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ABSTRACT   
 

In diffractive optics and computer holography, generally, a common and well-studied 

scenario is using one hologram plane to generate a single image plane. As a 

continuation, in this work, cascaded phase only holograms are presented for single and 

multi-plane image formation. Traditional design methods, such as deterministic iterative 

and stochastic simulated annealing algorithms, for the one planar hologram case have 

been expanded and enriched to handle cascaded computer generated holograms. This 

special arrangement of holograms demonstrates interesting attributes in the 

reconstruction of classical 2D images. When it comes to 3D images, on the other hand, 

the performance of these cascaded-holograms is found to follow a trend and is even more 

remarkable: in order to facilitate the system, 3D images may be conceived to consist of 

successive 2D image planes; after application of the cascaded holograms for 

reconstruction, numerical results from computer experiments show that increasing the 

number of holograms for input, decreases the error in all output image planes for 3D 

setup. In addition, the cascaded holograms technique can be combined with the classical 

method of noise window which is achieved by planar extension of a single hologram by 

forfeiting some resolution. Thus when cascaded holograms are also expanded in the 

lateral domain, the results are even more promising. Specifically, it is observed that, 

while lateral extension of holograms as an application of the classical noise window 

concept is responsible for noise removal phenomena up to some degree in a general sense, 

longitudinal extension as a form of cascades may especially become a remedy for 

apparent incompatibility between image planes appearing in multi-focal systems, which 

is another remarkable outcome. As a continuation of the work, instead of cascaded phase 

only holograms, amplitude modulation is taken into account and phase plus amplitude 

modulation with a certain distance between them, is analyzed. This configuration shows 

some interesting properties and some significant superiority with respect to traditional 

techniques although some limitations, such as requirement of larger pixel sizes which is 

on the boundary of diffractive optics, exist. 
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 The proposed schemes in this work may be applicable to a formation of a simple 

and light-weight setup. Therefore, by using the techniques, results and algorithms here, 

especially on the cascaded phase only holograms, a functional static micro-holographic 

3D display may be realizable. In addition, phase and amplitude modulating setup can be 

used on applications requiring large pixel size, such as on devices with large area 

electronics.  

 

 Additionally, methods to overcome possible hurdles in both computational design 

and physical application stages of the novel displays whose properties are mentioned 

above are briefly discussed. Although the work up to now is concentrated on algorithms 

and computation, experimental techniques for fabrication and error consideration coming 

from physical misalignment are also proposed. We believe that this work will be not only 

useful and functional in the analysis of cascaded phase elements but also a thorough 

examination on algorithms, noise removal or some other issues on computer holography 

and computational optics. 
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CHAPTER 1 

INTRODUCTION 

 

 

 

 

 

1.1 Historical Overview 

In 1948, D. Gabor proposed a novel method which would then be called holography [1, 

2]. According to this method, with a suitable reference wave in addition to the wave 

diffracted or scattered from an object, both phase and amplitude information of the object 

can be recorded. This would be one step beyond photography where only intensity might 

be recorded. As a result, holograms were useful as optical elements to correct aberrations, 

displays or data storage, as a few examples.   

 

 The meaning of the word hologram has expanded because holograms can also be 

generated by computers. Computer generated holograms (CGH) have many useful 

properties [3]. For example, an object which does not exist physically can be created 

computationally and an ideal wavefront can be computed on the basis of diffraction 

theory and encoded into a tangible hologram. There are four main steps for preparation. 

First, an object is defined computationally. It might be a digital image or a real object 

recorded with a camera as in digital holography. Next, wave propagation from the object 

to hologram surface is computed with theories which can be vector or scalar in format. 

Scalar theories are more common and appropriate for far-field or near-field diffraction. 
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Third step is to encode patterns with different representation schemes onto the 

hypothetical device.  Finally, these patterns on the hologram surface are fabricated 

physically by using a printer, laser beam, or electron beam lithography on transparent 

materials, generally silica glass. At the end, the hologram can be used optically by 

illuminating with light.  

 

 There are diverse methods for the third step above in encoding information on the 

hologram surface. One way to encode is to use some specialized techniques so that both 

phase and amplitude modulation take place. One of them is so called detour phase 

hologram used by Brown and Lohmann in 1966 [4]. Another approach came from Lee 

[5]. These methods, creating both phase and amplitude modulation, would use cell 

approach, where every pixel is represented by cells with certain properties. One other 

method for encoding is to use some sophisticated algorithms and put the information 

directly on hologram surface only in terms of phase information without using cells. So, 

in this approach, the wave which would result in object reconstruction after hologram 

modulation, is calculated and written on the hologram. In this case generally phase 

modulation is used in a form of relief profiles. These sophisticated heuristic algorithms 

are supposed to compensate for the lack of amplitude and may be iterative in character or 

stochastic (such as an advanced brute force technique like simulated annealing or 

evolutionary like genetic algorithm).   

 

 In fact a CGH is a kind of diffractive optical element (DOE) which modulates a 

wave front in a desired manner. Another DOE is diffraction grating where again a 

controlled wavefront modulation is supplied but this time with periodic structures. 

Gratings attracted lots of attention around 80s and 90s.  

 

 The work on diffractive elements has evolved from using one grating plane, 

designed by a computer algorithm, to reconstruct one output plane, in which the goal is 

typically to achieve a specified intensity or phase pattern at the output. Recent efforts 

have studied the use of multiple DOE planes in a cascaded way to reconstruct patterns in 
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one output plane, which can provide additional features such as control over multiple 

colors, multiplexing capability, or high diffraction efficiency [6, 7]. 

 

          Diffractive elements may also be used for 3D displays, since holography is a true-

3D technique. This area of research has attracted attention starting from the invention of 

hologram which enables depth information due to phase recording. With the 

developments in computers and demand from entertainment market, 3D imaging is still a 

very hot field for new discoveries both in academic and industry environments.  

 

 Basic auto stereoscopic 3D displays are around for almost ten years; almost all 

currently available 3D displays are still stereoscopic, where different information comes 

to different eyes creating depth effect. This could be different polarization, different 

colors or combination of both. Due to the fundamental principles of stereoscopy, the 

discomfort of using an external device and distorted quality can not be eliminated. A 

“True-3D” system, in which none of the restrictions on the viewer exists due to physical 

duplication of light distribution, are more desirable and superior compared to stereoscopy; 

however such display systems are much more complicated [8], and require sophisticated 

setups.  

 

 Holographic reconstruction by liquid crystal devices is another common method 

for 3D outputs. Phase modulation is achieved by using a liquid crystal with its electrically 

modulated molecules’ ability to affect polarization state. The problem with those devices 

is mainly due to large pixels limiting the image size, undesired noise, image resolution 

and limited field of view.   

 

1.2 Thesis Overview 

In this thesis, as a continuation of previous studies, an ultimate configuration will be 

proposed. This would be to combine diffractive elements as CGHs in cascaded manner to 

create 3D outputs. More descriptively, in this configuration both device and image may 

be allowed to be three dimensional represented by several planar elements and images in 

input and output domains, respectively. Our sophisticated micro-device is able to give the 
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image output with the best quality for static images. In addition, that concept could have 

a very easy and simple setup to operate and is in the limits of current microelectronics 

industry when it comes to physical realization.  

 

Sequentially, we first define basics of electromagnetic theory related to diffractive 

optics in Chapter 2. Additionally, discretization of systems is analyzed since 

computational optics treatment requires discrete versions of equations due to digital 

environment. In Chapter 3 which is the core chapter in this thesis, computer designed 

diffractive phase elements in cascaded setup, are examined extensively. Miscellaneous 

results on both 2D and 3D image outputs exist in this chapter. Design algorithms are 

given and results of enormous computational experiments are discussed. Next part, 

Chapter 4, still examines cascaded diffractive elements but this time phase and amplitude 

modulation are applied on 2D and 3D image outputs. Methods, problems and solutions 

are discussed. Chapter 5 is devoted to some experimental work. In this section, 

production stages and experimental error associated with proposed system are briefly 

discussed. In addition, apart from the advanced topics treated herein, a low-cost 

fabrication method for diffractive elements is explained with experimental results. Finally, 

this work is concluded by Chapter 6 with a detailed discussion and summary. 

 

 In this thesis, we prefer to put some derivations in the appendices in order not to 

harm the flow of concepts. Some derivations, however, are placed in the context. These 

derivations and formulations can be considered to fit in the related context and of utmost 

importance for the sake of the thesis. The figures and derivations are all originally built to 

explain current concepts and to extend them for the creation of a display of the future.   

 

 Throughout our calculations, commonly a computer with AMD Opteron 

processor with 2.39 GHz speed is used with MATLAB® software under Windows 7 

environment. In general, for computation, C language with some special commands in 

MATLAB® image processing toolbox is employed. Furthermore, reader may find some 

pseudo-code for the implementation of programs for certain simulations in Appendix E at 

the end.    
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 Before developing and designing the concepts of novel configurations with 

diffractive elements, a brief overview of diffractive optics and its implementation in 

digital domain are reviewed now. Thus, most of the formulae that will be used later in 

this work are derived in this forthcoming chapter.  
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CHAPTER 2 

DIFFRACTION THEORY 

 

 

 

 

 

2.1 Light as an electromagnetic wave 

Light is an electromagnetic (EM) wave. An EM wave is a kind of energy flow in space 

consisting of mutually interacting electric and magnetic fields [9]. If that electromagnetic 

disturbance propagating through space can be approximated by a single wavelength, it is 

called monochromatic wave; on the other hand if the electromagnetic disturbance has 

many wavelengths, then it is called polychromatic wave. The distribution of energy 

among the various constituent wavelengths is called the spectrum of the radiation and 

various regions of the spectrum are referred to by particular names, such as radio waves, 

ultraviolet radiation, visible radiation to which the human eye is sensitive, etc. 

 

EM waves are described by four fundamental equations; namely, Maxwell’s 

equations. In this work, we will accept Maxwell’s equations as postulates and build 

everything upon them. Each of these equations represents a generalization of certain 

experimental observation and constitutes fundamentals of modern optics. In free space 

where there is no current or charge density, they can be written compactly as,      
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Above, E
r

 is the electric field vector, D
r

 is the electric displacement vector, B
r

 is the 

magnetic induction vector and H
r

 represents the magnetic field vector. These vectors are 

all functions of position and time in free space and they are related linearly with simple 

equations; 

 

ED
rr

0ε=                            (2.2a)                                 BH
rr

0

1

µ
=                     (2.2b) 

 
Where 0ε  is free space electrical permittivity and 0µ is free space magnetic permeability. 

After defining major variables corresponding to physical quantities, we need a general 

equation to express a traveling wave in free space. In order to do that, first, curl operation 

is applied to both sides of Eq. (2.1b). 
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 This expression may be simplified by using Eqs. (2.1), (2.2) and a vector identity; 

EEE
vvvvvrrv

2)()( ∇−⋅∇∇=×∇×∇  for the left hand side. We now have, 
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Where 2
00 /1 c=εµ is also used. Eq. (2.5) is known to be ‘wave equation’ since it 

elegantly formulates time and space evolution of a wave. The solution of this equation 

gives ultimate form of the electric field propagating in space. Next, temporal part of the 

time harmonic electromagnetic fields with angular frequency ω may be taken as 

tietE ω−∝)(
v

. After substitution, the spatial wave equation gets,  
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EkE
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22 −=∇                                                                                                  (2.6) 
 

Where wave-number k  is defined as ω/c. Eq. (2.6) is called Helmholtz equation.  From 

diffractive optics point of view, spherical coordinates are more appropriate in the solution 

since we are interested in a point source radiating equally to every direction, as a most 

general form. Since electric field is uniform along θ  and φ  directions, they are no longer 

variables and we only need to use r in spherical coordinates to re-express wave equation 

[10],  
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Since E

v
 is only a function of r, Eq. (2.8) may easily be solved if a wise substitution is 

made, such that ErE
vv

=′ .  Thus, after this substitution,  
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                                                                                               (2.9) 

 
After all those steps, wave equation has been put in a solvable form. Eq. (2.9) is an 

ordinary differential equation of second kind and has a well-known solution in an 

exponential form. Therefore, 

 
ikr

eEE
±= 0'

vv
                                                                                                    (2.10) 

 
And finally, 
 

r

e
EE

ikr±

= 0

vv
                                                                                                 (2.11) 

 

Where 0E
v

 shows the amplitude of the field pointing perpendicular to the propagation 

direction. Since spherically expanding waves are of interest, (+) sign will be chosen in Eq. 

(2.11). Thus, the complete expression for the electric field of a spherically expanding 

wave coming from a point source in free space is, 
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                                                                                     (2.12) 

 

Eq. (2.12) is the final result for this derivation and of great interest for the rest of this 

work. Although it has been derived for a single point source, it can be used for multiple 

sources by using the superposition principle. We will just start making use of it as a tool 

in the next section while deriving the fundamental equations of diffraction. In addition, 

after now, the field amplitude will be denoted as ψ
r

 instead of E
v

. Although, let’s say 

),( yxψ
v

, generally means electric field as before, it is a more universal notation showing 

the wave disturbance at x and y coordinates. 

 

2.2 Propagation in spatial domain  

2.2.1 Diffraction from an arbitrary aperture 

After reviewing the basics of EM wave theories and deriving the fundamental equations 

for light propagation in free space, the real problem should be defined briefly. It is 

desired to find the light intensity distribution at the output plane due to combination of 

point sources from an arbitrarily shaped aperture A on a surface S as shown in Fig. 2.1. It 

is assumed that there is no other source of illumination other than the A itself.   

 

Diffraction can be considered as free space propagation after being affected by 

any kind of an obstacle or an arbitrary aperture. Before passing to fundamental discussion, 

it’s necessary to review an important concept, namely Huygens principle. It basically 

states that each point on the wave-front of a disturbance can be considered as a new 

source of ‘secondary’ spherical disturbances and a new wave-front at a later time is found 

by adding these secondary wavelets cleverly. According to this principle, we can envision 

a wave-front hitting to the surface will make every point in the A, a self-spherical wave- 
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front emitter and thus the light intensity distribution on the output plane can be calculated 

by adding these ‘secondary wavelets’ one by one [11]. So for any point (ξ, η) at the 

output, the field can be written in terms of the source coordinates (x, y) as,   

 

∫∫ Ω=
A

ikr

dxdy
r

e
yx ),(),( ψηξψ                                                                    (2.13) 

 
where, 
 

     222 )()( zyxr +−+−= ηξ                                                                             

 
In above notation, r is the absolute value of the vector connecting points (ξ, η) and (x, y). 

The term ),( ηξψ denotes initial wave amplitudes (in our case it corresponds to electric 

field 0E ) over the aperture and it is generally taken as unity for all points inside the 

aperture. Ω is called inclination or obliquity factor, and related to different angular 

Fig. 2.1 In figure, arbitrarily shaped hole passes incident light through the surface S. Planes are 
labeled with their own coordinate systems for convention. Physically, aperture plane can be 
anything. Output plane may be a screen, a CCD or an eye retina etc…  
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spreads of source and target points. This factor has different values in different 

approaches such as, Kirchhoff or Rayleigh-Sommerfeld. According to Rayleigh-

Sommerfeld solution, the factor Ω  is found to be λirn /),cos(
rr

from Eq. (A12) (Appendix 

A), by using rigorous Green function formulation with n
r

 being the normal of S. From 

Fig. 2.1, cosine factor can easily be seen to be z/r. So the final form of diffraction formula 

is given below. 
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Eq. (2.14) is the final form for calculating any diffraction simulation. It is generally used 

in some kind of approximated forms for convenience. All assumptions described in this 

chapter are based on the fact that spreading angle is small with respect to separation z 

(paraxial approximation). When this assumption holds, we can write zr ≈  for any 

multiplier at numerator or denumerator. On the other hand, when dealing with the 

exponential term, binomial expansion (Appendix B) with two terms, is used for r in order 

to be more precise. In this case the magnitude for r becomes, 
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By putting this result into Eq. (2.14), we can reach the so-called Fresnel approximation,  

 

∫∫
−+−

=
A

yx
z

ikikz

dxdyeyx
zi

e ])()[(
2

22

),(),(
ηξ

ψ
λ

ηξψ                                      (2.15) 

 
Which is essentially a convolution. So, briefly, two important spatial domain propagation 

formulae are summarized here. The Rayleigh-Sommerfeld (Eq. (2.14)) which is useful 

for any propagation distance and Fresnel approximation (Eq. (2.15)) for relatively longer 

distances. Fresnel approximation is a handy formulation in various areas, such as 

understanding the lens effect. There is also another approximation which is called 

Fraunhofer approximation. This is generally used for almost infinite distance and because 

of that, the result is the same as using a lens which is the topic of next sub-section. 
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2.2.2 Effect of lens 

A lens (with a focal length f) is a device that converts a plane wavefront into a spherical 

wavefront of radius f. It’s made of an optically transparent material, usually glass with 

refractive index around 1.5. By definition, a lens is said to be ‘thin’ if a ray exits from the 

same coordinates of where it enters [12]. An ideal convex (focusing) lens can be 

envisioned as a pure phase object with transformation function, 
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22

),(
yx

f

ik

eyxt
+−

=                                                                                      (2.16) 

 
By assuming a convergent lens (f > 0). (x, y) coordinates denote to the center of the lens 

above which is supposed to be at the source location. Eq. (2.16) holds for paraxial 

approximation, where only wave-fronts that lie near the lens axis are considered. When 

the lens is placed at the input plane (right after the aperture plane S) which is also 

illuminated by a wave with amplitude of ),( yxψ , the wave’s amplitude right after the 

lens will become ),(),(),( yxyxtyx ψψ ⇒ , so the result at the focal plane can be found 

by using Eqs. (2.15) and (2.16).  
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After putting fz = and making necessary algebraic simplifications, a relatively simple 

form may be obtained, as written below, 
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Which can simply be recognized as Fourier transform (apart from the two phase terms 

and some constants in front of the integral) of the input. In fact, as will be developed in 

the next sections, Fourier transforms are commonly used in diffraction calculations and 

they are suitable for computer simulations with enormous theoretical research done for 

them for last two decades.  
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In Fraunhofer approximation case for relatively larger propagation distances, 

however, the transform in Eq. (2.18) is directly used without assuming any lens. This 

topic will be revisited from quantitative point of view later in Chapter 6. 

 

In practical cases, some distance generally exists between the original source 

represented as an aperture A and a lens. In this case, field propagation through that 

distance should be considered as well. 

  

2.3 Propagation in Fourier domain  

When working with linear systems, it may sometimes be beneficial to decompose a signal 

to its constituent functions in order to evaluate the response of the system to each of these 

functions. A Fourier transform pair is commonly used for one of such decomposition 

methods. The transform and its inverse are defined as follows [12].       
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In the classical notation shown above, x and y correspond to the source coordinates again. 

Here, f and F are called Fourier transform pairs. xf , yf are spatial frequencies and they 

are related to angles of propagation scaled by wavelength for a propagating wave. Note 

that, as a special case, for lens Fourier transform, spatial frequencies are calculated at 

ff x λξ /= and ff y λη /= , in Eq. (2.18) at the target location. For example 

ff x λξ /maxmax, = , so, highest spatial frequency is calculated by dividing the image size 

with wavelength and focal distance away from the lens. 

 

By considering the complexity of integrals in Eqs. (2.14) and (2.15), propagation 

simulations are generally implemented in Fourier domain for convenience. Derivation 

follows the wave equation again. We want to examine a field on the x-y plane and 
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propagating along z, by again, referring to Fig. 2.1. This time, 2∇ operator in Eq. (2.5) 

will be written in Cartesian coordinates as, 
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Next step is to write the inverse Fourier decomposition of the wave function. 
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Where ),( yxψ and ),( yx ffΨ  have been used as a Fourier transform pair and wave 

number λπ /2=k  has been replaced. The derivative operation can be calculated directly 

for x (y component is likewise) and z components as shown below by noting that just 

Ψ is z dependent. 
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After putting Eq. (2.22) in Eq. (2.21) and equating the terms in integrals,   
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Finally, solution of Eq. (2.23) gives,  
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Where the exponential factor is the transfer function and is generally shown by H. Eq. 

