joh11]

Maintenance is a tricky issue - almost as much an art as it is a science, when it

comes to the best mechanics. As discussed by Tumer [TB99], the industry of jet engine
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maintenance is fraught with inconsistent standards, vague documentation, and a largely

ad-hoc approach to determining the fitness of a particular engine. A system that supple-

ments the traditional approach - suggesting places to look, automatically finding patterns

while checking for anomalies, and one that does this consistently without variation built

up from years of habits - is an increasingly necessary innovation.

The safety of thousands of daily air passengers is determined by the proper upkeep

of the components that keep their planes in the air - upkeep that is constantly at odds

with the bottom line. Because of the decline of airline solvability as a result of the

collapse of financial institutions, unexpected fluctuations in the number of customers,

and increasing costs of operation tied to the rising price of oil, airlines have looked

for any place they can in order to stay above water. An automated system built from

commercially available components that significantly reduces the tedious work done by

maintenance crews will allow them to be more cost effective when working on plane

maintenance. A system which detects minor component defects and identifies their

nature before they lead to a general breakdown will quickly become an invaluable tool

for the efficient upkeep of an airline’s fleet [VBL08].

1.2 Overarching EHM Industry Challenges

There are a series of practical issues that uniquely define this problem, and make it

a difficult tradeoff between what needs to and can be done. Chief among these are

[Vol13]:

• Accessibility of Live Data - samples collected from real flights are still difficult to

come by, because they are generally the intellectual property of airlines.
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• Sampling Rate - where data is collected, the sampling rate is generally no greater

than 1 Hz, while it is known that significant harmonics occur at frequencies much

greater than this

• Small Fault Sample Size - the number of live flight records from engines that

experienced significant faults or failures is on the order of 10-20 such cases in the

history of the field. Significant problems are, thankfully, extremely rare, but even

smaller faults often go unnoticed until a degradation trend can be established over

many days and many records were not kept to a degree of detail that would allow

current research the benefit of exploiting such prior knowledge

• Complexity of Real-Life Flights - traditional methods only consider averaged be-

havior during a steady state (or "stationary") phase of flight, such as when the

plane is at cruising altitude and experiences no turbulence. Modern approaches,

especially when data is collected throughout the course of the entire flight, will

have to address those "transient" moments that actually comprise a significant

portion of every flight

1.3 Organization and Contributions of Research

The proposed research will address many of the motivating problems discussed in the

previous section, as well as draw attention to the theoretical and practical challenges

of mechanical failure detection and diagnosis. The general contributions of this work

are introduced below, as a supplement to what is outlined in the Abstract, and will be

justified throughout the course of the dissertation.

Chapter 3 introduces the experimental test of acoustic and vibration sensors in a con-

trolled test-cell environment, using basic engine fault detection and diagnosis, where a
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variety of approaches and tradeoffs are analyzed. Extensions to this in the form of

real-time engine breakdown detection are introduced in Chapter 4 and a discusion of

low-frequency vibration sensor analysis follows in Chapter 5. Chapter 6 includes ex-

tensive experiments on advanced Gas Path Analysis (GPA) approaches, which primarily

utilize existing temperature, pressure, and rotational sensors. Data is simulated from

the perspective of a real-world flight and subsequent detection/diagnosis results are syn-

chronized with live jet engine data.

As mentioned in Section 1.1 of this chapter, the key needs for an efficient main-

tenance system will be addressed through a combination of offline and real-time ap-

proaches to fault detection and diagnosis. These methods will range from identifying

the moment that a problem occurs, checking the behavior of the engine in the context of

the whole flight, and discussion of a framework for attempting to predict when problems

may occur as a result of wear-and-tear based on historical risk analysis.

It is important to distinguish between the task of detecting a problem (which en-

tails discriminating between normal and abnormal behavior) and identifying it (which

implies an additional differentiation between different kinds of problems). The pro-

posed methods will address both of these aspects, cofirming the intuition that detection

is much easier than diagnosis, but also verifying the optimistic notion that automated

identification of a problem via passive sensing is also possible.

Mechanical engines are periodic in nature; though they respond to external stimuli of

thrusts and pressures, they largely operate as systems with surprisingly clear harmonics

- unlike the sound of a human voice, for example. During the development of detection

and diagnosis methods, the frequency characteristics of engines and ways to leverage

them will be discussed.
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One of the major practical issue when implementing any modern digital system is the

complexity with which the system operates, both in terms of the amount of space needed

to store data and the time it takes to process that data into useful information. While

only a portion of the methods proposed in this work are intented to operate in real time,

speed and space efficiency are important tradeoffs with performance nonetheless. In the

following Chapters, the methods introduced will be scrutinized from this perspective.
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Chapter 2

Background

A review of background materials will cover some of the foundational research that has

been done in the field of engine fault detection and introduce the fundamental concepts

used to approach this problem.

2.1 A Primer on Engine Health Management (EHM)

Engine maintenance is about 6% of the total cost of operating an airplane, with a trend of

rising costs as well as an increasing share of the total cost. EHM systems can potentially

save about 5 percent of this, which translates to a huge aggregate savings. EHM systems

increase operational reliability, turn unscheduled maintenance into scheduled upkeep,

reduce and predict shop visits, and help avoid secondary damage.

Older systems were much more passive, with fixed service intervals potentially be-

ing drastically conservative, but the advent of digital circuits in the 1970-1980s saw a

shift to active control and monitoring systems. The initial success of these trending ap-

proaches drove airlines to add more sensed parameters, and in the 1990s the paradigm

for maintenance services shifted to the OEMs in order to more easily distribute and

predict monthly costs (fleet management programs). [Vol13]

This in turn fostered innovation and renewed interest, especailly in Gas Path Anal-

ysis approaches and extensions, and is now focusing on prognostics, transient engine

models, and information fusion [SMSR12] [ZTD12]. There’s an important difference

between "information" and "data" in EHM philosophy, because much more than just
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sensor readings can provide useful information for GPA metrics, given the appropriate

background.

Figure 2.1: Turbofan Jet Engine Diagram - this is a typical turbofan jet engine, along
with the main components labeled along the bottom and (rough) input/output parameters
specified on either side. The outputs (right) listed here are those that will be of primary
interest in this research, though input and intermediate parameters will also play an
important role.

Figure 2.1 shows a general jet engine that will be widely referenced throughout

this work. Tranditional gas path approaches focus on measuring a variety of variables

related to pressures, temperatures, and rotational speeds of different components in order

to establish a corresponance between current and baseline behavior in the steady state

(usually cruising altitude, when there is little change in the behavior of the engine and

all thermodynamic processes have stabilized).

Modern systems are taking advantage of various sources of real-world data that al-

ready exist in limited amounts. Most frequently, high fidelity data is collected in "test

cells" maintained by engine manufacturers or maintenance facilities. A test cell is a
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warehouse-like room where an engine can be mounted, fitted with a wide array of diag-

nostic tools, and monitored during simple usage scenarios (ramp up, ramp down, spike,

steady, etc.). This type of data usually has a high-frequency profile and is used as a

baseline for units undergoing maintenance with a reference to past history or an original

precursor. Because these tests are performed in highly controlled and sea-level condi-

tions, they are generally no substitute for performance characteristics measured while

in flight. Live data is extremely difficult to collect because of the limits on collection,

storage, and retransmission, but is becoming more common with ongoing replacement

of fleets with newer models. Current work focuses on extending the understanding of

data and development of algorithms that can appropriately identify different engine con-

ditions [ZGW11] [TZD11] [CSR11].

The future will likely focus on the "intelligent engine" ideal, which will combine

wireless and energy-harvesting sensors, MEMS, high temperature materials, and infor-

mation fusion into a control system that can adapt the engine’s operation to a variety of

environmental and fault conditions. This will require a great deal of data infrastructure,

verification, and validation of a variety of systems - not likely to happen in the next 20

years. [Vol13]

2.2 Overview of Relevant Feature Sets

The solution to this challenging problem highly depends on the mathematical tools that

are used. To extract features from measured data, tools such as the short-time Fourier

transform (STFT), the discrete wavelet transform (DWT), or filter-bank decompositions

can viable depending on the nature of the information. Some methods may be improper

because the underlying signals have nonlinear and non-stationary properties. When

performing initial analysis of vibration and acoustic data, several methods were tested.
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Matching Pursuit (MP) decomposition [Mal93] has been effectively used to analyze

sounds for time-domain signature extraction. MP-based features have been proven to

be effective in classifying sounds where frequency-domain features fail [CNK09]. The

Hilbert-Huang Transform (HHT) [HSL+98], which was introduced by Huang in 1998,

is based on an empirical mode decomposition (EMD) scheme and as the pre-processing

step for the Hilbert transform. This tool has received a lot of attention in the last decade

for nonlinear and nonstationary signal analysis.

The above two mathematical tools have proven successful in certain areas but pre-

liminary results showed that they did not accurately diferentiate between different test

cases for jet engine data. Believing them to be too general in their approach to these par-

ticular signals, we turned to two other technologies that are more specific to acoustics:

MFCCs and CELP.

2.2.1 Mel Frequency Cepstral Coefficients (MFCC)

Mel-Frequency Cepstral Coefficients are a well-known signal processing tool that has

had huge success in the speech community, in applications like speech recognition and

speaker identification. In this research, the original MFCC design is slightly modified

and adapted to engine acoustics (an increase in the number and density of analysis filters

in the filter bank). This modification is necessary because the sampling rate of the test

cell sensors on an engine (see Appendix A) is much higher than that used in traditional

speech applications.

Mel-Frequency Cepstral Coefficients, in general, are proportional to the response of

the human ear at different frequency locations along the spectral range that human ears

can detect (20 Hz to 20 kHz). Each of the coefficients corresponds to a representative

amplitude of a frequency range to which our ears are sensitive, but it is a combination of

12



the Mel Scale (which approximates the nonlinearities of our hearing) and the separating

properties of the cepstrum which make MFCCs truly powerful. The cepstrum is a repre-

sentation used in homomorphic signal processing, whereby the generalized principle of

signal superposition is extended to convolution, rather than just addition. The method

converts signals combined by convolution into sums of their cepstra, allowing for linear

separation, and in particular, the power cepstrum is often used as a feature in further

processing.

Many modern signal processing applications, especially those that deal with audio,

operate on a perceptual basis; regardless of the mean-square error of a system, the true

test of its usefulness is how mcuh it hides the errors that human ears are keen on per-

ceiving. Audio compression and encoding methods remove much of the information

from an audio signal solely based on the convenient fact that the human ear would not

be able to perceive all of it anyway. MFCCs are the most widely used perceptual rep-

resentation of audio signals, and allow for the construction of systems that accurately

reflect the information we are able to subconsciously extract from audio; they are robust

and versatile set of easily calculated features.

MFCCs are generally derived as follows:

1. Windowing - create a windowed version of part of the signal by appropriate ap-

plication of a Hamming Window and overlap (usually 1/2 window length) with

previous windows.

2. DFT - take the Discrete Fourier Transform (DFT) of the windowed signal in order

to extract the frequency domain information from the signal.

3. Mel-Scale Mapping - calculate the powers of the spectrum, using triangular over-

lapping bandpass filters. It turns out that the human auditory system is not equally
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sensitive to each frequency, and not able to perceive changes in volume or pitch

equally well along the entire audible spectrum (20Hz - 20kHz). The Mel Scale

was devised in order to more closely approximate the sensitivity of an average

human ear to different frequencies, so the normal spectrum must be mapped into

this alternate spectrum where some frequencies are emphasized and others are

de-emphasized.

4. Logarithm - take the logs of the powers at each of the mel frequencies. This

operation is necessary because of the nature of the ear’s perception of differences

in amplitude. The auditory system determines changes in volumen on more of a

logarithmic scale, rather than a linear scale.

5. DCT - take the discrete cosine transform of the array of mel log powers. The DCT

produces highly uncorrelated features from an input signal and can be efficiently

implemented in hardware and software, much like the FFT.

2.2.2 Code Excited Linear Prediction (CELP)

Code Excited Linear Prediction is a well-known technique widely used in telecommuni-

cations and is the most successful technique among those used in speech coding, primar-

ily because it is simple, fast, and effective. It is model based, and therefore has a much

higher compression rate than any other speech coding technique, leading to an efficient

signal representation. The breakthrough that increases performance in the detection of

engine faults is the adoption of CELP model parameters as features to classifier. In this

work, LPC coefficients and pitch information will be incorporated into the feature set,

using the original settings of the CELP coder.
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The original CELP standard adopts 10 Linear Predictive Coding (LPC) coefficients

to model the data at the subframe level. In each subframe, the optimal LPC coeffi-

cients are found by efficiently solving the Durbin-Levinson recursion. Since the models

assume data to be largely linear, the mean of LPC coefficients from each of the 4 sub-

frames is taken as the final representative set of coefficients for each frame.

The original CELP standard estimates the pitch every 2 subframes with an open-loop

and a closed-loop estimation method. The mean of two closed-loop estimates is taken as

the final pitch information for one frame in this implementation. The pitch information

and LPC coefficients contain the most important parts of the original signal.

The code excited linear prediction (CELP) technique is a mature and widely-adopted

speech coding algorithm, which was first proposed by Schroeder and Atal ??. It outper-

forms several other vocoders such as the linear prediction coder (LPC) and the residual-

excited linear predictive (RELP) for its better quality at low-bit rates. It has been adopted

as ITU-T G.723.1 [?] with two coding rates (namely, 5.3 kbps and 6.3kbps). After

the introduction of the CELP codec, several variants (ACELP, RCELP, LD-CELP and

VSELP) have been developed. CELP and its variants offer an effective low-bit-rate

speech coding tool, which serve as the core of all modern speech codecs.

The CELP codec encodes speech or audio signals based on linear predictive analysis-

by-synthesis coding with frame-level processing. Each frame consists of 240 samples,

which are further decomposed to four 60-sample subframes. One set of CELP-based

feature is obtained from each frame. For a sampling rate at 8 kHz, each frame has a

duration of 30 ms. The block-diagram of a CELP consists of two input signals obtained

from an adaptive and a fixed codebook, while their sum serves as the excitation to a

sythesis fiter whose coefficients are updated dynamically. The excitation from the adap-

tive codebook is used to synthesize the main signal while the excitation from the fixed
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codebook is used to account for the residual signal. The fixed codebook contains 5 to 6

fixed-position pulses as an enhancement to the excitation.

The CELP codec extracts four types of information from each frame and optimizes

the decoded audio signal in a closed loop perceptually.

• Linear Prediction Coefficients (LPC)

Each frame is first filtered to remove the DC component and decomposed into four

sub-frames, each of which has 60 samples. Every sub-frame is masked by a Ham-

ming window, after which we compute the 10-th order LPC using the Levinson-

Durbin recursion and use these coefficients to construct the synthesis and formant

weighting filter in each subframe. The 10 dimension LPC is sufficient to represent

the regularity of audio signals in a short frame.

In the implementation of a CELP system, only LPC parameters of the last sub-

frame are quantized and transmitted since the LPC parameters of all other sub-

frames can be interpolated under the linearity assumption of adjacent subframes.

The LPC coefficients are employed to construct the short-term perceptual weight-

ing filter, which is used to filter the entire frame and to obtain the perceptually

weighted speech signal.

The LPC is differentially quantized in the line spectral frequency (LSF) domain

using a Predictive Split Vector Quantizer (PSVQ) and encoded according to the

built-in adaptive codebook. Since the reference code uses an approximation

method to acquire LSF, the average LPC parameters of 4 subframes are chosen

as the CELP features. In addition to the coefficients, the following values are also

used as features:

• Pitch Lag (PITCH)
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For every two subframes (120 samples), an open loop pitch period is computed

based on the weighted audio signal by the correlation method. The open pitch

lag, L, takes on 128 values using 7 bits. The values range from 18 to 145, which

correspond to the frequency range from 55Hz to 444Hz, respectively, under the

8KHz sampling rate. This is enough for most speech and audio applications since

the fixed codebook can compensate for prediction residuals. Since the pitch lags

in adjacent subframes are close to each other. We choose the average of the open

pitch lag L in one frame as the desired feature.

• Gain of Pitch Filter (GAIN)

The close-loop pitch lag is computed by optimizing the 5-tap pitch filter gain, b,

within the codebook of the system by searching from L− 1 to L+ 2.

• Pulse Position in Fixed Codebook (POS)

The pulse position information is acquired by minimizing the residual error in

a nested loop for each subframe. This piece of information occupies the largest

portion of the bit stream.

2.3 Statistical Tools

Statistical methods are often used in studies to measure the likelihood of differences

or similarities between datasets. The statistics of this dissertation revolve around the

hypothesis test, which determines whether a given hypothesis can or cannot be rejected.

When there is no clear representation of the probability distributions under a hypothesis,

we must use resampling techniques to form enough surrogate data to adequately test the

hypothesis. In this section, we will assume we are looking for the differences between

two random variables X and Y .
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2.3.1 Hypothesis Testing

A hypothesis test [CB01] is a procedure to reject a hypothesis so that we can verify its

complementary statement. The null hypothesis, usually labelled H0, is the hypothesis

that X = Y . In this context, a test statistic summarizes the effect of the null hypothesis,

for example a t-statistic is defined as:

t =
µX − µY√
σ2
X

NX
+

σ2
Y

NY

where the means of the random variables are µX and µY , the standard deviations of

the random variables are σ2
X and σ2

Y , and the sample sizes of the random variables are

NX and NY , respectively. The null distribution, describes the distribution of t under the

null hypothesis. In our example, if X and Y are Gaussian random variables with unit

variance, we can assume the null distribution of t to be Gaussian with variance 1
NX

+ 1
NY

and zero mean (since under the null hypothesis, X = Y so µX = µY ).

The hypothesis test is then an attempt to reject a null hypothesis (X = Y ) because

one required condition (µX = µY ) is unlikely. We use the statistic t̂ calculated from

the actual samples. The null distribution provides a probability that the statistic is above

this actual value given the null hypothesis: p = P
(
t > t̂|H0

)
. If this p-value falls under

a standard rate of error called the false positive rate α (in neuroscientific experiments,

often α = 0.05), we reject the null hypothesis.

Fundamentals of hypothesis tests will be used to motivate the CUSUM algorithm

(Section 4.3.3) and Goodness of Fit (GoF) tests (Section 5.3.3).
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Chapter 3

Fault Detection and Diagnosis via

MFCC and CELP

3.1 Introduction

As mechanical engines have become more complex, monitoring their behavior and find-

ing or analyzing potential problems has become a hot research topic. This development

has drawn a lot of attention from researchers in academia and industry, as the availabil-

ity of fast processors and efficient algorithms continues to facilitate the development of

non-invasive system analysis.

For jet engines in particular, the tiniest defect may cause a malfunction, or worse,

result in a catastrophe. Preventative maintenance is generally the only way to counteract

such consequences, but this is a very indirect and costly approach. The airline industry,

perhaps uniquely amongst industries that regularly operate engines, has come under ad-

ditional scrutiny with respect to the conflicting goals of flight safety and profitability -

this has put pressure on airlines worldwide to develop effective inspection methods for

finding and identifying problems at the earliest possible time. It is therefore not only of

academic interest, but of great practical importance to construc an easily-applicable, ro-

bust detection and diagnosis mechanism that can quickly discover abnormalities and ac-

curately identify their causes. This would not only fundamentally improve flight safety,
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but also prevent damage to the machine and substantially reduce the cost of engine repair

or replacement.

Engine problems may occur as a result of a variety of internal defects, environmen-

tal conditions, abnormal structural strain, or simple wear-and-tear. Because engines by

nature consist of moving parts, they have certain acoustic and vibrational properties that

tend to become abnormal when integrity issues manifest themselves; as a consequence,

the analysis of sound or vibration data, especially in the frequency domain, becomes an

important tool for potential fault analysis systems. The frequency domain is additionally

useful because the harmonic profile of most mechanical systems is very well behaved -

the lack of biological components and the repetitive nature of even a system as dynamic

as a jet engine means consistent peaks in the frequency spectrum of any such system.

The key problem in analyzing this type of environment over the course of the system’s

operation is the non-stationarity of the signal as the engine operates. Here, stationarity

is taken to mean wide-sense stationarity - a property of a time indexed signal which

indicates that the first and second order moments (mean and variance) of a signal do

not change with time. While ideal idle and cruising speeds have this stationarity prop-

erty, any change in engine speed breaks this guarantee and makes subsequent analysis

extremely difficult. This phenomenon is shown in Figure 3.1 below

Here, we discuss an approach to this problem that uses a joint feature extraction tech-

nique based on Mel-Frequency Cepstral Coefficients (MFCC) and Code Excited Linear

Prediction (CELP), in conjunction with a Support Vector Machine (SVM) classifier. Ex-

perimental results demonstrate that the use of these two feature sets, an appropriately

chosen classification algorithm, as well as proper pre- and post-processing steps suc-

cessfully finds and identifies problems during cruise and idle phases of flight. Although

the system does not fully compensate for the time-varying characteristics of acceleration
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(a) Stationary Spectrogram (b) Non-Stationary Spectrogram

Figure 3.1: Sample SR-30 Spectrograms - spectrograms of engine idle (a) and accel-
eration (b) data, demonstrating the inherent frequency stationarity of constant engine
operation and the breakdown of stationarity when conditions within the engine (here,
the speed), change.

and deceleration scenarios, it does provide some insight into how these can be analyzed.

While the majority of our work is performed in the context of a jet engine, the methods

listed in our approach can, to a large degree, be used in any engine analysis.

3.2 Discussion of Data Acquisition

The datasets we worked with came from two different engines, but both sets were col-

lected under controlled laboratory conditions so as to maximize their fitness in terms

of reproducability and representation. In both cases, a "nominal" data set was first col-

lected, characterizing the engine’s behavior under normal operating conditions. Next,

the engine was tampered with in order to simulate a breakdown of one of its components,

and one or more of such "failure" datasets were collected (more details are available in

Appendix A).
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3.2.1 Sensors Challenges

Since engine faults usually arise from a variety of sources whose statistical character-

istics are mostly non-linear and non-stationary (such as high rotor dynamic forces or

bearing interactions), data analysis in the time and frequency domains plays an impor-

tant role in the fault diagnosis system. Due to the non-stationary of engine signals,

traditional analytic tools have limitations when discovering useful features.

Additional constraints on any such system are a consequence of the processing capa-

bilites of the on-board system which will be used to collect and (potentially) analyze this

data. Rather than introducing new and costly systems into the already complex work-

ings of an airplane, we aim at developing methods that could be integrated into existing

systems as seamlessly as possible.