(2.24) is the exact form of Fourier propagator and it explains the dynamic evolution of 

the wave in frequency domain. It is valid as long as the condition λ/122 ≤+ yx ff  is 
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satisfied. This equation is sometimes used in an approximated form. When propagation 

distance is relatively large, spatial frequencies are extremely small and binomial 

expansion may be used in the exponent, and approximated Fresnel propagator becomes 
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                                                     (2.25) 

 
Note that for calculations in this work, Fourier propagator in Eq. (2.24) will be used 

extensively but Fresnel propagator may appear in some special situations for convenience. 

 

2.4 Optics in digital domain 

 

The equations derived so far are for continuous domain in which there is no restriction on 

pixels or spatial frequencies. On the other hand, these integrals are generally impossible 

to solve and therefore numerical methods are used for computations. We need some other 

tools here, to convert the physical information about diffractive optics to such a state so 

that a computer is able to process it for numerical manipulations. Therefore, when 

implementing diffractive optics simulations on the computer, it is necessary to represent 

functions by uniform discrete arrays of sampled values and apply processing methods 

designed for these discrete signals. When sampling a signal (in our case as a form of 

image), care should be taken for Nyquist-Shannon sampling theorem which states that for 

a perfect reconstruction of a band-limited signal, the signal must be sampled at a 

sampling rate more than or equal to two times of its bandwidth (Appendix C). So from 

Eq. C4,  
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Where x∆ is sampling interval, x∆/1  is sampling rate and maxf  is the bandwidth. The 

starting point of discussion is a sampled version of a two dimensional function ),( yxg in 

spatial domain, which may be written as, 
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where,    
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In above definitions, sample intervals are denoted by x∆  and y∆  along axes, and m and n 

are numbers corresponding to indices of samples. Number of samples will be shown by 

M and N (or number of pixels in some applications where every pixel is represented by 

one sample. This is not always the case; sometimes more than one sample is required to 

represent a pixel), for x and y coordinates respectively, so that xMLx ∆=  and yNLy ∆= . 

These variables are shown on a conceptual grid in Fig. 2.2. According to the figure and 

Eq. (2.27), a function, say g(x,y) again, is sampled at points mxx ∆=  and .nyy ∆=   

Evidently the values of the function at these points are registered for processing.    

 

 

 

 

 

Fig. 2.2 A conceptual grid represents a function on Cartesian coordinate system, where every 
point has a corresponding value. The function is divided to cells, called picture elements or 
pixels. Pixels are represented by the center dot in sampling process. 
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Next step is to write the transforms in discrete domain. In fact, the Discrete Fourier 

Transform (DFT) is one of the most useful tools in computer simulations, where it’s 

implemented by a special algorithm called Fast Fourier Transform (FFT). Before deriving 

the DFT, we should take a look at frequency domain where discretization is not as 

obvious as in spatial domain. The convention for spatial frequencies is, 
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Maximum spatial frequency for x coordinate is x∆2/1 . This is in agreement with 

Nyquist-Shannon sampling theorem stated briefly before. Same argument is valid for y 

coordinate too. After these fundamental definitions, a DFT can be written by using 

continuous Fourier transforms in Eq. (2.18) and discrete Riemann sums. After making 

necessary changes for position and frequency, below definitions are obtained.  
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The factor in front of inverse DFT in Eq. (2.29b) follows from the spectral theorem and 

essential for energy conservation. By using the same logic, propagation transfer function 

in Eq. (2.24) can also be sampled. For every allowed p and q values, the below given 

function is calculated which results in a numerical grid. 
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Thus, the transfer function is now used for propagation simulations for an image on a 

computer. Calculation and application of this function will be discussed further in 

Chapters 3 and 4 and in Appendix E. 

 

One important concern here is again sampling of this transfer function and the 

allowable values of variables. These are vital for the validity of simulation results, 

because even a correct simulation may cause incorrect experimental results. Due to the 

complex exponential, Eq. (2.24) can be defined as Chirp-like function [13]. The phase 

term can be written for x-component as, 
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Sampling a chirp function, as required for a propagation simulation, can be tricky due to 

the increasing slope of the phase with frequency. Two definitions are made to find 

sampling condition; A dual of sampling theorem and local position. With comparison to 

Eq. (2.26), sampling condition in frequency space is, 
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And, we are defining position as, 
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Now, solving Eqs. (2.32) and (2.33) together gives, 
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This expression states that the maximum change in the absolute phase must be no more 

than π  between any two adjacent samples. Violation of this constraint causes aliased 

phase values [14]. From Eq. (2.31), the slope of the phase function is, 
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Maximum slope occurs when xf  is maximum. Eq. (2.35) is used in Eq. (2.34), yielding, 
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Assuming frequency and spatial domain sampling are related through the scaling 

properties of the FFT, i.e., xx Lf /1=∆ , xf x ∆= 2/1max,  from Eq. (2.28), in which xL is the 

side length and x∆ is the sampling interval. Finally the required sampling condition is,  
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when z >> L, Fresnel sampling condition is obtained by ignoring ‘1’ in the square root. 
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In this chapter, some important parts in diffraction theory formulation have been 

summarized with special emphasis on digital domain applications. Sampling conditions 

have been shown both for spatial and frequency domains. 

 

In summary, two kinds of propagation transfer function exist. Fourier transfer 

function simulates propagation of a wave for any distance and will be used throughout 

calculations in the next chapters. On the other hand Fresnel transfer function is for 

relatively larger distances and may not be applicable for our purposes except for special 

cases introduced and discussed later. From sampling point of view, some restrictions may 

be applied for propagation in Fourier domain. Propagation in spatial domain, however, is 

not easy due to tough formulation procedure. 
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The information and knowledge treated in this chapter is going to be used now in 

the demonstration and creation of some novel ideas about CGHs in Chapter 3 which is 

the main part of the entire work. 
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CHAPTER 3 

 IMAGING WITH PHASE ELEMENTS 

 

 

 

 

 

3.1 Introduction 

DOEs or CGHs are mainly used to modulate wavefronts in a most general sense [15]. 

They find applications in numerous areas such as aspherical surface testing, optical 

interconnections, beam shaping, head-up displays, 3D image reconstruction and security 

based optical image encryption systems. From an imaging point of view, the importance 

of holography comes from the fact that, its reconstructions include all key visual 

information used by the human visual system. This is especially valuable in the case of 

3D outputs, where the viewer needs to perceive depth information. When it becomes 

‘computer-generated’, a digital environment is used for design and even a physically non-

existing object is possible to reconstruct. CGHs can be classified as phase only, 

amplitude only or both phase and amplitude, based on the device’s function. In order to 

create phase modulation, different relief profiles can be used in pixel locations on a silica 

glass substrate for instance, which also allows almost complete transmittance of incident 

power thus maximizing the diffraction efficiency. On the other hand, for amplitude 

modulation, some black pixels (or gray-scale) might be used. In some cases, halftoning 

can also be employed to emulate different gray tones. Phase and amplitude modulation 

together may be possible by dividing each pixel into sub cells and encoding the 
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information in a sophisticated way as will be shown in the next chapter briefly. However, 

this decreases resolution limit of the device and severely reduces diffraction efficiency; 

the encoding scheme brings some extra noise too. Thus, phase only CGHs are generally 

preferred, considering diffraction efficiency and pixel resolution of the device. 

 

 Work on diffractive elements has evolved from using a single element, to 

reconstruct one target plane, in which the goal is typically to achieve a specified intensity 

or phase pattern at the output [16]. In addition, using stratified structures has been an 

issue of interest for almost 20 years. Some significant examples in literature might be 

appropriate to summarize as follows. A system of two phase elements has been studied in 

some 4f and similar configurations in order to compensate for the lack of amplitude 

modulation by adding a second phase element for efficiency [17]. Diffraction properties 

of stratified volume holographic optical elements have been researched and, for example, 

angular selectivity of such devices has been demonstrated as a function of buffer layer 

parameters [6]. Several works have examined angular and wavelength selectivity with 

possible practical applications for iteratively designed multiple CGH planes in a cascaded 

setup [7, 18 and 19]. In addition, a general design procedure has been proposed, and 

some multiplexing characteristics have been shown, for classes of volumetric optical 

devices [20, 21]. For applications to optical interconnections, several operations can be 

done effectively such as simultaneous wavelength-division demultiplexing by using 

cascaded relief profiles [22].   

 

 On the other hand, some other efforts have studied the possibility of 3D 

reconstruction by specifying the intensity pattern in multiple target planes, using one 

diffractive element [23]. In this case, typically two planes have been studied as a minimal 

set to evaluate feasibility. Because the output is specified as the intensity in these 

multiple planes, instead of as the amplitude and phase in one target plane (which would 

determine the intensity in the other target planes due to propagation), there is no 

guarantee of optical compatibility of the specified intensities in the multiple target planes. 

Thus these efforts include techniques like the ‘Ping-pong algorithm’ that iteratively find 

phases at the target planes in order to minimize the possible optical incompatibility of 
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specified intensities [24]. Some applications and extensions can also be found in 

literature [25-27]. The concept of creating multiple images has found numerous 

applications in various areas in addition to displays such as multiple-image hiding in 

optical security systems as an example [28].        

 

 There are several methods used in the design of CGHs. These methods might 

broadly be classified within two general approaches as being deterministic or stochastic 

[29]. Iterative Fourier Transform (IFTA) and Simulated Annealing (SA) algorithms are 

common examples of the former and the latter, respectively. The SA algorithm tends to 

provide higher accuracy in exchange for longer computation time. But as today’s 

computers become more powerful day by day, time consuming calculations for 

complicated structures can be implemented in return of moderate computation times. 

Although, some other algorithms or approaches exist in literature, there is no perfect 

reconstruction of the target whatever method is used, due to several reasons such as 

destruction of amplitude information for phase only elements, quantization noise coming 

from relief profiles or cross-talking between different target image planes in case of 3D 

imaging. In addition to aforementioned optical incompatibility, there are also 

manufacturing defects causing degradations in the final reconstruction from the physical 

device. 

 

 In this chapter, by assuming a coherent, monochromatic light with zero angle of 

incidence, we first start with the simplest case where only one CGH plane and target 

plane exist, and then cascaded CGHs will be introduced as form of phase elements (PEs) 

to create 2D images computationally. Finally, we present different approaches for multi-

plane imaging to simulate 3D views by again using cascaded CGHs. Multi-layer device 

and multi-plane image concepts, which are summarized in the previous two paragraphs, 

are combined and cascaded PEs are used to improve overall output quality. In this 

process every plane is treated separately for both device and image domains by extending 

the current algorithms. The final result is an ultimate version of an imaging system: 3D 

device and 3D image. This can be thought as a continuation of the design algorithms and 

some device configurations explained above; our first algorithm combines and extends 
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aspects of both IFTA and Ping-pong algorithm. We will call it extended IFTA. Our 

second algorithm is a derivative of the SA algorithm and will be called extended SA. By 

using appropriate design approach, algorithm and parameters, it is shown that 

reconstruction noise and crosstalk between multiple target images can be reduced. One 

other relevant approach would be to use dummy areas which can be put around target 

images to improve performance by either increasing the number of pixels at the hologram 

plane or shrinking the target image dimensions [23]. With clever usage of this extra area 

in amplitude imposition stages, it is possible to remove some noise from the desired 

image area. However, one of the obvious consequences is reduced resolution at the image 

area, or higher resolution requirements at the hologram plane. Another factor is the 

diffraction efficiency for the target image, which is substantially lower for image 

reconstructions with dummy areas. Finally, the noise that is distributed to the dummy 

area around the image region might expose an undesired effect for specific display 

applications, especially for the multi-plane imaging case. We present that extending the 

hologram in the ‘z-dimension’ (as a cascade of CGHs) instead, leads to error reduction 

without loss of resolution or significant amount of diffraction efficiency. In addition, this 

enhanced approach can be combined with a dummy area and is open to further 

optimization.  

 

3.2 Definitions 

While working with digital images, we will use two main types of parameters, namely, 

image quality metric and diffraction efficiency in assessing image reconstruction 

performance. For the image quality metric, there are mainly three approaches: mean 

squared error (MSE), correlation coefficient (Co) and signal to noise ratio (SNR). 

 

For the MSE, although there are slightly different versions, the version below will 

be in use throughout this work, so that, 
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According to the above definition, target image’s absolute field values (square root of 

intensity) are subtracted from reconstructed image field values pixel by pixel. The 

denumerator functions as a normalization factor and ensures results to be independent 

from size. The coefficient C is chosen such that the MSE becomes independent of scaling 

factor of reconstruction (Appendix D).            
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If a curve containing several points of MSE values is considered, a rate definition 

might also be useful in order to characterize the curve quantitatively. At that point, we 

define MSE percentage decrease (error reduction) rate by comparing the first and the last 

data on the corresponding decrease curve. This parameter is a part of image quality 

metric and tells what percentage of the noise can be removed from an image under 

consideration. 
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Apart from the MSE, another image quality metric is Co which is used 

extensively in literature. It basically compares similarity in intensities which is absolute 

square of fields of the target and reconstructed images ( 2||ψ=I ).  
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Where cov denotes covariance between target and reconstructed images. 
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So, the similarity is computed by first subtracting the averages from individual pixel 

values for target and reconstructed images then multiplying and adding together. In the 

denominator of the Co expression, standard deviations work as normalization factors. 

According to the definition, the standard deviations of the target and reconstructed 

intensity patterns are found by, 
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Note that unlike the MSE, Co increases as the reconstruction gets improved and becomes 

unity for the perfect case, corresponding to zero error. 

 

The next one, signal to noise ratio (SNR), is a simple metric. Calculation involves 

division of target field to existing noise which can be considered to be target minus 

reconstructed fields. 
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Thus, root mean squared (RMS) value of the target is basically divided by RMS value of 

the noise. The coefficient C was defined before. 

 

Another parameter is the diffraction efficiency (η). It is defined as the zeroth 

diffracted order divided by the entire optical energy on the image plane including all 

diffracted orders.  
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So, these parameters will become essential measure to evaluate performance and certain 

characteristics of images coming from digital simulations. For image quality metric, MSE 
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will play the main role in the majority of results given in Chapters 3-5 but Co and SNR 

will be exemplified too for ease of comparison to some partially-related works in the 

literature. For quantitative evaluations about these parameters, Chapter 6 can be referred. 

As a footnote, MSE will sometimes be denoted as ‘E’ for error briefly in the text or in the 

diagrams.  

 

3.3 Two Dimensional Images  

3.3.1 One CGH case 

Forming two dimensional images by using one CGH as a form of PE is a well known 

area of diffractive optics. One is usually interested in determining phase from two 

intensity measurements and this process is called phase retrieval. The phase retrieval 

technique is also applied commonly in electron microscopy, astronomy or in 

crystallography in addition to diffractive element design. For the purposes of this work, 

the steps of phase retrieval of a computer generated diffractive phase element, which will 

be denoted as PE from now, is demonstrated here. A general setup is shown in Fig. 3.1 

below.  

 

 

Fig. 3.1 Basic image generation setup for a PE consisting of several possible elevation levels for 
each individual pixel (in figure they are shown by four levels for illustration purposes). Grey 
arrow on the optical axis shows the propagation direction of the light. A lens with focal length f, 
serves as a propagation tool as a Fourier transform operator. ‘Lena’ image is used for 
illustration.  



 28 

In the figure the PE is depicted with four elevation levels conceptually. In reality, 

the number of elevation levels which denotes number of phase quantization levels can be 

anything as powers of 2 in binary optics fabrication process (see, Chapter 5 for more 

information). The target image resides on the right side of the scheme. The two intensity 

measurements here are the target image and the PE; the latter is all 1s at a 0-1 intensity 

scale. Being a pure phase object, it is ideally supposed to transmit all the flux. In the 

middle, Fourier transform lens helps imaging by making propagation distance shorter and 

indirectly having every pixel contribute to the image formation. Principally, since a thin 

lens takes Fourier transform of the device in the front, from Chapter 2 (Eq. (2.17)), taking 

the inverse Fourier transform of the desired image should give the modulation required 

by the device. On the other hand, since amplitude information is to be destroyed for pure 

phase element device, resulting performance will be degraded. Then, the main problem is 

to find the phase distribution that gives the best quality image reconstruction. More 

technically, given a set of constraints placed on an object and another set of constraints 

placed on its Fourier transform, which is the target image intensity, the aim is to find an 

object (and its transform) that satisfies all constraints and conditions. 

 

One way of solving the problem and increasing the quality is to use iterative 

methods such as IFTA. And one basic way of implementing it, is called Gerchberg-

Saxton or error-reduction algorithm for phase element design [30]. Due to the constraints 

on the object side, which are mainly phase quantization and amplitude extraction, a 

perfect, error-free solution is not possible, theoretically. Once the best solution is found, 

the uniqueness of the solution is often relatively unimportant for synthesis problems. The 

flow chart is shown in Fig. 3.2. In its simplest form, a loop starts with a random 

numerical grid of phase values. Forward Fourier transform is taken and desired amplitude 

distribution is imposed at the output plane while keeping the phases unchanged. An 

inverse Fourier transform is then applied and all intensity values are reset to one for a 

pure phase device at the input plane. So, phases are constantly iterated while desired 

amplitudes are imposed at the input and output. The mathematical Fourier transforms are 

representing lens transforms referring to Fig. 3.1. 
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IFTA is a member of bidirectional algorithms set since it consists of forward and 

backward transforms. Fienup showed that MSE converges and is a monotonically 

decreasing function of iteration number [31]. The loop halts when error reduction stops 

which happens after enough iterations. In some cases, the process stops when a pre-

defined error value is reached or in some other cases, the loop is ended when the decrease 

of error between several successive iterations approaches a limiting value.  

  

Since IFTA is a deterministic algorithm, the main issue with it is the stagnation 

problem where solution falls into a local minimum and misses the global one in all 

solution space. This fact might be important in some situations. In the next paragraph we 

will examine briefly the basics of one of the stochastic approaches which can partially 

solve the stagnation problem. After all, IFTA type methods are easy to apply and fast to 

compute in spite of stagnation. Therefore, it has found and is still finding extensive usage 

in the literature. There are some other kinds or variations of the IFTA available also. 

Input-output approach is one of them [32]. It is basically the same with the previously 

defined error-reduction approach, except that the field at the input plane is further 

modified before a subsequent forward transform in the loop, so that a faster convergence 

is obtained. Apart from those, an alternative approach in solving the phase-retrieval 

problems is to employ one of the gradient search methods. Being a non-iterative 

algorithm, the steepest-descent method, seeks minimum error by computing partial 

derivatives forming the gradient of error function through solution space [31]. Afterwards, 

assumed solution proceeds in a direction opposite to that of the gradient, minimizing the 

error. Steepest descent method is likely to fall into local minima too and physically 

Fig. 3.2 Diagram of a simple bidirectional IFTA algorithm consisting of perpetual transforms to 
design and optimize PEs for imaging. 
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similar to error-reduction method. Since it is deterministic in nature, stagnation problem 

persists.  

 

Algorithms that are deterministic in nature tend to get stuck in local minima in 

solution space, providing limited performance. In order to fix this problem partially, 

some other design techniques might be used. SA is one of them and unlike deterministic 

approaches; it is stochastic in nature [33]. Another difference is the flowing directions of 

the two algorithms; the previously explained IFTA above, is classified as bidirectional in 

character since it goes forward and backward, whereas SA flows only forward, making it 

a unidirectional algorithm. SA is a general optimization technique which is used broadly 

in science and engineering. Its approach evolved from crystallization of metals. Molten 

metal crystallizes as it cools down. Slower cooling increases the order of molecules 

making the material more stable, whereas rapid cooling results in discontinuous crystal 

structures causing brittle materials [29].  So, at the beginning while in liquid phase, the 

orientation of each molecule is an independent variable, as they freeze under control, the 

molecules orient themselves into larger and stronger crystals. In CGH design, molecules 

correspond to pixels and stability is represented by image quality reconstructed by those 

pixels. In the optimization process of the classic system in Fig. 3.1, the steps are shown in 

flow chart below in Fig. 3.3. So, the implementation of SA is initiated by a random phase 

plate. One pixel is randomly changed and the performance of this new configuration is 

tested; the new configuration is accepted to be permanent if its error is lower and 

conditionally accepted if it is not. Then another loop starts and another pixel is perturbed 

for trial, etc., until the error converges (stops decreasing and becomes almost constant 

according to certain metrics). The fact that even the higher error configurations may be 

accepted, allows the system to escape from local minima. The probability of acceptance 

of a worse candidate is an exponentially decreasing function of T. In the literature, T 

denotes temperature due to physical roots of annealing process pertaining to cooling 

process of metals. The condition for acceptance in our case is [34] 
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Fig. 3.3 Diagram of flow chart for SA. ‘k’ shows the loop number. 
newE  means the error of 

the new trial and 
oldE  is the current error. The new attempt will be accepted if the 

conditional statement holds. The loop stops after certain number of iterations where the 
error doesn’t change anymore. 
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Where n is a random number between 0 and 1, ∆E is the difference between new attempt 

and previous error values ( oldnew EE − ). Numerical value of T should be decreasing as 

iterations take place and in our case it is an exponentially decreasing function of loop 

counter; )exp( kT α−=  with α being a case-specific constant and k is the iteration number.  

 

Note that, Eq.3.9 represents the ease of acceptance of higher error configurations 

and is more probable to be satisfied in the beginning and becomes harder as iterations 

keep going and temperature decreases. Acceptance of higher error trials makes the 

system avoid from any possible stagnation partially. The methodology summarized here 

is typical although some slightly different versions exist especially in the stages of pixel(s) 

selection for perturbation, temperature adjustment or conditional statement. In addition, 

there are other variants one of which is called quantum annealing (QA) [35, 36]. Being 

inspired by tunneling of electrons in quantum mechanics, instead of changing a pixel at a 

time, a region of pixels is modified this time. The size of the perturbed-region is 

determined by tunneling field strength which itself is a parameter, and can be treated 

similarly like the others. It may start high, with a large neighborhood and is slowly 

reduced through the computation or it may directly depend on the result which makes it 

adaptive in nature.  

 

One of the important parameters in CGH design is the number of phase 

quantization levels of the element, where number of represented phases is allowed to be 

powers of 2, as mentioned before. Specifically, for IFTA, quantization constraint is either 

applied during iterations which makes it a direct design, or it can be applied after all 

iterations are finished, in which case it has been named as indirect design [37]. On the 

other hand, in SA case, quantization is inherent from initial conditions since each pixel is 

treated individually one by one and quantization level is chosen randomly. So, nothing 

can be said about direct or indirect design. In this work, indirect design is employed for 

IFTA and frequently 64 and 4 phase quantization levels are used in order to exemplify 

the two different situations where the effects of phase quantization is negligible or 

dominant, respectively. However, there will be cases that other numbers (between 64 and 

4) are used sometimes. In addition, an ideal situation without any phase quantization 
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constraint will also be examined in some special situations where mathematical 

abstraction is needed. These points will be emphasized again when required. 

 

The above outlined algorithms cause error reduction up to some point. 

Unfortunately, when the reconstructed images are observed, too much remaining noise 

may be seen. The most important part of this noise comes from the constraints on object 

as mentioned. For further improvement, as mentioned before, number of pixels may be 

increased or target image dimensions may be decreased, which consequently enables 

designer to use a dummy area in addition to image itself. This increases the degrees of 

freedom by extra pixels contributing to imaging. By using that extra area in amplitude 

imposition stage properly, it is possible to remove some noise from the desired image 

area. But there are some issues arising when a dummy window is intended to use. One of 

the issues is the reduced resolution at the target since some of the area would be used as a 

noise region. Instead, one might use extra pixels by keeping the image as it is. In that case, 

higher resolution is required for the device and since there is a limit for pixel dimension 

for scalar diffraction theory, that resolution limit may not be exceeded. Another point is 

the diffraction efficiency for the target, which is lower for image reconstructions with 

dummy areas. In addition, the removed noise is collected and distributed to dummy area 

region around image, which might expose an undesirable effect for specific display 

applications. Especially in 3D imaging cases, this approach may not function as well. As 

will be shown, noise can also be eliminated by using cascaded phase elements, which are 

placed successively before a Fourier transform lens.    

 

3.3.2 Multi-CGH case 

Now the idea of imaging with CGHs as a form of PEs can be extended to cascaded CGHs. 

New configuration is shown in Fig. 3.4. N thin* CGHs with distance d between each 

other, are placed successively. These elements are conceived to be replicated in the x-y 

plane to handle periodic boundary conditions which is not shown in the figure. An image 

with ‘USC’ letters with Trojan statue is intended to be reconstructed. Note that for N 

equals to 1, the situation is exactly like in Fig. 3.1, so that we will have chance to 

compare performances. 

* By ‘thin’, we mean that the propagation within the structure is unimportant and thus can be neglected. 
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First of all, we will consider the formation and formulation of output of such a 

system. Then some design techniques will be mentioned. From left to right a unit plane 

wave is first processed by PE1 then PE2 until PEN. Between elements, free space 

propagation is used. By assuming that scalar diffraction theory holds, the most general 

transfer function for propagation over a distance d is seen from Eq. (2.24).  
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as long as the spatial frequencies satisfy the condition λ1)( 2122 <+ yx ff . According to 

the system theory, that transfer function is applied in the Fourier domain between 

elements, and phase modulations caused by the elements themselves are applied in the 

space domain. So, for instance, the field after the i th element )( iψ  can be written in 

terms of the field after the i-1 th element )( 1−iψ  as, 
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−

1
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After being modulated by successive elements, the wave is handled by a Fourier 

transform which may require a positive thin lens for robustness and improved field of 

Fig. 3.4 Hypothetical system configuration. N thin PEs, each L by L, with a separation d, are 
concatenated in order to create an output plane.  
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view (FOV). Finally, mathematical definition of the field at output after N elements is 

shown in Table 3.1 below as a compact formulation. 

 

In general, PEs may also be characterized mathematically as phase modulation 

profiles. In this case, for the i th element, phase delay (χ) of an individual pixel at 

coordinates (m, n) is, 

 
( )),(exp),( nmkinm ii Θ′=χ                                                                            (3.12) 

 
where ),( nmiΘ  is surface profile index showing the local thickness and, 

 

        
λ

π )1(2 −
=′

n
k  

 
The wave-number in Eq. (2.6) can also be expressed as above in terms of wavelength and 

refractive index of the material, n. The (n-1) factor comes from the fact that the phase 

delay is calculated with respect to air which has a refractive index of unity. Eq. (3.12) is 

used in place of PEs in Table 3.2 below as an explicit formulation. Here, summation 

symbols are used to express Fourier transform pairs. Also, Eq. (2.29) is used with M = N, 

saying that the image is square for our practical purposes. Finally, the transfer function, H 

for Fourier propagation may be seen with corresponding variables under summation. 

Note that, in the continuous case all the summation symbols turn into integrals. 
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Table 3.1 Output formulation regarding the system in Fig. 3.4. In compact form, the transforms 
are represented by symbols. The transforms related to lens, are also denoted. In expressions, ×  
shows multiplication. 
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Table 3.2 Output formulation regarding to system in Fig. 3.4. In explicit form, the transforms are 
expressed clearly (referring to Chapter 2). Mathematically, there is no difference between Fourier 
transforms coming from lens and free space propagation. Note that 1Θ , 2Θ  and 

nΘ  are phase 

delays of the related elements. 
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After expressing what the result should be after being processed by cascaded PEs, 

now, the design stages of such structures are discussed. After all, what is desired by the 

ultimate user is to input a unit-amplitude plane wave and reconstruct a predefined image 

at output by using the proposed system. In the design process, phase modulation profiles 

( χ ) of PEs are found in order to optimize correct local thicknesses of surface ( Θ ) for 

correct etching (this topic will be revisited with the fabrication topic in Chapter 5). 

 

Similar cascaded structures have been studied for various reasons, such as multi-

wavelength reconstruction and multiplexing, or diffraction efficiency. One way to 

optimize the system under consideration is to use IFTA type algorithm, where iterations 

go back and forth. In this case, though, each iteration consists of N sub-iterations, in 

which every PE is computed individually in loops, as shown in flow diagram in Fig. 3.5. 

After propagating all the way from the first PE to the last one and lens transform, leading 

to image formation as shown in tables, the field is manipulated such that its phases are 

kept and amplitudes are replaced with the target. After that, backward transform is 

applied by evaluating inverse Fourier transform coming from the lens. Then, a sequence 

of back propagations is performed, all the way back to the element that is being 

calculated. Apart from that, a sequence of forward propagations is calculated up to the 

same element. The resulting back propagated wave is then divided by the forward 

propagated wave to yield the complex values for that PE. Finally, amplitude information 

is discarded and phase information is saved. Next sub-iteration starts as before in order to 

determine the next PE. When every PE is found, one complete iteration ends and another 

one starts, until the MSE becomes constant. This format is the multi-CGH correspondent 

of the usual IFTA, applied with using the same image in every iteration.  
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As mentioned before, there are advantages and disadvantages of a deterministic 

method. On the other side, a probabilistic approach, SA method can also be applied after 

an expansion to include extra PEs. As shown in Fig. 3.6, our algorithm starts with 

random phase plates. Then, one random pixel is perturbed from a randomly chosen PE. 

The performance of this new configuration is tested after calculation of image formation 

(by using the formulations given in tables) and accepted to be permanent if its error is 

lower and conditionally accepted if it is not. Then another loop starts. Program stops 

when error converges. The exponentially decreasing definition of temperature and 

condition for acceptance in Eq. (3.9) are still valid and in use as before. 

 

The fact that only one pixel is changed makes the flow slower since now the 

number of possible pixels to be changed is multiplied by the number of PEs. In spite of 

its reduced speed, that approach maximizes the possibility of finding a better solution 

which is our sole purpose of using an SA algorithm. Instead of one pixel, a group of them 

can be changed leading to a faster but less precise outcome. The conditional acceptance 

step is more important now with respect to single PE due to a larger solution space. And 

again because of the same reason, T should decrease slower depending on the number of 

PEs. This can be achieved by changing the value of constant α. 

Fig. 3.5 One sub-iteration cycle is shown to optimize one PE in Fig. 3.4. Each element is 
calculated with an operation where the field coming from the image plane is divided with the 
field propagated up to that element. At the end, the element index is updated and another sub-
iteration starts for the subsequent PE. When every component in the stack is finished, iteration is 
completed and the next one starts. This is controlled by mod (N) factor. 
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Fig. 3.6 Flow-chart for the SA algorithm in optimization of cascaded PEs for single-plane 
imaging. ‘k’ shows the loop number. The pixel is randomly chosen from a random element for a 
perturbation. 
 



 41 

Now, computational experimentation stage is starting with some sample images. 

These samples will generally be 64 x 64 pixels size. But sometimes smaller ones will be 

used in order to reduce the computation time in some lengthy operations and to increase 

variety.   

 

Fig. 3.7 shows the original images that are intended to be reconstructed by using 

the setup based on Fig. 3.4. In part (a) USC logo-type figure with a miniature Trojan 

statue and in part (b) USC Viterbi School of Engineering logo are displayed. These two 

examples have different characteristics which will be emphasized more. For now, suffice 

it to say that, the first one has more black space whereas the second resembles much to an 

ordinary image, with miscellaneous gray tones. They represent two main types of images 

from the point of this work. 

 

 

 

 

 

Simulation results are shown below in Figs. 3.8, 3.9 and 3.10, where above 

outlined procedures have been applied to two different images by changing the number of 

cascaded CGHs. In addition, two types of phase quantization levels are considered. In the 

former, 64 levels are processed with IFTA-type only and in the latter, 4 levels are 

examined with both IFTA and SA-type methods. The parameters related to setup are as 

follows: wavelength is 0.632 µm, image sizes are 64 x 64 pixels, size of one pixel is 5 

Fig. 3.7 Two different sample images have been used in experiments. (a) First image is a USC, 
Trojan mascot and (b) Second one is a Viterbi School of Engineering logo. 
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µm (thus L is 320 µm), sampling size is 1.25 µm, distance d between adjacent PEs is 0.3 

mm, and focal length f of the lens has been chosen to be 25 mm. The image size can be 

estimated based on chosen figures. The pixel size of the output which equals to Lfλ , 

gives 50 µm approximately (from Chapter 2, using ff x λξ /=  and 
xx Lf /1=∆ ; The 

smallest xf  is used for the entire image dimensions). Final image sizes are 3.2 mm, 

which are of practical limits. In addition, sampling requirements are satisfied. By looking 

at Eq. (2.37) and using the system parameters, the left hand side (∆x) is 1.25 µm and the 

right hand side of the equation gives 0.67 µm. 

 

Fig. 3.8 shows effects of adding more PEs in a systematical way in graphical 

formats when there are 64 allowed phase quantization levels with iterative technique. In 

part (a), the first image is processed. We see that MSE decreases in an exponential-like 

manner, while η stays almost the same. From the classical 1 PE case to 5 PEs, error 

reduction is almost 10 times. It is reasonable to expect that, this decrease in error will 

stop and approach to an asymptote after certain number of elements. On the other hand, 

in part (b), results of the second image with the same parameters can be seen. According 

to the part (b), MSE starts from a relatively low value and increases with additional PEs.  

 

We also observe this phenomenon with 4 allowed phase quantization levels with 

iterative type method. In that case as shown in Fig. 3.9, similar trends can be seen for 

both types of images: a constant linear increase in MSE and decrease in η for both parts. 

This increase in error should be caused by the fact that the iterative algorithm couldn’t 

handle limited levels of phase values. As an attempt to decrease the error, the SA-type 

approach can be applied. For low quantization levels this approach is relatively easy and 

less time consuming. Note that this can also be done using 64 levels as above but it would 

take too much computation power and time without any significant benefit. Results 

coming from application of SA –type method are seen below in Fig. 3.10. When the SA-

type approach is applied, similar trends for both images appear; so that both MSE and η 

decrease smoothly. Before some discussion of these results, though, the reader can see 

visual outputs which are displayed in Figs. 3.11 through 3.13. They basically compare 

results of 1 PE as a classical case and 5 PEs as an advanced case.  
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Fig. 3.8 Results of computer experiments with 64 allowed phase quantization levels. Iterative 
algorithm is used. Error and diffraction efficiency are displayed versus number of phase 
elements for (a) first image and (b) second image. 
 

Fig. 3.9 Results of computer experiments with 4 allowed phase quantization levels. Iterative 
algorithm is used. (a) Error and diffraction efficiency are displayed versus number of phase 
elements for (a) first image and (b) second image. 
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There are a few points that need to be discussed. First of all, results in Fig. 3.8 (a) 

are encouraging such that as more elements are added, noise appears to decrease in a 

smooth way. But when another image is used, noise level increases. Actually, this can be 

understood better by creating a concept. For that purpose, we name images as optically 

“easy” and “hard”.  Hard images have black pixels dominantly and thus hard to recover 

(it is due to the fact that when iterative transform is applied, phases are kept and 

amplitudes are exchanged. However, a black pixel in the image means zero multiplier, so 

it implicitly affects phase recovery by killing information in pixels). Most images are in 

between easy and hard, generally close to easy. According to that reasoning, the hard 

image in Fig. 3.8 (a) starts from a relatively high noise level due to the screening of black 

pixels and expansion of the device as a form of cascaded PEs yields improvement. 

However, the easy image in Fig. 3.8 (b) already starts from a very low MSE value and as 

more PEs are added, complexity increases and propagation between planes does not 

enhance quality. When Fig. 3.9 is considered, on the other hand, iterative method is 

applied with 4 quantization levels this time and both error and diffraction efficiency get 

worse. This makes sense because in iterative method there is not a special mechanism to 

handle low number of quantization levels. Basically adding more PEs cause more noise 

due to the hardness in adjusting phases in a limited scheme. On the other side, when 

stochastic approach is used as in Fig. 3.10 to these images, noise decreases. The decrease 

Fig. 3.10 Results of computer experiments with 4 allowed phase quantization levels. SA type 
algorithm is used. (a) Error and diffraction efficiency are displayed versus number of phase 
elements for (a) first image and (b) second image. 
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in MSE can be explained by the ability of SA to handle low quantization condition since 

it proceeds pixel by pixel in nature. If Fig. 3.8 and Fig. 3.10 are compared, it is 

understandable that the total error gets bigger in the latter due to limited number of 

allowed phase levels but a more interesting point is seen when parts (a) and (b) are 

compared; in Fig. 3.8, the starting magnitude of MSE is way higher in part (a) than part 

(b) with respect to Fig. 3.10. So, easy and hard images exhibit different characteristics. 

Indeed this observation supports the hypothesis that in iterative transform approach black 

pixels kill the phase information causing more noise in hard image with respect to 

ordinary one. This phenomenon is not valid for SA due to difference in its flow. 

 

In visual outputs, these effects can be observed too. In Fig. 3.11, the improvement 

coming from extra PEs is apparent from (a) to (c) for the first image and a slight 

deterioration can also be seen from (b) to (d). In the next figure, Fig. 3.12, one may notice 

quite noisy images due to low number of allowed quantization levels, and this is 

corrected in the Fig. 3.13 with stochastic SA approach where every pixel is treated 

individually. In the figure, 5 PEs improvement is also seen on the final result clearly. A 

brief quantitative discussion may also be required to explain why the results in Fig. 3.12 

(b) and (d) are quite noisy. The main reason might be the fact that low number of 

quantization constraint is not able to handle miscellaneous gray tones appearing in the 

image. And since the environment is relatively pale, noise is apparent visually. This fact 

is reflected in numerical MSE value as well since the difference of target and 

reconstructed fields are calculated. 

 

Note that in results of SA shown in Fig. 3.12 (c) and in Fig. 3.13 (c), (d), final 

images coming from 5 PEs have significantly low diffraction efficiency. Because of that, 

image intensities have been equaled just for comparison convenience. This can also be 

seen from the graphs above. Especially in SA type approach, efficiency is substantially 

low due mainly to the fact that system is constantly pushed to decrease MSE form the 

acceptance condition. The acceptance condition can be modified [38] so that it also 

contains diffraction efficiency. In this case error reduction would partly be sacrificed 

though. 
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Fig. 3.11 Resultant Images of computer experiments with 64 allowed phase quantization levels, 
referring to Fig.3.8. Iterative algorithm is used. (a) first image processed by 1 PE (b) second 
image processed by 1 PE (c) first image processed by 5 PEs (d) second image processed by 5 
PEs.  
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Fig. 3.12 Resultant Images of computer experiments with 4 allowed phase quantization levels, 
referring to Fig.3.9. Iterative algorithm is used. (a) first image processed by 1 PE (b) second 
image processed by 1 PE (c) first image processed by 5 PEs (d) second image processed by 5 
PEs. 
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Fig. 3.13 Resultant Images of computer experiments with 4 allowed phase quantization levels, 
referring to Fig.3.10. SA type algorithm is used. (a) first image processed by 1 PE (b) second 
image processed by 1 PE (c) first image processed by 5 PEs (d) second image processed by 5 
PEs. 
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From 2D imaging point of view, benefits coming from cascaded phase elements 

concept is limited. The results show that the concept works either by sacrificing too much 

diffraction efficiency for low number of quantization levels or for specific class of 

images for high number of quantization levels. We will now examine 3D applications for 

this concept. It will be seen that, since both phase and amplitude must be defined on the 

image side in the 3D case, results are much noisier and cascaded phase elements concept 

helps more in noise removal. 

 

3.4 Three Dimensional Images  

As mentioned in the introduction of this chapter, in the reconstruction of 3D images by 

using diffractive elements, there are methods that have been used. In these methods, one 

of them seems the most feasible according to ease of application and performance. In this 

method, a 3D target image is considered to consist of several 2D planar images. Iterations 

are applied between successive image planes from one to another and thus it’s named as 

‘Ping-Pong’ algorithm [24]. Although this algorithm has some different versions, its 

essence and final performance are similar. In the classical case, one diffractive element 

and two image planes are considered. Information on target image planes propagates, 

bounces back and forth from each other and finally, the obtained phase and amplitude 

distribution coming from this process is back transformed to device plane. As a result, 

when the device is illuminated by a coherent light, it should be able to reconstruct desired 

images at planes with different depth. Different from the 2D case, now diffractive 

element must create a desired phase distribution in addition to amplitude at the first 

image plane for further propagation to second image plane. These images do not 

necessarily have to be entirely optically compatible. This means that a perfect 

reconstruction might be impossible for both planes whatever device or devices are used. 