In summary, the problem of engine vibration analysis has the challenges of a com-

plex vibration environment with little obvious time-domain information, and potential

non-stationarity in the vibration readings

Additionally, any developed solution must meet the following constraints, which are

specific to a real-time on-board detection and diagnosis system: an arbitrarily long set-

up time, real-time data collection, real-time data processing (low computational com-

plexity), and low memory complexity.

As is discussed in Section 3.2.2, the setup for collecting data from the SR-30 in-

cluded an assortment of acoustic sensors in addition to vibration sensors. At the time,

the performance of these two types of sensors was uncertain, and it was decided to test

both. After the tests, however, vibration sensors proved to be far more desirable as a

way of detecting engine problems, for two main reasnons:

1. Consistency - some of the readings from the acoustic sensors exhibit such erratic

behavior that we concluded they had either malfunctioned or been placed in an
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inappropriate position. As we did not have access to the test-cell setup where the

data originated, we did not have the means to reproduce these experiments and

collect new datasets.

2. Performance - discarding the readings deemed erroneous, a comparison of the

detection error for similar operating conditions demonstrates a vast difference be-

tween acoustic and vibration sensors. Vibration sensors outperformed the acous-

tic counterparts (both were active during identical data collection) in nearly every

test, and usually by a large margin

In light of these points, acoustic data will not be considered in further analysis.

Acoustic sensors may be useful in other applications, but do not appear to be as effective

as vibration sensors are for jet engines. The combination of variable altitudes and the

volatility of propulsion seem to be at odds with the desired qualities of an experimental

environment. Due to the nature of the signal these sensors detect and the indirect way in

which they represent the state of the engine (engine operates > noise propagates through

air > pressure waves collected by sensor), it is far more appropriate to use vibration

sensors, which are directly recording the state of the engine.

3.2.2 SR-30 Dataset

The SR-30 data set used in this dissertation was acquired by Turbine Technology, and

it includes a collection of data from 15 sensors mounted on an SR-30 jet engine (see

Appendix A for more details. 11 sensors were used to capture acoustic engine signals

(1 at the edge of the compressor blade, 9 around the engine, and 1 at the edge of the

exhaust). The other four sensors were vibration sensors, mounted at 90 degrees intervals
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around the outside of the engine casing. The sampling rate for all the sensors was

102.4KHz, and three separate tests were performed to acquire different data sets:

1. Nominal (N) represents the engine state in a standard configuration and balance

2. Blade Damaged (BD) represents the engine state when there is a notch cut from a

blade of the compressor

3. Bearing Failure (BF) represents the engine state when one of the bearings is dam-

aged so that it causes a vibration to occur throughout the engine

Each test consists of a sequence of sub-tests according to the typical stages of flight,

which are summarized below for this particular engine. Note that speeds are given in

kRPM (thousands of revolutions per minute).

Figure 3.2: SR-30 Flight Stages - List of flight stages and associated engine speeds for
SR-30 engine experiments. Data was collected in a laboratory test cell setup with 11
acoustic sensors and 4 vibration sensors (see Appendix A.1 for more details).

It is useful to point out that, with respect to the above table and the discussion of

stationary and non-stationary states of operation in Section 1.1, the cruise and idle stages

are most amenable to analysis because they are the most stable in the stationary sense.

Aside from brief interruptions, the engine is operating in a relatively static manner and

we will show that results from these two states of flight are the best. Our methods

24



applied to the other four stages of flight will fare worse, but potential improvements will

be discussed in Section 3.6.

3.2.3 PW4000 Dataset

The PW4000 data is a set of real jet engine data collected using vibration sensors. They

operate at a relatively low sampling rate of 25 kHz, compared to the SR-30 data. There

are 55 vibration sensors or "channels" collecting approximately 5 minutes data. How-

ever, for the performance evaluation, only channels with no error were used: channel 72

- 80 and channel 99 - 113 (a total of 24 channels).

Similarly, three separate tests were performed to acquire different data sets as shown

below:

1. Nominal (N) - engine operating under normal conditions

2. Fan Imbalance (FI): The fan at the air-intake of the engine is out of balance and

causes a wobble

3. LPT Imbalance (LI): There is an imbalance in the low presure turbine

This dataset offers an additional chance to study the performance of our algorithm,

this time using a full-sized engine. While there are no specific phase of flight indicators

as seen in Figure 3.3, the data contains three different engine state parameters (nominal

and two faulty operations). From the plots of the rotor speeds we can see that the en-

tirety of the engine data constitutes several stages of operation. Because the distinctions

between them are not explicit, we make the most conservative labels in order to preserve

the integrity of the data.

From Figure 3.3, we can see that with high certainty, the period of 50 seconds start-

ing at time 0 could be classified as an idle stage, so we take this portion of the data to
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(a) Nominal Test Speeds (b) Fan Imbalance Test Speeds

Figure 3.3: Turbine Speed Profiles for PW4000 Data, showing a test run lasting sev-
eral minutes during which the engine accelerates from idle to a maximum speed and
decelerates back to idle speed. The above plots demonstrate the similarity in speed pro-
files for nominal (a) and fan fault (b) speeds. More details about this dataset can be
found in Appendix A.

be the representative of that phase. The portion which most seems to correspond to an

acceleration is that between around 80 and 130 seconds, yielding a 50 second segment

of acceleration data. Finally, the segment from roughly 200 to 250 seconds is charac-

teristic of deceleration, so we label this is our last set of sample points. Conservatively

speaking, no other portions of the data can be safely labeled, because:

1. The final 50 seconds of the test also seem like they could be an idle/cruise stage,

but the behavior of the N2 shaft makes this assumption questionable

2. The initial portions of acceleration (around 60 seconds) and the later portions of

deceleration (around 270 seconds) could be construed as rapid, but it is really

uncertain whether these are just the ramping up and down of normal acceleration

or truly rapid rotations

3. We have chosen to assume that the initial portion is idle, rather than cruise, but

this would make little difference if the two were switched.
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The original data has variations of length close to 8,750,000 samples, which roughly

correspond to 350 seconds of data taken at a sampling rate of 25 kHz. The extracted

features, which were generated with no overlap using windows of 240 samples, have

corresponding length of around 36,400 data points. At this sampling rate, each second

of raw data corresponds to approximately 104 feature points.

3.3 Experimental Setup

The general approach for this system is typical of a supervised pattern classification

problem; a training phase uses known data to develop a classifier that is then used on test

data in order to measure the system’s performance at distinguishing between the classes

of data. Here, these classes are modes of engine operation - one normal state and two

(or more) failure states corresponding to the breakdown of specific engine components.

The overall system is summarized in Figure 3.4 and further discussed in the rest of

this section.

3.3.1 Feature Set Selection

Since engine faults usually arise from a variety of sources whose statistical character-

istics are mostly non-linear and non-stationary, such as high rotor dynamic forces or

bearing failures, data analysis in time and the frequency domain plays an important role

in the fault diagnosis system. Due to the non-stationary characteristics of engine sig-

nals, traditional analytic tools have limitations in discerning useful information within

such complicated signals. Therefore, in this project, the joint feature extraction tech-

nique based on Mel-Frequency Cepstrum Coefficient (MFCC) and Code Excited Linear
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Figure 3.4: Overview of the Proposed System, with the training and testing phases
separated for convenience and an overview of major operations. Decision fusion can
be accomplished at the level of sensors, windows (after segmentation), and different
classifiers.

Prediction (CELP) is used for an efficient feature representation. MFCC is a success-

ful feature set in auditory recognition and is amenable to compensation for convolution

channel distortion (Section 2.2.1). CELP is a state-of-the-art coding technique for audio

signals, which provides linear prediction coefficient (LPC) and pitch information of in-

put signals (Section 2.2.2). The experimental results, shown in Section 3.4, demonstrate

that the proposed method yields fair performance for fault detection and diagnosis.

A frame is defined as a sequence of data from which a set of features will be ex-

tracted, so that one frame generates exactly one set of features. If each feature is taken

as one axis of a multiple dimensional feature space, the feature set generated by one

frame will be exactly one sample point in this space. The standard CELP algorithm

segments the data every 240 samples, regardless of sampling rate. These original CELP

setting are adapted in order to conform to existing CELP applications. In order to make
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the framing of MFCC consistent with CELP, the normal MFCC frames of 512 samples

(30ms at the audio sampling rate of 44.1 kHz) are also changed to be 240 samples.

Windowing is a preprocessing step for feature extraction, which employs one of a

variety of techniques (rectangular window, Hamming window, Hanning window) and

serves to further divide the data for processing with finer resolution. For CELP, the

original settings for LPC analysis are kept, which means that each frame is equally di-

vided into 4 subframes with 60 samples. An appropriately defined Hamming window

of width 140 samples is used on every subframe to estimate the LPC coefficients. This

has an overlap of 40 samples into the two subframes adjacent to the subframe being pro-

cessed to provide better smoothing of the entire stream of data. For MFCC, a Hamming

window with the same length as the frame is used.

3.3.2 Pre-Processing: Dimensionality Reduction

The huge amount of available engine data obstructs a real-time implementation of the

system, even if the classifier training can be done offline. Because there are many dif-

ferent sensors and the time-resolution of the sensors is relatively high, the amount of

information must be reduced or aggregated if it is to be processed by on-board systems

in a timely manner. The following section presents some introductory ideas into feature

space dimensionality reduction, although they are only partially explored because the

system is initially being designed as an offline analysis tool.

In a typical classification setting, there is a trade-off between the number of features

extracted from a dataset and the correct classification rate. With relatively few features,

the classifier is prone to frequent mistakes. Additional features provide extra informa-

tion and the error rate decreases. Yet at some point, not only does this trade-off reach a
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point of diminishing marginal returns, but the returns become negative; the classifier’s

performance actually degrades with additional features.

In this examination of the engine failure diagnosis problem, it was found that re-

ducing features from the full set of 32 MFCC and CELP features does not improve

performance, which implies that with this raw view, 32 features have not "saturated"

the classifier’s hunger for information and more features could conceivably be derived

and included to boost performance. Due to power, time, and space complexity, this is

an undesirable action. However, when viewed from the perspective of context-adaptive

features, a reduction below 32 features yields performance degradation at a much slower

pace, which implies that other methods could be used to reduce dimensionality to some-

thing manageable while still guaranteeing a high quality classifier.

Initially, Principal Components Analysis (PCA) was employed in order to reduce the

dimensionality of the underlying data. The assumption was that combined MFCC and

CELP features had redundancies that could be easily eliminated by including the most

highly correlated features in the data that was to be input to our classifier. However, two

characteristics of PCA make it unsuitable for these purposes:

1. Sensitivity to Scaling Variables - for two features with equal variances that are

positively correlated, PCA will result in a rotation of the feature space by 45 de-

grees with equal weights for the two principal components. But if the value of

the first feature is multiplied by a constant K » 1, then the resulting principal

components will be oriented and weighted more heavily towards the first original

feature. This means that whenever different underlying variables are measured

(such as temperature and pressure), PCA is a somewhat arbitrary method of anal-

ysis. In this scenario, MFCC and CELP features are fundamentally different and

the resulting principal components are distorted.
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2. Representation, not Differentiation - PCA computes the weights and orienta-

tions of the features in the direction that has the greatest variance among all the

classes. It is therefore representative of all the classes rather than providing fea-

tures which differentiate the classes from each other.

An alternative approach is motivated by the observation that features, which can

differentiate between different classes, tend to have small standard deviations, or small

variances. It is therefor helpful to use representative features with the smallest variances

while avoiding those whose values are not as concentrated. Because some features may

have disproportionate magnitudes, it is also useful to normalize all of the features into a

common range of values and then compute standard deviations. The proposed algorithm

is as follows:

1. Normalize the data for each feature separately (zero mean, unit total inter-class

variance), regardless of class assignments

2. Calculate the intra-class standard deviation for each class within a given feature

3. Rank features based on the smallest intra-class standard deviation

The intuition behind this technique is that normalized standard deviations will pre-

serve the information provided by the underlying features while identifying features

that delineate class clusters. Small standard deviations will indicate that other classes

are further away and each class is more concentrated, while standard deviations close to

the normalized inter-class variance of 1 will mean that each cloud of data is very spread

out and mixed with other data.
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3.3.3 Pre-Processing: Down-Sampling

A secondary practical concern (also discussed below) is the difference between the ex-

eperimental data, sampled at 22.5 kHz and 102.4 kHz, and real engine data, which is

typically sampled at much lower rates. In order to bridge this gap, we introduce this

problem below and address it fully in Section 3.5.

Practical flight monitoring systems collect data at relatively low sampling rates -

typically far below the fidelity and precision of those seen in lab-collected experimental

data sets. In order to validate these findings when less precise data is available, a criti-

cal down-sampling ratio, which keeps fair classification performance but maximally re-

duces the number of necessary samples, was investigated. From extensive experiments

on the sample data, there appears to be a good trade-off between the error rate and com-

putational complexity if the samples are decimated by certain ratios. A full treatment of

this matter is available in Section 3.5, where down-sampled results are discussed in the

context of fully-sampled findings from Section 3.4.

In addition, the design of a low-pass filter to be used as an anti-aliasing filter before

down-sampling, since there are frequency components with considerable energy outside

of the Nyquist frequency which might give a rise to an aliasing problem. In this system,

an 11th order Chebyshev IIR low pass filter is used to perfectly reject the harmonics in

the stop band.

3.3.4 Classifier Selection

The selection of a pertinent classification algorithm is an important step in any recog-

nition problem, and determines a lot of what kinds of design decisions will need to be

made in the subsequent tweaking of the algorithm. Because of the nature of the MFCC

and CELP data, the classifier chosen for this project was the Support Vector Machine
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(SVM), which provides a way to deal with a large set of data separated into relatively

few classes. SVM is a technique that maps sample points into a higher dimension so

that it may create a linear decision boundary with a hyperplane, rather than construct-

ing complicated decision rules in the original dimension that tend to either severely

under-represent the complexity of the data or over fit the classifier to the specifics of the

training samples.

As discussed in the Introduction, we are interested in performing both detection and

diagnosis of engine faults. The detection portion differentiates between nominal and a

fault condition, while the diagnosis part serves to identify the type of fault.

Figure 3.5: Confusion Matrix, Non-Tiered Classifier - this table shows a typical con-
fusion matrix in a 3-class problem, with detection and diagnosis errors labeled. For a
corresponding non-tiered confusion matrix, see Figure 3.10.

While trying to limit our choices to linear classifiers (because of their speed), we

looked at the Logistic, Fisher’s Linear Discriminant, and K-Nearest-Neighbors classi-

fiers, with results shown below in Figure 3.6:

The KNN classifier is clearly infeasible, but the Logistic and Fisher classifiers per-

formed particularly well for some of the sensors, leading us to believe that they are also

good candidates for an on-line implementation. Although the trend of the SVM is that

it will most likely outperform the two alternatives given enough training samples, these
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Figure 3.6: Summary of Classifier Performance - Behavior of various classifiers with
respect to training set size (a major concern to optimize performance on limited data).
Results indicate that after about 500 training samples, performance for all classifiers
will converge, making individual training/testing speeds a bigger factor in classifier se-
lection.

results were not collected because the SVM classifier requires prohibitive amounts of

time and memory to finish the training stage. Their reasonable performance and the ex-

tremely short time it takes to train these classifiers make both of them good alternatives

for further study.

In addition to pure detection performance, Type I (false positive) and Type II (false

negative) errors are also important metrics for classifier selection. In the context of the

afore-mentioned classifiers these errors were examined and are presented in the tables

below.
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Figure 3.7: Comparison of Classifier Performance, 300 Training Samples - Type I
and Type II performance (as percentages, inverse of detection errors) for both detection
and diagnosis given 300 training samples for a selection of viable classifiers. Note that
in each case, the detection stage performs with few errors, but there is a high level of
misclassification with respect to which problem was detected.

Figure 3.8: Comparison of Classifier Performance, 600 Training Samples - Type I
and Type II performance (as percentages, inverse of detection errors) for both detection
and diagnosis given 300 training samples for a selection of viable classifiers. Again, we
see a very high detection rate, but low identification percentages, indicating that most
classifiers will perform similarly.

As seen from the results in the above tables, the majority of these classifiers perform

extremely well at the detection stage - there is usually less than 1% total error when

determining whether the engine is operating at a normal state, and the false negative

(faulty operation that is detected as normal) is less around 0.01%. The problem is still

in the diagnosis component - here the SVM classifiers do slightly better, but the amount
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of error is still around 20-30% total. Unsurprisingly, there is little difference between

Type I and II errors at this stage, since both states are equally problematic to identify.

Kernels, in the context of classification, are functions of the form shown in Equation

3.1 that are substituted for the inner product operator so that linear classification tech-

niques can be used to solve a non-linear problem. Underlying data, which is assumed

to be non-linear in nature, is thereby mapped into higher dimensions so that a linear

hyper-plane can be used as a discriminant function between different classes.

k(xi, xj) = f(x1, x2, ..., xN) (3.1)

For the majority of the results in this chapter, a simple polynomial kernel of order 1 is

used, but this section presents results from a variety of different kernel functions. These

may provide more simple or efficient mappings into an appropriate higher-dimensional

space, allowing for additional performance boosts to the method. Here, we examine

several of the other available kernel functions built into PRTools in order to determine

the tradeoffs between performance and complexity for our problem. The following

kernels are tested:

Polynomial Kernel k(xi, xj) = (xi, xj)
p

Gaussian Radial Basis Kernel k(xi, xj) = exp
(
−‖xi−xj‖

2

2p2

)
Exponential Kernel k(xi, xj) = exp

(
−‖xi−xj‖

2p2

)
Minkowski Kernel k(xi, xj) = exp|

∑N
i=1 ‖xi − xj‖p|1/p

(3.2)

In each of the above, parameter p values of 1,3, and 5 were examined. Radial basis

kernels or exponential kernels of higher order would have been relatively simple to do,
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but the high exponents in the polynomial and Minkowski kernels would make these

parameter values computationally prohibitive.

Figure 3.9: Performance Comparison of Three Kernels - kernels and parameters
based on discussion in the above section, for a Support Vector Machine. Note that the
results for the Minkowski Kernel are not displayed because of the prohibitively large
training computational complexity.

The first observation is that Minkowski Kernels are not at all suited for this problem -

no results are shown because even the fastest realization (parameter value of 1) not only

took at least twice as long as the slowest of the other examined kernels (polynomial with

p = 1), but had an error rate of around 80% even for larger training sample sizes.

Next, it appears, mainly from Figure 3.9, that the polynomial kernel with p = 1 is

the best suited for the purposes of this data set, since it outperforms the other settings

and actually achieves 100% detection rate in cases where at least 200 training samples

are included. The only downside, as mentioned above, is that the training time is much
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greater than that of the other kernels. In our given setting, where training can be done

offline, this is not as much of a hindrance, but it is interesting to note that Radial Basis

and Exponential kernels can approach a 99% detection accuracy while having a signif-

icant savings with respect to runtime (around 1/3 of the speed of a polynomial kernel

with p = 1).

The testing times, which are not reported here, were similar for the three algorithms

examined here. The polynomial times tended to increase a bit, because slightly more

computation was needed to calculate the exponents, but the Radial Basis and Exponen-

tial times were nearly the same on average, owing to the fact that changes of the test

parameter result in a multiplicative scalar, rather than a power operation.

3.3.5 Tiered Classification (Fusion)

Training the classifier is the most complex step in the classification phase of a pattern

recognition problem. Assuming that the data has been dimensionally and semantically

decomposed to its essential components, a number of factors can still influence the suc-

cess or failure of the algorithm, some of which are discussed below.

The first consideration that was undertaken for robust classifier training was the size

of the training set. The two main constraints on the size are the time it takes for the

classifier to be trained and the amount of data that can be stored in the memory of

the computer doing this calculation. Although more training data theoretically means

better performance, the experience of the pattern recognition community recognizes

that an overwhelming amount of information will actually overfit the classifier, making

it unreasonably sensitive to minute changes in the input.

During the course of our testing, it was found that the SVM code in the PRTools

package for MATLAB would not run out of memory if less than around 600 samples
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Figure 3.10: Confusion Matrices, Tiered Classifier - this table shows a set of typical
confusion matrices in a 3-class problem, with detection and diagnosis errors labeled,
when the classification decisions for detection and diagnosis are performed separately.
For a corresponding non-tiered confusion matrix, see Figure 3.5.

were used for testing. In effect, this means there were 1800 data points with 11-32

dimensions (600 each from the three engine operation cases). We tested the performance

of the classifier by selecting 100-600 consecutive samples from a particular record of the

data and testing the remaining samples based on the classifier developed with this trained

data.

Classification performance improves with larger sample sizes, as expected, but the

time it takes to perform each set of training/testing roughly doubles with each increase

of 100 for the training set. Thus, a sample size of 200 or 400 should be a pretty sufficient

tradeoff between the runtime and performance. Further improvements can be achieved

by two means - simply taking the lowest points (best performing training data) as the

general training sets for the entire dataset, or finding specific "good" samples within the

dataset that are representative of each class.

Another modification to the classification process that was made during the course

of development was to include a two-phase classifier: one for detection of engine faults

and one for their identification. Both stages of classification use SVMs and the same

training/testing process, but it was discovered that breaking this process down into two

steps achieved several important things:
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1. Improved overall classification performance - the improvements vary from sen-

sor to sensor, but a sample comparison can be seen in Figure 3.11

2. Improved fault detection - the number of false positives and false negatives when

differentiating the nominal state from either of the two faulty states is much lower

than in the 3 class problem

3. Improved training runtime - the time necessary to train each binary classifier is

less than half the time it takes to train the original 3 class equivalent

Figure 3.11: Tiered Classifier Performance - a comparison of a 2-stage binary clas-
sifier with a 1-stage 3-class classifier. The "x" and "o" markings indicated results for
individual tests, while average performance is shown with the red and blue lines.
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3.4 Results and Performance Tradeoffs

There are many perspectives through which the collected data and subsequent classifi-

cation results may be viewed - these points of view yield a variety of interesting conclu-

sions that are discussed in this section.

3.4.1 SR-30 Data

As mentioned in Section 3.2.1, the performance of the acoustic sensors when compared

to the vibration sensors, was erratic and inconsistent at worst, and much less convinc-

ing at best. The performance of nearly half of the 11 acoustic sensors significantly

resembled random guessing in either the Idle or Cruise stage, suggesting that there was

something wrong with the setup of the sensor during that trial. The remaining acoustic

sensors exhibited classification performance in the 90-95% range for Idle and Cruise

stages and about 50% for the other stages (which was consistent for all sensors, as will

be discussed in Section 3.4.4). The vibration sensors consistently had detection perfor-

mance in the 95-99% range for both Idle and Cruise stages, even though there were only

4 of these sensors.