 

In our work, we use two and three image planes to represent any 3D entity. It 

would be expected that these two approaches give similar results (or trends) if not exactly 

identical. Actually, these separate considerations turn out to be beneficial also in the 

search for a general formulation of trends when an ordinary 3D image is to be processed 

by cascaded PEs. 
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3.4.1 3D abstraction with two image planes 

As an application of cascaded CGHs, one might use the idea in the previous section to 

create 3D image as a compilation of two 2D planes. The configuration is depicted in Fig.  

3.14. On the left, a group of CGHs is seen, and on the right, two targets, namely, images 

‘1’ and ‘2’, are placed at output planes. The aim here is to find a correct structure of 

phase elements for the best target reconstructions. Since both device and image domains 

consist of multiple elements, we require a brand new algorithm to get the best possible 

image quality. This algorithm is supposed to unify classical IFTA, which is used for one 

image plane, with Ping-Pong in an iterative manner. We will call it extended IFTA. 

 

First of all, apart from design stage, the output coming from the device, i.e., 

physical processing through PEs, is the same as single output plane case. This is already 

shown in table 3.1 and table 3.2. Final result, two or three dimensional, is formed after 

the relevant design steps. Note also that for N = 1, the classical case with one PE is 

obtained again.  

 

 

 

 

 

The flow-chart diagram in Fig. 3.15 summarizes design steps, which is basically an 

extension of previous methods. As has already been described briefly in our articles [39, 

40], the algorithm starts with random phase plates and proceeds with iterations. In one 

Fig. 3.14 Hypothetical system configuration. N thin PEs, each L by L, with a separation d, are 
concatenated in order to create output, namely output (target) planes 1 and 2 with separation l . 
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iteration, every element is found one by one and the algorithm then passes to the next 

iteration until convergence. In an iteration, there are N sub-iterations. Basically, each sub-

iteration is a bidirectional loop to calculate a specific element in the stack and consists of 

two steps. The first step flows in the forward direction. Initially, a unit plane wave is first 

affected by PE1 then PE2 until PEN. Between elements, Eq. (3.10) is used again leading to 

complex fields shown in Tables 3.1 and 3.2. Different from that, this time, the field 

continues to propagate to image planes ‘1’ and ‘2’ as a far field output, thus  forming two 

output planes instead of just one. Propagations between target planes are again controlled 

by the transfer function in Eq. (3.10), but with replacement of l  instead of d. The second 

step in the sub-iteration flows primarily in the backward direction. First, intensity 

enforcement at target plane 2 is fulfilled by keeping phases and replacing amplitudes. The 

same is done for target plane 1 after back propagation between planes. This is followed 

by an inverse Fourier transform.  Then, a sequence of back propagations is performed, all 

the way back to the element that is being calculated. Apart from that, a sequence of 

forward propagations is calculated up to the same element. The resulting back propagated 

wave is then divided by the forward propagated wave to yield the complex values for that 

PE. Finally, amplitude information is discarded and phase information is saved. Next 

sub-iteration starts as before in order to determine the next PE. When every PE is found, 

one iteration is completed.  

 

 

Fig. 3.15 One iteration cycle of the extended IFTA which is used to optimize the system in Fig. 
3.14. This flow scheme is capable of handling successive 2D planes for both input and output in 
a general sense. 
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As seen from the above explanation, the design steps are similar to that of single 

output plane. The only difference is the inclusion of the second output plane in an 

iterative manner. This version of the algorithm is the most general form of any kind of 

iterative algorithm where both 3D object and 3D image domains are scanned. As a result 

of multi-plane target images, phases on image domain gain importance, so while 

simulating the propagation from the device to the first image plane, a phase term is added 

to the usual Fourier transform as shown in Eq. (2.18). In order to remove this term, one 

needs to take the distance between the last element, PEN, and the lens plane into 

consideration. Briefly, combining the expressions for the output of a lens in Eq. (2.18) 

and Fresnel propagation between PEN and the lens by assuming it is valid for 

convenience, as in Eq. (2.25), it would be seen that one needs to have a separation equal 

to the focal length f, for the distance between the device and the lens. This fact is used in 

calculations and shown in figures as well.  

 

That problem at hand might also be considered by using stochastic approach as 

before. In this case, there is more than one option for optimization. Flow chart is shown 

in Fig. 3.16. As usual, it starts with random phase plates and perturbation of one random 

pixel from a random PE. The performance of this new configuration can be tested in 

various ways. Since there are two targets, the weights of these targets can be adjusted 

according to importance. In ideal case though, quality expectations are the same and 

equal importance are given to output images. Hence, the best strategy is to average the 

two MSE values coming from images and use that value for comparisons throughout the 

computation. This causes noise to be distributed equally to two output planes. The rest of 

the algorithm is the same; new configuration is accepted to be permanent if its error is 

lower and conditionally accepted if it is not. The structure of temperature is the same as 

well. That approach will be named as extended SA. 

 

Additional variations are possible on extended SA; a cluster of pixels can be 

chosen for perturbation making the algorithm converge faster in return of quality loss. 

One thing should be emphasized again that, as more PE is used, convergence is expected 

to be longer so parameters are adjusted accordingly due to a larger solution space. 
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Fig. 3.16 Flow-chart for the extended SA algorithm in optimization of cascaded PEs for multi-
plane imaging. ‘k’ shows the loop number. In addition to the last flow chart, this time errors 
for the two output planes are averaged for comparison. 
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Now that we pass to simulations part, some computer experiments with different 

qualities and quantities will be presented by using the above-explained algorithms. In 

addition, effects of different algorithms will be discussed as before. We used different 

image sets. It must be noted that no easy or hard image concept will be observed in this 

section. Every set of images shows similar behavior if not the same. In addition to 

amplitude formation at the output plane, phase reconstruction is also needed in 3D case 

and this makes the problem more difficult.  

 

The setup in Fig. 3.14 has been simulated numerically. 64 quantization levels are 

handled with extended IFTA and 4 quantization levels are handled by extended SA. It is 

beneficial to state again that, high number of quantization levels cannot be handled by 

stochastic approach since it takes a lot of computation time, and the result can be 

expected to be not that different from the deterministic approach in practice. On the other 

hand, in cases of low number of quantization levels, deterministic method which is the 

extended IFTA in our case, does not give significant contribution. This fact can be seen 

in Fig. 3.9 for 2D imaging situation. We want to inform that this is also valid in 3D case 

so that MSE increases with addition of extra PEs. 

 

In computer experiments, images shown in Fig.  3.17 are used. The parameters 

are pretty much the same as before. As a reminder, wavelength is 0.632 µm, size of one 

pixel is 5 x 5 µm, Sampling distance is 1.25 µm, distance d between adjacent PEs is 0.3 

mm, focal length of the lens is 12.5 mm, and distance  l  between two output planes is 25 

mm. In the first experiment set, we use 32 x 32 pixels of sample images this time. It 

contains one fourth as many pixels as our previous experiments due to lengthy 

computation times in SA approach. Resultant pixel sizes on the image side are the same 

as before, i.e. 50 µm (since this time lens’ focal length is halved, for smaller image sizes). 

For sampling requirements, using the current system parameters, on the device side, ∆x is 

1.25 µm as before, and the right hand side of the Eq. (2.37) is 1.23 µm. Similarly, in the 

image domain, these figures come out to be 50 µm and 9.9 µm. So, the conditions are 

satisfied. 
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The MSE graphs, when extended IFTA is used with 64 quantization levels and 

when extended SA is used with 4 quantization levels, are shown in Figs. 3.18 and 3.19, 

respectively. As seen from the figures, the MSE decreases smoothly as more PEs are 

added. This effect seems to be more dominant in the beginning and diminishes more 

slowly as N goes to infinity. In addition to general parameters for our setup, a constant α 

exists in the expression of temperature in extended SA algorithm. The numerical value of 

it can be obtained by ad-hoc methods. In our case the values are 4101 −× , 5105 −× , 

5105.2 −× , 51025.1 −×  and 5101 −× , for N = 1, 2 … 5 respectively. They are obtained by 

trial and seen that the lower α parameter is, the slower temperature decreases thus 

allowing a better solution in expense of enormous computation time. However, after a 

certain limit decrease in α does not give any significant benefit. 

 

 

 

Careful inspection of MSE graphs shows that in Fig. 3.18 a significant amount of 

noise is removed from the targets ‘1’ and ‘2’. Percentage decrease rate (R) in the first 

output plane is slightly larger than the second output plane. And in general, first output 

plane is favored in terms of MSE. This is due to the fact that, in the algorithm, target 

plane amplitudes are imposed in order and first plane is the last one before back 

propagation. On the other hand when extended SA is involved there are significant 

changes in values and character. In general, MSE can be said to increase in value with 

respect to the former experiment as shown in Fig.3.19, although decrease trends of curves 

is still valid. That is obvious because of the involvement of lower quantization constraint,  

Fig. 3.17 These gray scale images are used in the following experiments in place of the first and 
second output planes in order to demonstrate the effects of cascaded PEs in noise removal. The 
size of images used in experiments is 32 x 32 and 64 x 64 pixels. 
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Fig. 3.18 Results of computer experiments with 64 phase quantization levels allowed. Extended 
IFTA is used. MSE is seen to decrease as more PEs are added. Although percentage decrease 
rate, R and final values of the first output plane excel, the net amount of noise removed from the 
second output plane is more. 
 

Fig. 3.19 Results of computer experiments with 4 phase quantization levels allowed. Extended 
SA is used. MSE is seen to decrease as more PEs are added, similarly for both output planes. 
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Fig. 3.20 Resultant Images (32 x 32 pixels) of computer experiments with 64 allowed phase 
quantization levels when Extended IFTA is used, referring to Fig. 3.14. (a) The first image set 
(for output plane 1 and output plane 2) is processed by 1 PE (b) the second image set (for output 
plane 1 and output plane 2) is processed by 5 PEs. The improvement is clear. Note that max 
scaling is applied here. In other words, in printing the results, all pixels are divided by the 
maximum value for normalization. 
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Fig. 3.21 Resultant Images (32 x 32 pixels) of computer experiments with 4 allowed phase 
quantization levels when Extended SA is used, referring to Fig. 3.14. (a) The first image set (for 
output plane 1 and output plane 2) is processed by 1 PE (b) the second image set (for output 
plane 1 and output plane 2) is processed by 5 PEs. Max scaling is applied here again.  
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which at some point, limits maximum quality achieved. Another point due probably to 

quantization constraint again is the fact that the R values in curves are slightly less in the 

latter experiment with SA. One other distinctive observation is the equalization of the 

curves. In fact, as mentioned before, in that approach the quality trade-off of targets can 

be adjusted and neither plane in terms of order is to be favored, as also seen from the 

flow-chart.   

 

The improvement can also be noticed by just looking at the resultant images 

shown in Figs. 3.20 and 3.21. In parts (a), when one element is used as in the traditional 

case, images at two target locations are somewhat noisy and blurred; whereas, five PE 

planes improve the quality considerably. Even the pale shade around original figures 

above is noticeable in results coming from five planes. In addition to ordinary noise, 

cross-talk (in this case, the effect of first plane on the second) is reduced to some extent. 

 

Note that, diffraction efficiency curves are not considered here since noise 

removal is the primary aim of this work. In addition, as a general trend, the results of 2D 

experiments may be applied to 3D as well. It can be said that when iterative algorithm is 

used for 64 levels, η is almost constant as more PEs are added (similar to those shown in 

Fig. 3.8 with an initial value depending on chosen image, furthermore the fact that more 

than one image plane is used, does not affect η as well). When annealing is used, 

however, for 4 levels of quantization, resultant η curves would be likely to drop in 

accordance with the acceptance condition (one image plane results are displayed in Fig. 

3.10, multi-plane case will also show similar characteristics about diffraction efficiency). 

 

One more effort has been spent on some advanced algorithms similar to extended 

IFTA to handle extremely low quantization constraints instead of annealing approach. In 

fact, once attempted with the current iterative approach (Fig. 3.15), the MSE would 

increase as more PEs are introduced (this case is similar to the graph in Fig. 3.9). So, for 

PEs with 4 levels designed with extended IFTA, our results showed MSE values of 4.2 

and 4.9 for output planes 1 and 2, when one PE is used. However, MSE rise up to 7.5 and 

8.5 when five elements are in the setup. So, this means that the trend has not changed; 
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adding more PEs does not improve quality under strict quantization. Now, another 

method can be used, which is related to achieving gradual quantization. We will name it 

extended IFTA-2. Every phase element is found as usual without any constraint first by 

using the flow chart in Fig. 3.15, then only the first element is quantized and the entire 

algorithm proceeds followed by quantization of the second element, etc. This specific 

approach enables the user to control the constraint step by step and to maximize the 

performance. When applied,  MSE values of 3.9 and 5.1 are obtained for output planes 1 

and 2, in five PEs case. Thus, even in this situation, extra noise coming from strictly 

quantized phases for cascaded PEs accumulates and adding more elements does not 

increase image quality much. Even those improved values cannot be comparable with 

those coming from extended SA given in Fig. 3.19 for five PEs.  So, after this discussion, 

one can infer that cascaded PEs with IFTA-type approach are useful only for moderate 

and high numbers of allowable phase levels; hence, an SA-type approach might be used 

to handle strict constraints and to exploit the benefits of the device being proposed.   

 

These results basically show that expansion of the phase modulation concept as a 

form of cascaded phase elements, leads to significant amount of enhancement in image 

quality. In this process, novel algorithms which are capable of handling multi-planar 

concepts in both object and target domains, have been proposed with success. As a next 

step, we will examine the effects of allowed quantization levels more. This experiment 

will be similar to the one above in essence. In this case, SA MSE decrease curves will not 

be considered and larger images can be used. Our original 64 x 64 images are appropriate 

for the following trials.  

 

Undoubtedly, number of allowed phase quantization is one of the predominant 

factors in results. Now, a closer look will be taken to this issue. In the following 

computer experiment, 64 x 64 images are used with the same shape as in Fig. 3.17. Other 

system parameters are the same except the distance l  between image planes have been 

extended to 40 mm since images are larger, and closer distances give results where cross-

talk is dominant. We again start with 64 quantization levels which correspond to a very 

loose constraint on the micro-relief structure with results shown below. 
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Fig. 3.22 MSE versus number of PEs used in two-output plane imaging, when extended IFTA is 
used with 64 allowed phase values. 
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Fig. 3.23 Resultant Images (64 x 64 pixels) of computer experiments with 64 allowed phase 
quantization levels when Extended IFTA is used, referring to Fig.3.14. (a) The first image set 
(for output plane 1 and output plane 2) is processed by 1 PE. (b) The second image set (for 
output plane 1 and output plane 2) is processed by 5 PEs. Note that, no scaling is applied so 
reconstructed image intensities are unnormalized here and a little bit lower than the original due 
to other diffracted orders. 
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The graphical results given in Figs. 3.22 and 3.23 reveal the same facts as before. 

For the first target plane, almost half of the noise is cleared when progressing from 1 to 2 

PEs and more than 80% when 5 PEs are used. Likewise the total noise removed from 

second plane is seen to be approximately 60% when changing from 1 to 5 PEs.  

 

As discussed before, quantization of device is very important in practical 

applications. For iterative cases, we already saw that using very low quantization 

constraint leads to increase in noise as more PEs are added so that cascaded diffractive 

structures would no more give any benefit. Some extra efforts have been put on this topic. 

Other common values for allowed phase quantization levels used in diffractive optics are 

given in Table 3.3. These values have been applied using the extended IFTA and 

extended IFTA-2 methods. The latter can be considered as a derivative of the former and 

is useful especially when the number of phase levels is limited; furthermore their results 

get similar as number of phase levels increase, becoming unnoticeable after 16 levels. As 

expected, MSE increases as allowable phase levels decrease. Another remarkable result 

from the point of view of this work is the error reduction rate (R) changing from top to 

bottom in the table. For the first row, as it was mentioned above, when four additional 

elements are added, 80% and 60% of the noise is removed from target planes ‘1’ and ‘2’ 

respectively. These values drop down to 65% and 50% for the second row. When it 

comes to 4 levels, there is no significant performance change according to the results. 

 

 

 

 

On the other hand, when extended SA is applied to the problem at hand with 4 

allowable phase levels and the same system parameters, minor and major effects appear 

on results. As a minor effect, for MSE coming from 1 PE, if 4 levels in Table 3.3 and 

Table 3.3 Performance merits for 1 and 5 PEs according to allowable phase levels on device.  
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Table 3.4 are considered and compared, the one coming from SA excels slightly. This is 

due to the superiority of the stochastic approach in comparison with the deterministic one. 

However, the difference becomes much more apparent in the case of 5 PEs. 

Approximately half of the noise is seen to be eliminated with respect to the previous 

approach by looking at MSE values. 

 

 

 

 

 

3.4.2 3D abstraction with M image planes 

If MSE curves are considered like the ones in Fig. 3.22, a smooth decrease is observed 

for both output planes. Then a few questions arise such as whether or not these curves 

have a specific mathematical pattern, how does the number of image planes considered 

affect overall results of noise removal, or what are the sample image dependencies of 

these curves. Now that the analysis of the concept of cascaded CGHs has been examined 

for two successive image planes as a 3D representation, new attempts will be done to 

generalize this result to M image planes. Furthermore, MSE decrease trends will be 

examined and modeled in an attempt to find a generalization. For that purpose, no 

quantization scheme is applied, so the results will be free of any kind of phase 

quantization constraint error. With this approach one may investigate the pure 

mathematical contribution of these extra phase elements to the image quality thus the 

increment of information capacity of pure diffractive phase structures. In the 

implementation of the ideas expressed above, we will be using extended IFTA as before. 

An updated version of this flow chart is given below in Fig. 3.24. Note that, this ultimate 

version of extended IFTA enables user to compute N CGHs for M possible planes of 

targets. The general scheme for this most general form is that the field, after being 

propagated through PEs, is considered to continue to the last image plane (M th). 

Amplitude imposition stage is applied by keeping the phases and replacing the target 

Table 3.4 Performance merits for 1 and 5 PEs when allowed number of phase levels are 4, for 
extended SA case. 
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amplitudes pixel by pixel. Then back propagation is implemented step by step; first the 

field comes to the output plane M-1 and amplitude replacement is applied, second it 

comes further back to the output plane M-2 and so on. After the first output plane, the 

field passes to the device domain with a lens back-Fourier transform and continues again 

to the specific PEi under consideration. The rest is the same; the PEi is computed with a 

division where the numerator is that back transformed field which has traversed all the 

image planes in image domain and the denominator is again the forward transform up to 

that element. 

 

 

 

 

 

In summary, in this ultimate version of design, the logic is simple; the field 

propagates back and forth through image and device domains to convey several planar 

amplitude information regions onto the several planar phase surfaces (PEs in our case). 

The division operation at the end guarantees any specific element to behave as it is 

supposed to do in the real implementation where the field begins from the left, processed 

by all diffractive surfaces and forms several images with varying depth, as an expected 

operation. 

 

Note that, SA version of this approach also exists and is simple so that in the 

conditional statement of acceptance of new trial, an MSE will be found by using M 

output planes instead of 2. In numerical treatments in this part, we will only consider 

Fig. 3.24 One iteration cycle of the extended IFTA in handling N PEs and M image planes. 
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design with iterative method and are content with clarifying that stochastic approach is 

also possible.  

 

In the following experiments, there are two types of image sets to be investigated. 

Similar system parameters are used on 64 x 64 pixel images. Wavelength and sampling 

sizes as well as pixel sizes have not been changed throughout the examples here, so is the 

distance between PEs. Image sizes are directly related to the focal length thus any value 

is possible based on the desired target image sizes. We can still assume 25 mm for the 

focal length giving rise to 3.2 mm outputs separated by 40 mm. Note that, for a bigger f, 

one would obtain larger resultant images. This might cause the image planes after the 

first one a little bit more noisy if the separation distance is to be kept, since the field 

adjusts itself within that separation distance and making the images larger without 

changing their separation limits the flexibility of the system thus allowing error 

imbalance between output planes. This topic will be revisited again in Section 3.6 while 

examining another phenomenon and shortly mentioned in Chapter 6 again. 