Figure 3.12: SR30 Classification Results - results for vibration sensors for the SR30
engine data. Average performance for idle and cruise stages is excellent, while the
classification for "transient" stages is relatively mediocre. Handling of transients is ad-
dressed further in Section 3.6.
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Both types of sensors, when operating consistently, had similar detection and di-

agnosis characteristics - the discrimination between the nominal and either one of the

failure stages usually occured with very low error, but there was a lot of confusion be-

tween which type of failure state was actually present in the engine.

3.4.2 PW4000 Data

Overall, as seen from Figure 3.14, the performance of the algorithms on these vibration

sensors are less efficient than expected, particularly in the case of the Idle Stage, where

the average performance is around 33%, or in the realm of random guessing. One other

thing of note in these figures is the lack of a trend of improvement with larger training

sample sizes, which has been the norm for all cases when the algorithm did work (espe-

cially Idle and Cruise stages). This seems to reinforce the conclusion that our method

was not effective in identifying these phases of operation.

Figure 3.13: PW4000 Classification Results - detection and diagnosis results for six
of the nine vibration sensors on the PW4000 engine (three sensors not shown produced
inconsistent data, suggesting they were damaged). The idle stage shown in Figure 3.14
is not indicated here, as not all runs included enough data to yield comprehensive results.

A look at the slightly more detailed results gives a clue as to the reason for this.

Figure 3.15 displays some interesting trends in the way the results are distributed with

respect to the training segment selection. At each segment size, the actual performance

of each selected segment is plotted with respect to its position in the training set, so each

figure will contain 6 clusters (one for each training set size), which are ordered in their

relative positions with respect to where they appear within the set of data.
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Figure 3.14: Sample PW4000 Classification Results - a comparison of classification
results for a sample PW4000 vibration sensor. The figure indicates behavior typical
of results for all sensors on the PW4000: the ineffectiveness of correct classification
in the presence of complex speed patterns (transients). While results in Figure 3.13
only show classification accuracy for acceleration and deceleration stages, this plot also
shows some sample results for the limited idle stage that was extracted from the start
and end of each dataset (as can be seen in Figure 3.3).

There is an obvious "upward" trend in performance - earlier samples generate better

classifiers. This would seem to imply that the features earlier in the training set were

more characteristic of an idle phase, whereas later samples were less so. The most plau-

sible explanation would seem to be that despite the constant engine rotation speed, the

underlying statistics of the data were already changing before the shaft speed increased

into the acceleration phase. Alternatively, if the statistics over the entire sample space

do change significantly from idle, the earlier samples are changing at a slower pace than

those later in the dataset.
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Figure 3.15: PW4000 Results, Detailed View - a detailed view of the results for the
Idle stage from Figure 3.14 showing the classification performance of individual test
iterations. It appears as though performance decreases over time (higher classification
error), but as is discussed below, this is likely an artifact of non-stationarity.

Overall, these tests are largely inconclusive - the duration of the test was not long

enough to give a representative operational run of the engine or our algorithm needs a

radical improvement in the area of dealing with non-stationary signals. In latter sec-

tions, notably in Section 3.6, the prevailing view will be that engine transients (non-

stationarities) tend to interfere with the simplicity of the model presented in this section.

3.4.3 Feature Sets

While investigating the feasability of feature space reduction, a comparison of how well

MFCC and CELP features perform when used individually and jointly was conducted.

The tables below summarize the findings.
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Figure 3.16: Performance for MFCC Features - confusion matrix of results for classi-
fication using 13 MFCC features and a linear polynomial kernel SVM, based on SR-30
vibration sensor data. Using the above, the correct classification rate achieved by MFCC
features alone is 92.0 %.

Figure 3.17: Performance for CELP Features - confusion matrix of results for classifi-
cation using 11 CELP features discussed in Section 2.2.2 and a linear polynomial kernel
SVM, based on SR-30 vibration sensor data. Using the above, the correct classification
rate achieved by CELP features is 93.9 %.

Figure 3.18: Performance for MFCC and CELP Features - confusion matrix of re-
sults for classification using 32 joint MFCC and CELP features (as discussed in the
above two tables) and a linear polynomial kernel SVM, based on SR-30 vibration sen-
sor data. Using the above, the correct classification rate achieved by MFCC and CELP
features is 94.0 %, a small improvement of the correct detection and diagnosis rate, but
a significant decrease in Type I and II errors.
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From the above results, it can be seen that the inclusion of CELP features improves

the overall performance of the system. The data shown in Figure 3.18 is based on 32

features (11 CELP and 21 MFCC), but even this number of features can be slightly re-

duced to yield an acceptable detection rate, using an appropriate selection from Principal

Components Analysis.

3.4.4 Flight Stages

In this section, results comparing stages of flight are presented for the vibration and

acoustic sensors from the SR-30 Dataset. When operating consistently, both sets of

sensors had similar characteristic performances demonstrated in Figure 3.19

As seen in the Figure, Idle and Cruise stage performance tends to gravitate towards

the 90-95% detection region, while the performance for the other stages of flight is still

far from reliable. What is more, there does not seem to be a particular effect of the

number of training samples on the non-stationary stages of flight, indicating that there

is something much deeper and more complext going on. Further discussion of this issue

is presented in Section 3.6.

3.4.5 Computational Complexity

Analyzing the complexity (whether it is of the space or time) for this implementation of

a classifier is difficult, primarily because of two factors related to our setup:

• MATLAB Environment - using MATLAB code speeds up development of an al-

gorithm, but serves to hide some of the costs incurred during runtime. Overall,

MATLAB requires a good deal of memory to deal with its own runtime environ-

ment, GUI, and internal functions. Generally, this means that code in MATLAB
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Figure 3.19: Sample Results for SR-30 Data - classification results for variable train-
ing set sizes for 6 phases of flight from SR-30 acoustic sensor #5. The plot displays
characteristic behavior for all SR-30 sensors (acoustic and vibration), though the error
rates of acoustic sensors in the transient phases of flight are generally worse than those
of vibration sensors. Note that the Idle and Cruise stages generally exhibit much better
performance than other stages, but that performance is only slightly affected by the size
of the training set after including at least 200 samples.

will run slower and less efficiently than code that is developed for a specific plat-

form in C/C++. Although it is possible to determine the runtime of code (see

below), it is difficult to judge how much memory and system resources are being

consumed to process the necessary information. As such, only rough estimates

based on operating system monitoring software can be given, although these will

be over-estimates of the actual necessary resources.

• PRTools Classification Package - because a partially open-source package is being

used to perform the actual SVM classifier training and testing, there are inherent
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inefficiencies introduced by the generality of the base code. The PRTools func-

tions do a lot of things internally to calculate statistics and additional meta-data

that are probably not necessary in a commercial implementation. There are also a

few "workarounds" that have been implemented in our code that could be better

implemented in dedicated code to speed up the process. Again, this implies that

the resource requirements will be an over-estimate of the true system load.

We now describe some initial performance results for classifier training and testing,

respectively. The two need to be separated because the classifier training is extremely

memory intensive (using hundreds of samples of data at once to build a statistical model)

while the testing is relatively simple (evaluating the features of a particular sample based

on the classifier).

3.4.5.1 Classifier Training

This portion is the most data and processor intensive of the entire classification process,

but needs only be performed once and could theoretically be complete offline, rather

than in-flight.

• Code Segment Size - The code we have for the classification is a couple hundred

lines long, and the inclusion of the PRTools code would most likely leave the

entirety of the classifier in under 1000 lines. While running the code, Windows

Task Manager showed an increase in memory usage between 20 and 40 MB. As

mentioned before, this is MATLAB code, so its length and memory requirements

could vary depending on the platform. In particular, since the MATLAB environ-

ment includes a lot of built in functionality it is difficult to truly estimate what the

resource requirements of the code itself are.
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• Data Segment Size - a typical training sample set is between 300 and 1200 samples

(100 to 400 samples per class), since additional samples do not seem to improve

performance considerably. Each sample currently consists of 21 MFCC features

and 11 CELP features, each of which are stored as 8-Byte doubles. This results

in a training data requirement of 75kB to 300kB for the data itself. The classifier

is a set of mapping coefficients for each of the feature and classes into a decision

space. The class provided by PRTools for this purpose currently requires 75kB

and 120kB. Thus, the total required space in memory for the main data structures

is between 150kB and 420kB.

• Instruction Throughput Requirement - MATLAB makes it difficult to calculate

this, but an estimate can be given based on the physical runtime on our testing

machine. The computer we are using has the following parameters:

1. Operating System: 64-bit Windows 7

2. Installed RAM: 6 GB

3. Processor Type: Intel Core i7 @ 2.67 GHz

The table below shows the typical runtimes for the classifier training for different

training set sizes:

Experiments have shown that the runtime is roughly quadratic with respect to

the size of the training set, although this depends somewhat on the actual data,

since the SVM classifier’s stopping condition is based on an iterative optimality

algorithm.
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Figure 3.20: Time Complexity, w.r.t. Training Set Size - the above shows runtimes for
the training portion of a linear SVM for SR-30 data from all 6 stages of flight for varying
training set sizes, showing a roughly quadratic relationship: O(n2). This performance
to complexity tradeoff leads us to suggest that 600 training samples is more than enough
for constructing a suitable classifier. Experiments were performed on a dual-core 2.0
GHz PC, in MATLAB.

3.4.5.2 Classifier Testing

This portion of the program is relatively processor and memory un-intensive, because

only one sample is being processed at a time and all other parameters have already been

calculated.

• Code Segment Size - The code for this portion of the algorithm is relatively short,

since the classifier is only being applied to samples of test data. The bulk of this

work is being done by PRTools, but the classification is a very simple process -

the discriminant functions (one per class) are applied to the test sample and map

it into the decision space.

• Data Segment Size - a single testing sample will again consist of 21 MFCC fea-

tures and 11 CELP features, each of which are stored as 8-Byte doubles. This

means a memory requirement of 256 Bytes for each data sample, although that

will be lower after the dimensions of the feature space are reduced. It is important

to note that the classifier itself must be kept in memory during this part of the

algorithm, so the 70kB to 420kB will also be necessary.
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• Instruction Throughput Requirement - Again, we estimate the runtime for pro-

cessing a single sample by referencing our machine’s specifications in the previ-

ous section and noting additionally that we currently process all the testing sam-

ples in a batch process. This probably improves the runtime slightly (since less

time is used on additional function calls and intermediate steps), but rewriting this

to work on a per-sample basis will not increase the processing needs significantly.

Regardless of how many samples the classifier was trained from, the algorithm re-

quired around 3 seconds to process 35,000 samples, for a runtime of around 11.6

ms per sample.

3.4.5.3 Effect of Down-Sampling

A critical down-sampling ratio, which keeps a fair classification performance but maxi-

mally reduces the number of samples, is also investigated. From extensive experiments

on the sample data, there appears to be a good trade-off between the error rate and com-

putational complexity if the samples are decimated by a ratio of 32 (25). As shown

in Table ??, the classification significantly declines at the down-sampling ratio of 64,

which corresponds to an approximate sampling frequency of 1.5kH in the system, even

though the computational complexity significantly decreases.

3.4.6 Decision Fusion

Depending on the memory considerations of an on-board system, it may be necessary

to combine some of the classification results throughout the operation of the engine

during the flight. Although a mechanic or maintenance crew would most likely prefer

to see all of the information from each sensor throughout the duration of the flight, it
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Figure 3.21: Time Complexity and Performance, w.r.t. Down-Sampling - this table
shows the rough tradeoff between detection accuracy and computational complexity for
a linear SVM classifier with SR-30 data from all 6 stages of flight. While average (for
all 3 classes, 6 flight stages) classification rate hovers around 80% until downsampling
by a factor of 32, there is a significant dropoff in performance for higher factors (more
discussion of this can be found in Section 3.5.2). Experiments were performed on a
dual-core 2.0 GHz PC, in MATLAB.

is conceivable that a concise summary of the engine’s performance might be required,

without the needs of performing complicated data analysis.

The first method of aggregating the data would be to simply average the decisions

for each sensor on the basis of a window, taking the most frequently occurring decision

within that window as a representative decision for that window. This would signifi-

cantly reduce the amount of data that needs to be stored, but it might also artificially

remove behavior that might lead to suspicion of an immanent failure. The decisions for

each window are determined based on the majority of the sensor’s individual decisions

within the confines of the window. Although the threshold of this majority-rule decision

could be lowered to permit a more sensitive analysis of the underlying signal, there will

still be a possibility of erasing important information that might give maintenance crews

an early warning with respect to some impending problem. Because windowing is in-

volved in this kind of signal synthesis, an appropriate investigation of proper techniques
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would also need to be conducted, taking into account especially the effects of window

overlap and window shapes/weights.

The information generated by the detection/diagnosis system can also be collected

on a stage basis; different classification techniques would be necessary to analyze the

engine’s acoustics during different stages of flight, so this data would have different du-

ration and even different importance. During the acceleration and deceleration stages of

flight, the engine is put under much more stress, which might reveal structural integrity

problems detectable with acoustic sensors. Therefore, although it would be possible to

consider all flight-time data as equal and average everything together, it is important to

keep in mind that different engine states mean different stresses put on the entire plane,

which might give contradictory output signals in this system. A higher resolution output

(lack of stage-based synthesis) would then be useful in analyzing such discrepancies.

Although the details have not been thoroughly investigated, it appears that synthesis

of information on strictly a time scale would be recommended in this system, if memory

restrictions allow it. Any other synthesis might introduce much more uncertainty and

problems than it would alleviate, and even time-based synthesis would need a careful

examination in order to retain the essential parts of the system output.

3.5 Discussion of Down-Sampling Effects

During the course of the project, the focus has been moving from theoretical devel-

opment to practical implementations of the fault detection and diagnosis methods. A

primary concern in this matter is the applicability of our algorithms to data that has been

collected with a much lower sampling rate than that used in the experimental phase of

the project, which has been 102.4 kHz. Current engines collect data at a rate of 1 Hz,
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but a practical system would need to function at a sampling frequency no larger than 3

kHz.

The data sets we have worked with are 30 second segments of audio and vibra-

tion sensor recordings under different engine operation conditions. At 100 kHz, this

translated to roughly 3 million data points. Our feature extraction procedures compute a

series of 32 features from 180 consecutive overlapping samples and we have determined

that we need at least 300 training samples in order to ensure good classification perfor-

mance. Therefore, with direct sub-sampling with a factor of 32-64 times (the largest

numbers that meet the above criteria), the highest sampling rates we are able to investi-

gate are approximately 1.5-3 kHz. The table in Figure 3.22 shows the correspondence

between the down-sampling rate and the sampling rate.

Figure 3.22: Effects of Down-Sampling - this table shows the tradeoff between the
down-sampling factor and resulting data sampling rate. Note that the Nyquist frequency
(the highest analyzable component) of the resulting data will be half the sampling rate.
Performance* here is based on synthetic cruise stage SR-30 data that only pertains to the
detection (not diagnosis) part of the classification, averaged over results shown in Figure
3.24. As seen from this table, a significant decrease in performance results from any
down-sampling. Experiments were performed on a dual-core 2.0 GHz PC, in MATLAB.

Longer data sets were unavailable so in order to verify the feasibility of our system,

it was necessary to synthesize data at a lower sampling rate that would still be charac-

teristic of the behavior of a real engine.
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3.5.1 Generation of Synthetic Data

In the data synthesis process, the length of the data is first extended to be multiples of

the original size, and then the totality of the extended data is down-sampled in order

to produce a representation of engine data at a lower sampling frequency. This is ac-

complished by multiple iterations of data stitching, where one round of data stitching

increases the length of the data set by its original size. The stitching process consists of

the following steps:

1. Chopping - the original (organic) data set is chopped into certain number of

blocks

2. Shuffling - a random reordering is generated and the blocks are permuted given

the new ordering.

3. Concatenation - given the reordered segments, the blocks from the original data

set are concatenated together.

The primary challenge to this method occurs during the concatenation step, because

the properties of the organic data may be altered if the blocks are simply joined together

without considering the transitions of the signal from one block to another.

The sinusoidal nature of the data implies that there will be periodic correlations

between portions of the signal, so for each concatenation, the correlation of the two

adjacent blocks is examined and blocks are matched to overlap at the highest peaks.

The offset corresponding to the maximum correlation indicates the highest "simi-

larity" between the two blocks, extraneous data is removed from the boundary of each

block. Once the chopping-shuffling-concatenation steps have been repeated sufficiently

often, the result is either stored or down-sampled, depending on the requirements.
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In order to determine whether our method of synthesis generated appropriately in-

distinguishable data, we compared the classification performance between synthetic and

"organic" data. A sample for acoustic data is shown below:

Figure 3.23: Synthetic Data Validation - classification performance for SR-30 Sensor
7 where synthetic data was generated for all 3 classes, all 32 joint MFCC/CELP features
were extracted, and then a full-feature linear SVM classifier was applied. Note that
the dashed lines (indicating mean performance) are nearly identical, even for smaller
training sample sizes, implying that synthetic data is indistinguishable from real data.

Our results for vibration and acoustic data conclusively show that the synthesis

method proposed here has performance that is within 1% of organic data performance.

For our practical purposes, therefore, we consider data generated through this synthesis

method and original data to be equivalent.
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3.5.2 Down-Sampling Results

In the following figures, we summarize our results for selected acoustic and vibration

sensors given down-sampled versions of the original data. Each dataset was generated

using the methods described in Section II and was created to have roughly the same

number of samples as the base data set (Down-Sampling Rate 1), for more appropri-

ate comparisons. A segment size of 300 was chosen for all datasets as it provides a

satisfactory tradeoff between performance and computational complexity.

Figure 3.24: Synthetic Down-Sampling Performance, Detection - downsampling per-
formance results for three vibration sensors from the SR-30 dataset, for the Cruise stage.
These results are for the detection component of the classifier, and demonstrate a rela-
tively high rate of correct discrimination between normal and abnormal engines.

As is visible from the results presented in the figures above, the performance under

down-sampling is somewhat erratic. In order to confirm our results, we analyzed the

error rate at the higher down-sampling rates with finer resolution, but came up with the
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Figure 3.25: Synthetic Down-Sampling Performance, Diagnosis - downsampling per-
formance results for three vibration sensors from the SR-30 dataset, for the Cruise stage.
These results are for the diagnosis component of the classifier, and show that this type
of analysis becomes harder as lower resolution data is used.

same patterns. All figures show a similar trend, however, in that there is a noticeable

dip around the 102 order of down-sampling. This is helpful because a factor of 128

corresponds with an 800 Hz sampling rate, which is well within the target sampling rate

of a real system. While we do not know what phenomena cause the performance to

vary in this manner, there does seem to be a consistency to the lower (less than 103)

down-sampling rate regions.

In Figure 3.26, we show a spectrogram of idle stage operation from the SR-30

dataset, along with labeled portions of the frequency spectrum that remain after several

down-sampling operations. As is seen in the figure, after only 5 rounds of decimation

(32 = 25), most of the information contained in the harmonics is no longer available for
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Figure 3.26: Visualization of Down-Sampling, Idle Stage - this figure shows a nom-
inal, idle stage spectrogram (from Vibration Sensor 4 of the SR-30 data). The corre-
sponding table references the portions of the frequency spectrum that are included in
successively down-sampled versions of the data. After merely a factor of 32, brining
down the sampling rate to 3.2 kHz, the majority of the harmonic information present in
the data is no longer visible.

analysis by the MFCC and CELP features. We believe this is the reason why perfor-

mance drops so drastically, as seen in Figures 3.24 and 3.25.

From this, we can concluded that use of such high fidelity features (with long anal-

ysis windows and many frequency bins) are ineffective when fundamental information

is no longer present in the signal. To address this new and more complicated problem,

several immediate solutions are discussed in Chapter 5 and a more comprehensive ap-

proach to low-frequency data is developed in Chapter 6. We still maintain that, given

high enough sampling rates, these features and classifiers are extremely effective at han-

dling faults detected with vibration sensors (especially given stationary stage of flight),

but the complexities of non-stationarity (see Section 3.6) and low sampling rate pose

significantly more complex challenges.
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3.6 Non-Stationary (Transient) Segments of Flight

As was already mentioned, the non-stationary phases of flight are extremely difficult to

deal with, due to factors that are sometimes out of our control. Non-stationarities may

be caused by:

• Environmental Conditions - turbulance or adverse weather effects are largely un-

predictable, so any data collected during extended periods of operation when an

engine is subjected to such forces of nature offer little new information

• Operational Adjustments - during operation, the engine itself may vary it’s behav-

ior slightly, depending on

• Operational Transitions - an engine must transition from an "off" to an "on" state,

but also frequently changes speed. The resulting vibration signatures show some

patterns, which are usually highly linked to the real-time decisions of the operator.

The first two of these non-stationarities are unpredictable and cannot be simply mod-

eled. The last, dealing with transitions between operating states, are more amenable to

analysis although there is still a large degree of uncertainty in them. Although the shape

(in the frequency domain) is smooth and with a predictable trajectory (for instance,

when accelerating to a certain speed), the individual habits of operators prevents a blan-

ket treatment of these trajectories as stationary accross even a large set of transitions.

A similar argument can be made for the speed (in the time domain) of the transitions,

since varying conditions and habits influence the rate at which the transition happens.

Nevertheless, we did attempt to approach this problem through several basic ap-

proaches. In this section, we discuss some approaches and insights into how to utilize

this information to aid in the detection and diagnosis of engine problems.
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3.6.1 Differential MFCC and CELP Features

In general, the problem of detection within the acceleration/deceleration modes of op-

eration depends on the way transitions between states are treated. Figure 3.27 below

shows sample delineations between idle, acceleration, and cruise, which was used by

our research team in order to try to limit the types of irregularities seen in the datasets.

Figure 3.27: Spectrogram with Different Phases of Flight - a sample spectrogram
showing the delineations between various stages of flight, as they were visually deter-
mined for SR-30 data.

One approach to handling non-stationarity, especially when it is known that the val-

ues of the features have a general trajectory (either increasing or decreasing, with vary-

ing speeds), is to use a first or second order derivative to track the speed at which these

changes are occuring and determine whether or not the drift pattern belongs to a partic-

ular class. The differential features we used are defined as follows:
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• Delta MFCC features are first order differences, in time, between the current and

previous MFCC features. These features will detect the upward or downward

trend for each frequency bin:

δMFCC(i, t) = MFCC(i, t)−MFCC(i, t− 1) (3.3)

• Delta-Delta MFCC features are the second order differences, in time, between

the previous and current Delta MFCC features. This is another way to detect

trends that looks at a somewhat longer range of time data:

δ2MFCC(i, t) = δMFCC(i, t)− δMFCC(i, t− 1) (3.4)

In our experiments, we looked at 13-dimensional and 21-dimensional base MFCC

feature sets, which would then extend to 39 and 63 dimensional feature sets with the

addition of both differential variants. The performance on some test data, which is

representative of the performance changes we saw in all vibration and acoustic sensors,

is shown below:

Figure 3.28: Differential MFCC Performance, Base-13 - sample classification per-
formance for Stage 2 (Acceleration) and Stage 5 (Fast Acceleration), assuming 13 base
MFCCs. Note that there is no significant improvement.
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Figure 3.29: Differential MFCC Performance, Base-21 sample classification perfor-
mance for Stage 2 (Acceleration) and Stage 5 (Fast Acceleration), assuming 21 base
MFCCs. Note that there is no significant improvement.

As seen from the two tables, Differential MFCCs provide only a minimal improve-

ment to the already difficult problem of detection (ignoring diagnosis) in this non-

stationarity scenario. We do not believe that direct use of these features is the appropriate

solution to the problem, but such features may be useful in a different capacity.

The failure of this approach can be narrowed down to the fact that it still over-

emphasizes the stationarity of samples. Each sample is agnostic as to the effects its

past and future neighbors have on the progression of the system. What is more, each

frequency bin does not know of the relationships between it and its adjacent neighbors.

An appropriate way to analyze Figure 3.27 in the context of this approach is shown in

Figure 3.30 below:

Time-based trajectories would be able to detect whether a high amount of energy was

continuously transitioning into a particular bin, while the majority of the high energy

harmonics tend to move in and out of frequency bins. This means that the approach is

ineffective because it fails to capture movement across bins - each bin is oblivious as to

where the energy came from and where it is going, even though there is a clear pattern

to its movement.

An approach that we did consider as an evolution of this one, with the above lesson

in mind, was the definition of differential frequencies across frequency bins - either in
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Figure 3.30: Frequency Bins - frequency "bin" delineations for a sample transition from
idle through acceleration to cruise. Note that most high energy harmonics transition
through bins, rather than moving into them permanently.

addition to or in place of the time differences. The hope would be that trajectories could

be detected across bins, but here the time importance would be under-represented. An

ideal view would look at two-dimensional trajectories in time-frequency, which would

mean redefining the problem to a different set of features and assumptions. An analo-

gous evolution of this idea is presented in Section 3.6.2.

We also did consider the use of differential CELP features, but because they corre-

spond primarily to a curve-fitting polynomial approximation, there is no guarantee of

their gradual or monotonic change as the underlying frequencies evolve in time.
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3.6.2 Peak Tracking Through Spectrogram Analysis

As already shown in several figures, spectrograms are an intuitive and natural way of

examining the time and frequency properties of a set of features. Indeed, because of

the well-behaved harmonic structure of engine vibrations, a simple top-down view that

largely ignores vibration magnitude resolution yields a relatively clear picture of what

the differences are between acceleration in the nominal and failure states. The figure

below shows a comparison of these tendencies.

(a) Bearing Failure (b) Nominal (c) Blade Damage

Figure 3.31: Comparison of Fast Acceleration Spectrograms - sample spectrograms
for Sensor 7 during Stage 5 (fast acceleration), representing (a) Bearing Failure, (b)
Nominal, and (c) Blade Damage behavior. Note that some differences between nominal
and fault behavior are discernable visually, but difficult to characterize within a fixed
time or frequency range.

As can be seen from the figure, each transition has differences in the trajectories of

prominent harmonics in the 5 - 35 kHz range. A different view of these peaks (shown

in Figure 3.31 as darker lines) is shown below in Figure 3.32:
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Figure 3.32: Spectrogram, Side View - sample spectrogram for SR-30 data from Sen-
sor 7 during Stage 5 (fast acceleration) representing nominal behavior. Various harmon-
ics can be seen transitioning from idle to cruise.

Although more peaks are visible, the higher frequency harmonics tend to blend with

the noise floor and are therefore less visible. The goal of this approach is to somehow

compare the shapes of the curves in 2-dimensional the time-frequency space for different

scenarios and be able to determine what state the engine is operating in.

This approach was only developed theoretically because it departs greatly from the

overall framework present in the rest of our work. Examining curves in time-frequency

implies that different resolutions of frequency are needed than the MFCC or CELP

features used up to this point. While MFCC features were especially well suited to

frequency-based analysis, the energy bins they use are nonlinear and too large for the

sort of peak tracking that this approach would require. It is therefore necessary to switch
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to a standard FFT approach, where many more frequency coefficients are included in the

overall analysis.

A key difficulty, and one visible within Figure 3.31, is the assumption that the input

acceleration impulse provided by the pilot is identical in every scenario, and therefore

each of the samples in the figure is representative of its class. Although in this case

acceleration inputs were provided electronically so as to control the experiment as pre-

cisely as possible, this will not be the case in reality. It is therefore unlikely that any

such peak-tracking system will be developed well enough to distinguish between real

engine problems and a pilot’s slip of the hand during takeoff.

The main practical issue in further developing this method is that there is really

only a single set of data - one set of curves for nominal, blade damage, and bearing

failure behavior. Although it is likely that given more data with high enough quality

control on impulse inputs a method could be developed to detect these changes, a better

approach might be to simply focus on general impulse-response behavior of an engine

to precise and pre-determined inputs, rather than attempting to abstract this away into

general acceleration and deceleration scenarios. Unfortunately, most such methods are

most suited for maintenance settings and not applicable to live and real-time detection

and diagnosis.

Although there are not enough data reproductions to confirm this, there should be

similar patterns in many failure scenarios: given a similar shape and speed of the transi-

tion, an engine with an inherent problem will have noticably different vibration patterns.

3.7 Summary

From the performance analysis presented throughout this chapter, much can be con-

cluded about the practical implementations of an engine failure detection and diagnosis
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system. Above all, such a system is feasible and provides useful information when suffi-

cient amounts of training data are available. The most reasonable approach would be to

monitor the behavior of the engine while it is idling and cruising with vibration sensors,

and first attempt to detect a problem before diagnosing it. While the impracticalities of

operating on extremely low sampling rate data are only hinted at, there is still a reason-

able chance of catching some serious mechanical failure without the need for detailed

maintenance.

The approaches to the non-stationary phases of flight present an intersting problem

- no doubt it is intuitive to think that the true test of any vehicle’s integrity is when it is

operating in rapid acceleration conditions, yet the basic pattern classification approach

does not seem to yield useful results in this scenario. Alternative approaches have been

suggested and partially tried, but an elegant, intuitive, and effective solution remains

elusive.
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Chapter 4

Real Engine Data Analysis via

Change-Point Detection

4.1 Introduction

In addition to the more comprehensive and offline approach to engine fault detection and

diagnosis discussed in Chapter 3, it is worthwhile considering a more immediate form of

sensor data analysis. Whether breakdowns occur gradually or abruptly, we presume that

the values registered by vibration or acoustic sensors would be considerably different

when comparing a healthy and broken engine. Under this assumption, the analysis

presented in this chapter will deal with the more sudden failures that may occur during

the course of a flight. The discussion will further assume that when a change-point

(transition from normal to failure operating state) occurs, some statistical property of the

sensor signal will reflect this change. Our approach will attempt to detect these change-

points as accurately and quicky as possible after their point of occurance in time, with

the lowest computational complexity possible.

The main concern of this approach is a scenario where a component of the engine

(such as a fan or bearing) fails during flight and while this may not directly or immedi-

ately lead to a comprehensive system failure, it is a cause for grave concern that pilots

must be made aware of as quickly as possible. The situations where transitions from

normal to failure operating states occur gradually (over the course of several flights)
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and more as a consequence of wear-and-tear than severe problems will be discussed in

Chapter 5, as these types of occurances require a different approach and set of assump-

tions.

The desirability for a real-time system that can detect an in-flight engine failure is

clear when taking into account the issues mentioned in Section 1.1. That any asuch

system would be able to predict sudden breakdowns is unlikely, but it is realistic to ex-

pect a method of detecting occuring mechanical failures that could lead to a breakdown.

A full engine breakdown is a rare event generally caused by a confluence of internal

and external events, only some of which are a result of engine component failures. By

immediately detecting and identifying these individual failures, however, circumstances

that put the plane in danger of a fullin-flight breakdown may be avoided.

In order to provide the pilots with the necessary information related to these potential

component failures, such a detection and identification system should work by distin-

guishing when the behavior of the engine significantly changes from known norms. In

light of the detailed results presented in Chapter 3, it would seem prudent to design

such a system based on vibration and/or acoustic properties extracted from raw sensor

data via MFCC and CELP features. While initially a classification system similar to

that of Section 3.3.4 seems prudent, the relatively high failure detection characteristics

discussed throughout Section 3.4 suggest that a computationally expensive operation

such as classification may not be necessary to detect a deviation from the norm. In the

majority of the confusion matrices in those results, it is clear that the detection is fre-

quently done with little error while identification is where a larger percentage of actual

confusion comes from. This indicates that a simpler analysis of raw vibration data or

extracted features should be sufficient in detecting a problem, although a classifier-based
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approach will almost certainly be necessary to identify the problem among a collection

of possibilities.

4.2 Live Jet Engine Data

The data utilized for this analysis stems from the data used in the full offline detec-

tion/diagnosis work from Chapter 3. The key difference is that there is no practical

way of generating live data that simulates a component failure - all of the failure data

collected in the SR-30 and PW4000 experiments was generated by introducing a well-

controlled man-made defect into the engine and collecting full take-off, flight, and land-

ing information with the defect in place. At no point was the defect introduced during

the flight itself, so analyzing failure change-points seems initially problematic. This

difficulty was overcome using an approach similar to that from the down-sampling ex-

periments discussed in Section 3.5 - the updated appropriately approach is described

fully in Section 4.3.1

As discussed in Section 3.2, the vast majority of acoustic data collected and analyzed

during the experiments did not have good discrimination properties between the normal

and failure classes, so only vibration sensors were utilized in the synthetic generation of

this change-point simulation dat.

Similarly, because of the limitations of PW4000 with respect to sufficient durations

of cruise data mentioned in Section 3.2.3, only SR-30 data was used in this preliminarly

analysis of change-point detection approaches.
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4.2.1 Challenges and Goals

The primary goal of this part of research is to develop a method that is able to detect

relatively abrupt changes (on the scale of several seconds to several minutes) in jet en-

gine behavior in relatively real processing time (again, on a scale of several seconds),

so that pilots can be notified of potential engine problems stemming from component

failures. The main goal is rapid detection of abnormal behavior - differentiating be-

tween the nominal and all other forms of engine states - while operating with as little

processing and memory complexity as possible.

The main challenge will be low computational complexity with a high detection rate;

diagnosis or identification of the problem will be assumed to be handled by a secondary

algorithm similar to that discussed in Chapter 3. While dealing with individual sen-

sors initially, it is also desirable to verify change-points via a system of decision fusion

similar to that described in Section 3.4.6

4.3 Experimental Setup and Methodology

As mentioned above, the first problem to be overcome in simulating this scenario was

an appropriate dataset, which was not easily found in the data provided for the offline

detection and diagnosis scenario discussed in Chapter 3. To this end, a synthetic data

generation system is overviewed in the next section, following which the actual method

of detection is introduced.
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4.3.1 Synthetic Data Generation

Using the techniques of data synthesis for down-sampling mentioned in Section 3.5.1,

it is possible to create a similarly synthetic set of abrupt failure data. In this these ex-

periments, idle and cruise data for different failure modes was spliced together with

nominal data from corresponding phases of flight in order to generate the desired tran-

sitions from a normally functioning engine to one with a specific defect. In each case,

only a transition from a nominal to one of the two failure states was simulated.

Because it is not known how live failures of this type occur in flight (in particular

with what speed they happen), two types of transitions were tested:

• Abrupt Transition - this is the fastest expected transition, which demonstrates

an instantaneous change from the normal state to a failure state. Sample synthetic

data for this type of transition were generated almost identically to the way syn-

thetic data was created for the purposes of downsampling in Section 3.5.1, but the

two pieces at the moment of change were taken from different classes.

• Gradual Transition - this is a slower change from one type of operation to the

other, and includes an "intermediate" mode of operation. Several seconds after the

designated change-point, there is a weighted mixing of the nominal and failure

data, which simulates a less drastic change between the two states.

A total of 16 datasets were generated in this way, so as to include all of the pos-

sible transition types and failure modes, as well as four different change-points in the

sequence of a 30-second segment of sensor data. The change-points were located at

30%, 45%, 60%, and 75% of the data length.
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4.3.2 Change-Point Detection Features

As discussed above, one of the main difficulties of most change-point detection sce-

narios lies with the correct identification of a metric that exhibits different behaviors

for the normal and abnormal types of data. In this case, results from the offline ap-

proaches in Chapter 3 suggest that some MFCC and CELP features are good candidates

for this. Certain features have better discriminatory power than others and while the of-

fline scenario may take care to use all the discriminatory and characteristic information

contained in all of the features, an on-line system geared towards immediate detection

may not have need of features that are redundant or ineffective.

To this end, a comparison of the histograms of feature values between each of the

different classes was performed for all of the MFCC and CELP features. An example

of an ineffective feautre is shown in Figure 4.1, where there is reasonably good identifi-

cation of a bearing failure, but poor discrimination between normal and general failure

states. Such features are less useful for change-point detection.

An example of a particularly well-behaved features is shown in Figure 4.2, which

shows an excellent separation between representative samples from the normal and ab-

normal states of operation (even though it is hard to distinguish between the failure

types).

4.3.3 Algorithms

As introduced in Section 2, the primary method of efficient change-point detection in-

vestigated in this research was the Cumulative Summation (CUSUM) algorithm, which

computes a running statistic on the basis of Equations 4.3.3
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Figure 4.1: Histogram of MFCC Feature 1 Values - collected by vibration sensor
4 of the SR-30 dataset, displaying the distributions of each of the three operational
modes. Note that it is hard to distinguish between Nominal (blue) and Blade Damage
(green) samples, making this feature ineffective at detection. However, the high level of
separation between Blade Damage (green) and Bearing Failure (red) means it is a great
feature for fault identification.

Initialization: S0 = 0

Update: Sn = Sn−1 + xn − µ

Detection Condition: max (0, Sn) ≥ T

(4.1)

The function of these equations is to accumulate deviations of current parameter

values from the mean, until a certain threshold T is reached. The main difficulty with

this approach is the selection of an appropriate threshold - something usually done ex-

perimentally. As will be seen in the results in Section 4.4, an appropriate threshold is
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Figure 4.2: Histogram of CELP Feature 4 Values, collected by vibration sensor 4 of
the SR-30 dataset, displaying the distributions of each of the three operational modes.
Note that there is a reasonably clear distinction between Nominal (blue) and both failure
feature values (green and red), even though the distinction between failures is nearly
impossible from this sensor’s data. This particular feature would be useful for detection,
but not diagnosis.

frequently quite easy to choose due to the behavior of the CUSUM statistic under these

experimental conditions.

4.4 Analysis of Results

Figures 4.3 and 4.4 demonstrate sample results from change-detection simulations on

the SR-30 dataset. As seen from the CELP feature data, some changes are very distinct

and easily detectable, making threshold selection for these features particularly easy,
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even with large safety margins. From the MFCC feature data, however, it appears that

this is not always the case. While the MFCC features seem to discriminate between

normal and abnormal data sligly less than CELP features, it is surprising that this could

yield such a drastic difference in detection performance.

It should be mentioned that the type of transition in the CELP dataset of Figure 4.3

was of the abrupt kind, while the other figure demonstrates a gradual transition. This

intuitively makes sense in the context of how the CUSUM statistic works and partially

explains the longer lag between change-point event and change-point detection, but does

not explain the high variations in the MFCC features before the change-point event.

Figure 4.3: CUSUM Chart for CELP Feature 4 - in this plot, a synthetic abrupt change
occurs at the 30% mark. Note that the statistic climbs to a high value (relative to values
before 30) very quickly, and it can be conservatively said that at 35%, the change has
been detected. The entire dataset is 30 seconds long, so the detection takes approxi-
mately 1.5 seconds.

A total of 4 features (2 CELP and 2 MFCC) were tested under the myriad of sce-

narios described at the end of Section 4.3.1, and yielded an average detection rate of

75% using conservative experimentally determined thresholds within 5 seconds of the

change-point event. Typical lag times varied between 1 and 5 seconds.

77



Figure 4.4: CUSUM Chart for MFCC Feature 5 - in this plot a synthetic abrupt
change occurs at the 75% mark. In this scenario, the system performs less convincingly,
since setting the threshold to an adequately high value (around 70) means that detection
occurs at the 90% mark, indicating a detection lag of about 4.5 seconds.

4.5 Summary

Overall, despite the lack of real-world data for this type of analysis, the proposed sys-

tem works relatively well when considering different types of change-point events and

specifically chosen features. The CUSUM algorithm requires O(1) time for each step,

so it is extremely time and space efficient. Having to deal with only a selected subset

of features aditionally simplifies the problem, despite the fact that each feature set must

still be extracted from a windowed set of raw data. A comprehensive decision fusion

system should additionally increase overall detection without much additional overhead.

Because even the moderately good cases still have a significant level of noisiness

and tuning required, use of single features is not likely to be successful at effectively

detecting problems with the current setup. Future work extending this concept will need

to focus on:
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• Detailed complexity analysis of change-point detection algorithms. Though

the current algorithm is mostly dependent on how fast the features are extracted,

which is discussed in the implementation of the original method in Section 3.4.5,

a more precise analysis of the the computational complexity would be necessary

for any on-board implementation.

• Change-point detection based on raw sensor data. Pure detection of failures is

done with relative ease in the original method discussed in Chapter 3, suggesting

that something as complicated as MFCC and/or CELP features may not even be

necessary. Extracting simpler audio-type features without the use of complicated

extraction computations may yield enough data to discriminate between normal

and abnormal data, at least at the full sampling rate.

• Analysis of down-sampled data. It is not known how badly or quickly the dif-

ferences between normal and abnormal data deteriorate as the sampling rate de-

creases - an analysis of change-point detection performance on data synthesized

similarly to what was mentioned in Sectionr̃eft1:ds warrants further investigation.

• Analysis of PW4000 idle data. As seen from the rotor speed plots in Figure 3.15,

the dataset is dominated by accelerations and decelerations so that there is not

enough data for synthesis of cruise stage data, but there may be a way to generate

relatively acceptable synthetic idle-stage data to test this method.

• Implementation of decision fusion. Rather than generating random splicing

points for each sensor, an investigation of joint datasets that have common failure

events will be generated to test the performance of an individual detection and

joint fusion system.
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Chapter 5

Low Frequnecy Vibration Sensor

Analysis

In Chapter 4, the possibility of anticipating engine break-down events was discussed as

an extension of the feature extraction and classification method developed in Chapter

3. This was in the context of a real-time system that would require little computational

power and be able to sense component failures that would be indicative of an engine

break-down. In this chapter, a similar extension is considered, but with fewer theorete-

ical and more practical assumptions. The approach will be solely used to detect arbitrary

failures in low-frequency vibration data and attempt to do so on two time-scales: the du-

ration of one flight and the lifetime of the engine.

5.1 Introduction

The majority of the work discussed so far has been in the context of the availability of

high resolution data, both in time and frequency - a scenario which is technically and

economically impractical in most circumstances. In order to make the most use of real

engine vibration data, which is currently collected at a sampling rate of 1 Hz, a different

method than the one based on high-frequency feature extraction and analysis introduced

in Chapter 3 is needed. Although it should be apparent that such low-resolution data

would either suffer from irreconcilable aliasing effects or lack any higher frequency
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characteristics (because of a suitable low-pass filter within the vibration sensor), a jus-

tification of the lack of high-frequency information in these datasets is presented in

Section 5.2.3.

In addition to dealing with data that is not adequate for processing via the previ-

ously developed methods, a long-term analysis of vibration sensor data should provide

additional value :

1. Performance Trends - each engine has certain operational characteristics that

are partially represented by the vibrations it makes. Capturing as much of the

overall behavior from the incomplete information recorded by each sensor should

allow for a by-flight analysis of how the engine performed throughout the flight.

Abnormalities caused by component failures should likewise register as vibration

anomalies even in low frequency data, according to the previously discussed as-

sumptions.

2. Break-Down Prediction - the real value of a long-term perspective of engine

vibration data is the ability to perform a comprehensive risk assessment of the

engine’s health in the context of previous flight history and performance of similar

engines, flight patterns, or environmental conditions. With a sufficient collection

of past performance data, there is a possibility of estimating when an engine’s

wear-and-tear influences the integrity of the system enough to cause a breakdown,

irrespective of which components within the engine may be prone to failure.

5.2 Quick Access Recorder (QAR) Data

The Quick Access Recorder (QAR) is a module that allows for the recording of full-

flight data from selected sensors throughout the plane. Not all planes have it or use it,
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and there is no standard configuration universally accepted by the airlines, but the usage

of this module is increasing in frequency, which in turn makes analysis of data from it

extremely valuable.

The key challenge is that this type of data necessarily does not contain any faults or

failures. Whereas test-cell data (like that collected in the SR-30 and PW4000 datasets)

can be manufactured to be faulty at the mechanical level, it is unreasonable for any air-

line to risk permanent or catastrophic damage to a real plane by intentionally introducing

problems into the engine. Even when, however rarely, problems do arise in-flight, air-

lines are careful not to make that type of data public for fear of legal reprecussions.

For the purposes of our experiments, several such real flight datasets were provided

by Korean Airlines (KAL) from an unspecified single model of engine. Each of the

5 sets of recordings contain data for 2 engines, each of which were monitored with 5

unique vibration sensors operating at a sampling rate of 1 Hz. This raises a secondary

challenge that will continue to be a theme throughout this dissertation - modern signal

processing methods are designed to work well with high fidelity data, usually sampled

at least at the kHz level. Most currently-used data collection equipment on commercial

jets, however, uses a sampling rate of at most about 20 Hz [Vol13].

5.2.1 Description of Sensors

The configuration is summarized below:

1. Low Pressure Turbine - three of the sensors were placed around the low-pressure

turbine (LPT, also designated N1), along with a rotational speed sensor which

provided a %RPM reading indicating how rapidly the turbine was spinning.

82



2. High Pressure Turbine - one sensor monitored the high-pressure turbine (HPT,

also designated N2), which also had a corresponding rotational speed sensor.

3. Broadband - the remaining sensor was a "broadband" vibration sensor, recording

the overall viration of the entire engine

The reason for this particular concentration of sensors is that the LPT is most prone

to component problems, while the HPT is less likely to fail. Of the entire engine, the N1

and N2 regions are the most critical, while all other components in the engine are mon-

itored in aggregate via the broadband sensor. The layout of the engine and a summary

of sensor locations can be seen in Figure 5.1.