 

The first image set is a continuation of our last set, and is shown in Fig. 3.25. And 

the second set consists of ‘U’, ‘S’ and ‘C’ letters, given in Fig. 3.26. 

 

After the application of the deterministic algorithm in Fig. 3.24, the MSE curves 

and resultant images obtained are displayed below in Figs. 3.27 - 3.31. Several 

observations can be made based on these results. First of all, for Figs. 3.27 and 3.28, it 

can easily be said that all curves are smooth and clear. The main trends are independent 

of image used or number of output planes. The rates of exponential decay are not 

dependent on the image used as can be seen by comparing the two figures. If parts (a) 

belonging to two image planes and parts (b) belonging to three image planes are to be 

compared, one can see the net amount of noise removed in the case of three image planes 

is more. This result means that, as more image planes are added in 3D abstraction of the 

target, the amount of noise removal increases. In general, the starting error values 

increase in passing from two to three image planes. If individual curves are considered, 

the rate R does not seem to change much for the first output plane between the cases of  
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Fig. 3.25 Image set 1, used in experiments.  
  

Fig. 3.26 Image set 2, used in experiments. 
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Fig. 3.27 Graphs, corresponding to image set in Fig. 3.25. (a) Results for 2 image planes, ‘1’ 
and ‘2’. Percentage decrease rates are 86% and 58% for output planes 1 and 2. (b) Results for 3 
image planes, ‘1’, ‘2’ and ‘3’. Percentage decrease rates (R) are 84%, 49% and 34% for output 
planes 1, 2 and 3. 
  

Fig. 3.28 Graphs, corresponding to image set in Fig. 3.26. (a) Results for 2 image planes, ‘U’ 
and ‘S’. Percentage decrease rates are 85% and 60% for output planes 1 and 2. (b) Results for 3 
image planes, ‘U’, ‘S’ and ‘C’. Percentage decrease rates (R) are 85%, 50% and 39% for output 
planes 1, 2 and 3. 
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Fig. 3.29 Resultant Images (64 x 64 pixels) of computer experiments coming from Fig. 3.25 
when Extended IFTA is used. (a) The first image set is processed by 1 PE (b) the second image 
set is processed by 5 PEs.  



 70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.30 Resultant Images (64 x 64 pixels) of computer experiments coming from Fig. 3.26 
when Extended IFTA is used. (a) The first image set is processed by 1 PE (b) the second image 
set is processed by 5 PEs.  
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two target images and three target images. Second output plane’s rate is affected a little 

though. Another general trend is the decrease in those R values in going from the 

direction as output plane rank increases, which is understandable. In IFTA based 

algorithms the last assigned plane is favored in terms of quality during the amplitude 

imposition stage, so this also affects noise removal rates. After all, we may conclude that, 

appearance of the third MSE curve causes decrease in rates for first and second error 

curves in decreasing order.  

 

A mathematical expression corresponding to these curves are determined to be in 

exponential form: .)(exp CBxA +  This form was found to provide a good fit to the data 

at hand. Mathematical expression of the individual curves can be seen on figures. In the 

above expression, x corresponds to the number of PEs (i.e. x = 1, 2 … N), C is the 

asymptote; the value of the MSE when N goes to infinity and B is a parameter that is 

related to decrease rate, like R. B parameter will be named as decay constant from now on. 

So, decay constant is another important measure of how a curve decrease and due to a 

nonzero asymptote C, R in Eq. (3.3) and decay constant cannot be connected with a 

simple equation. The most distinctive feature of them is the fact that numerical value of R 

is highly affected from the starting value, i.e. MSE with 1 PE, and as the initial value gets 

higher, R increases as well even more than the decay constant. Actually, the decay 

constant is much more related to the general shape of the curve going from 1 to ∞ PEs 

instead of just 5. We believe both measures are useful since they indicate similar trends in 

above graphs.  

 

Apart from that, total MSE can also be examined. Fig. 3.31 shows the total MSE 

corresponding to image sets 1 and 2 when cascaded PEs are used in the reconstruction. 

The same form of exponential curves seems to be fitting well. This time the exponential 

decay constants are close for curves and it is in the range of [0.64-0.69]. It has been 

discovered that this number only depends on the separation distance l  between image 

planes and number of phase quantization constraint. When l  decreases, it will be hard 

for the field to adapt for the other images placed in depth, thus the total MSE can be 

expected to increase. 
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Fig. 3.31 Total MSE curves belonging to image sets 1 and 2. For the curves the decay constant 
is constrained in an interval. In fact, experiments with more than 3 image planes show also that 
the constant is still found in the same interval [0.6-0.7] for l = 40 mm. R values are 68, 67, 51 
and 48 from bottom to top. 
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3.5 Other Ways of Mitigating Noise 

As it was mentioned before, a dummy (noise) window may be placed around the target 

image(s) by increasing the number of pixels on the diffractive element in use. This 

basically causes noise to accumulate at the window by either shrinking the effective 

target image area in case of the same pixel size is kept on the CGH thus letting the 

element bigger, or keeping the effective target image area but shrinking the pixel size on 

the CGH. These methods are related to extension of the solution space in the x-y plane, 

and one of the common methods for the noise removal process.  

 

Noise window can be applied with 2D or 3D image reconstructions. The area 

allocated for noise can be anything although after a certain limit additional area does not 

affect the noise removal process much. In addition, phase quantization constraint affects 

the overall process such that when available phase values decrease, noise window does 

not provide significant benefit generally depending on the sample especially on hard 

images.  

 

First we consider a setup with only one phase element like in Fig. 3.1 and samples 

as in Fig. 3.7. Below, Fig. 3.32 exemplifies results when the window concept is applied 

on a system with a very loose phase quantization constraint such as 64. In one output 

plane case, adding more phase elements as before would not cause any noise removal 

since almost all of the noise is already removed by the dummy window. Effective target 

areas which are the areas that the target would fit without anything extra, are shown in 

the figure; they are filled with removed noise plus the reconstruction result. The MSE 

values are very close to zero (0.007 and 0.010, for (a) and (b), respectively). In part (a), 

more noise is cleaned with respect to part (b) from numerical values when compared with 

the values without the noise window (they can be seen from Fig. 3.8 first data of related 

graphs). This is also seen from the images below. 

 

In simulations, IFTA (Fig. 3.2) is used and MSE converges very fast. The 

diffraction efficiency, on the other hand, is extremely low for this application and 

normalized to those shown in Fig. 3.11 for comparison reasons.  
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In designing the diffractive element 256 x 256 pixels are used for 64 x 64 images.  

The image areas shown above are supposed to be the same as those displayed in previous 

sections in this chapter. Thus, although pixels on the device are the same, pixels at the 

image are smaller with a multiplier of 4. 

  

Noise window concept may also be applied to 3D images. Again, by using one 

phase element and two image planes, one can get a significant amount of improvement. 

In this situation, however, MSE does not come very close to zero due to the hardness of 

the problem of reconstructing both phase and amplitude (this will be examined as a 

special case of the application in the next section). In summary, in this section, noise 

window concept has been introduced. Instead, one can combine the two extension 

techniques (noise window and cascading) to obtain a hybrid approach. 

 

3.6 A Hybrid Method 

In this section 3D images which are considered to consist of two 2D planes again, will be 

analyzed further with modified diffractive elements as will be explained. Main goal here 

is to combine noise window method with cascaded diffractive surface concept such that a 

Fig. 3.32 Figure displays results for two different samples belonging to one phase element 
reconstruction using a noise window, with 64 quantization levels. The noise window used here 
is 4X the actual image.  
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CGH, in its most general sense, is enlarged in all spatial dimensions (x-y-z) for extreme 

noise removal. 

 

An abstract drawing is shown in Fig. 3.33. Gray toned areas in the middle have 

the same dimensions with originally designed elements before. Pixels in the extra area are 

responsible for noise removal. This new configuration contains more pixels, hence 

enlarged diffractive surfaces should either be larger than normal in which case we assume 

in this work, or pixel sizes are to be small. These two cases give similar physical results, 

except that in the latter some sampling conditions might cause problems so the former is 

preferred here. Therefore, the new feature size is defined by кL, where к is enlargement 

factor in x-y dimension. In general, it can be in an interval of [1, ∞ ) and does not have to 

be an integer as long as it does not divide a pixel. In this work, we use, к = 1, 1.25, 1.5, 

1.75 and 2. 

 

 

 

 

 

    

For computer experiments, similar treatments have been applied to the system 

under consideration by using extended IFTA. Important parameters are as follows; size 

and number of pixels are 5 µm and 64к, respectively for two target images of 64 x 64 

pixels shown in set 1. In the first case, it is assumed that lens focal length changes such 

Fig. 3.33 Ultimate space usage concept in CGHs is displayed. PEs are placed as before from 1 to 
N. Gray toned areas have the same dimensions with originally designed elements. Pixels in the 
extra area are responsible for noise removal. Since this new configuration contains more pixels, 
its feature size is defined by кL and total area is кLN.  
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that the output pixel size remains to be 50 µm. In the second case, lens focal length is 

kept constant at the previously used value (25 mm) and thus output pixel size becomes 

50/к µm, distances between target planes are separated with a distance l  which is equal 

to 15 mm. The reason for choosing relatively shorter separation distance will be 

discussed later. The separation between PEs, however, is still considered to be 300 µm.  

The figures below show total MSE graphs for ‘1’ and ‘2’ target images with respect to N 

(number of PEs), and the к (enlargement factor). 

 

Fig. 3.34 displays relation between N, к and total MSE for the first case. The 

output image sizes are kept constant, and as a response to increment in к, lens focal 

length is considered to be varying. In computing the values, exponential fitting curves of 

the format given above are used for both к and N directions. Note also that, the maximal 

values for axes in the graphs are compatible (enlarging x and y dimension 2 times causes 

surface 4 times bigger which is the case in z dimension when 4 PEs are in use). These 

curves for 2 dimensions give almost the same values for the entire surface (although it is 

supposed to be the same). As it is seen, total noise level decreases as more enlargements 

involve either in x-y or z domain. As an interesting point, the asymptote of this graph in 

the direction of diagonal unit vector ( 2]ˆˆ[ κ+N ) approaches to a natural limit of noise. 

By saying natural limit we mean the minimum noise level that one could achieve under 

the same circumstances by using a device without any constraints like phase quantization 

or amplitude removal. So, if the problem is applied to one conceptual diffractive element 

with the ability of modulating phase and amplitude together, noise can be reduced up to a 

level that optical incompatibility allows, beyond this point is physically impossible. 

 

By looking at Fig. 3.35 which depicts the second case, one can say that MSE 

decreases more swiftly. This is, of course, caused by the fact that the aspect ratio is 

different in the conceptual setup. The ratio between output pixel size and square of 

distance is almost a constant in multi-focal systems and is a consequence of the 

propagation transfer function (this relation could be seen best by examining Eq. (2.25) 

and Eq. (2.28)). Therefore when the noise window is introduced and output pixel sizes 

shrink, the processed field finds relatively more distance to adjust itself. The more 
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enlargements to increase к, the smaller output pixels will be, thus yielding better 

adaptation for two target images on the other side. Certainly, the diagonal asymptote in 

this graph in case when к and N goes to infinity is expected to be zero. Moreover that 

final graph tells another important fact; when к goes to infinity, increasing N by adding 

more PEs lose its importance by a considerable amount. So, in the case of decrement in 

optical compatibility one needs less and less cascaded elements with respect to using 

noise window. This result is quite important. 

 

The two axes, namely к and N, can be analyzed more closely. Increase in к seems 

to be more efficient in both cases, which makes sense because this gives more pixels thus 

more degree of freedom directly. As discussed before, adding more PEs also increases 

degrees of freedom and solution space but it happens in an indirect way so that 

propagation has to involve between elements. Another advantage of using noise window 

is the experimental easiness of application with respect to the act of cascading surfaces 

with ultimate accuracy. On the other hand, however, noise window yields shrunk outputs 

due to increased space-bandwidth product at the image side. In addition, it causes a 

relatively dirty environment on the image plane’s noise area, which might be an issue for 

certain applications. 

 

In multi-plane imaging applications, the separation distance  l  adjusts the optical 

incompatibility of the final 3D output. When this parameter is large, processed field finds 

more space to adjust itself between two (or more) planes. In this hybrid application, this 

parameter is chosen to be 15 mm which is smaller than before. That effect can be seen by 

looking at the below graphs and comparing the axis к = 1 and the graphs before. We 

increased optical incompatibility for especially the second graph in order to observe the 

decrease pattern for MSE. When the problem comes with less optical incompatibility, this 

graph drops down to zero very quickly, which is understandable but insufficient to 

analyze the phenomena. In addition, below graphs demonstrates results in case of only 

one PE and with variable noise window. That kind of analysis has also not been made 

before, to the best of our knowledge. So, if N = 1 lines are taken into consideration in the 

graphs, the behavior solely caused by the noise window can be seen in detail.  
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Fig. 3.34 Result of cascaded PEs with also extended for dummy area. Two output planes 
are assumed. No phase quantization constraint is applied. N shows the number of PEs as 
before and к denotes feature extension coefficient in x or y direction. The result of adding 
dummy area is compensated by changing the lens focal length in order to keep the same 
output dimensions. 3D graph reveals the combination of cascading and extending under 
these circumstances. 
 



 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.35 Result of cascaded PEs with also extended for dummy area. Two output planes 
are assumed. No phase quantization constraint is applied. N shows the number of PEs as 
before and к denotes feature extension coefficient in x or y direction. The result of adding 
dummy area causes smaller output dimensions. 3D graph reveals the combination of 
cascading and extending under these circumstances.  
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Fig. 3.36 Image outputs for the proposed system of ultimate expansion of a CGH when N = 4 
and к = 2. (a) The actual image sizes are compensated by an imaging lens (b) Noise window 
cause decrease in output pixel size yielding a smaller image. For comparison reasons, both 
parts are shown in equal dimensions. 
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These results coming from above experiments are printed in Fig. 3.36. For both 

parts, if the image window is considered first, Noise, coming from amplitude elimination 

and cross-talk coming from multi-plane existence are seen to be improved considerably. 

Furthermore, adding cascaded PEs improve not only the image itself but also the noise 

confined in the noise window. Fig. 3.36 part (b) shows slightly better results with respect 

to part (a) with some more noise around the image, which reflects the facts in 3D plots 

and discussed before in detail. Between two parts, there are some other differences such 

as dimensions. In part (a), focal length changes (between 12.5 to 25 mm) to maintain a 

constant pixel size of 50 µm. In this case, total image dimensions become 3.2 mm as 

before but target dimensions turn out to be 1.6 mm due to the dummy area. In part (b), on 

the other hand, a focal length of 12.5 mm is kept so that pixel dimensions at target 

locations take on values 50/к µm as stated before. Finally, for к = 2, total image 

dimensions become 1.6 mm and target dimensions become to be 0.8 mm, which is halved 

with respect to the former part. Apart from the topics discussed in this part, diffraction 

efficiency is slightly higher than expected amazingly. This may partly be caused by noise 

window area which fills sinc function edges and translates the existence of other orders.  

 

As a summary, this chapter analyzes the error reduction phenomena for phase-

only elements. Our original iterative type algorithm accepts input and output domains as 

multiple planar surfaces and calculates phases on input planes one by one by iterating 

over all the output target planes. As a result, the MSE values show that a significant 

amount of error reduction can be obtained by increasing the number of input PEs in the 

stack. Course quantization of phase levels degrades the results and limits the achievable 

quality drastically, and SA, which has not been considered much in such cascaded setups, 

handles pixels individually, thus being a remedy for cases with strict quantization 

constraints. The decay constant as a systematic addition of PEs are found to be confined 

in a range [0.6-0.7] and seems that this interval shrinks as number of experiments go to 

infinity making results average out. Of course, this constant depends upon the separation 

of individual image planes and independent of anything else, such as number of image 

planes or distance between PEs. In analyzing trends like that, mentioning the total MSE 

would be more meaningful just because the MSE for individual output planes might be 
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algorithm dependent. In the final stage, the total MSE of a system under hologram 

expansion via 3 spatial dimensions is analyzed. Also note that, in analyzing ultimate 

trends close to the end, no phase quantization is applied for better accuracy. However, if 

it was applied, the 64 levels would be approximately the same. On the contrary, strict 

constraints such as 4 would give different results. Reader may refer to Section 3.4.1 for a 

similar discussion but we can estimate that even with a very powerful algorithm and a 

computer, one might not be able to achieve an MSE decrease surface both in κ and N 

directions since degrees of freedom is confined under strict quantization constraints with 

iterative approaches. However, SA approach would work again although the amount of 

noise removal is debatable in this case by comparing the hardness of computation time 

and power in addition to other drawbacks discussed.  

 

Basically this chapter’s work sheds light on the relationship between phase-only 

elements and noise removal by using the most recent knowledge in literature and based 

upon the original research results. Now, a different kind of setup in which phase and 

amplitude are both modulated instead of just phase, will be investigated. 
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CHAPTER 4 

IMAGING WITH PHASE & AMPLITUDE 

ELEMENTS 

 

 

 

 

 

4.1 Introduction 

In the previous chapter, we have shown that image reconstructions can be improved by 

using a multiple of CGHs successively modulating the incoming wavefronts. Those 

CGHs were phase elements which do not affect any amplitude information.  

 

In this chapter, amplitude modulation will be investigated in addition to phase 

modulation. In fact, even though phase information is the most important factor in image 

formation, amplitude modulation may be important in several cases. For example, it can 

be used to modulate phase without using relief profiles as a most basic approach. Or, as 

shown later, amplitude and phase might be used together for enhanced performance. For 

the content of the chapter, traditional methods related to amplitude processing will be 

revised with some minor modifications first. Then, different set-ups will be proposed 

based on cascaded elements usage again but under different conditions. Methods can be 

applied for 2D or 3D image reconstruction. Results are promising after certain drawbacks 

are mitigated.  
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4.2 Encoding Techniques 

4.2.1 Overview   

There are lots of coding techniques to build a CGH for phase and amplitude modulation. 

They started to appear around late 1960s. In 1966, Brown and Lohmann described a 

method called detour phase for making binary CGHs where hologram plane is divided 

into cells to create phase and amplitude modulation effects [4]. Every cell has an 

individual rectangular aperture to adjust phase and amplitude for each pixel. Another 

method similar to detour phase method is Lee’s delayed sampling method which was first 

published in 1970 [5]. This is based on decomposing the Fourier transform of the object 

into four quadrate components, which were represented by the real non-negative 

functions. The four functions are represented by apertures at four laterally displaced, or 

shifted, positions within each cell of the hologram plane (Fig. 4.1 (a)). For example, 

suppose the inverse Fourier transform of the target is taken and the complex amplitude to 

be encoded for one pixel is, 

 

θθθ sincos iAAAe i +=                                                                                    (4.1) 

 
In encoding process, first the positive real part of the wave front is calculated at the 

center of the first section, and a rectangle proportional to this value is placed there. 

Rectangles having areas proportional to the positive imaginary, negative real, and 

negative imaginary parts are placed in the second, third, and fourth sections, respectively 

[41]. So, there will be two transparent rectangles with different sizes in two different cells 

at the end. In addition, instead of using apertures in cells, different transmittance values 

can also be used (Fig. 4.1 (b)). 

 

After all, cells are created for hologram plane, a forward Fourier transform is 

taken to analyze the performance like in Fig. 3.1, except that the cell encoded CGH 

instead of pure phase modulating one. Next sub-section shows our results about cell 

encoding technique.   
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4.2.2 Simulations 

Lee’s delayed sampling method has been produced and analyzed computationally. Both 

transparent rectangle version and grayscale version in Fig. 4.1 (a) and (b) are simulated 

with the help of a lens similar to a setup like in Fig. 3.1. The chosen image is displayed in 

Fig. 4.2 and the complete device look as well as results are shown in Fig. 4.3 and Fig. 4.4. 