Figure 5.1: QAR Vibration Sensor Layout - in the figure, the High Pressure Turbine
(HPT, also designated as N2) and the Low Pressure Turbine (LPT, also designated as
N1) are labeled. The numbers in parentheses after each sensor name indicate the left
(odd) and right (even) sensor readings. Turbine speed sensors are designated in blue,
while vibration sensors are labeled in black. Note that the broadband vibration sensor
monitors the vibrations of the entire engine, as opposed to the other vibration sensors,
which specifically monitor N1 and N2 components.
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In addition to the speed and vibration sensor readings, there is one additional des-

ignation present in the data - that of a phase of flight. In contrast to the PW4000 and

SR-30 data referenced in the previous chapters, this set has only three phases of flight:

• Climb (CL) - this corresponds to acceleration or fast acceleration. As is seen in

Figure 5.2 and in Table 5.3, this phase can last up to 30 minutes, depending on

how long it takes the plane to achieve cruising altitude.

• En Route (ER) - this corresponds to the cruise phase and is presumed to be the

most stable type of data (an assumption discussed in Section 5.1)

• Descend (DC) - this corresponds to the deceleration or fast deceleration phases,

which (similarly to the Climb phase) may last up to about 20 minutes and may

contain a series of maneuvers that cause the plane to accelerate or decelerate,

depending on what path of the plane takes during final approach.

For reasons similar to those discussed in Section 3.6, the methods introduced in this

chapter will primarily focus on the En Route phase of flight in order to provide the most

consistent results. The CL and DC phases contain high level of nonstationarities, but

are also hard to approach because of their extremely short durations in the context of the

entire flight, as seen in Figure 5.2.

5.2.2 Overview of QAR Flights

Each of the five flights has unique duration and speed characteristics, and some of the

details are summarized in Table 5.3 below. Again, note that the durations of the climb

(CL) and descend (DC) phases of flight are considerably shorter than the en route (ER)

phase, and that the durations of these are not standard in shape or length, making it
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Figure 5.2: Sample Speed Profiles - the plot shows sample Low Pressure Turbine (LPT)
speeds for Flight 1 (above) and Flight 3 (below). Note that Flight 1 has significant
amounts of erratic behavior throughout the early portion of the flight, probably due to
the plane’s response to turbulance or maneuvers. Although much more stable, the speeds
shown in Flight 3 also exhibit some irregular behavior.

additionally difficult to try to compare each ascent or descent, even in the context of the

sort of spectrogram analysis discussed in Section 3.6.2.

It is further assumed that each of the two engines for each flight, while receiving

similar thrust stimuli, will act independently of each other. Reasons for this assumption

include the fact that each engine was manufactured and maintained separately, so while

the stresses of usage may be similar, there is no reason to expect a causal relationship

between two particular engines. Each pair is therefore treated separately.

The A1, B1, B2, C1, and C2 designations in Table 5.3 refer to the dataset names

given to us by Korean Airlines (KAL), and specify another characteristic of the set:
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Figure 5.3: List of Flights - this table lists the flights from which QAR data was col-
lected, including durations of each of the phases of flight (in minutes). Note that flights
1, 4, and 5 are similarly long, flight 3 is a mid-length flight, and flight 2 is considerably
shorter than all the rest. The A1-C2 designations refer to the planes from which data
was acquired, so that there are two datasets from two flights each (B and C), and a fifth
set from a third flight (A). It is also important to note that the flight phase designations
were recorded by the QAR system, though they sometimes do not accurately reflect the
descent/landing phase of flight (see Figure 6.4 for a more realistic view of the lengthts
of typical phases of flight). Due to this inconsistency, and a focus on cruise behavior,
the En-Route stage was used in most of this chapter.

Flights 2 and 3 were performed using the same plane, as were Flights 4 and 5, although

none of these three plance (A,B, and C) is the same. Despite this, each flight is treated

as an individual set of data.

*Note: the only additional item of importance in the five data sets is that the KAL

engineers indicated to us that Flights 4 and 5 (from Plance C) contain an overall vibration

reading that is higher than normal, although still within safe operation margins.

5.2.3 Challenges of Full-Flight Profiles

Real-world data brings with it a set of unique challenges, most stemming from the inher-

ent noisiness of non-controlled environments. The primary difference in this scenario

is the lack of labeled "failure" data, which makes this a semi-supervised classification

problem. The approaches to this type of problem generally rely on finding a way of
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concisely describing the normal data and establishing boundaries for "failure" data. The

key challenges of these approachs in the context of this dataset are as follows:

Figure 5.4: LPT and HPT Speed Comparison - the figure demonstrates a characteristic
of all the flights: the LPT and HPT speeds are similar, but frequently have variations
throughout the entire flight. Flight 2 (top) exhibits a relatively large disparity between
the two speeds, while Flight 5 (bottom) has nearly identical speeds throughout the En
Route phase of flight.

1. Disparities Between LPT and HPT Speeds - the plots in Figure 5.4 compares

the LPT turbine speeds for Flights 2 and 5, demonstrating the variability of their

behavior, even during the En Route (or cruise) phase of flight. Although it is rel-

atively obivous that that the HPT speed influences the LPT speed, for the purpose

of this analysis we treat these two components are independent (see Figure 5.7).
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2. Irregular En Route Speed Data - as was seen in Figure 5.2, there is a large

degree of variability each the phases of flight, but even the En Route phase (con-

sidered to be the most stable) exhibits quite extreme irregularities. All of these are

assumed to be caused by the environmental effects on the plane and/or the subse-

quent responses to these stimuli from the pilots. They have been loosely classified

to three kinds:

• "Salt and Pepper" irregularities are best seen in the Flight 1 speed plots,

which show a multitude of point discontinuities above and below the general

trend of the speed. These are most likely caused by brief (on the order of

several seconds) changes in thrust that the pilot is inducing during point

maneuvers or turbulance.

• "Plateaus" are portions in the flight when the speed of the plane significantly

falls/rises to a different stable speed, stays at that speed for a few minutes,

and then rises/falls back to the original speed. This behavior is characteristic

of a maneuver to avoid a weather pattern or enact a gradual course change.

• "Global Trends" are irregularities in the flight speeds that manifest them-

selves as very slowly varying changes throughout the duration of the flight

that significantly deviate from the overall mean. Flight 1 is the most ex-

treme example of this, but Flight 3 also exhibits a continual drop in speed

throughout the course of the flight. Presumably, this behavior is a result of

non-automatic pilots why try to maintain a constant speed, but invariably

drift, or possibly due to a fuel or pressure leak in the system.
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3. Lack of Frequency Domain Information - because of the extremely low time

resolution of the samples, there is no reason to expect a wealth of frequency do-

main information. In the offline approaches discussed in Chapter 3, the spec-

trograms showed a clear representation of various harmonics representing vibra-

tions of different engine components. Looking at the spectrograms of this dataset

confirms the notion that little useful frequency domain information has been pre-

served after the sampling process. Figure 5.5 is typical of all the vibration sensor

spectrograms for the En Route portion of flight, with the exception of Flights 4

and 5. Their typical spectrograms are shown in Figure 5.6, which has one rela-

tively prominent harmonic component that can be explained as the unusually high

vibration mentioned by the KAL engineers who provided the dataset (see the note

at the end of Section 5.1.

(a) Flight 1, HPT Sensor, Side View (b) Flight 1, HPT Sensor, Top View

Figure 5.5: Flight 1, HPT Spectrogram - this figure shows the side (left) and top (right)
view of the HPT sensor’s spectrogram for the En Route portion of Flight 1. Note that
there is no non-noise information outside of the DC component.
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(a) Flight 1, HPT Sensor, Side View (b) Flight 1, HPT Sensor, Top View

Figure 5.6: Flight 4, LPT Spectrogram - this figure shows the side (left) and top (right)
view of the LPT sensor’s spectrogram for the En Route portion of Flight 4. There is a
slight periodicity in this figure, but this can be attributed to the unusual vibration men-
tioned at the end of Section 5.2.2 since it shows up in all Flight 4 and 5 spectrograms,
but in none of the others.

4. Limited Scope of Data - as is clear from the description of the available datasets,

there is not as large a collection of sample flights as would be condusive to a thor-

ough analysis. There is a relatively small diversity of flights (leaving other typical

engine behaviors unknown), no duplicate flights (that may confirm general trends

for certain routes), and no additional annotations explaining the irregularities of

the LPT/HPT speed data. The general approach will be to treat all of the data as

"normal," but some adjustments to this definition will be made in ordr to try to

make the analysis less complicated.

5.2.4 Goals of the Unsupervised Learning Problem

One assumption that was mentioned in earlier sections is the relationship between the

unknown thrust, the measured speeds, and the collected vibration sensor data. The im-

plied and presumed interdependencies are shown in the diagram of Figure 5.7. While
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there is likely some correlation between the LPT and HPT speeds, it is assumed that

these speeds are independent, although the vibrations readings collected by sensors

mounted to these respective components are highly correlated.

Figure 5.7: Variable Dependences - the above diagram details the relationship between
independent and dependent variables, for a given engine (5 vibration sensors, 2 speed
sensors). An unknown thrust induces certain HPT and LPT speeds, which in turn in-
fluence the recordings in corresponding vibration sensors. HPT speed has some effect
on the LPT speed, but for the sake of speed/vibration and vibration/vibration analysis,
these are treated as being independent (though in reality they are highly correlated, see
Figure 5.4)

This correlation is confirmed by plotting the speeds and vibrations side-by-side, as

seen in Figure 5.8. As a result, for a given LPT or HPT speed, there is a high expectation

that a healthy engine will have vibration readings within a certain range of values - any

large deviations outside of this range may indicate failure or, at the very least, some ab-

normal behavior warranting investigation. Thus, the heart of the problem is the selection

of a suitable descriptor for the data, given the speed, and description of an appropriate

set of boundaries that delineate between normal and abnormal data.
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(a) Flight 5, LPT Sensor, Full Flight (b) Flight 2, LPT Sensor, Detail

Figure 5.8: Temporal Speed/Vibration Dependencies - the figure demonstrates a cor-
relation between the speed and vibration readings for selected sensors. The left plot
shows the full flight speed (green) and vibration (blue) sensor readings for a given sen-
sor while the right plot shows a detailed view, where it is visible just how closely these
two signals may track each other.

Several methods in this field have been extensively developed, and can be loosely

classified into boundary, reconstruction, and density methods. The first of these gen-

erally ignore time dependencies and seek to cluster data primarily based on distance

information relative to other related data points. The class of reconstruction methods

focuses largely on time dependent signals and seeks to predict where the next data point

in a series should fall. The last class of methods assumes that data is drawn from a par-

ticular distribution and makes probabilistic estimates about where the normal/abnormal

boundary should be, as well as with what certainty new data belongs to one class or the

other.

While this data seems more suitable to a reconstruction approach, density methods

are much more mathematically rigorous and provide clear risk assessments of how likely

abnormalities (component failures) are to occur. Although density approaches demand

a more precise set of conditions to be met before they are applied, the discussion of data
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analysis in Section 5.3 will justify usage of these method in the case of engine vibration

and speed data. Inclusion of features from other classes of methods (especially the

reconstruction approach) will be discussed in Section 5.5.

In light of these general limitations, challenges, and motivations, the goals of this

avenue of research are as follows:

1. Assess Current Engine Health through the comparison of per-fligh vibration

sensor readings to general norms and boundaries learned from past data.

2. Estimate Engine Lifetime using a comprehensive view of how the data from

successive flights changes over longer periods of time.

5.3 Tail Estimation Techniques

Density techniques in the context of semi-supervised classification rely on tail-

estimation methods to make predictions about the behavior of future data based on a

learned model. In general, a high volume of normal data will be used to generate a dis-

tribution from which that data is assumed to be drawn. This model can then be used to

generate confidence boundaries that delineate normal/abnormal behavior and predict the

likelihood of future samples occuring a certain distance away from the normal clusters.

In order to apply these methods, two main criteria must be met - the data being

analyzed must be relatively stationary and it must conform to a known distribution.

Both of these aspects are addressed in the following sections

5.3.1 Stationarity Considerations

Wide Sense Stationarity dictates that a given stream of data has a constant mean and

autocorrelation function with respect to shifts in time. In practice, this is an exremely
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difficult criterion to check, much less fully satisfy. As was seen in Section 5.1, most

of the characteristics of the given data (especially the three types of irregularities) are

in direct contradiction to these notions, but the stationarity requirement will be verified

visually and made more strict with the pre-processing of data. In order to satisfy the

requirements for density fitting, however, the entire dataset need not be considered at

once. Stationarity on a local time scale will be necessary so that a collection of adjacent

samples corresponding to a fixed speed can be considered together, but this does not

need to be longer then about 1 minute (64 samples). In the following, a window of 4

minutes (256 samples) is considered when verifying short-time stationarity, while the

more rigorous 1 minute window will be later used for the Goodness of Fit tests.

In general, stationarity at a short-time scale can be viewed as data not deviating

from the mean to within a standard deviation - all within some local time window. This

kind of behavior is generally observed in the KAL data, as seen in Figure 5.9, which

depics this kind of analysis for Flight 4. The left figure shows that the general outline

throughought most of the flight duration includes the randomly varying speed data at

the local level. The image on the right includes a detailed view of one of these areas -

there are still relatively few points that stray far from these boundaries.

In order to improve on the short-time stationarity constraints the datasets are to sat-

isfy, two pre-processing approaches were adopted in order to try to remove the more

extreme regions of the data. Because of the choice of a density-based approach to this

problem, there is no problem with breaking the time continuity of the data. Although

it is somewhat irregular to remove "problematic" portions of the data, this can be justi-

fied as a de-noising step that aims at removing transients that intuitively should not be

present in a clean data set. This removal will be addressed appropriately in the results.
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(a) Flight 4 Speed, With Short-Time Bounds (b) Flight 4 Speed and Bounds, Detail

Figure 5.9: Flight 4 Speed and Short Time Boundaries - the figure shows speed sen-
sor readings (blue) bounded by local means plus/minus a standard deviation. This is
done for the duration of the flight (left) and for a local window (right). Windows of ap-
proximately 4 minutes (256 samples) were used, under the assumption that, in general,
flight conditions will be short-time stationary within these time frames, during cruising
conditions.

5.3.2 Removal of Extrema

The first approach to improving the stationarity characteristics of the dataset is to remove

portions of the data that have high first derivatives (or first-order differences). This

is justified because En Route data should not contain sharp spikes that indicate rapid

changes in speed rather than a gradual flight at cruising altitude. The explanations for

these transient readings range from turbulence to rapid maneuvers the pilot needed to

make - in either case, the behavior is not representative of the general breakdown trends

under investigation.

The removal was done by simply computing a first-order difference and selecting

samples whose absolute value derivative exceeded a pre-specified threshold (which was

chosen by inspection, with respect to the mean and standard deviation). the 5 samples

to the left and right of any such point were also removed as a means of eliminating the
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entire impulse event, not just its center. Samples removed using this method can be

viewed in the left portion of Figure 5.10.

The second approach is to remove portions of the data that have relatively high

deviations (above two standard deviations) from the local means. This method aims

at removing the "plateau" irregularities mentioned in Section 5.1. The assumption is

that the pilot may increase or decrease the speed of the plane for a short duration of

the flight in order to enact a course change, avoid a weather pattern, or speed up a leg

of the journey - these are not behaviors typical of long-term En Route behaviors being

analyzed, and can be ignored in the context of the entire flight. Each individual pleatau is

actually a separate "En Route" realization, but their treatment is something not currently

addressed (see Section 5.5).

This type of data is removed as simply as it is detected - by finding a sample which

deviates from the local mean by at least two standard deviations and removing all sub-

sequent samples until they fall to within one standard deviation. There is a similar 10

sample window to allow for transitional phases. Samples removed using this method

can be viewed in the right portion of Figure 5.10.

5.3.3 Single-Dimension Goodness of Fit (GoF) Tests

A goodness of fit (GoF) test is a statistical test used to check for the conformance of a

specific realization of data to a particular distribution - a concept perfectly suited for ver-

ifying that the stationary data is derived from a probabilistic density. There are several

popular tests for this, most common of which is Pearson’s Chi-Square GoF Test.

The hypothesis being tested is conformity of the vibration sensor data to a Gaus-

sian distriution. Model parameters (mean and variance) are estimated using maximum

likelihood estimators:
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(a) Flight 4 Speed, With Short-Time Bounds (b) Flight 4 Speed and Bounds, Detail

Figure 5.10: Flight 4 , Removal of Derivatives/Deviations - in this figure data points
exhibiting high derivatives (left) and/or high deviations (right) are labeled. In order
to more closely conform to the definition of short-time stationarity, these points were
removed (by replacement with local 5-7 sample means) from the full speed data shown
in Figure 5.9.

µ̂ = 1
n

∑n
i=1 xi

σ̂2 = 1
n

∑n
i=1 (xi − µ̂)2

(5.1)

Using the before-mentioned 1 minute (64 sample) windows, the short-time station-

ary samples (selected using the methods mentioned in the previous section) for each

of the vibration sensors were checked for a distribition fit to a Gaussian. Figure 5.12

shows sample results for two of the five flights, while Table 5.11 details the results for

all flights and applicable sensors.

From the results in Table 5.11 and Figure 5.12, it can be concluded that 4 of the sen-

sors definitely pass the test and 2 partially pass the test. Sensors 13-16, although having

abysmal results in Figure 5.12, are actually inapplicable for this (or any) Goodness of

Fit test. Upon examining the kind of data recorded by these sensors, it was discovered

that these four sensors had particularly coarse quantization resolution, which resulted in
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Figure 5.11: Goodness of Fit Summary - summary of the distribution fitting results,
indicating relatively good fits for sensors 5, 6, 9, 10, 17, and 18. Each cell contains
the percentage of the entire dataset which passed Pearson’s Chi Square Goodness of Fit
test, with more colored cells indicating a higher proportion of the dataset passing the
test. The remaining 4 sensors had data that did not apply to the test (for details, see the
end of Figure 5.12).

the majority of their recorded values being one of three or four distinct quantities. This

low number of bins violates the constaints required by all popular GoF tests, making it

impossible to tell which distribution these values are truly from.

Despite these mixed results, the rest of the chapter will proceed under the assumption

that all sensors passed the GoF test and can be assumed to come from Gaussian random

variables.

5.4 Discussion of Results

Under the assumptions and framework outline above, the method of leveraging the data

to detect problems is most readily applied to the single-dimensional case: given a partic-

ular speed, the most probably distribution of sensor readings is computed and compared

to live data. The Gaussian Quantile Function (Q-Function, Equation 5.4 can be used to

estimate boundaries outside of which the occurance of sample readings is less and less

probable, allowing for a rigorous method of calculating risk.
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(a) Flight 1, GoF Results (b) Flight 5 GoF Results

Figure 5.12: Goodness of Fit Results - the figure provides sample Goodness of Fit
results for Flights 1 (left) and 5 (right), with respect to a Gaussian distribution. Note
that for each flight, 4 of the sensors have extremely low pass rates as a result of the
inapplicability of the test to the majority of the samples. See notes at end of Section
5.3.3 for a full explanation.

Q(x) = 1√
2π

´∞
x

exp
(
−u2

2

)
du (5.2)

The main problem with this approach is the variability in the speed of live data; while

a few of the datasets may be amenable to this one-dimensional approach, the general

case will not be as simple. To attack this difficulty, two separate two-dimensional views

of the data are being developed, each of which is described below.

5.4.1 Speed-Vibration Comparisons

The first method being developed plots speed and vibration data simultaneously for the

entire flight. There is generally a relationship between the two, but there is enough

variability and unpredictability in just the flights investigated here to warrant further

investigation.
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Figure 5.13 shows a pair of such plots, which demonstrates how well clustered this

data generally is in the speed/vibration space. It should be noted that for each vibration

sensor, the appropriate turbine speed is chosen for the plot and that there are still "tran-

sients" present in the clusters, despite efforts to remove them via the two-step process

detailed above.

(a) Flight 3, Sensor 5 (b) Flight 5, Sensor 15

Figure 5.13: Sample Speed/Vibration Plots - this figure shows a pair of sample
speed/vibration plots. Most of the flights, including Flight 3 (left) and 5 (right) ex-
hibit data that has well-defined clusters like the ones above, allowing for a high degree
of description of the data with a fitted Gaussian distribution.

5.4.2 Vibration-Vibration Comparisons

A second method of analysis is to compare pairs of vibration sensors in two dimensional

space. This naturally encounters the same problem as a one-dimensional analysis of vi-

bration data - the inability of incorporating variable speeds - but for flights with relatively

constant speeds (or large regions of constant and similar speeds), these comparisons are

possible. The most useful application may indeed be to compare the characteristics of

these plots for the same flight and sensors, but different engines.
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Figure 5.14 shows a pair of sample plots, with just this kind of comparison. Even

though both sensors are placed in symmetric locations on the plane and their recordings

correspond to the same time series subset, there are noticable differences. This confirms

the assumption in Section 5.1, since at least the stresses exerted on each engine during

turns are different enough to yield such discrepencies.

(a) Flight 2, Left Engine (b) Flight 2,Right Engine

Figure 5.14: Sample Vibration/Vibration Plots - the figure shows two sample vibra-
tion/vibration plots, each taken from Flight 2 and both comparing the same sensor pair
on either of the two engines. The amount of dissimilarity suggests a high degree of
independence between the two engines, despite their relatively similar inputs.

5.4.3 A Method for Failure Detection via Outlier Tests

Considering the (relatively well confirmed) assumption that vibratio data has a Gaus-

sian distribution, there are several ways of detecting abnormalities or problems that oc-

curred during the course of a recent flight. Each of these depends on establishing a pre-

determined boundary of healthy operation and subsequent levels of lower confidence

that correspond to less and less probably sensor readings. A 2-dimensional example of

this type of approach is shown in Figure 5.15.
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Figure 5.15: Failure Detection via Outlier Testing Concept - this figure demonstrates
a sample procedure for the detection of component failures via outlier detection on a
2-dimensional plot. Here, it is the Speed/Vibration plot for Flight 5, Sensor 15, which
indicates rough 5% and 1% tail boundaries for the 2-dimensional Gaussian distribution.
Values within the 1% boundary but outside of the 5% boundary are likely outliers that
can pose no significant problems, but values outside of the 1% boundary should be
carefully examined as they may potentially be significant faults or anomalies.

5.4.4 A Method for Detection of Performance Degradation

An alternate use for the tools developed in the previous sections is the long-term health

monitoring of engines. As wear-and-tear take their toll on the integrity of the compo-

nents, it is highly beneficial to perform maintenance on those components that need it

most - recording and comparing the way the sample distributions of vibration readings

change over time is likely a cost-effective and efficient way to do this.

A proposed sample is shown in Figure 5.16, which shows how a potential distri-

bution decays over time. As parts of the engine degrade and wear out, there is less
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coherence in the way vibrations correspond to particular speeds and there are likely to

be significant changes to the way these distributions look - whether they are more flat (as

demonstrated in the figure), split into more clusters, or translated throughout the sample

space.

Figure 5.16: Detection of Performance Degradation Concept - this figure shows the
concept for a system that anticipates wear-and-tear failures by analyzing how various
sensor value distributions change over time. Here, a 2-dimensional vibration/vibration
space decays from a well defined region to a spread out cloud of points as the engine
slowly degrades.

5.5 Summary

In this chapter, a method for the analysis of low-frequency vibration sensor data was

proposed and introduced. Despite many practical issues related to the data and chal-

lenging assumptions, the proposed system is seen to concisely represent the health of

an engine, being able to distinguish normal and stationary behavior from several types

of irregularities. Once more data is available for broader testing, it is likely that the

long-term analysis of vibration data will yield similarly fruitful results.

103



Further development of the long-term applications of the methods proposed in Chap-

ter 5 require a larger set of sample data, but the currently proposed approach would

benefit from additional work in the following areas:

• Inclusion of time-domain information. While the initial approach disgards the

time-domain relationships between samples, it may benefit from the inclusion of

time-domain information in the strictly density-based approach currently being

utilized. There is no doubt that time series data contain some correlations and

attempting to leverage these to make better decisions will be key in improving

this algorithm

• Improvement of stationarity analysis. A more precise treatment of stationarity

would not only benefit this work theoretically, but allow for better selection of the

parts of the flight that should be treated as having En Route characteristics. Ex-

tracting additional information from the platau irregularities mentioned in Section

5.1 and Section 5.3.1 could also benefit from this.

• Finding a relationship between the HPT and LPT speeds. It stands to reason

that there should be some way to relate these two, rather than treating them as

simply independent of each other in the context of what stimuli they enact on the

vibration sensors.
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Chapter 6

Advanced Gas Path Analysis Methods

6.1 Introduction

As discussed in Chapter 1, the traditional Gas Path Analysis (GPA) approach that has

been utilized with reasonable success for the last several decades generally uses small

amounts of infrequently collected data to trend the health of an engine over time. GPA

is a mature technology (started in the 1970s) and is widely accepted both in the military

and commercial domains of aerospace.

The fundamentals of the method are that it is a way for assessing the magnitude

of engine performance changes at the component level, based on observations of gas

path parameters. The important thing to note is that it is a relative analysis (always in

reference to something, usually average fleet performance). All of the current methods

of performing GPA are based on the same basic premise, which is described at a high

level in Figure 6.1 [Vol13].

In practice, the intuition is that, at steady-state cruise, averaging over several minutes

of samples yields a single reference vector for a particular flight that is "good enough"

for detection of component degradation.

Improvements to this traditional approach from the perspective of mechincal engi-

neering have taken the newly available full-flight data from QAR modules and applied

it to a physical engine model. The GPA component of this evolved system is computing

an estimation of degraded performance based on the data (observations). While (with
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Figure 6.1: Philosophical Overview - this is the relationship between the state of com-
ponents and observed parameters. Imperfect observations of degraded system perfor-
mance can hint at fundamental physical hardware flaws, but reality is rarely this direct.

some additional learning components) this advanced version of the traditional model im-

proves detection performance significantly, it does not account for instrumentation bias

or differences, model inadequacies, or parameter normalization errors. The chief draw-

backs, however, are the high computational cost and limitation to steady-state portions

of flight for which the adaptive filters can sufficiently stabilize.

Our challenge is to, first, look at this problem from the transient point of view and

try to reduce computational complexity where possible. This perfectly complements

the lack of physical model understanding, so that the data is approached from a very

fundamental signal processing perspective.

Initially, we are not only interested in the extremely difficult problem of performing

detection of faults during transient portions of the flight with the faults occuring within

those transients. It is much simpler, and more generalizable, to consider faults that

happen outside of the transient regions (usually in an adjacent steady state area), and

to see whether our approach can detect these within the steady state and the transient

regions overall.
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6.2 Simulation with CMAPSS

The fundamental datasets for these experiments were to be QAR flight records (recorded

at 1Hz, for selected GPA parameters), which we had access to through Korean Airlines

(KAL). The main conundrum was how to acquire data with faults; no airline would

be willing or able to introduce problems into their own engines for data generation

purposes, and the repository of historical flights with recorded full-flight data is limited

to handful of instances.

A better path would be to somehow simulate faulty data along with nominal flights,

develop a process that would be able to distinguish between the two, and then find

a way to relate the simulated data to real-world QAR data. Unfortunately, nearly all

commercial and military engine simulators are closely guarded secrets and it is unlikely

that even the closest of partners would have the resources to generate a significant corpus

of such data for general experimentation. Fortunately, there are a few experimental (and

semi-open-source) engine simulators that can be used as very close substitutes.

During the course of work on jet technology, NASA developed a series of such

simulators for fictional, theoretical engines that have recently gained enough stability to

be reliable and realistic. The Commercial Modular Aero-Propulsion System Simulator

(CMAPSS) [LFD+12] is the primary foundation upon which these projects are built,

and includes a few variants (such as the 40K version [Lin12]). This software package

is a series of MATLAB scripts and Simulink models emulating the physical behavior

of a 90,000lb thrust N1-controlled twin bypass turbofan jet engine, and comes with the

added benefit of a rudimentary Transient Test Case Generator (TTCG) that facilitates

generation of batch data [Arm10].

The list of available simulators is shown in Table 6.2. Along with the two main types

of software, the control and thrust parameters are listed, as these are the two variables
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Figure 6.2: List of Available Simulators - table shows the general purpose simulators
available at NASA, along with corresponding control and thrust characteristics. The
CMAPSS version 2 was selected because of the availability of the Transient Test Case
Generator software addon that simplifies generation of large datasets. The control type
refers to the category of controller that is commonly used in turbofan jet engines, where
the feedback can either be from the low-pressure (N1) subsystem or based on the Exit
Pressure Ratio (EPR).

which mostly define the performance signature to which we’d like to match a real engine

. There will never be an ideal match, because the NASA models are extremely generic

simulators that were not designed to correspond to any existing machine.

Table 6.3 shows the corresponding parameters of real engines that KAL was able to

retrieve QAR data from. While the PW4090 was a closer match to the thrust rating in

CMAPSS version 2, it turned out that many of the parameters needed later for standard

day correction and normalization for this engine would be impossible to retrieve, as that

proprietary data was owned by another manufacturer. We decided that the GP7270 was

the closest remaining fit, and matched the N1-control mechanism native to CMAPSS

v2.

The earliest versions of these models were released in 2009-2010, and have been

slowly evolving since, so there is not a large corpus of existing research that utilized

them. Previous work in this area of general commercial simulation has largely been

limited to internal projects [CMLG11], [CMGL12].
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Figure 6.3: List of Available Engines - this table details the engine types from which
QAR data is available (courtesy of Korean Airlines, KAL), along with the corresponding
control and thrust characteristics. The implicit best match, with respect to the simulators
shown in Figure 6.2 is shown in bold: the GP7270. Control Type is more important to
match perfectly, but the differences resulting from a thrust rating mismatch can be more
easily mitigated (as will be discussed in Section 6.3.3).

6.2.1 Relevant Parameters and Nomenclature

Having a simulator is half the battle - we also needed input data to drive it, independently

of the QAR records, in order to verify pure simulation results. CMAPSS has a few very

rudimentary scenarios (basic takeoff, cruise), but nothing resembling the complexity of

real-world flights, an example of which is depicted in Figure 6.4.

Figure 6.5 depicts a standard twin-bypass turbofan jet engine, with the prominent

components labelled. From left to right, air passes through the system, while fuel is

injected into the combustor (flow is regulated indirectly by the pilot, through appropri-

ate controller commands). The compressor and turbine are each additionally separated

into "low-pressure" and "high-pressure" subsystems, and it will be common to discuss

the Low Pressure Compressor (LPC), High Pressure Compressor (HPC), High Pressure
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Figure 6.4: Sample Flight Parameters - Annotated plot of altitude and (adjusted) PLA
versus time (in seconds) of Flight 17 from the NASA FOQA dataset. While altitude
broadly tracks PLA, it is obvious that PLA is a much more complicated inputs signal
that changes radically, especially during the descent andlanding phases of flight.

Turbine (HPT), and Low Pressure Turbine (LPT) in this parlance (notice that the highest

pressure is, logically, located near the combustor, while the lower pressure subsystems

are closer to the inlet and outlets). A somewhat more detailed version of this can be seen

in Figure 6.6, which depicts a cross section diagram with labeled parameters of interest.

Based on this, it is important to organize the flow of time within the turbine, so as to

determine which variables will lead or lag the others in time. The causal relationships

between the variables are to group them as follows:

1. Environmental - Ambient Pressure and Temperature

2. Input - Altitude, TRA, and Mach Number

3. Controller - fuel flow, VSV, VBV
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Figure 6.5: Jet Engine Diagram - Annotated diagram showing major turbofan jet en-
gine components, as well as input and output variables of interest. Pilot commands
(PLA/TRA) are generally transferred to the engine via controller directives (see Figure
6.6), but altitude and speed have an impact on performance. Fuel is injected into the
combustor, which drives the high pressure (N2) and low pressure (N1) subsystems in
the compressor, turbine, and fan.

4. Compressor/Combustor - core speed

5. High Pressure (N2) System - T30, Ps30, T48

6. Low Pressure (N1) System - T24, P24

7. Fan System - fan speed, T2, P2

Figure 6.6 provides a graphical representation of the descritpion above, which pro-

vides some additional clarity. The reason that the High Pressure (N2) system is affected

jointly after the combustor stage is because the HPC and HPT are physically linked, and

rotate at the same speed. Similarly, the LPT and LPC rotate at the same speed, being

linked to the same internal shaft. Thus, outside of the environmental and input variables,

the effects of input parameters are causally flowing from the combustor outward towards

the fan and exhaust.
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Figure 6.6: CMAPSS Simulated Engine Diagram - Annotated diagram showing a tur-
bofan jet engine cross-section, with labelled components, as well as input, intermediate,
and output variables of interest. Component health parameters, which are used to define
the level of fault or degradation, are also shown at the bottom. The seven parameters
highlighted in yellow are the output parameters for the system, while the three con-
troller commands are considered to be "intermediate" parameters. All other variables,
excluding component health parameters, and considered to be inputs.

The pressure and temperature variables, denoted with capital T and P letters, have

station numbers that originally ranged from 1 to 5 in old propeller planes. As the engine

grow outwards and became more complex internally, intermediate stations such as T2.4

were abbreviated as T24 (beceause of this, T30 and T3 are equivalent notations). Lastly,

T48 or T50 is sometimes also referred to as EGT (Exit/Exhaust Gas Temperature), and is

actually measured right before the final LPT stage; the temperature at the actual exhaust

is so great that no sensors survive there for long, so it is hardly ever measured.

The primary controls over the level of degradation within a CMAPSS simulation will

be through the health parameters depicted in Figure 6.6. There are other points of failure

that could be considered (sensor and actuator faults), but we have limited outselves to

a reasonable level of complexity. Each health parameter also has an associated flow
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capacity that is linked in a 1:1 correspondence to health; we do not change this ratio in

our simulations (see Appendix C for more information).

Figure 6.7: Dataset Nomenclature - this diagram shows an overview of the datasets and
primary operations that will be performed on them, along with corresponding outputs.
Input variables are used to drive CMAPSS simulations, which can produce a variety of
data with synthetic faults. All input and output data is standard day corrected (Section
6.3.2) and normalized (Section 6.3.3), which allows for comparison of simulated and
real world data for the purposes of system verification*.

As with all simulations and experiments, data is necessary to validate the pertinence

and applicability of any new methods. We were fortunate to be provided with two such

sources of information: Flight Operational Quality Assurance (FOQA) data from NASA

and Quick Access Recorder (QAR) data from Korean Airlines (KAL).

FOQA data consists of 69 anonymized records that contained the 4 primary param-

eters needed to drive CMAPSS: Altitude, Mach Number (MN), Total Air Temperature

(TAT), and Power Lever Angle (PLA). Note, that PLA is equivalent to Throttle Resolver

Angle (TRA) and as both of these terms are used in relevant literature, they will also be

used interchangeably here; both essentialy measure how far on the throttle (0-100%) the
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pilot is pushing. Also, it’s important to note that some modification to these four pa-

rameters is needed, as detailed in Section 6.2.3). As seen in the diagram in Figure 6.7,

FOQA input data is used to drive CMAPSS and produce a collection of datasets labeled

FN (the N corresponds to different experimental conditions, see Section 6.2.4).

QAR data from KAL consisted of input and output parameters, with the goal of

system verification in mind. These 98 flights were taken from 6 different planes, all of

which were equipped with GP 7270 engines that would closely match with the CMAPSS

simulator parameters (see Figure 6.3). The details of each flight were anonymized, so

that only relevant input/output information was available - though the data consisted

of pairs of flights, with odd numbered flights corresponding to even numbered return

flights. As seen in Figure 6.7, QAR input data was used to drive the CMAPSS simulation

and yield simulated nominal and fault data in the form of QN data (here, N will indicate

the index of simulated datasets, as each dataset’s experimental conditions are slightly

different, see Section 6.2.4). The corresponding QN output data will then be compared

to appropriately corrected and normalized real-worldQ output data, in order to establish

what level of correspondence exists between the two.

Generation of synthetic FN and QN data is necessary for the purpose of simulating

faults within nominal real-world data and using this to design a system that can detect

and identify these faults. Initial system design was performed using NASA FOQA FN

data, because that is the first dataset that was made available to us, though similar system

design was also performed with QAR QN data.

* NOTE: One final aspect of this experimental setup that needs addressing is the

sampling rate. As was discussed at the introduction of QAR vibration data (Section 5.2),

the standard sampling rate for these devices is 1 Hz. While CMAPSS can take input at

any sampling rate (even non-periodic rates, since all it requires is a set of time:parameter
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pairs that correspond to new input values at different points in the flight), its native out-

put is a datastream sampled at 66Hz. For the purposes of compatability in this exper-

iment, we down-sampled this 66Hz signal to approximately 1Hz using a factor-of-64

decimation filter. Using power of 2 decimation filters is much faster and easier (espe-

cially in hardware), but it does introduce a slight misalignment between the data we

simulate and what is available in the real world QAR data. When designing detection

and diagnosis algorithms, we ignored this difference (deeming it relatively insignificant

at this scale), but when performing validation with respect to real-world data, we in-

terpolated the 1.03125 Hz signal to match the 1 Hz signal from QAR data (see Figure

6.21). More on this operation can be found at the end of Section 6.2.4.

6.2.2 Definition of Engine Transients

When considering the task of transient fault detection, it is useful to discuss what a tran-

sient is, even after the brief introduction of stationary and transient behavior in Section

3.6. Speaking practically, a transient is any significant non-stationarity, or area when

the main engine parameters change quickly. This definition of speed will necessarily

have to be empirical, because the data will only be generated once every second, but an

abrupt change over the course of several seconds is enough to qualify as a transient that

might affect engine operation.

An appropriate starting point is to examine the PLA/TRA data stream and label a

region as transient if the angle changes by at least 5-10 degress. This is a simple view,

because what we really want to look at is the transient operation of the engine, but it

takes some finite time before the requested angle propagates from the pilot, through the

controller that changes fuel flow, and then into the compressor which first affects the

HPT (N2, spinning the core or Nc) and then the LPT (N1, spinning the fan, or Nf). Thus
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Figure 6.8: Sample Transient Detection Plot, for FOQA Flight 33. This figure shows
an overview of the entire flight, with transient regions labeled in light gray in the top
graph. The bottom plot demonstrates the technique used for automated transient region
labeling, via a pre-set threshold on the changes in TRA (red bars)

a more appropriate process will take into effect the lag between PLA/TRA and N1 (the

fan is much larger and takes a longer time to move into and out of steady state), and use

derivatives of N1 and N2.

Based on initial experiments, the threshold will more likely be around 1 or 2 degrees,

because a 1 degree resolution, even at the 1 second time scale, yielded very sparse

transient areas. All plots here use a threshold of 1, as show in Figure 6.9, in order to

make the effect of this change even more apparent.

In order to account for the time lags to different components, the approach was to

add a padding "factor" that would allow the transient effect to propagate for a few sec-

onds after it first occurred within PLA/TRA. At any moment when there was a transition

from transient back to stationarity, we extended the transient region by 10 seconds (em-

pirically obtained).
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Figure 6.9: Sample Transient Detection Plot Detail, for FOQA Flight 33. This figure
presents a detailed view of the time between 2700 and 3200 seconds into the flight,
showing actual TRA (in blue) with the proposed labeling of transients (gray regions) in
the top plot. The bottom plot shows the first order difference of TRA at corresponding
times, with the threshold to which these differences are compared (dashed line).

Another problem visible in Figure 6.8 is the presence of non-contiguous regions that

are in close proximity to each other. In reality, most human observers would combine

these areas if they were "close enough", we we included additional pre-padding logic

that checked for how close two adjacent regions were before combining them. A small

adjustment of about 3-4 seconds can account for these discrepencies, with sample result

of this modification visible in Figure 6.10.

6.2.3 Pre-Processing of Input FOQA Data

We must convert from base the FOQA variables into parameters that are expected by

CMAPSS. This entails the transformation of Total Air Temperature (TAT) into delta

ambient temperature (dTamb) as well as an approximate linear scaling from PLA to
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Figure 6.10: Demonstration of "Prepending" - the figure on the left shows a sample
segment of the TRA plot with the prepend functionality turned off. Notice that for two
of the transient events, there’s a lag between when they really start (blue line goes up)
and when they are labeled as transients (gray background label). In the figure on the
right, the prepend functionality is enabled with a lag of 4 seconds, which makes the
resulting labels much truer to reality.

TRA (thrust). All temperatures used in CMAPSS should be in Rankine, altitudes should

be in feet, pressures in pounds per square inch (psi), and speeds in rotations per minute

(rpm).

dTamb(degC) = Tamb(degK)− TambISA(degK) (6.1)

Where:

Tamb(degK) =
(TAT (degC) + 273.16)

[1 + 0.2Mach2]
(6.2)

TambISA(degK) = 288.16[1− 0.0000068793Alt] (6.3)

For the PLA to TRA conversion, we will assume a roughly linear conversion that

will only depend on what the minimum and maximum values of the CMAPSS TRA

values are:
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TRA = TRAto,C −
TRAto,C − TRAgi,C
PLAto,F − PLAgi,F

(PLAto,F − PLAInput) (6.4)

Where in the above, the "to" stands for "takeoff" (indicating a relationship to the

maximum value that usually occurs during that phase of flight) and "gi" stands for

"ground idle" (indicating the idling phase that is associated with minimum power). Sim-

ilarly, the "F" subscript corresponds to the referenced FOQA parameter, while the "C"

subscript corresponds to the referenced CMAPSS parameter.

FOQA data must also be truncated at the start and end of the flight to exclude some

data below ground idle. This is necessary because CMAPSS approximations can break

down when the PLA/TRA is lower than ground idle (in our case this is empirically found

to be about 10-20 %).

In order to find the ground idle and takeoff TRA values, an examination of CMAPSS

sample files includes the an explicit listing of these values. To find the corresponding

takeoff FOQA PLA values, the maximum value over the entire dataset was computed.

Calculating a ground-idle PLA setting was a bit more invovled because of the problem

listed above; the only surefire way was to manually inspect all of the FOQA files and

determine the minima at the start of an appropriately high PLA segment.

6.2.4 Test Scenarios

Simulations were performed with a variety of parameter settings, while varying the lo-

cation of the faults, their intensity, and the subsequent noise that could potentially be

corrupting the data. Explicit details about the generated datasets can be found in Ap-

pendix C, but list of fault conditions is as follows:
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1. Addition of uniformly random fault magnitudes between 0.020 and 0.040. Mag-

nitudes with more than 3 significant digits seem to cause CMAPSS to crash, and

these values hover around the general "middle intensity" of faults at 3% degrada-

tion.

2. Fault insertion could occur randomly at any point during the, flight, during the

descent/landing phase (randomly picked from last 30 minutes of flight), or from

the takeoff (see below for details).

3. Modification of noise addition to have more noise sprinkled throughout the data,

corresponding to a 1-3% variance of the base parameter variance (using additive

white Gaussian noise).

In order to more closely address the task of transient fault detection, however, we

elected to insert faults directly into a region that was known to be highly transient and

whose location could automatically be determined for every flight: the takeoff. Takeoff

occurs during an interval of about 5-20 second between ground idle and climb, during

which the PLA is increased to its maximum value as the plane accelerates along the

runway and lifts off the ground.

Based on rough calculations of known engine behavior [Vol13], takeoff starts when

the following conditions are met:

N1c2Low − e1 ≤ N1c2 ≤ N1c2High + e1 (6.5)

PLAIdle − e2 ≤ PLA ≤ PLATakeoff + e2 (6.6)
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Ṅ2Low − e3 ≤ Ṅ2 ≤ Ṅ2High + e3 (6.7)

Takeoff ends roughly when the plane is about 20 feet above the altitude at which

taxiing and ground idle occurred. Here, it is useful to approximate N1c2low as corrected

core speed at Idle,N1c2High as corrected core speed at Takeoff PLA, and to use e1 = 20.

We used e2 = 1.5 and for the final equation, Ṅ2Low = 100, Ṅ2High = 1000, and

e3 = 25.

The plot below in Figure 6.11 shows an "operating region" (typically used by in-

dustry experts) composed of an altitude vs. mach number plot for takeoff regions, with

solid lines tracing time from sample to sample. What is interesting is that the takeoff

phase (differentiated from cruise when the plane reaches an altitude of about 20 feet

above the ground) really is particularly short, containing between 20 and 50 samples (at

a 1Hz sampling rate) and still looks relatively smooth.

Figure 6.11: FOQA Takeoff Characteristics - Altitude-Normalized operating regions
for FOQA flights. The graph demonstrates definite similarities in the trajectories of all
flights (though these are not necessarily time-correlated). Each flight exhibits a char-
acteristic drop in altitude associated with the speed just prior to takeoff (at about 0.2
MN).
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The final post-processing step for CMAPSS simulated data is the need to downsam-

ple to 1 Hz. CMAPSS natively produces data at 66Hz, and the most expedient way to

rectify this is to use a factor-of-64 decimation; which inadvertently introduces a slight

timing mismatch between CMAPSS and FOQA input data. This is not relevant for the

purposes of initial CMAPSS/FOQA experiments because simulation outputs will not

need to align with FOQA flight profiles; in this scenario, we simply re-labeled the data

to appear as if it was sampled at 1Hz rather than 66/64 Hz.