 

In Fig. 4.3, rectangular aperture type cells are used (Fig. 4.1 (a)). We have defined 

sensitivity parameter (S), in order to adjust quantization, and prepared two types of CGHs; 

in the first case, S is 1 and a certain number of pixels are assigned to create one cell. In 

the second case, S is 5 and each cell is created by using 5² times more pixels. 

 

 

 

 

 

 

 

Fig. 4.1 (a) According to above encoding scheme, cells represent pixel values and each cell is 
further divided to four sub-cells with a transparent rectangle inside. (b) Different gray tones may 
also be used instead of rectangles. 

Fig. 4.2 Sample 64 x 64 image for computer experiments. 
 



 86 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Results from CGHs that are capable of modulating both phase and amplitude. 
Sinc modulation is seen at results and cannot be eliminated easily in this application 
since there is no pure phase modulating element. Lee’s method is used. (a) CGH pattern 
(b) reconstruction (c) CGH pattern with 5 times more precise (d) reconstruction. 
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Fig. 4.4 Results from CGHs that are capable of modulating both phase and amplitude. Sinc 
modulation is seen at results and cannot be eliminated easily in this application since there 
is no pure phase modulating element. Lee’s method is used with grayscale levels instead of 
rectangular apertures. (a) CGH pattern (b) reconstruction (c) CGH pattern with 5 times 
more accurate (d) reconstruction. 
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The device pictures are shown in Figs. 4.3 (a) and (c). And the corresponding 

results are given in Figs. 4.3 (b) and (d). The last row depicts the more precise 

configuration. So, the CGH device in (c) is much bigger then (a), which are all shown as 

the same size for convenience. As expected, the performance of the CGH device with 

bigger sensitivity parameter shown in (d) is better than the one with lower sensitivity 

parameter which is shown in (b). However, precise device output must either be smaller 

or, the resolution on hologram plane must be increased.  

 

The same discussion holds for Fig. 4.4, where gray level toning is used to 

modulate phase and amplitude (Fig. 4.1 (b)). Sensitivity parameter is still the same, i.e., 1 

and 5. Now for more sensitivity, larger number of gray scale level tones has been used. 

So, there is no sacrifice of resolution or space. Again, the results show that, better image 

quality is possible by increasing the S. 

 

Note that there are no parameters defined for lens focal length, or pixel sizes. The 

reason for not specifying any spatial information is due mainly to the lack of need in this 

case since free space propagation is not in use, such that the pixel size will only affect the 

image size, but the image size can be arbitrary since we are interested only in image 

quality. In addition, a larger diffraction pattern has been given in figures, in order to show 

DC component of light (undiffracted). The intensity of this component is huge with 

respect to diffracted orders (images do not show this effect).   

 

 As it’s seen up to now, when we make both phase and amplitude modulation on 

the same plane, resolution limitations become stricter. One must spend too many device 

pixels to encode one image pixel. In addition, using this method causes low diffraction 

efficiency as well as a very noisy environment; the undiffracted light coming from the 

DC component of the device gives a very strong peak at the center. Also, as it is seen 

from the images, the screen cannot be shifted for centralization of orders so there is no 

zero diffracted order achieved. Thus, this method like its similar others with cell method 

such as [42, 43], uses amplitude variations to affect both phase and amplitude for image 

formation. At that point it would be clever to combine both direct phase and amplitude 
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variation to increase image quality performance. This approach might be considered as an 

ultimate attempt to remove any noise residuals form results since all the constituents of 

the light are in the game now. 

 

4.3 Implementation with Cascaded CGHs 

4.3.1 Two dimensional images 

Phase and amplitude modulation may also be achieved at different planes with a specific 

distance between them. The proposed scheme is shown on the left hand side of Fig. 4.5. 

In this new method no cell encoding is used. We have two planes separated with distance 

d. One of the planes is responsible for phase modulation and the other is responsible for 

amplitude modulation. The phase modulating plane is assumed to have different relief 

profiles corresponding to each pixel in order to make it function. Likewise, amplitude 

modulating plane has different gray scale values for its pixels. Since there is no cell 

construction stage, resolution requirements may stay the same. 

 

Now, the question to ask is; how to design this system such that it gives high 

quality images when it is used with Fourier transform lens as shown. It is obvious that 

when d is zero, a perfect result is obtained. However, it is physically impossible to 

modulate both phase and amplitude independently on the same plane. In fact, it has been 

observed that, the distance between associated planes is very important. As the distance 

gets larger, error increases abruptly.  

 

In implementing the extended IFTA for Fig. 4.5 some slight changes need to be 

done to the flow scheme of pure phase structures (given in Fig. 3.5). In computing the 

form of amplitude element (AE), instead of discarding amplitude information like in a 

system of pure phase elements, now just phase information has to be removed and 

amplitude information is to be kept. Another difference is the distance between planes; 

unlike the separation of pure phase CGHs which is kind of arbitrary, phase & amplitude 

CGHs’ separation is taken as in the order of microns. In this case a nearly perfect 

reconstruction might be possible. For realistic separation distances, some modifications 

should be required. Basically, when Eq. 3.10 is inspected carefully, some parameters are 
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seen to be related. These are separation distance, pixel size and refractive index of the 

separating medium (the last two are buried in spatial frequencies and wavelength). In fact, 

it turns out that, pixel size and (or) refractive index can be increased for compensation of 

the extremely small separation distances of phase and amplitude elements. The below 

results are obtained for our usual separation distance, i.e., d = 300 µm. Also used are, 

0.632 µm wavelength on 64 x 64 pixels where size of one pixel is 50 µm. Sampling size 

is 1.25 µm again. Focal length f for the lens is 250 mm yielding 3.2 mm of output as in 

the example of Section 3.3.2. In addition, in place of free space propagation, a material 

with n = 3.5 is assumed to be ubiquitous between phase and amplitude modulation. Note 

that, large pixels cause smaller output which can be overcome by making the lens focal 

length larger with the same proportionality. 

 

 

 

 

Iterations saturate very quick yielding a result shown in Fig. 4.6 which is a result of the 

setup above. As it is seen, this is a nearly perfect image. For comparison, some numbers 

can be given. The MSE value of the below result is 0.022. If just one phase element 

would be employed like in Fig. 3.1, the MSE would be 0.71 and 0.11 in case of even 5 

PEs.  

Fig. 4.5 Phase and amplitude modulating planes with separation d. Phase element and amplitude 
element (AE) are placed successively. 
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 Note that 64 levels is used in both phase and amplitude quantization. In the latter, 

that is achieved by grayscale levels by setting 0 for black and 1 for white as end points. 

For the more strict constraints like 4 levels, extended SA type of approach might be more 

appropriate. In this case, the flow chart in Fig. 3.6 is applied. Perturbations on amplitude 

element are applied by changing the gray level arbitrarily for a randomly chosen pixel. In 

phase and amplitude modulation the trends are similar for any kind of image. 

 

In this part, a nearly noise-free reconstruction has been shown to be achieved 

through the usage of cascaded phase and amplitude modulation simultaneously. 

Furthermore, in design stage, one only needs the algorithms similar to the phase-only 

elements discussed in the previous chapter. Now, similarly, this idea will be extended to 

3D realization. 

 

4.3.2 Three dimensional images 

As an abstraction for 3D, two image planes will be used for reconstruction. These two 

planes are chosen to be like the ones in Fig. 3.17. In addition, the setup in Fig. 4.5 is 

extended for the new configuration. Finally, phase and amplitude modulating setup for 

3D reconstruction might be plotted as in Fig. 4.7. 

 

Fig. 4.6 Result of phase-amplitude modulation with cascaded CGHs. An almost perfect (noise-
free) reconstruction is possible when proper adjustment of parameters and setup is implemented. 
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 By extending the logic of multi-plane reconstruction of pure phase elements like 

in Section 3.4.1 and the flow chart in Fig. 3.15, one can easily optimize the system given 

above consisting of one PE and one AE. In this case, the phase information at the AE will 

be discarded instead; and the amplitude information will be saved. One point must be 

emphasized that, in finding the PE, there is a division with AE. This division may be a 

problem in case there are zero values at some pixels. The solution of this issue is to 

exchange all zero pixels with one, and let the system optimize itself according to this 

information and data.  

 

 Computer experiments have been implemented with the same parameters as in the 

Section 4.3.1. Pixel sizes on PE and AE planes are both adjusted to be 50 µm with f = 

250 mm. Obtained results are outstanding and displayed in Fig. 4.8 below. One important 

thing to be emphasized here is the intensity calibrations of displayed results. Since 

amplitude adjustment is involved in computation stage, diffraction efficiency is supposed 

to be lower. Because the main goal here is to remove noise, intensity calibration has been 

done such that the total energy is the same as those given in Fig. 3.23 which displays 

results coming from cascaded PEs for the same size images.  

 

 

Fig. 4.7 Phase and amplitude modulating planes with separation ‘d’ for a 3D reconstruction. 
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 As seen from obtained results, there is remarkable increase in quality coming 

from the proposed setup. In the first plane, sample noise is barely noticeable and for the 

second plane, crosstalk and significant proportion of noise resulting from the distance d 

are eliminated and only a small amount of residual noise may be found. This result seems 

to surpass the results of 1 or even 5 phase elements. From a larger perspective this result 

makes sense since the two ingredients, namely phase and amplitude are both given to the 

system for imaging. Note that the separation between PE and AE can be made zero 

mathematically for computational simulations. In this case, minimum total noise 

accumulates at the second output plane due to image incompatibility. The importance of 

the phenomena was discussed in Section 3.6. 

 

 After all, usage of one phase and one amplitude modulator has changed the 

picture. Basically, one might get almost perfect targets after proper implementation and 

parameter selection in both 2D and 3D cases. The requirement for an extra large pixel 

size with respect to ordinary dimensions in diffractive optics seems to be a problem. The 

important point is to notice the relationship between separation distance d and pixel size.  

As d increases, pixel size should be increased exactly equals to the square root of the 

increment factor of d, to get the same result. Although small pixel sizes are one of 

Fig. 4.8 Result of phase-amplitude modulation with cascaded CGHs. An almost perfect 3D 
reconstruction is possible when proper adjustment of parameters and setup is implemented. 
Numerical MSE values are 0.03 for the first plane and 0.39 for the second. Image intensity has 
been adjusted for comparison with those in Fig.3.23. 
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advantages of diffractive elements with respect to SLMs, this configuration might be 

used in SLMs too with time-varying pixels for real time outputs. By also considering the 

pixel size of today’s typical LCD computer displays which are approximately 200 µm 

[44], the idea in this chapter has a potential to be used in near-future displays under 

coherent laser illumination for enhanced multi-plane outputs. Some more systematic and 

elaborate study on phase and amplitude modulation may be required especially with 

SLMs by also taking variable-wavelength option into account. 
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CHAPTER 5 

EXPERIMENTAL 

 

 
 
 
 
5.1 Introduction 

In the previous chapters some different mico-holographic-display schemes have been 

proposed. Mainly, they were related to either pure phase or phase & amplitude 

modulation. In this chapter, we will first look at fabrication possibilities of our proposed 

device, and then experimental errors are going to be examined briefly. These are mainly 

related to misalignment errors in experimental stage of the device. Finally, the reader 

may find a section about fabrication of CGHs using standard equipment like a laser 

printer, commercial overhead projector transparency and optical laboratory tools. 

Experimental results, which will be presented, have been fulfilled by using ubiquitous lab 

equipment. This part should be considered apart from the rest of topics given in this 

thesis and mainly related to practical aspects of CGHs. 

 

5.2 Fabrication of Cascaded CGHs 

5.2.1 General production methods  

The fundamental question in DOE production is; how to fabricate these micron-scale 

structures with minimum possible error. Lots of different approaches and techniques are 

available for that [29, 45]. Lithographic techniques are commonly used in manufacturing 

of such components with some varieties. They are based on clean room processing and 
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employ the same technology as integrated circuit production. Since the features of 

diffractive optics are compatible in size with semiconductor devices, lithographic 

methods are optimal for fabrication. 

 

In Fig. 5.1 one CGH as a form PE representation is shown. In addition, one portion of the 

phase relief structure is magnified to demonstrate system parameters. Each pixel has 

square shape with dimensions ω x ω and depth s.  

 

 

 

 

 

 

The etch depth s (smallest feature that is fabricated) is the portion that is responsible for 

the relief profile and vital for the functionality of operation. The smallest phase difference 

due to that distance is, 

 
skn=∆ϕ                                                                                                         (5.1) 

 
Note that the unit for ∆φ is radians. nk  is the wave-number within the material and by 

definition λπ /2 nkn = . So for glass and air, we can write, 

Fig. 5.1 A CGH is shown with magnified section module. One square-shaped pixel is displayed 
with feature size ω and etch-depth s.  
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Therefore, s can be found from Eq. (5.3) 
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Q denotes number of quantization levels in phase profile. As an example, the formula in 

Eq. (5.4) can be applied to simulations in this thesis; In Chapter 3, applications with Q 

equals to 4 and 64 exist with λ = 0.63 µm and glassn  = 1.5. Using this information, s is 

computed as 0.315 µm for 4 levels and 0.02 µm for 64 levels.   

 

 In binary optics fabrication process, each layer is formed individually. Then one 

needs to use masks depending on the number of quantization levels of the CGH. The 

general rule for that can be expressed mathematically as, 

 
MasksofNumberQ 2=                                                                                             (5.5) 

 
So, every layer is fulfilled by a different mask. In case of 4 quantization levels, for 

instance, one needs 2 different masks in total. The process of fabrication is shown in Fig. 

5.2. First, a substrate is taken and coated by a special light sensitive polymer called 

photoresist as in (a) and (b). A mask is needed to identify points to be etched. In masking 

process, the substrate is exposed to UV light and necessary parts defined by mask, are 

cleared from photoresist. These steps are shown in (c) and (d). Lastly, chemical etching 

removes the parts without photoresist and finally one layer is complete in (e) and (f).  So, 

this selective etching enables the manufacturer to create different surface heights. This 

process can be continued with another mask for another layer in logarithmic mask 
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sequence. Each etching process involves errors due to the fact that accurate removal of 

material near sides is relatively hard. These processes must be implemented in a clean 

room for protection from dust and micro-organisms. 

 

 After all, mask application is the most important part since the pattern is created 

in this step. Most masks are binary transmission plates with transparent and opaque 

portions. In gray-scale lithography, though, a spatially varying transmission profile with 

gray tones is in use [46]. They are again prepared by photoresist and some lithographic 

stages similarly. In addition to that, in exposing the pattern on to the mask, some optical 

pattern generators or electron-beam machines are used. In etching step of CGHs, wet or 

dry etching might be chosen. In the former, some chemicals are used to create surface 

relief profile. On the other hand, in the latter, the sample is bombarded with high energy 

ions in order to knock off the molecules from required parts. 

 

 The method explained above is called photolithography since pattern on the mask 

is conveyed through UV light and it is the main technique in this area. Apart from that, 

there are some other lithographic techniques. One common approach is to write the 

pattern directly into the photoresist layer with the help of an electron-beam or laser beam 

[45, 47 and 48]. In this case, instead of a successive masking procedure for every layer, 

intensity of the beam is varied along the surface to create relief profile such that the local 

exposure is proportional to the required depth. This is called direct writing fabrication 

and possesses some advantages. One of the important advantages is the easiness in 

fabricating large number of phase levels, such as 256 or more. One disadvantage, 

however, is the fact that each pixel must be written one by one so it is not appropriate for 

serial processes. Overall this method is quite proper for the devices proposed here, 

especially the ones with 64 quantization levels. There are also holographic techniques 

which exploit interferometry for pattern generation on the photoresist [49]. 
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Fig 5.2 Production steps of a layer of phase relief structure in photolithography. (a) Substrate, 
usually glass. (b) Application of photoresist. (c) Masking application (d) Result (e) Etching (f) Final 
form 
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 Whatever technique is used in lithography for photoresist carving, the next step is 

etching which has been explained before briefly. Other than that, both lithographic and 

etching steps can be combined for more direct approaches, as the next paragraph 

pinpoints.   

 

 In addition to lithographic techniques, there are direct machining methods (such 

as single point diamond turning) where substrate is carved through direct removal of 

substance. These processes can produce high-quality CGHs but might be relatively slow 

[50]. 

 

 In operation of transmission CGHs, some of the light will be reflected back from 

parallel surfaces (~ % 4 per surface). Furthermore, a little portion of that reflected light is 

re-reflected again, contributing to image formation thus causing some unwanted noise.  In 

order to maximize the overall efficiency of a transmission CGH, it is desirable to 

minimize the amount of reflection. In many cases, this is achieved through overcoating 

the diffractive and flat surfaces with thin films which are called, antireflection coatings 

(AR). The usage of ARs can significantly reduce the amount of light reflected although 

the energy directed into a desired diffraction order may not be improved. Since in this 

work, the main concern is to reduce noise, ARs can perfectly serve that purpose since 

they are very efficient in suppressing successive reflections and eliminating noise coming 

from these reflections. One of the common coating materials for bare glass is magnesium 

fluoride, 2MGF  [51]. 

 

5.2.2 Production of proposed setup 

In our proposed system consisting of several stacked diffractive surfaces, a production 

material of fused silica, FK51A or BK7 glasses might be used for elements. On the other 

side, there are two options for fulfillment. One option is to fabricate elements separately 

and align them using x-y-z optical aligners (similar to the schemes in Chapter 3). In the 

second one, however, one could fabricate diffractive elements into a substrate one by one. 

Similar setups for different purposes can be found in references [18] and [52]. Now, these 

two techniques will be examined briefly.  
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 In the former, elements can be fabricated separately by using electron-beam 

lithography for shaping the photoresist and then etching through ion beam (milling), or 

employing one of direct machining methods. In experimental phase, very precise 

alignment is required. In this case, one has to deal with three translational and three 

rotational degrees of freedom for tuning. A similar setup was used in [52] with 

piezoelectric stages. 

 

 When the latter method is to be chosen, where cascaded CGHs are produced in 

only one entity, extreme care should be taken in the manufacturing stage. Once fabricated 

well, however, this method enables users to enjoy from a unique quality device. As seen 

in Fig. 5.3, there are diffractive surface layers as a matrix and buffer layers for 

propagation. CGHs serve as diffractive surfaces and replicated on the lateral extent in 

order to reduce speckle effects (Section 6.1.3). Steps are somewhat similar to the 

previously proposed method. First, substrate (material 1) is exposed to e-beam 

lithography and ion-beam etching, ending up with one layer of diffractive surface. Then, 

a buffer layer (material 2) is deposited using plasma enhanced chemical vapor deposition 

(PECVD). Next step is to deposit the material 1 by using PECVD, and to etch it for the 

formation of the second diffractive surface. These processes follow another until the end. 

The two important points here are, the alignment issue again, but this time in the 

production stage, and choice of these two materials for diffractive and buffer layers. The 

required alignment might be achieved in lithographic process, which is much easier than 

aligning in usual lab environment. Selection of materials is another point. If Eq. (5.4) is 

inspected, the etch depth ‘s’ is seen to be inversely proportional to index difference 

between material 1 and material 2. Therefore, this means that, when different materials 

are to be chosen, the only thing that has to be changed is s from the diffractive surface 

point of view. On the other hand, since optical path length is nd, with n is the refractive 

index of the propagation medium, the propagation distance is affected and buffer layers’ 

thicknesses should be adjusted accordingly. 
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Fig. 5.3 Final view of the compact device. After PEs are computed, they are replicated for 
speckle reduction (at least 3 or 5 times). And fabricated succesicvely with separation distance 
d. For the figure, there will be N x 5 PEs contributing to image formation. Material 1 and 
material 2 are intended to be used for PEs and buffer layers, respectively.   
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5.3 Misalignment Errors 

In this section, some alignment errors in case of experiment will be examined. Up to now, 

it should be clear that, the proposed setups require micron-level precision and either 

manufactured together or separately, these CGHs need to be handled very carefully in the 

final experiment stage. So, we will just be examining alignment errors no matter where 

those elements are aligned, in production or experimentation stage. Actually, since high 

precision devices are used in clean-room processing, we can assume that most of the 

alignment errors would come in case of separately fabricated structures. One possible 

case is illustrated in Fig. 5.4. 

 

 

 

 

 

 

 

 Basically, by misalignment error, we mean that the system is optimized for some 

spatial parameters and in the final reconstruction stage a change in these parameters is 

observed giving rise to a distorted result. As an evaluation tool, since our main concern 

here is to reconstruct 3D output, two image plane reconstruction scheme will be applied 

by using the flow chart in Fig. 3.15. The reader can assume that similar results will be 

obtained in case of a stochastic approach. 

Fig. 5.4 Two PEs are shown. One of them is misaligned in three spatial coordinates, and this is 
denoted as ∆x, ∆y and ∆z. 
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 Simulations have been performed in order to analyze possible effects of spatial 

errors ∆x, ∆y and ∆z on final reconstructions by using two PEs, as a representation of a 

simplest case. For the below results shown in Figs. 5.5 and 5.6, images in Fig. 3.17 are 

used in a form of 64 x 64 pixels, with f = 25 mm, d = 0.3 mm and  l = 40 mm.  

 

 Fig. 5.5 shows the change in total reconstruction error in two plane imaging when 

the distance d is changed infinitesimally. Therefore, it reflects the results when one of the 

two PEs are misaligned as an experimental error in z-direction with magnitude ∆z. 

According to the graph, extra noise caused by separation error, increases linearly after 

approximately 25 µm. For longitudinal direction, error coming from ∆z does not seem to 

affect the result much. Even for 100 µm, increase in error is 0.6. In order to grasp what it 

means and to ease comparison, some numbers can be given referring to the results from 

Chapter 3. For example one would get total MSE of 2.5 approximately when just one PE 

is used and 1.6 in case of two PEs for reconstruction of the same image set under perfect 

conditions.  

 

 When Fig. 5.6 is considered, error increase trend can be noticed as similar from 

some aspects so that it becomes linear after some point but in this case system is much 

more sensitive to lateral displacement errors. Even a few microns may make the system’s 

performance degrade down to the case of just one PE. This result seem to make sense 

because in the iterations optical system adjusts itself according to corresponding pixels on 

different PEs on the same propagation direction, and when disturbed, noise increases 

abruptly. 

 

 After all, we can summarize this section by expressing that cascaded CGH setups 

are much more tolerant for longitudinal displacement errors rather than lateral. Even for 

lateral displacement errors, an error of 500 nm, for example, causes 0.1% MSE increase. 

Therefore, placement and alignment issues are important but within achievable limits of 

sensitive x-y-z aligners. When rotational misalignments involve, it can be expected that 

similar magnitudes of MSE increase may occur. For more information on rotational 

manipulations in propagation, reference [53] is suggested. 
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Fig. 5.6 This graph displays the change in total MSE versus the change in lateral distance 
between two PEs in case of two image planes. This change can be in x or in y direction. 

Fig. 5.5 This graph displays the change in total MSE versus the change in distance between two 
PEs in case of two image planes.  
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5.4 Experiments with Single Intensity-Modulated CGHs 

The experimental results, which will be presented here, have been fulfilled by using 

existing lab equipment found in USC electrical engineering optical computing laboratory 

and printer in signal and image processing institute. One layer of intensity CGH is used. 

Before passing to the results, experimental setup is introduced. 

 

 Our experimental setup is shown in Fig. 5.7. And conceptual drawing is shown in 

Fig. 5.8. It basically includes, He-Ne laser, microscope lens (60X), spatial filter (25µm) 

and several lenses. Light output created in laser first. Then it passes through filter where 

spatially incoherent parts are cleared out, and a point source is created. After the filtering 

process, an aperture is used to limit excess light. Next, spherical wavefronts are converted 

to planar waves by using a lens with focal length 25 cm.  Now, the light beam is ready to 

be processed by the diffractive element which is our CGH. Output coming from CGH 

passes through an imaging (Fourier transform) lens. This lens has a focal length of 75 cm. 

The focal length is chosen to be relatively large so that the final image’s dimensions are 

relatively larger. The final result appears at one focal length behind the Fourier transform 

lens (lens 2). But, this image is still too small and therefore needs to be magnified. The 

last lens (lens 3) seen in Fig. 5.8 enlarges the image and gives result on white screen. For 

the magnifying lens (f = 22.5cm) at hand, 3x magnification is desired. In order to 

calculate appropriate image and object distances: s and s`, geometrical optics formulae 

are revisited. The imaging and magnification (M) can be expressed as; 

 

ssf ′
+=

111
                                                                                                       (5.1) 

 
sMs =′                                                                                                              (5.2) 

 
respectively with M = 3 and f = 22.5cm. Since there are two equations with two 

unknowns, this set may be solved easily, yielding s = 30cm and s` = 90cm. 
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5.4.1 The He-Ne laser 

A helium–neon laser (He-Ne), is a type of gas laser whose gain medium consists of a 

mixture of helium and neon gases inside of a small bore capillary tube. The He-Ne laser 

operates at a wavelength of 632.8 nm in the red part of the visible spectrum. It was 

developed at Bell Telephone Laboratories in 1962 . 

 

The gain medium of the laser, is a mixture of helium and neon gases, in 

approximately a 10:1 ratio, contained at low pressure in a glass envelope [54, 55]. The 

energy or pump source of the laser is provided by a high voltage electrical discharge 

passed through the gas between electrodes (anode and cathode) within the tube. The 

optical cavity of the laser usually consists of two concave mirrors, one having very high 

(typically 99.9%) reflectance and the output coupler mirror allowing approximately 99% 

reflectance. The basic working principle is as follows; The mechanism producing 

population inversion and light amplification in a He-Ne laser plasma originates with 

inelastic collision of energetic electrons with ground state helium atoms in the gas 

mixture. These collisions excite helium atoms from the ground state to higher energy 

excited states. Then, collisions between excited helium and ground state neon atoms 

results in a selective and efficient transfer of excitation energy from the helium to neon 

atoms due to near coincidence between the energy levels of those two elements. 

Metastable neon atoms lase with stimulated emisson accompanying spontaneous 

emisssion [56]. The final light output goes out from the mirror with relatively less 

reflectance, and the reflected light contributes the energy inside cavity and helps ground 

state He atoms excite. 

 

Commercial He-Ne lasers are relatively small devices, among gas lasers, with 

cavity lengths usually ranging from 15 cm to 50 cm and optical output power levels 

ranging from 0.5 to 50 mW. They are preferred due to cost, relatively long coherence 

length and ease of operation.  
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5.4.2 Production of Holograms 

We have designed two types of CGHs shown in Figs. 5.9 and 5.10. One with the 

algorithm defined in Section 3.3 and the other with the method from Section 4.2.   

 

For the former method, first algorithm in Fig. 3.2 is applied, then all the 

calculated phase values have been changed to binary intensity levels (black and white). 

Since cleanroom fabrication is not yet available, all pixels are engraved by using a 

commercial printer on plastic transparencies and employing halftoning technique. Pixel 

size is limited to dpi (dots per inch) value of the printer. Pixel size is taken to be 150 µm 

and number of pixels is 80 x 80. No dummy window is present. Final image dimension 

can be calculated by using the formula again (from Chapter 2) that relates spatial 

frequency and dimesion: ffD xx λ= where xD  is the dimension of final image in x 

direction, λ is wavelength which is 0.63 µm, f is the focal length which is 75 cm and 

finally xf  is the maximum spatial frequency of the object along x. Since pixel size is 150 

µm, xf  is equal to 1µm1501 − . Therefore xD is found be 3.15 mm. As stated before, this 

image is magnified 3 times from the last lens in setup. So, our final image is almost 9.5 

mm. Since ‘USC’ letters covers one half in width and one third in height, it seems 

relatively smaller. These letters are placed off-centered due to twin image problem. 

Binarization (either in phase or amplitude) causes twin image problem in outputs. Twin 

images can be seen symmetrical around origin as may also be seen from the figures. 

 

  For the latter hologram, the technique which is explained in Section 4.2 has been 

used. Since the result is already binary no other process is applied at the end. The Fourier 

transform of the device gives desired output. Unfortunately, because of the extra small 

size of this image, features are hardly seen and digital camera is not powerful enough to 

capture quality pictures. So there is no experimental data coming from this device but 

suffice to say that the output is very similar to the predicted one given in part (c). We also 

display the devices that these holograms are mounted (Fig. 5.11). They are made in a 

non-sophisticated way; transparencies are placed between two microscope slides after a 

specially designed and cut paper. And the result is robust and professional look CGHs. 
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Fig. 5.9 (a) Desired image (b) Hologram (c) Numerical output (d) Experiment 

Fig. 5.10 (a) Desired image (b) Hologram (c) Numerical output 
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Based on this experiment, it is apparent that the first hologram is advantageous 

due to handy pixel size. So again, as pointed out in the beginning of Chapter 4, cell 

encoded elements suffer resolution problem commonly and that is one of the reasons that 

people use pure phase modulators. This fact increases the importance of the thesis from 

the point of view of noise removal for such structures.  

 

This chapter summarizes and proposes fabrication methods of diffractive 

elements and the novel diffractive display treated in this thesis. In addition, we mention 

an inexpensive method of making simple diffractive elements which is not completely 

dependent on the rest of the work.  

 
 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5.11 Final device look fabricated and used in Optical Computing lab. Left hand side shows 
the device in Fig. 5.9 (b) and right hand side shows the device in Fig. 5.10 (b). 
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CHAPTER 6 

DISCUSSION & CONCLUSION 

 

 

 

 

 

6.1 Some Issues 

Some important points of interest as well as future research directions will briefly be 

mentioned in this chapter. Possible drawbacks and ambiguities need to be discussed in the 

implementation of simulations and experiments as much as reviews of some important 

points. These points are intended to be emphasized so that a future continuation of this 

work yields better results.  In addition, an elaborate discussion from the point of similar 

works in literature as a complementary part can be found in this chapter. 

 

6.1.1 Convergence 

In this thesis the main emphasis was on algorithms to design various configurations of 

diffractive elements. Error reduction process for these algorithms as iterations flow have 

not been mentioned in detail yet. The convergence behavior of both algorithms in this 

work is very similar to the traditional case where one uses a single entity for both image 

and object domains. Basically, MSE converges in a smooth manner and number of 

iterations roughly depends on the number of PEs used. When there are too many CGHs, 

however, these algorithms do not have any guarantee to converge, although in the 

stochastic case the chances are far higher with the expense of computation time.  
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 6.1.2 Sampling 

Sampling is another issue in computational optics. In the implementation of algorithms, 

sampling requirements should be considered carefully. In case of violation, for example 

when propagation distance exceeds limits, the system under consideration is forced to use 

a distorted propagation matrix. Hence the results would be approximate. Roughly, one can 

obtain reasonably accurate results unless the limits are violated extensively. Between 

phase elements, the sampling size has to be smaller than a pixel size (upper bound) in 

order to simulate higher diffraction orders in propagation [57]. The smaller the sampling 

size, the more precise the results, although after a certain limit finer sampling does not 

affect results much (one fourth of a pixel in our case). Moreover, the sampling theorem 

puts limits (lower bound) on the design parameters at both device and image domains 

when it comes to sampling of the transfer function in Eq. (3.10) [13]; this is due to the 

increasing slope of the phase term in the transfer function with respect to spatial 

frequency. For non-aliased results, maximum change in the absolute phase must be 

limited by a constant (Chapter 2). Therefore, this puts extra boundaries on the sampling 

problem, so that the sampling size has now a lower bound as shown in Eq. (2.37). As long 

as sampling conditions are satisfied and distances are far apart enough for scalar 

diffraction theory, any distance d between PEs may be used in the algorithms and setups 

described in this thesis. There is a tradeoff for the distance l  between image planes such 

that it may not be allowed to be very small. In case of a short distance trials, all the image 

planes come out to be as the same as the first one. This is because of the fact that, light 

field cannot adjust itself in short propagation distances to form different images in planes 

after the first one.  

 

When the sampling condition expressed in Eq. (2,37) or (2.38) is considered again, 

one concern is that any propagation simulation is limited by the distance and for relatively 

far distances our condition seems to cause imprecise values and fail gradually. In order to 

overcome this condition, one may derive sampling in spatial domain, instead [14]. Same 

procedure might be applied by using the Fresnel convolution kernel and then taking the 

Fourier transform of it. In that case, transfer function for propagation can be sampled 

appropriate only for distances farther than our condition. But this method brings problems 
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in the forward and backward transform, so that even if the sampling works fine in either 

direction alone, it does not work perfect when applied consecutively. 

 

6.1.3 Speckle formation   

One other issue is speckle formation at the outputs of the proposed devices. If the 

bandwidth of the complex object exceeds the available hologram area, speckle formation 

(aliasing) is observed at the reconstruction planes [58, 59]. This problem can be solved by 

two main approaches computationally. One of them is to take the speckle pattern into 

account in design. The entire design process can be implemented with a zeropad array 

paved around the calculated element. That zeropad array enlarges frequency domain thus 

causing more pixels at the output. So, by assuming speckles in the computational design 

implicitly, one can reduce negative effects partially. One important issue in iterative 

algorithm stage is handling the zero pixels. They create problems in case of division. So, 

when division is involved, just phase freedom with unit amplitude may be employed. 

Note that this only occurs in design process, where backward propagation is involved, 

therefore when simulated at the end after the design, that point is no longer an issue since 

only forward propagations are involved. In addition simulated annealing type algorithms 

can be tried for this purpose which may yield better fit since no backward transform is 

applied in any step. Instead of this complicated design recipe, one may also replicate the 

final CGH at the end as a second method. Hence, replicates at different spatial locations 

disturb the phase matching and allow elimination of speckles. For practical applications, 

for example, usually three replicates are enough for one dimension yielding nine 

replicates for a planar CGH. Of course, when cascaded elements are used the same 

operation must be applied to all. Actually, speckle formation is closely related to the 

output planes’ imaging capabilities. For instance in case of CCDs at target locations used 

in the experiment, the user is limited to the size of a pixel of the device. Similarly, human 

eye also has a resolution limit on the retina in case of direct observation. Therefore, 

detector resolution limits the speckle formation such that the coarser the resolution the 

less speckles that can be observed.  
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6.1.4 Other error metrics 

In this work, mainly MSE metric, defined in Eq. (3.1), is used for image quality 

assessment. But, there are some other measures for the same purpose. Because of that, 

this section is devoted to sample demonstrations of these other measures in comparison 

with our standard metric, MSE. In fact it is hoped that the results in this section can 

especially be useful when assessing similar works in the literature in conjunction with 

this one. As mentioned and defined before in Eq. (3.4), Co is a statistical metric for 

similarity relationship between two sets of data. Another useful metric would be SNR as 

in Eq. (3.7). In computation of SNR, RMS of total target image field is simply divided by 

its noise counterpart, which can be expressed as absolute value of target image field 

minus reconstructed image field. This metric is more popular in fiber-optic 

communications theory. We would like to give sample results when different metrics are 

in use in the evaluation of cascaded PEs’ performance.  One of the important results in 

this work was the demonstration of error reduction as a response to addition of phase 

modulating elements. So, for example, the results shown in Fig. 3.22 may be analyzed by 

employing different metrics. In Fig. 6.1 (a), the same result is expressed in terms of Co, 

and in (b) it is expressed in terms of SNR. 

 

 

 

 

Fig. 6.1 (a) Co value versus number of PEs  (b) SNR versus number of PEs, for the experiment 
results shown in Fig. 3.22. 
 



 117 

In case of non-similarity, the lowest value for Co is zero, whereas the highest is one when 

perfect match is observed. Due to the fact that Co is a sensitive parameter, values change 

in a relatively small range. On the contrary, SNR varies through a large range and yields 

almost linear (with slight curvature) results interestingly. Actually, it is not possible for 

SNR to go infinity as number of PEs increase, because in that case noise would have to 

go zero, which is impossible (at least for the second plane due to incompatibility). So, we 

can conclude that in the interval of 1 to 5 PEs, the trend looks more like linear but it is 

probable to become constant after a certain point. The mathematical limit for SNR is 

infinite in case of noise free reconstruction, the lower bound, however, is case dependent. 

The characteristics of curves above (linear or logarithmic) are different due to different 

expressions of definitions. For the parameters of the above experiment, the reader may 

again consult to Section 3.4.1. 

 

6.1.5 Binary phase quantization 

In Chapter 3, while analyzing different phase quantization effects, binary levels, i.e. 2 

phase quantization levels were not introduced. One reason for that is basically its physics 

is a little bit different from the rest. Other than that, the same trends can easily be 

observed with more degradation of results due to limited degrees of freedom. Regardless 

of the illumination wavelength, the outcome of a binary DOE is symmetric with respect 

to the origin with twin images at every diffracted order. A simple proof can be found in 

[38]. 

 

6.1.6 Lensless Functionality 

A lens is used in concepts and diagrams in order to ease imaging. In the lensless case, the 

distance from the last diffractive element to the first image plane must be sufficient 

enough to support Fraunhofer approximation as noted near the end of Section 2.2.1. Eq. 

(2.15) which describes Fresnel propagation can be re-written as follows, 
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According to Eq.(6.1), when the exponential factor near ψ  goes to 1, a simple Fourier 

transform expression can be obtained. This fact can be seen when it is compared with Eq. 

(2.19a) by putting λπ /2=k and z = f. Therefore, the necessary condition may be 

observed when, 

 

( )
2

22
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+

>>                                                                                                 (6.2) 

 

In above equation, the distance z between device and image domains must be as much as 

possible to guarantee a correct approximation. In Eq. (6.2), (x, y) denotes source 

coordinates. As an extreme case, maxx  and maxy  must be used. When applied to our case, 

where the source is considered to be the cascaded structure with 64 by 64 pixels, maxx  = 

maxy  corresposponds to 160 µm (32 pixels, from the center to the edge multiplied by 5 

µm pixel size). Thus, the limiting value on z is calculated to be 256 mm, which is almost 

ten times larger than our usual lens focal length, f. Of course, in this case the output will 

be larger based on propagation distance. When the lens is not in the system, the FOV is 

limited. 

 

6.2 Summary 

6.2.1 Literature comparison 

In this part, some recent literature information will be given in more detail with 

comparisons, pertinent to cascaded phase elements and phase retrieval techniques. In fact, 

there are also similar approaches that are used for various purposes in the literature.  

 

 In what follows, we summarize some of them in order to compare with our work. 

Iterative algorithms are often used in the process of phase retrieval.  The typical phase 

retrieval problem that relates to our work is to infer the phase in a plane of interest, given 

intensity measurements in one or multiple planes. Intensity can be obtained 

experimentally in multiple planes, for example, by detecting in a succession of slightly 
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out-of-focus image planes [60], by employing a succession of different illumination 

techniques each of which gives rise to a different intensity pattern at the detector [61], or 

by using multiplexed optics that send images from different planes in depth to different 

spatial locations in a detector plane [62]. In all of these cases, a multiplane-like algorithm 

can be employed to infer the phase in the original plane of interest.  Some of these 

algorithms use iterative IFTA-like algorithms based on propagation of the wave field, and 

others employ instead the transport of intensity equation (TIE). The TIE can be solved 

using a non-iterative method which proceeds by calculation of infinitesimal intensity 

variation along z. Either approach could in principle be applied to the image-plane side of 

our system, in order to find a phase distribution in one plane on the target-image side of 

our system.  For our case, the iterative approach has advantages over the TIE approach in 

that it is more robust to phase discontinuities; also this method is not as common as the 

iterative approaches and a comparison is discussed in [60].  

 

More generally, there are a number of key differences between the problem we 

are solving and the phase retrieval problem.  First, our end goal is to find the phase 

modulation to implement in N cascaded planes; whereas the typical goal in phase 

retrieval is to find the physically existing phase in one plane. Second, in our case the 

given image intensity planes are not assumed to be optically compatible; but in the case 

of typical phase retrieval, the planes of measured intensity from a chosen object will 

indeed be optically compatible.  And third, in either problem there may be many possible 

solutions for the phase in the plane(s) of interest.  In our case, any one of the solutions 

will be sufficient, as long as it gives rise to a reasonable rendition of the target image 

plane intensities; in the phase retrieval case, the solution that is most similar to the 

original (unknown) phase needs to be found.   