In the case of a CMAPSS/QAR comparison, this mismatch will prove problematic

when looking at verification of simulated outputs to real-world outputs. This mismatch

is addressed in Section 6.3.4, and can be seen more clearly in Figure 6.21.

6.3 Verification with Respect to Real-World QAR Data

Korean Airlines (KAL) provided us with a total of 98 real-world QAR flight records,

all from the GP 7270 series engine, with flights of duration varying within two ranges:

short (1-4 hours) and long (5-12 hours). Generation of simulation data from QAR data

proceeded by extracting corresponding input parameters (the same 4 primary FOQA

input parameters used in the original simulations discussed in previous sections).

The diagram in Figure 6.12 outlines the process that will be required for computing

a correspondence between real-world QAR outputs and simulated CMAPSS outputs, in

an effort to verify that the two datasets are interchangeable.
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Figure 6.12: Diagram of Verification Process - the raw QAR data is split into input and
output/intermediate parameters. QAR inputs are processed through CMAPSS to gener-
ate simulated outputs/intermediate parameters. Each set then goes through a uniquely
tailored standard day correction, normalization, and adjustment process in order to per-
form a final comparison (see Sections 6.3.2 and 6.3.3).

6.3.1 QAR Pre-Processing Modifications

Every device and entity has a favorite data storage format, and QAR data is no different.

Some modifications and pre-processing operations were necessary to transform input

parameters into those that could correspond to what is discussed in Section 6.2.3.

First, there is a convention mismatch between T24/P24 and T25/P25, but as was

discussed in Section 6.2.1 they are close enough to be interchangeable. A similar equiv-

alency exists between T48 and EGT (Exhaust Gas Temperature).

Secondly, Nf and Nc will need to be suitably adjusted to match the CMAPSS data

for comparison purposes. Nf corresponds to fan speed, but it is identical to N1 (since

the LPT is connected to the fan and LPC), while Nc corresonds to the core speed and is

identical to N2 (since the HPT is connected to the HPT, and they spin at the same higher

speed). The main issue with the QAR data seems to be that the convention for maximum

speeds is different from that in CMAPSS. In simulation, maximum speed is designated
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by 100%, while many manufacturers rate maximum speed at around 120% since this

high burst is used only briefly during takeoff. Naturally, appropriate readjustments for

normalization need to be made.

Lastly, VSV are actually be inverted between QAR and CMAPSS, because some

systems record the angles from a different baseline (either 0 or 90/180 degrees for

open/closed), so they need to be appropriately readjusted (this is discussed in Appendix

B).

6.3.2 Standard Day Corrections

Real-world and simulated parameters can vary over a wide range of values, and may

never align for two identical flights because of differences in ambient enivornmental

effects. In fact, variations in ambient conditions make comparisons of performance

for a single engine difficult, because the inlet temperature and pressure influences the

thermodynamics of the entire system. Even at a constant operating point, significant

differences in measured parameters may be observed.

Understandably, this makes classification of engine state more difficult and may

mean that verification is impossible if close matches are corrupted by differing atmo-

spheric effects. Standard Day Corrections are a series of methods derived for the pur-

pose of removing the influence of these ambient factors on other primary variables. Use

of these corrections dates back to the 1940’s, though their formalization and derivation

are more recent. Standard Day Corrections (from here on, referred to simply as "correc-

tions") all follow a pattern equation of the form: [Vol99]:

p∗ =
p

θaδb
(6.8)
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The theory, derived from a long history of thermodynamic and conservation laws,

is that the input conditions measured at the inlet (primarily T2 and P2) can be used to

adjust the measurements at all other parts of the engine with a reference to standard

day values. Using this international standard of T2 = 518.67 Kelvin and P2 = 14.696

pounds per square inch (psi), the two θ and δ parameters are dimensionless variables

whose value is deteremed with a direct reference to standard day T2 and P2, as follows:

θ =
T2

518.67
(6.9)

δ =
P2

14.696
(6.10)

In Equation 6.8, a and b are parameter dependent exponents with approximate values

related to the physics of a general turbofan jet engine, but precise values should be

retreived from the manufacturer’s literature (this is a standardized enough practice that

most engines have these parameters empirically calculated). CMAPSS includes specific

exponents in the documentation, allowing for accurate correction of simulated data with

respect to ambient temperature and pressure conditions. The GP7270, however, has

these exponent values as part of a proprietary set of engine controller parameters, so the

approximate values were used instead (there is usually not much difference between the

approximated and exact exponents).

For the 7 output parameters that we will need to correct, the corresponding equations

(using exponent values for CMAPSS), are as follows:

T24∗ =
T24

θ1.0
=

T24

( T2
518.67

)1.0
(6.11)
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Figure 6.13: T24 Plots, Before and After Standard Day Correction - Sample readings
from sensor T24 for Engine 7, Flight 1 (top) and Flight 2 (bottom). The value of the
parameter before correction is shown in blue in both cases, and is characterized by
a decline after the plane reaches cruising altitude. The value of the parameter after
correction is shown in black, and exhibits a pattern much similar to that of the input
indicators.

T48∗ =
T48

θ0.98
=

T48

( T2
518.67

)0.98
(6.12)

P24∗ =
P24

δ1.0
=

P24

( P2
14.696

)1.0
(6.13)

Ps30∗ =
Ps30

δ1.0
=

Ps30

( P2
14.696

)1.0
(6.14)

Wf ∗ =
Wf

δ1.0θ0.66
=

Wf

( P2
14.696

)1.0( T2
518.67

)0.66
(6.15)
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Nc∗ =
Nc

θ0.5
=

Nc

( T2
518.67

)0.5
(6.16)

Nc∗ =
Nf

θ0.5
=

Nf

( T2
518.67

)0.5
(6.17)

These corrections in and of themselves seem to be improve the correspondence be-

tween even two different flights (as they are meant to) to the point that at least the takeoff

and cruise portions of the flight generally overlap quite a bit. Figure 6.13 shows samples

of T24 values before and after correction, highlighting the nature of these changes.

Figures 6.14 and 6.15 demonstrate the same plots, but compare different flights to

each other. In this sense, the original data is much different from each other - despite the

presence of the same strange declining behavior, the absolute values of the temperatures

are drastically different. After corrections, the temeprature values themselves track each

other relatively well for corresponding phases of flight, which will definitely make the

data much more consistent.

6.3.3 Normalizations and Adjustments

At this point, we have corrected QAR output parameters and simulated CMAPSS output

parameters independently of each other - but these two datasets still do not correspond

well with each other. A further step of normalization each dataset to common unitless

boundaries is necessary. Normalization for QAR data will need to be done with respect

to the statistics of the data, rather than the baselines we worked with in generating our

simulation data, because no such basalines were available for the PW7270 engine.

The proposed approach would be to "normalize" the data by effectively defining a

0% and 100% level for each input and output gas path parameter and then convert all the

127



data to percentage levels. There is some precedent for this, as analysis with normalized

percentage levels is routinely carried out with respect to spool speeds (i.e. the PLA

setting, which does not directly correspond to precise thrust values, but is simply a %

thrust value on a 0-100 scale). This is definitely not a precise solution, but it would get

a bit closer to allowing a 90K simulation to be used for a 70K real engine.

In practice, a further justification for this approach is that any CMAPSS v2 simula-

tion will not represent a real existing engine in the first place. What we are hoping for

is to detect and identify strongly faulted behavior which would be visible despite these

fundamental model-engine mismatches.

A summary of the finalized normalization extrema for CMAPSS can be found in

Table B.1 in Appendix B, along with some practical discussion of their computation.

Normalization for QAR paramters must be performed with respect to the data itself, and

yeilds slightly different parameter boundaries than the idealized simulation environment

of CMAPSS. Most noticable is a bias of QAR data with respect to CMAPSS, and most

puzzling is the frequent presence of two separate clusters of QAR data (Figures 6.16

and 6.17 show some samples).

As can be seen from both figures, there is a definite lack of overlap for a majority of

samples, which not only frustrates verification, but will make classification impossible,

provided that faulted classes scatter less than this discrepency (unfortunately, they do).

For several of the plots, this seems to be a problem of outliers (like in Figure 6.17),

where a few samples in the QAR data are skewing the majority upwards. This may be

partially corrected by removing the relevant outliers from decisionmaking in the QAR

normalization. The main problem, however, may be a matter of scaling, as seen in

Figure 6.16.
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We confirmed that the bimodal clusters we are seeing in the Wf vs. parameter plots

do not occur during any particular flights; nor do they occur only during isolated phases

of flight. They primarily seem to occur sporradically during cruise, but appear on return

flights from identical routes on the same plane. The most telling example of this problem

is shown in the figure below:

The best remedy for this is a series of intelligent, yet ad-hoc adjustements that are

made to the normalization boundaries: primarily to remove outlier issues, but also in

an attempt to reorient the distributions of the parameters so that they are more closerly

aligned. The intuition behind this is that each single paramter should have a roughly

similar distribution, with a focus on matching up the peaks in each plot. Outliers may

occur to distort the width of the entire distribution, but as long as the majority of the

points are well-matched, the plot should be more aligned.

The minimal set of adjustments fitting to this process is as follows:

1. Adjust Nf Min Cutoff to 15%

2. Adjust Nc Min Cutoff to 60%

3. Adjust T24 Min Cutoff to 15%

4. Adjust T48 Min Cutoff to 40%

Figure 6.19 shows a sample pair of distributions, before this adjustement process.

Figure 6.20 shows the same comparison, after the final adjustment has been made.
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Figure 6.14: T24 Plots, Uncorrected - comparison of FOQA Flight 1 and Flight 2
sensor T24 readings without corrections. Both flights exhibit a gradual dropoff after
reaching cruising altitude (though to different degrees), despite the fact that at cruising
altitude the plane is operating at steady state maximum thrust. This is a result of ambient
temperature influencing the cooling of the entire system over the course of the flight,
until the heat generated by the engine and the temperature at cruising altitude reach
equilibrium (at about 2000 minutes into the flight).

Figure 6.15: T24 Plots, Standard Day Corrected - comparison of FOQA Flight 1 and
Flight 2 sensor T24 readings after corrections. Despite the differences in the original
flight characteristics (Figure 6.14), the resulting readings look relatively similar for var-
ious stages of flight, improving upon what is seen in raw data. Note that the graduate
decline in temperature no longer exists in either flight, and that despite the two being
fundamentally different flights, their takeoff, cruise, and descent characteristics are gen-
erally similar.
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Figure 6.16: Sample Comparison of Normalized Wf/Nf - Distribution of normalized
nominal CMAPSS flight points (black circles) and normalized QAR flight points (green
x marks), comparing normalized fuel flow (Wf) to fan speed (Nf/N1). There is a distinct
difference in the curve shapes owing to the scaling of fuel flow as a result of the differ-
ences between simulated thrust rating (90k for CMAPSS) and real engine thrust (70k
for the GP 7270), but also because of a normalization mismatch.
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Figure 6.17: Sample Comparison of Normalized T24/Wf - Distribution of normalized
nominal CMAPSS flight points (black circles) and normalized raw QAR flight points
(green x marks), for the relationship between fuel flow (Wf) and the temperature at
the HPC inlet (T24). Again, there is a distinct difference in the clusters, though less
pronounced than in the Nf plot in Figure 6.16. Note, however, that the QAR points
seem to really start clustering around a T24 value of 15 rather than 0, indicating that
there may be a few outliers in the normalization process.
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Figure 6.18: Bi-Modal Clusters in "Stationary" Cruise - Example of Flight 4, Nor-
malized QAR Nf (green) overlayed on aggregate normalized Nf CMAPSS simulation
values (black), during a portion of steady-state cruise, all with respect to normalized
fuel flow (Wf). The top plot shows values from a portion of steady-state cruise that
exhibit the bi-modal structure seen in previous figures, while the bottom plot shows the
corresponding portion of the flight (altitude with respect to time), from which this data
was taken.
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Figure 6.19: Sample T48 Distributions, Pre-Adjustment - histograms of T48
samples from corrected/normalized CMAPSS simulated data (black, top) and cor-
rected/normalized real-world QAR data (green, bottom). Even after applying standard
day corrections and normalizations, there can be this much misalignment between the
CMAPSS and QAR data, motivating a proposed histogram matching procedure.

Figure 6.20: Sample T48 Distributions, Post-Adjustment - histograms corresponding
to Figure 6.19, after matching adjustment (alignment of distribution peaks). After the
adjustments, these two distributions are much more similar, having accounted for the
discrepencies in thrust rating between CMAPSS and the GP 7270.
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6.3.4 Pearson Correlation Coefficient Results

In order to compute the level of similarity between the original (corrected and normal-

ized) QAR data and the simulated (corrected and normalized) CMAPSS data, we need a

tool that can check the point-by-point and relativel correspondence between these pairs

of time series. The Pearson Correlation Coefficient computes this measure of similarity

as follows:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(6.18)

As was mentioned earlier, there is a timing mismatch between the QAR and

CMAPSS simulation data. QAR is sampled at 1Hz by definition, so its time indexes

are integers. CMAPSS yields 66Hz data that we then decimate by 64 to approximately

1Hz, which yields fractional time indexes that are out of sync by 32/33 of a second (once

every 33 seconds, there is an extra sample (see Figure 6.21 below).

Figure 6.21: Down-Sampling Mismatch in Verification - There is a periodic misalign-
ment between the original QAR (blue x) and simulated CMAPSS (green o) data, visible
in the fact that at times the two markers line up, and at times they do not. This is an
artifact of the factor-of-64 downsampling of 66Hz data to approximately 1 Hz, which
was discussed at the end of Sections 6.2.1 and 6.2.4.

To solve this problem, we perform interpolation of the CMAPSS data into corre-

sponding QAR time indexes, since that is the baseline ground truth in this case. This
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may potentially introduce some minor errors because the interpolation is linear, but will

likely not be a major factor in the end. With this re-adjusted data, we compute Preason

Correlation Coefficients for all variables of interest; sample and averaged results are

shown in Figure 6.22.

Figure 6.22: Pearson Correlation Coefficient Results - The top two charts show coef-
ficients computed for sample flights using original, corrected, and normalized data. The
bottom chart shows averaged results over all 98 QAR flight records.

As can be seen from the tables, virtually all variables of interest for our investigation

exhibit a very strong correlation. The only real exception is Nc, whose coefficient can

be in the 85% range, but all the other paramters show at least 95% and generally much

higher correlations. Based on these results, it is safe to say that we are able to establish

a provable correspondence between the two datasets. The lower Nc value may be due to

the fact that this part of the engine is highly affected by the VSV, VBV, and Wf values, as

well as any other changes that the controller on the engine makes - since the controllers

in real data are bound to be different than those in CMAPSS, it is not unreasonable to

see a lower correlation value.

136



6.4 Fault Detection and Diagnosis Algorithm

Having established a correspondence between real-world and simulated data, the next

step is to develop a detection and diagnosis algorithm that works on the CMAPSS simu-

lated data (which includes nominal and faulty data). We approach this problem from the

standard machine learning approach - by selecting and suitable feature set and classifi-

cation tool that maximizes correct classification rate with respect to a reasonably small

time and space complexity.

6.4.1 Feature Set Selection

Initally, we were eager to try MFCC and CELP features, seeing their great performance

in the context of vibration sensors. But both of these may not be very well suited to this

scenario due to a problem of scale. Namely, MFCCs and CELP features are designe to

analyze signals sampled at 8kHz, with windows of 256 samples, indicating a resolution

of about 0.05 seconds. Our data is already sampled at 1 second, nearly two orders

of magnitude difference. Preliminary experimental results confirm this supposition -

MFCC and CELP feautures did not achieve a good classification rate.

Because of the low fidelity fo the signal, DCT and (Haar) wavelet features were tried

next and ended up performing very well. There are two main parameters that can be set

for feature extraction: window length and overlap percentage. In an attempt to tailor

these to the dynamics present in the data, variable window lengths and overlap sizes

were tested up to 32 samples (half a minute). The results of these tests are in Figure

6.23

On average, we have produced good results for classification of CMAPSS simulation

flights with DCT (86.6%) and Wavelet (87.2%) features. All experiments are 10-fold

cross-validated with a 50/50 split between the training and testing samples, where each
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Figure 6.23: Sample Results for Different Feature Sets - The table shows the detec-
tion accuracy and time complexity of several different combinations of DCT and DWT
featres. The best performance was achieved with DWT features of length 16 and a 8
sample overlap, while discarding all but the first 8 coefficients.

subset is chosen randomly from the entire 69 flight dataset for each iteration. This

guarantees results are not tied to a particular selection of samples, though it doesn’t yet

show how few flights are actually needed to get a reasonable result. The performance of

the two features sets is relatively similar at the per-window level (and identically perfect

at the per-flight level), but DCT features are extracted a bit faster.

The next item to address was how to reconcile the correspondance between the 4

input features that were being used in their raw state (Altitude, Mach Number, TRA,

and delta Ambient Temperature) with the parameters that were being windowed. The

most obvious choice is to have the sample at the center of the window represent the

windowed region, which potentially means a corresponding windowing and averaging

of the raw input data.
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6.4.2 Classifier Construction

Following the experience from the classifier selection in Chapter 3, we elected to once

again use the Support Vector Machine. The extremely fast testing times are important

in developing this procedure as a potential real-time application that is able to provide

immediate feedback to the pilots. As such, intial tests included a simple linear SVM,

with all features extracted from the main output parameters (Wf, Nf, Nc, T24, P24,

Ps30, and T48). Results of these initial tests are available in Section 6.5.3.

Because there are now 6 classes of data (1 nominal and 5 different faults), the clas-

sification is not as simple as the tiered or non-tiered discussed earlier. To avoid the

added time complexity of training on all 6 classes at once, we elected to develop a set

of binary classifiers that would differentiate between any two classes (this yields 15

classifiers total). After each classifier is applied to an unknown data sample, a majority

voting mechanism is used to determine what scenario that particular data point belongs

to. While this does provide room for ambiguous ties in some cases, in practice we found

that such events occurred much less than 1% of the time.

Another important outcome of the discussion in Chapter 3 was the separation of

detection and diagnosis, particularly in the effect it had computational complexity, since

the detriment to performance was minimal. As was seen in the feature reduction analysis

in Section 3.4.5, SVMs scale poorly with large feature sets, but can still perform well

when smaller partial decisions are combined. We decided rather quickly to try to adapt

this philosophy to the treatment of features as separate subgroups in order to utilize the

parallelizing power of fusion. Rather than throwing all of the features derived from

each sensor into a single classifier, it is more computationally efficient to treat each

sensor/parameter as a separate entity based on which a decision can be made.
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Figure 6.24: Classifier Fusion, Single Output Variable - this figure shows the influ-
ence of input variables on an intermediate (or output) variable, from which features are
subsequently extracted. The combination of features and input variables is used as a
new feature set for an individual parameter’s Support Vector Machine. Classification
results are combined as shown in Figure 6.25. Note that each "SVM" in this schematic
is actually 15 binary SVMs with a majority voting setup over the 6 classes.

This requires a redefinition of the features along the lines of isolating particular out-

put parameters along with related input/intermediate variables - and subsequent training

of classifiers for these intermediate steps. An outline of this approach for a single sensor

is shown in Figure 6.24, while the entire system is shown in Figure 6.25. Results of the

training and testing with these modified fused feature sets can be seen in Section 6.5.2.

In the above setup, each "Support Vector Machine" classifier (including both the

intermediate, paramter-specific SVMs and the comprehensive fusing SVM), actually

consists of 15 binary SVMs that decide between all of the possible combinations (6

choose 2) of the 6 classes (1 nominal and 5 faults). As mentioned above, majority voting

is used to determine the actual classifcation results, which are discussed in Section 6.5.

In many cases, we also found that using a logistic linear classifier was suitable in

achieving a reasonable classification result, especially in the earlier design phases.
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Figure 6.25: Classifier Fusion, Full Setup - diagram of the fusion classification ap-
proach. Individual SVMs are constructed for each intermediate or output parameter of
interest and classification results are combined at the second stage with a comprehensive
SVM that also includes input parameters.

6.5 Simulation Results

Figure 6.26 demonstrates the a basic "proof of concept" result. It is a plot for a single

flight of the T48 values from the nominal and fault scenarios considered in our experi-

ments, when the fault magnitudes were all the same (3%) and the fault was inserted at

the start of the flight (Dataset F1). As we would hope, the data is easily (and visually)

separable within the steady state portions of the flight under these ideal conditions, and

when examining the parameter that is most sensitive to changes in engine health. Yet

even here, distinguishing between these faults during transient regions is difficult.

Subsequent results in the following sections are performed on datasets that are much

more complex than this one from several perspectives: variable fault times, variable fault

magnitudes, addition of noise, etc. Each set of results will show a confusion matrix for

the windows (all feature extraction segments in all flights) as well as an aggregate result
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Figure 6.26: Sample Simulated T48 Values, Nominal and Faults - Comparison of
T48 values at end of FOQA Flight 6 with all faults and nominal data. Note that the
sensor value is a relatively consistent "scaling" of the original nominal plot (black solid
line, near the bottom of the plot), and that each type of fault is identifiable by its mag-
nitude deviation, but that this is possible here because of identical magnitudes for each
fault. The plots that are closer to nominal result from faults inserted into turbomachinery
components further away from the exhaust, where T48 is measured.

for an entire flight computed using a majority vote over the window decisions for that

flight. While the former is of more academic interest, industry expectations are primarily

focused on the latter, which is why we present both.

In each case, we ran experiments with a 50/50 split between training and testing

data (no parameter tuning was necessary, so no validation set was needed), and cross-

validated by selecting individual points for training randomly 10 times. A more standard

cross-validation using a 20/80 split between training/testing (respectively) was also per-

formed for initial tests, and showed a marginally lower classification result.

In all experiments, unless specified otherwise, there was a uniform prior distribution

- there were equal amounts of nominal and fault data for each class.

142



6.5.1 Simulation Results

As Figure 6.27 shows, the overall classification results are consistent with the high per-

centages seen in the comparison experiments, yielding about 86.6% overall classifica-

tion accuracy. Naturally, when these results are aggregated over the course of the flight

(taking windows as samples in a majority vote), the per-flight results in Figure 6.28 are

100% for all the flights tested.

Figure 6.27: DCT 16-8 Results, Per Window, No Fusion - confusion matrix showing
the average correct classification rates for the experiment without fusion. The overall
correct classification rate for the entire dataset is 86.6%.

Perhaps surprisingly, Figure 6.27 shows that the detection portion of the system does

not perform as well as the diagnosis component (notice higher correct classification

along the non-nominal rows/columns in the confusion matrix). Furthermore, HPT faults

seem particularly easy to identify, noting the low numbers in the corresponding row

within the confusion matrix.
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Figure 6.28: DCT 16-8 Results, Per Flight, No Fusion - confusion matrix showing the
average correct classification rates for the experiment without fusion. The overall correct
classification rate for the entire dataset is 100%, using majority voting over window
segments in each flight.

6.5.2 Simulation Results with Fusion

When a fusion paradigm (Section 6.4.2) combines individual sensor results to learn from

intermediate decisions, the window classification rate increases dramatically to 97%, as

seen in Figure 6.29. When more opportunities for correct classification are available, as

in the feature stage of fused classification, the comprehensive classifier can learn when

the individual feature classifiers make mistakes and act to correct them.

Here, we also see that the detection performance is nearly as good as for diagnosis; in

contrast to what was seen in the case without fusion. It is likely that these situations had

a higher percentage of borderline decisions that were made in favor of incorrect choices

in the system with no fusion.Computationally, this approach requires more memory,

but actually achieves a speedup when compared to the non-fusion version where all the

features from all 7 output/intermediate parameters are used to train a single set of 15

SVMs.
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Figure 6.29: DCT 16-8 Results, Per Window, With Fusion - confusion matrix show-
ing the average correct classification rates for the experiment with fusion. The overall
correct classification rate for the entire dataset is 97.0%.

Figure 6.30: DCT 16-8 Results, per Flight, with Fusion - confusion matrix showing
the average correct classification rates for the experiment with fusion. The overall cor-
rect classification rate for the entire dataset is 100%, using majority voting over window
segments in each flight.
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6.5.3 QAR Verification Results

In the final set of experiments, we conduct classifier training on the simulated CMAPSS

data derived from FOQA inputs (which includes all the different fault types), and sub-

sequently test this classifier on the the corrected and normalized QAR data (all of which

is presumably nominal). Figure 6.31 shows the results of this experiment.

Figure 6.31: DCT 16-8 Results, for QAR Data - confusion matrices for a series of
experiments involving testing of the verified QAR dataset. The top table correspond to
training on FOQA-derived simulation data, yielding a 3-5% correct classification rate
for segments and flights. The bottom table correspond to training on a part of QAR-
derived simulation data and subsequently desting on a different part of the corrected and
normalized QAR outputs, yielding a correct classification rate of 7-11% for flights and
segments.

As seen from the top two rows, the end result is seemingly abysmal failure - almost

none of the flights and segments were correctly classified. Even random guessing should

have yielded better results.

Yet maybe the fault is in the choice of underlying data; training on CMAPSS sim-

ulated data that is based on QAR inputs (rather than FOQA inputs) may yield better

classifiers for subsequently corrected and normalized QAR output data. This was the

experiment performed and the bottom part of Figure 6.31, where the performance im-

proves slightly, but is still disappointing.
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Both of these, however, have one curiousity in common - the vast majority of sam-

ples were classified into the Fan Fault category. Overwhelmingly, the classifiers believed

there was a problem with the Fan module. Upon further investigation into this issue by

our contacts at Pratt-Whitney and NASA, it was discovered that the CMAPSS simula-

tion software has a flaw in a component of the model that deals with simulating the fan’s

performance.

Further experiments (see Appendix D) yield similarly confusing results, despite our

best efforts to rectify the contradiction. At the time of publication, that issue has still not

been resolved, so it is uncertain whether the underwhelming final results were indeed

caused by this coincidentally malfunctioning component, or perhaps a result of imper-

fect normalization procedures. It is our sincere hope that it is the former, though it is

currently impossible to say for certain.

6.6 Summary

In this chapter, we introduced an improved approach to Gas Path Analysis in the con-

text of jet engine fault detection and diagnosis. The great strenght of this work is the

adaptation of signal processing techniques to very low frequency data, with successful

simulation results. One of the key challenges of the processes developed in Chapters

3, 4, and 5 was the inability to deal with industrial fidelity data (primarily sampled at 1

Hz). The approach presented in this chapter effectively works on fully simulated data

(Section 6.5.2) and likely also works on real world data.

The high volume of simulated data itself is an achievement, because to date

CMAPSS has not been so extensively used to generate high quality, full-flight records.

To the best of our knowledge, this is the first work that has taken input flight records

from several sources and produced a wide-ranging corpus of benchmark gas path data.
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We successfully established and verified a correspondence between simulated and

real-world data; the statistical test that was performed in Section 6.3.4 is reasonable

proof that these two datasets do highly correspond to each other, even if experimental

results are tentatively inconclusive. If, when the fan problem in CMAPSS is corrected,

this approach proves effective in accurately classifying real-world data as nominal flights

when trained on purely simulated nominal and fault information, the main contribution

of this work will be this combined process that allows for the development of a system

of fault detection and identification without the need for expensive, real-world faulty

training data.
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Chapter 7

Conclusion

The effectiveness of any mechanical system is inexorably tied to how well it is designed

and maintained, with the latter of the two usually being of greater practical interest. In an

increasingly competitive global economy, there is a constant need to revisit the tradeoffs

between the costs of maintenance and the benefits of safe, reliable operation. One way of

decreasing maintenance costs in the world of cheap and miniaturized processing power

is through automatic monitoring, which not only makes tracking of engine health faster

but also more easily quantifiable.

From the work presented in the above chapters, it is clear that an analysis of vibration

sensor data, suitably performed, can be a great help in discoverying and identifying

problems with jet engine operation. The discussion in Chapter 3 describes a compelling

approach that works extremely well on the most abundant of in-flight data (idle and

cruise), albeit the performance degrades somewhat in an unexpected manner when the

sampling frequency is reduced. Results in the initial analysis of currently-used vibration

sensors (shown in Section ?? demonstrates a complete lack of harmonic information at

the 1 Hz resolution, indicating a need of higher-frequency sampling rates for a useful

system, but the down-sampling results of synthetically generated data in Section ??

suggest that this does not need to higher than several hunderd Hertz. Treatment of so-

called "non-stationary" phases of flight is still a difficult and open problem, but one that

probably warrants a more model-based approach to the dynamics of engine operations.
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The first of the proposed extensions - the design of a highly responsive real-time

system of engine abnormality detection introduced in Chapter 4 - still requires much

development. The effectiveness of the results is highly dependent on the trustworthiness

of failure modeling assumptions (how the transitions from normal to abnormal behavior

are realized in synthetic data), but a stricter analysis of change-point alternatives to the

CUSUM algorithm will also serve to better understand how such a system can be best

realized. The preliminary results are, however, generally optimistic and

The second outgrowth of the original research is the potential for a more compre-

hensive view of engine behavior based on the statistical distribution of vibration sensor

readings on a by-flight and historical basis. The method discussed in Chapter 5 is still

in its nascent stage of development, but demonstrates a potential for cost-effective man-

agement of engine maintenance. While much of its usefulness depends on training with

a sufficiently large dataset tailored to variables such as flight routes and maintenance

history (both of which are relatively difficult to quantify), the potiential benefits justify

further investigation into the feasability and practicality of this approach.

The last topic, a signal processing take on traditional Gas Path Analysis approaches

to engine fault detection and diagnosis, demonstrated the effectiveness of appropriate

feature selection and classification methods, at least for strictly simulated data. Even if

the verification and correspondence experiments at the end of Chapter 6 do not prove

sufficiently robust to withstand the challenge, we the excellent results for CMAPSS

simulated data provide an enticing glimmer of hope that an approach that does not rely

on intimate knowledge of mechanics is feasible, and at a great computational discount.

The engine of the future will become even more integrated and responsive to the

diagnostic systems that are being developed. The development of a new generation of
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sensors will necessarily lag behind the appropriate data storage or transmission capabili-

ties, and likely be slowed by the reasonable observation that current equipment performs

sufficiently well. The analysis of collected information will continue to develop in stride

with advances in pattern recognition and machine learning, especially in the context of

big data.

The main technological drive will likely be towards developing fuller cooperation

between the control and monitoring systems, which are currently independently func-

tioning modules. This new paradigm of reactive contextual control will require years of

careful collaboration between various engineering disciplines, to develop proper moni-

toring algorithms, design appropriate interface protocols, and consider the possible re-

sponses that a modern control system could have to changing engine conditions. Certifi-

cation of such components, especially those dealing with automated direct control over

an engine’s internal workings, itself requires many years of testing by OEMs and appro-

priate federal or international institutions. The path ahead is long, but it is a rewarding

one.
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Appendix A

Faults in Test Cell Data

In this appendix, we provide a few additional details regarding the acquisition of data

from test cell experiments for the SR-30 and PW400 engines, introduced in Section 3.2.

Data collection was performed as a courtesy by UTC Pratt-Whitney for both datasets,

who had the necessary equipment and resources to generate this fidelity of data. Nor-

mally, introducing damage to a complicated piece of equipment in order to characterise

such behavior is cost-prohibitive and dangerous in real scenarios, but doing so in a lab-

oratory test-cell environment can be extremely valuable. We had the ability to request

and receive such data in order to test the viability of vibration and acoustic sensors in

detecting a few typical problems that may occur in jet engine operation.

A.1 SR-30 Engine

The Turbine Technologies SR-30 turbojet engine in an experimental laborator-type en-

gine assembly designed for testing and benchmarking ??. Four vibration sensors were

placed around the exterior of the assembly seen in Figure A.1, spaced roughly 90 de-

grees around the main cylinder. 11 acoustic sensors were also placed at various positions

around the engine.

Figure A.2 shows the faults introduced into the engine during the experiments - sim-

ulated fan blade damage and bearing failures. As mentioned in Section 3.2.2, a sampling

rate of 102.4 kHz was utilized to record 30 seconds of vibration data during 6 different
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speed profiles: idle (43 kRPM), cruise (70 kRPM), acceleration, fast acceleration, de-

celeration, and fast deceleration. All changes in speed were occurred strictly between

43 and 70 kRPM, with varying speeds for the normal and fast versions. More details of

these flight stages can be found in Figure 3.2.

Figure A.1: SR-30 Experimental Setup - this image shows the Turbine Technologies
SR-30 engine in the test cell, with added vibration and acoustic sensors. (photo courtesy
of UTC Pratt-Whitney)

A.2 PW4000 Engine

The particular engine type (as there are many slight variations on the main model) is the

PW4062, which is an axial-flow engine with two spools and a 94" fan. The compressor

frequency (N1) and the turbine frequency (N2) differ because they are separate spools,
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(a) Fan Blade Damage (b) LPT Bearing Failure

Figure A.2: SR-30 Experimental Fault Details - this figure shows the faults introduced
into the SR-30 dataset. In (a), the fan blades were shaved off, resulting in simulated
damage that can be characteristic of a chipping or object strike against the inlet of the
engine. In (b), the bearings were damaged to simulate a fault characteristic of extreme
wear-and-tear conditions. (photo courtesy of UTC Pratt-Whitney)

as typical of a high-bypass turbofan jet engine ??. An image of the engine itself can be

seen in Figure A.3.

There were three runs, corresponding to three various engine conditions: nominal,

fan fault, and Low Pressure Turbine (LPT) fault. All 3 runs consisted of slow acceler-

ations/deceleration test patterns. Imbalances were achieved by placing counterweights

on blades in the Fan and LPT sections, as indicated in the diagrams shown in Figure

A.4.

Vibration data from 9 sensors was collected on a DSPCon data acquisition unit and

then converted into MATLAB readable files. A 25 kHz sampling rate was utilized to

record 150-180 second test runs with a characteristic acceleration from approximately 6

kRPM to 10 kRPM and a subsequent deceleration back to 6 kRPM.
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Figure A.3: PW4000 Engine -
this picture shows a PW4062 en-
gine as it appears on the test
cell. The large add-on assem-
bly seen in front of the fan in-
cludes sensors and instrumenta-
tion used for the collection of
high fidelity data streams.The
engine can be seen mounted at
a test cell facility. Some of
these facilities allow for the sim-
ulation of high altitude temper-
ature and pressure conditions,
though most measure engine op-
eration within local ambient con-
ditions that are referenced to ear-
lier baseline recordings. (photo
courtesy of UTC Pratt-Whitney)

Figure A.4: PW4000 Fault Locations - this diagram shows cross-sections of the
PW4000 where the faults were introduced into the test cell runs for the PW4000. Only
vibration data was collected.
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Appendix B

Table of CMAPSS Normalization

Minima and Maxima

In this appendix, we briefly describe how the values used for CMAPSS parameter nor-

malization were computed and list their final form.

As a brief recap of what is discussd in Section 6.3, normalization to a [0,100] interval

is necessary for comparisons between real and simulated data from live engines. In the

context of purely simulated data algorithm development, it makes no difference whether

raw or normalized values are used, since no knowledge of the meaning of these values is

utilized. However, when input data from a real engine is fed into CMAPSS, the resulting

simulated outputs will be constrained to the thrust rating and control characteristics of

the simulator - relating them back to the original data requires a re-scaling of both to a

common reference point; hence, this normalization.

B.1 Computation

We decided that certain intermediate and output parameters crucial to the detection and

diagnosis algorithms should be normalized to the interval [0,100] and were looking for

suitable normalization extrema. Initially, we performed an investigation into the extrema

present in the datasets themselves, both with and without the standard day corrections.

We decided that the corrected values were more representative of the kind of data we
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would see, and those values are shown in Table B.1 along the left side under the "Flight

Simulation" heading.

This, however, may not be the best way to perform normalization since it only takes

into account what exists in a particular dataset, and not all possible ranges of behavior.

A more uniform method of normalization would use two types of baseline simulation to

find the corresponding extrema that would be expected to provide better boundaries:

• Minima - to find the minima, we set up an "idle" type profile, which contained

standard day behavior (sea level altitude and no change in DTamb) while the plane

was at minimum TRA and zero mach speed. The choice of minimum TRA is a

bit problematic, because at some early in the run, the simulation enforces a hard

lower-bound of 10-20%, but later allows this to drop below this.

• Maxima - to find this, a "cruise" profile was constructed, with the plane in a fast

linear climb from 0 to 30,000 feet above sea level, also at standard day conditions.

The mach number steadily increased from 0 to 0.8 (which is the observed maxi-

mum from simulation data and not expected to be exceeded) while the TRA was

constant at 100% engine thrust.

One thing to note is that these extrema may be reversed for the Variable Bleed Valve

(VBV) and Variable Strator Vane (VSV), depending on the nomenclature for the simula-

tor or engine. Manufacturers sometimes indicate these with respect to different reference

points, and for CMAPSS the minimum/maximum for VSV was revresed.

Both of these simulations can be easily reproduced, and can hopefully be referenced

to similar test-cell exepriments for real engines. The results of these two experiments

are also shown in Table B.1, under the heading "Boundary Simulation".
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B.2 Minima and Maxima

Shown below is the table listing normalization extrema for CMAPSS simulated data:

Flight Simulation Boundary Simulation
Parameters Min Max Idle Min Takeoff Max
Wf 4347.3 22371 3979.0 25456
VBV* 0.0202 0.586 0.0 0.558
VSV* 6.6 19.8 4.77 11.53
Nf 1268.0 2349.5 1322.5 2405.3
Nc 7615.6 8934.7 7736,7 9127.5
T24 542.8 635.7 548.8 644.9
P24 16.7 27.7 17.0 29.0
T30 1144.4 1546.5 1185.7 1600.7
Ps30 162.6 485.5 169.6 536.8
T48 1,259.5 2004.1 1332.4 2156.3

Table B.1: List of finalized minima and maxima for relevant CMAPSS input and output
parameters, with values for corrected simulation data (left) and idealized boundary sim-
ulations (right). The baseline simulations use a TRA of 10 for the idle and 100 for the
takeoff, while flight simulation statistics are computed over the entire range of FOQA
samples.

As seen from the table, the maxima from the boundary simulations generally exceed

those from the flight simulation analysis, except in the case of VBV and VSV. The

minima values from the constructed "idle" case, however, do not come close to the

minima found from the examination of simulated data. This leads us to believe that

there may be two processes that are distorting the results. First is the loose enforcement

of the lower bound by CMAPSS - this means that real flights have a higher chance of

entering extremely low TRA stages at the end of the flight when the plane lands or even

glides towards landing.

This likely accounts for a large part of the disparity, but it is possible that for some

parameter values, the minima and maxima do not usually occur at times of steady state

but at times of extreme transience. This is especially true for VSV and VBV which are
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both part of the control system that stabilizes engine operation. Regardless of whether

the plane is operating at maximum or minimum TRA, if that operation is steady-state,

these control mechanisms will not activate as fully as they would during rapid changes

in engine operation mid-flight. As a result, additional distortions in the parameters of all

boundary simulations may be occuring, but these are likely much smaller in magnitude

than those caused by the first issue.

The method described in Section B.1 for determining the "Flight Simulated" values

is a semi-standardized way of empirically determining operational extrema for engines

in a laboratory test cell. Whether or not it translates directly to what can be done in

simulation is uncertain. The partial mismatch between these extrema in the table and

the differences between live and simulated QAR samples in Section 6.3 seem to sug-

gest that this approach is overly optimistic, but at the very least it is easily defined and

reproducible, independent of particular input data.
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Appendix C

CMAPSS Simulated Datasets

In this appendix, we briefly review the datasets generated throughout the process of de-

veloping the fault detection and diagnosis system for Gas Path Analysis (GPA) described

in Chapter 6. As discussed in Section 6.2, the Commercial Modular Aero-Propulsion

System Simulator was used to create artificial flight data with simulated faults based

on real-world input data from two sources: 68 anonymized Flight Operations Quality

Assurance (FOQA) data files provided by NASA and 98 Quick Access Recorder (QAR)

records from Korean Airlines GP 7270 engines (see Section 6.2.4).

In Table C.1 the possible faults that can be introduced into a CMAPSS simulation

is listed. As visible from the highlighted portions of the table, our focus in this inves-

tigation was on primary turbomachinery component efficiency faults, which leaves a

great many other potential faults for exploration. Such faults are potentially the most

dangerous to the health of the aircraft if left unidentified and of greatest interest when it

comes to a detection and diagnosis system; hence our interest in their generation within

simulated flight data.

In CMAPSS, and by extension, the Transient Test Case Generator (TTCG), faults

are introduced by distorting a nominal flight data file with a pre-determined fault set-

ting. This distortion is performed by re-running the simulation with a specified fault

component and fault value, and by using a nominal data file to base the simulation on.

Thus, all datasets will consist of a set of base nominal files generated by running the

simulation using input QAR or FOQA data (see Section 6.2.1 for details) along with
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Figure C.1: Summary of Possible CMAPSS Faults - this table details the CMAPSS
faults that can be introduced into nominal flight data. The highlighted rows correspond
to those faults that were introduced in this work: turbomachinery component efficiency
faults*.

corresponding fault data files for each flight. Each number in the list below corresponds

to the N parameter in the FN and QN nomenclature discussed in Figure 6.7.

1. 3% Faults at takeoff, Random 1% Errors

2. 3% Faults just after takeoff, Random 1% Errors

3. 4% Faults just after takeoff, Random 1% Errors

4. 5% Faults just after takeoff, Random 1% Errors

5. 3% Faults at end of flight (descent/landing), Random 1% Errors

6. 3-5% Faults randomly throughout flight, Random 1% Errors
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The "Random 1% Errors" added to each dataset constitute an attempt at increasing

the difficulty with which different classes could be distinguished from each other. A sim-

ilar effect could be achieved by adding noise to different components within CMAPSS,

but as we did not have access to all the details of their implementation, we deemed it

appropriate to add our own, well controlled, noise. Each of the datasets was tested with-

out noise, and then with a gaussian white noise with a power of 1% of the local signal

standard deviation (over a 1 minute window).

* NOTE: While fault intensities were focused on the efficiency degradation of tur-

bomachinery components listed in Table C.1, it became apparent that there is an internal

mechanism within CMAPSS for linking the flow and efficiency, even when only an ef-

ficiency fault is specified. Thus, it should be understood that ALL faults introduced in

the data were a combination of an efficiency and a flow capacity degradation.
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Appendix D

Q and Q’ Results

In this appendix, we briefly list the results from the experiments performed using partial

QAR original Q data and partial QAR simulated QN data, using a specialized mixture

of the two datasets:

Figure D.1: Outline of QQ’ Setup: The composition of the training and testing data
consists of a mixture of QAR-driven simulated data and original QAR data (both cor-
rected and normalized appropriately).

The hope of this experiment was to shed more light onto the results discussed in

Section 6.5.3, and interpret the failures from those experiments in the context of QAR

data only. The results of these experiments are shown in Figures D.2 and D.3 below.
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Figure D.2: QQ’ Results, Per Window - as seen in this table, the perception is that
nominal conditions are correctly identified, while fault scenarios are completely incon-
sistent. In reality, the classifiers will all highly favor nominal (as seen in the left-most
column) because of the high preponderance of nominal data in this dataset.

Figure D.3: QQ’ Results, Per Flight - aggregating the results from Figure D.2, it is
unsurprising to see that everything is again "forced" into the nominal class, resulting in
highly skewed results and low overall performance.
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In the above, initially one might be led to think that nominal classification, at least,

is being performed well. The truth is less optimistic - the "Nom" column (indicating

the classification decisions made in favor of the nominal condition) shows that the vast

majority of test samples are classified as nominal regardless of the ground truth. The

classifier, becuase of the deluge of nominal training samples, has become biased in favor

of the nominal class.

The following tables show a set of binary scenarios - when nominal data is compared

directly to only a single fault class. Some information can be gleaned from this as well:

there is a high percentage of correct classification (without confusion) when nominal is

compared to HPC and HPT faults, while all other fault types are highly confused with

nominal. This would suggest the problem exists in the LPC and fan part of the engine,

again pointing to a potential fan problem.

Figure D.4: QQ’ Binary Results, Nominal vs. Fan Fault - a relatively low percentage
of correct classification, with a high bias for the Fan Fault rather than Nominal.

Figure D.5: QQ’ Binary Results, Nominal vs. HPC Fault - a high percentage of
correct classification, with a small amount of overall confusion.
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Figure D.6: QQ’ Binary Results, Nominal vs. HPT Fault - a high percentage of
correct classification, with a small amount of overall confusion.

Figure D.7: QQ’ Binary Results, Nominal vs. LPC Fault - again, a low percentage of
correct classification, confusing with LPC Faults.

Figure D.8: QQ’ Binary Results, Nominal vs. LPT Fault - a low percentage of correct
classification, confusing with LPT Faults.
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