 

 Also, there are some particularly relevant studies on cascaded CGHs for various 

purposes in literature, which need to be mentioned briefly. Deng et. al. [22] analyzed 

cascaded diffractive elements for multiwavelength interconnects. Their approach uses a 

weak-phase-deviations approximation technique [63] for the iterative design algorithm, 

and considers output as an indescriptive 3D continuum rather than slices of image planes.  
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The system is applied to wavelength-division demultiplexing using Gaussian incident 

beams. In addition to that, in a similar work, Shi et. al. [28] used two phase elements right 

after an incident key image that contains multiple hidden images. The phase elements 

serve to reconstruct the hidden images in the Fresnel domain. Their algorithm employs an 

iterative type of approach and computes these two phase elements in one loop, where the 

loop visits one image plane in each turn. On the other hand, in our work, the iterative 

algorithm flows all the way forward and each phase element is computed separately.   

 

 In the last part of this chapter, a more general approach is considered, in which 

one could expand diffractive surfaces by both cascading in z-dimension and 

supplementing with a window in x-y domain. Although noise window concept is known, 

neither its effect on MSE with respect to its noise area (by considering just one PE as a 

classical case) has been analyzed systematically, nor an entire scheme is ever mentioned 

by taking cascade phenomena into account. In fact, the last part in Chapter 3 outlines 

noise removal process in the case of ultimate expansion in three spatial dimensions. 

Theoretical minimum can be reached in multi-plane imaging by enough expansion in a 

form of additional pixels or planes as PEs. One other important result tells that when the 

separation distance between image planes increases, optical incompatibility decreases. In 

those cases, the optical problem becomes like a 2D image reconstruction especially in the 

extreme values of separation distance. Again in such cases, the effect of cascade of 

elements are debatable and just the noise window concept might be applied.  

 

6.2.2 Thesis Summary 

Finally, in this work some novel display applications are proposed. As unique features of 

our work, diffractive elements which have a capability to form multiple images at 

different depths have been proposed. Error reduction is investigated systematically as a 

function of ubiquitous phase and amplitude modulating elements. For phase only display, 

two mainstream design approaches are developed and proposed based on extensions of 

traditional methods. It has been shown that adding successive phase elements to the 3D 

image reconstruction problem might yield significant improvement under different 

constraints. Especially at the final stage of the work for phase-only elements, the total 
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MSE has also been examined because individual output planes in 3D representation may 

be algorithm dependent such that for iterative approach the noise is unequally distributed,   

however in annealing method it may be equaled. In addition, course quantization of phase 

levels degrades the results and limits achievable quality drastically; and simulated 

annealing, which has not been considered much in such cascaded setups in the literature, 

handles pixels individually thus being a remedy for cases with strict quantization 

constraints as explained in Section 3.4.1. Fundamentally, phase modulation phenomena 

with successive planes expands the system’s solution space by adding more degrees of 

freedom, and causes error reduction in an inverse exponential-like pattern as a function of 

the number of phase modulators. This fact may also be exploited especially when the 

feature size is close to the wavelength and adding more pixels on the same spatial extent 

would be ineffective for one phase element. Phase and amplitude modulating display, on 

the other hand, might be more efficient as long as pixel dimensions are kept relatively 

large. Also note that, in the working scheme of the devices here, there is no one to one 

correspondence between input phase elements and target image planes in the longitudinal 

dimension; indeed, information in any output image plane is distributed among all the 

input phase elements.  

 

 From a more technical point of view, the concept can be applied to the 

construction of a versatile and light weight micro-holographic 3D display. It might also 

find usage in various areas such as medical imaging, head-up displays, digital image 

encryption or even in fiber optic interconnections. One way of achieving practical 

operation could be realized by fabricating relief structures sequentially onto the same 

substrate separated by buffer layers, which also minimizes alignment flaws and is 

explained at the end of Chapter 5. That proposed configuration can in principle be 

executable with current technology. Preliminary work indicates that precision is required 

especially in lateral dimensions. This requirement, however, has much more tolerance in 

longitudinal dimension.  

 

 As a result we proved that enlarging the CGH will cause noise reduction and if 

this enlargement is as a form of parallel cascades longitudinally, the outcome is reduced 
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optical incompatibility for multi-focal setups, whereas laterally expanded CGHs show 

improvement as well in expense of resolution and diffraction efficiency. For future work 

directions, physical realization of cascaded phase elements may be implemented by 

following the recipes given in this thesis. Furthermore, different techniques can be 

investigated for 3D reconstruction other than multi-planar representation. Also, some 

other algorithms might be used in optimization such as genetic algorithm or ant colony 

optimization. It would be beneficial to exploit parallel computing in order to speed up 

computation. Mathematical treatment of increment of information capacity [64] due to 

addition of extra elements could be done for a more theoretical and general view. Or, the 

concepts given here may be combined with some other work in diffractive optics realm 

such as the one in [65] where space-variant interconnections are implemented by 

successively placed optoelectronic components including diffractive elements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 123 

 

APPENDIX A 

 

The formulation of diffraction problem is based on expressing the solution of the well 

known homogeneous wave equation at an arbitrary point in terms of the values of the 

solution and its first derivative on an arbitrary closed surface surrounding that point. In 

order to handle boundary conditions, Green’s function formalism is used as a derivation 

tool [66]. It is a useful identity specifically employed in complex electromagnetic 

calculations. The identities due to George Green (1824) follow as simple applications of 

the divergence theorem. The divergence theorem basically relates the behavior of the flux 

of a vector field through a surface and its divergence inside that surface.  
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When they are inserted into divergence theorem in (A1), Green’s first identity is obtained. 
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If we write the above equation again but φ  and ψ  are interchanged this time, then 
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Subtracting (A3) from (A2) side by side, Green’s second identity is obtained. 
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 When this theory is aimed to be applied to any diffraction problem, a well defined 

geometry is required, such as the one shown in Fig. A1. Consider an aperture on an 

opaque screen in front of a radiation field. Let 1P  be any point on the aperture, the point 

of observation can be shown as 0P , and RS  denotes a closed surface surrounding 0P , as 

shown. Final aim of the formulation herewith, is to express optical disturbance at 0P  in 

terms of its values on the surface RS .  

 

 Consider an auxiliary function which is a unit–amplitude spherical wave 

expanding outwards from the point 0P . This is the same expression derived before and 

shown in Eq. (2.11).  
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In order to exclude the discontinuity at 0P which blows up at origin, we assume a 

spherical surface with infinitesimally small r around 0P . Then Green’s theorem is applied 

in volume between rR SS and , so the surface integration can be executed on composite 

surfaces, namely rR SS + , connected with an infinitesimally thin hypothetical channel and 

volume integration is implemented within rR VV + . Since desired solution ψ  and the 

auxiliary function φ  both satisfy the Helmholtz equation in this new defined volume, we 

have from Eq. (2.6), 

   

     ψψ 22 k−=∇       and     φφ 22 k−=∇  

 
Left-hand side of Eq. (A4) simplifies to, 
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This is basically zero. Thus the Green’s theorem reduces to, 
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Fig. A1 A screen with tiny aperture is shown. Surface normal vectors are denoted by n
r

. 
Hypothetical surfaces RS  and rS are defined in the text and they serve the purpose of computing 

the field at 0P , assumed to be the origin in spherical coordinates. RS ′  is a part of RS  that intersects 

the screen. V defines corresponding volumes. Finally, 0
~
P  is the mirror image of 0P  and it is 

symmetric with respect to screen. 
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For the derivative, by considering the surface rS , we can derive,  
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where ),cos( rn

rr
 factor represents the cosine of the angle between the normal and the 

radius of the small sphere r, and the normal n
r

 is a unit vector for this sphere and points 

inwards (its because rR VV +  composite surface has a normal pointing towards 0P ), and 

r
r

 points outwards thus yielding cosine equals to -1. Substituting these in Eq. (A7) and 

letting the magnitude of r goes to zero gives a much simpler expression. 
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The second integral above is unknown since it includes normal derivative of ψ . Luckily, 

the entire part will vanish due to denominator which goes to zero.  
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Now suppose that R in Fig. A1 goes to infinity. Then, above integral vanishes for all 

values on RS  except the part cut by screen ( RS ′ ), as long as Sommerfeld radiation 

condition holds [12], due mainly to the functions ψ  and φ , which blows up at infinity. 

Thus, RS  can be replaced by RS ′ . 
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This important result basically tells, in order to find the field at 0P , just the values on RS ′ , 

namely values on transparent portion of the screen or aperture are required. At this point, 

another auxiliary function φ  can be generated not only by a point source at 0P  but also 

simultaneously by a second point source at position 0
~
P  which is the mirror image of 0P  

on the opposite side of the screen. We assume the two sources are identical but a π phase 

difference. So, the expression for this new wave function at a point 1P  within aperture is, 
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Where 01r

r
 is a vector joining 0P  to 1P . This function vanishes on the aperture. Note that 

the derivation done before also works for this auxiliary function as long as another 

hypothetical sphere pair (with infinitesimally small and large radii) are placed around 0
~
P . 

Then, Eq. (A11) is simply written as, 
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The derivative can be found for more simplification, 
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In above calculations, the angles between 01, rn
rr

 and 01
~, rn
rr

 are supplementary thus cosines 

are the same except for a minus sign, where n
r

 here, is the normal to the surface RS ′ and 

for magnitudes we have |||~| 0101 rr
rr

= . Furthermore, since λ>>|| 01r
r

, ||/1 01r
r

 term may be 

neglected. By expressing the wave number k, in terms of λ we get, 
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With Σ  representing the transparent region (aperture) of RS ′ . This result is known as 

Rayleigh-Sommerfeld theorem. It basically allows the field at any point to be expressed 

in terms of the boundary values.  
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APPENDIX B 

 

For any n, the binomial can be expanded as, 
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When x << a,  
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In its most frequently used form, where a = 1 and n = 1/2, Eq. (B2) becomes, 
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APPENDIX C 

 

Consider an arbitrary one dimensional bandlimited function )(xg  and its sampled form 

sampledxg )(  from Eq.(2.27a). The sampling interval will be shown by ∆x  as in the text. 
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x
comb(x)g sampled =(                                                                         (C1) 

 
and its spectrum, 
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Where the sign ⊗  shows convolution and )( xfG  is the transform of g(x). The Fourier 

transform of comb function is still a comb. Thus, after using the definition of comb in Eq. 

(2.27c) and a little algebraic manipulations, we have, 
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So, the spectrum of sampledx)g(  can be found by erecting the spectrum of g(x) about each 

point at locations, xmf x ∆= /  with m is an integer given in Eq. (2.27b). It is apparent 

that the sampled function’s spectrum sampledxfG )(   is a repetitive form of the original 

spectrum of )( xfG  with interval x∆/1 . These concepts are summarized in Fig. C1, 

where the amplitude (χ) of )( xfG  is shown in part (a) and the amplitude ( sampledχ ) of 

sampledxfG )(  is shown in part (b). Since the various terms in the spectrum of the sampled 

data are separated by distances x∆/1 , it’s guaranteed that no overlap happens between 

two adjacent terms in the spectrum as long as the below condition holds.  
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When the sampling condition holds then the separations of the various spectral islands 

will be large enough to assure that the adjacent regions do not overlap. Thus the recovery 

of the original spectrum )( xfG  from sampledxfG )(  can be achieved exactly. Otherwise, 

some details disappear causing aliasing. 

 

 
 

 
                                                                                                                                                                                                    
 
 

 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 

Fig. C1 Amplitude versus frequency (a) Spectrum of a function (b) Spectrum of a sampled 
function. Seperation of two terms is shown by an arrow. Amplitude is shown with χ, so that 

ζχ ieG = and sampledi

sampledsampled eG
ζ

χ=  respectively. maxf  shows the bandwidth. 
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APPENDIX D 

 
Consider the definition of mean squared error (Eq. (3.1)), where C is a reconstruction 

factor chosen to make MSE minimum for a given reconstructed image. 
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Mathematically the fact that MSE gets its minimum can be expressed as taking the 

derivative and equating to zero. 
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APPENDIX E 

 
Some pseudo-codes to implement certain functions in simulations for computational 

experiments will be presented here. These codes play important roles either in the main 

program body or as a user-defined-function. The logic and syntax are compatible with the 

programming language C and executed in Matlab®. Some image processing toolbox 

functions are also used when required. In addition, we also would like to mention some 

physical phenomena occurring in light propagation and imaging throughout the processes                

briefly so that the reader may find useful to take a look at this section other than codes 

which might come too technical to some. 

 

E.1 Image read    

Images must be entered and read by computer before everything else starts. Below, ‘I’ 

denotes the image matrix that is represented by bitmap (bmp) format or sometimes 

tagged image file format (tiff). Actually every planar digital image is a three dimensional 

object by considering the color codes as well. So, for gray toned samples we just need to 

take one of these dimensions immediately after the sample is read. These steps are shown 

in the first two lines. Last line just adjusts the numerical format and normalizes by 

assigning unity as maximum.  

 
I=imread('1.bmp','bmp'); 
I=I(:,:,1); 
I=double(I)/255; 

 

In computer’s memory there are cells which consist of smaller units called bytes. A byte 

is the amount of storage required to store a single character. The number of bytes a 

memory cell can contain varies from computer to computer. A byte is composed of even 

smaller units of storage called bits which is an abbreviation of binary digit. One bit is the 

smallest element a computer can deal with and it is either 1 or 0. Generally there are 8 

bits in a byte [67]. That allows 82  (256) configurations to be executed. Similarly in 

image processing there are 256 gray tones represented by a byte, maximum number is 

255 as brightest by also considering 0 as darkest. 
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E.2 Random Phase Plate (RPP) 

Computer experiments start with elements that have random phase values in its pixels. So, 

a matrix with random phase entries is to be created.  

 
for x=1:1:M 
    for y=1:1:N 

 
          RPP(x,y)=exp(i*2*pi*rand); 

 
    end 
 end 

 

Where, x and y are dummy variables, M and N are the number of pixels in x and y 

directions and ‘rand’ creates a random number between interval [0, 1]. 

 

E.3 Upsampling (supersampling) 

In simulating propagations between elements, it is necessary to create as much diffracted 

order as possible. For that purpose, one should take more than one sample per pixel. This 

will enlarge available frequency space. 

 
for m=1:1:M; 
    for n=1:1:N; 
         
        for x=1:1:X 
            for y=1:1:Y  

        
                Mout(x+X*(m-1),y+Y*(n-1))=Min(m,n);    

 
            end 
        end 

 
    end 
 end 

 

In this script, x, y, m and n are dummy variables, X and Y are upsampling rates in the x 

and y directions, again, M and N are the number of pixels in x and y directions. Finally, 

Min is the input matrix and Mout is the output matrix. 
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The main goal in finding Mout is taking more samples without extending effective area. 

We actually upsample the field by shrinking the length between samples. This process 

can also be named as supersampling interchangeably. 

 

E.5 Downsampling 

Another thing required is downsampling of the field. This is especially important in the 

stage of amplitude imposition stage of the target image. In fact, if the field is not shrunk 

through this process, incompatibility between original target would appear due to the fact 

that the field is processed in upsampled domain through elements. Note that upsampling 

of the target image as well, does not solve the problem since in this case experiments are 

executed as though there was a larger image instead of simulating the higher diffraction 

orders. For downsampling operation,  

 

for m=1:1:M 
    for n=1:1:N   
     
        for x=1:1:X 
            for y=1:1:Y     

       
                g(x,y)=Min(x+X*(m-1),y+Y*(n-1));   

  
            end 
        end 
         
        Mout(m,n)=mean(mean(g)); 

 
    end 
end 

 

Similar to the upsampling case, dummy variables, X and Y are the downsampling rates, 

M and N are the number of pixels again in x and y directions. Min is the input matrix and 

Mout is the output matrix. g(x,y) is a dummy matrix used in the script. So above pseudo-

code segment takes a portion of data and simply finds its average over all data matrix. 

Note that, in these sampling schemes, the rates X and Y are usually powers of 2. 
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E.6 Fourier Propagator 

Fourier propagator engine is given in below script. It first creates spatial frequencies and 

uses the formula in Eq. (3.8) 

 
fx=-1/(2*dx):1/L:1/(2*dx)-1/L;  

fy=-1/(2*dy):1/L:1/(2*dy)-1/L;  

[FX,FY]=meshgrid(fx,fy); 
H=exp(-j*2*pi*z*sqrt((1./lambda^2)-(FX.^2+FY.^2)));  
H=fftshift(H);  

 

We show the sampling distance as dx (dy) and spatial frequencies as fx (fy). Note that, dx 

(dy) is different from number of pixels since every pixel is sampled more than once (4 

times in our case). L is the length of the area being sampled from Chapter 2. 

 

E.7 Noise Window and Amplitude Imposition 

In image imposition stage, target is placed by keeping propagated phases. When a 

dummy noise window is in use, however, one should be careful on this step. In 

application, target must be placed in the middle of available space and the rest of the area 

is used for noise accumulation by normalizing the amplitude and keeping the phase as it 

is. 

 
C1=((к-1)/2)*M; 

C2=((к-1)/2)*N; 

Eout=abs(Ein)./max(max(abs(Ein))); 

 

for x=1:1:M 
    for y=1:1:N 

 
        Eout(x+C1,y+C2)=sqrt(I(x,y));  

 
    end 
end  

 

Where, Ein is the input field and Eout is the output field. C1 and C2 are internal 

parameters. Above segment just cuts the middle portion of the field and imposes the 

target amplitudes. Noise area remained fixed with normalized random amplitude in order 

to give freedom. 
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E.8 Shifting 

When evaluating the performance of the devices proposed, the last element must be 

multiplied with a simple phase mask in order to shift the entire diffraction pattern to the 

center. This phase mask plate is calculated by running the below script. It basically uses 

circular shifting theorem, so that an exponential shift in one Fourier pair causes spatial 

shift to the other. Below, M and N show the number of pixels in x and y directions, 

respectively. 

 
for x=1:1:M 
     for y=1:1:N 

 
         shf(x,y)=exp(i*pi*x)*exp(i*pi*y); 

 
     end 
end 

 

Additionally, ‘fftshift’ command should be used when it is needed to shift 

coordinate systems. Physically, the central point is in the middle of the device but in 

programming, we start from 1. This can be adjusted using the inherent shifting command. 

 

E.9 Sinc function 

Sometimes it is required to use a sinc function (sinc(x)=sin(πx)/πx) during iterations and 

at the end. In the iterations one need to subtract sinc function from the target by division 

so that in the actual propagation sinc function effect disappears. This function is 

originated from the pixelated shape of the diffractive surfaces. In Matlab®, there is a 

built-in ‘sinc’ function.  

 
for x=1:1:M 
    for y=1:1:N 
     
        m=(M/2)+1; 
        n=(N/2)+1;     
        G(x,y)=(sinc((x-m)/M).*sinc((y-n)/N)); 

 
    end 
end 
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As a footnote, normally, sinc function removal from image is used in every step of 

iteration when amplitude imposition stage comes in every step of iteration. On the 

contrary, it is in use at the last iteration only for applications with noise window. The 

reason for that is deterioration of the reconstructions as program proceeds when sinc 

function removal is applied in every step in applications with noise window. In fact sinc 

function is not very efficient at all since there is extra window around the target image 

and the top of sinc coincides with the reconstruction of the desired image. 

 

E.10 Phase Quantization 

It is generally required to quantize phase as mentioned in the text. Below script takes 

phase_in as an input initial phase matrix and gives phase_out as an output quantized 

phase matrix. 

 
B1=angle(phase_in); 
if B1<0,  B1=B1+2*pi; end   
B2=floor(B1/(2*pi/NL)); 
phase_out=exp(i*B2*2*pi/NL); 
        

Above, B1 and B2 are internal dummy variables. The command ‘floor’, rounds towards 

minus infinity. 

 

E.11 Amplitude Quantization 

Similar to phase, amplitude quantization needs to be applied in the system mentioned in 

Chapter 4. Below line takes phase_in as an input initial amplitude matrix and gives 

phase_out as an output quantized amplitude matrix. 

 
phase_out=(floor(phase_in/(1/NL)))*(1/NL);    
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