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average coding of a monochrome image can be reduced from 8 bits/
pixel to 1 bit/pixel or 1. 5 bits/pixel for the threshold and zonal coding,
respectively, without seriously degrading the image quality. Studies
have also indicated that zonal coding has an extremely high noise
immunity, and can be practically implemented.

Spatial redundancy of color images and the limitations of
human color vision have also been exploited by slant transform coding
to achieve a bandwidth reduction for natural color images. It has
been found by computer simulation that the average coding of a color
image can be reduced from 24 bits/pixel to about 2 bits/pixel while

preserving good quality reconstruction.
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1. INTRODUCTION

1.1 General Background

During the past twenty years the applications of electronic
imagery have grown enormously. This growth has placed severe
demands on the capabilities of communication systems since conven-
tional television transmission requires exceptional wide bandwidths.
One means of bandwidth reduction that has shown particular promise
is the transform image coding process.

In 1968 the concept of coding and transmitting the two dimen-
‘sional Fourier transform of an image, computed by a fast computa-
tional algorithm rather than the image itself, was introduced [1, 2].
This was followed shortly thereafter by the discovery that the
Hadamard transform could be utilized in place of the Fourier trans-
form with a considerable decrease in computational requirements [3].
Investigations then began into the application of the Karhunen-Loeve
[4] and Haar [5] transforms for image coding. The Karhunen-Loeve
transform provides minimum mean square error coding performance
but, unfortunately, does not possess a fast computational algorithm.
On the other hand, the Haar transform has the attribute of an
extremely efficient computational algorithm, but results in a rela-

tively large coding error. None of the transforms mentioned above,



however, has been expressly tailored to the characteristic of an
image.

A major attribute of an image transform is that the transform
compact the image energy to a few of the transform domain samples.
A high degree of energy compaction will result if the basis vectors of
the transform matrix ""resemble'’ typical horizontal or vertical lines
of an image. If the lines of a typical monochrome image are
examined, it will be found that a large number of the lines are of con-
stant grey level over a considerable length. The Fourier, Hadamard,
and Haar transforms possess a constant valued basis vector that pro-
vides an efficient representation for constant grey level image lines,
while the Karhunen-Loeve transform has a nearly constant basis vec-
tor suitable for this representation. Another type of typical image
line is one which increases or decreases in brightness over the length
in a linear fashion. None of the transforms previously mentioned
possess a basis vector that efficiently represents such image lines.

Shibata and Enomoto have introduced orthogonal transforms
containing a '"slant' basis vector for data of vector lengths of four and
eight [6]. The slant vector is a discrete sawtooth waveform decreas-
ing in uniform steps over its length, which is suitable for efficiently
representing gradual brightness changes in an image line. Their work
gives no indication of a construction for larger size data vectors, nor

exhibits the use of a fast computational algorithm. In order to achieve
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a high degree of image coding compression with transform coding
techniques, it is necessary to perform the two dimensional transform
over block sizes of 16X 16 picture elements or greater. For large
block sizes, computation is usually not feasible unless a fast algo-
rithm is employed.

1.2 Research Objectives

With this background research has been undertaken to develop

a slant transform of variable block size possessing a fast computa-

tional algorithm. The specific objectives of this research project are

the analysis and evaluation of the slant transform for image coding.

The approach taken toward the fulfillment of these objectives is:

(1) Development of an image coding slant transform matrix posses-
sing: (a) an orthogonal set of basis vectors; (b) a constant basis
vector; (c) a slant basis vector; (d) sequency property; (e) vari-
able size transformation; (f) high energy compaction; and (g)
fast computational algorithm.

(2) Analysis of this slant transform image coding system supported
by statistical picture measurements to determine its bandwidth
reduction capability.

(3) Comparison of the slant transform with the Hadamard, Fourier,
Haar, and Karhunen-Loeve transforms for image coding.

(4) Studying the channel error effects on the slant transform coding

system.



(5) Application of the slant transform coding technique to color
images.

1.3 Original Images

Figure 1-1 shows photographs of the three original mono-
chrome images that have been used as test images for the evaluation
of the slant transform monochrome image coding system. Each
image contains 256 by 256 pixels with each pixel value uniformly
quantized to 255 levels. The images were read from magnetic tape,
displayed on a flying spot scanner cathode ray tube display, and photo-
graphed with polaroid type 52 film. Figure 1-2 shows photographs of
the original color images that have been used as test images for the
slant transform color image coding system. Both of these images
contain 256 by 256 pixels, with each red, green and blue tristimulus
values (NTSC receiver phosphor primary system) uniformly quantized
to 255 levels. The images were read from magnetic tape.displayed on
an Aerojet Model SG-D2219 display unit, and photographed on high
speed Ektachrome film.
1.4 Organization of Dissertation

Chapter 1 is an introduction containing a discussion of general
background and objectives of the research project. The chapter
closes with a summary of the organization of the dissertation.

Chapter 2 presents a general representation of a two dimen-

sional transform image coding system and definitions of the Fourier,
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Figure 1-1. Original Monochrome Image:
(a) GIRL; (b) COUPLE; (c) MOON SCENE.



Figure 1-2. Original Color Images: (a) GIRL; (b) COUPLE.



Hadamard, Haar, and Karhunen-Loeve transforms. The energy com-
paction property of each transform is illustrated by transform domain
pictures.

Chapter 3 presents a construction of the slant transform
matrix of order 2" where n is a positive integer. A fast computational
algorithm based upon the matrix decomposition is also presented.

The chapter closes by introducing a class of slant transform matrices
which are constructed by a direct product of the various orders of
slant and Hadamard matrices.

Chapter 4 contains a statistical analysis of the slant transform
domain samples. A derivation of statistical mean and variance as
well as an assignment of probability models for the transform domain
samples are introduced. The method introduced is generally appli-
cable to all transforms.

Chapter 5 is devoted to a presentation of the slant transform
for monochrome image coding. Two means of achieving a bandwidth
reduction for the transform domain samples are introduced. A deri-
vation of the quantization and coding scheme, as well as a derivation
of the mean square error between the original image anci its recon-
struction, are also introduced. Again the methods derived are
generally applicable for all transforms. The evaluation of the slant
transform is obtained by performing the transform coding to three

test images as well asto animage statistically described by a Markov



process.

Chapter 6 presents the effects of transmitting the slant trans-
form samples through a binary symmetrical channel. The superiority
of transmitting a zonal coded slant transform sample is demonstrated.

Chapter 7 js mainly an extension of the work that has been
presented in chapter 5. All the quantization and coding techniques
introduced in the monochromatic case are used to code transform
samples of each color plane. The color coordinate conversion between

the NTSC receiver phospher primary system and NTSC transmission

primary system is also included.

Chapter 8 summarizes the results of the dissertation.

(s

“



2. TWO DIMENSIONAL TRANSFORMS?

Figure 2.1 shows a block diagram of a generalized transform
image coding system. An original digital image, denoted by f(j, k), is
defined here as an array of samples of a continuous two dimensional
intensity pattern of light. The samples of this image undergo a two
dimensional transformation over the entire image or some subsections
of the image called blocks. The resultant transform samples, denoted
by F(u, v), are then operated on by a sample selector, S(u, v), that
decides which samples are to be transmitted on the basis of magnitude
or geometrical location in the plane. A bandwidth reduction can be
achieved by this selector simply by not transmitting all of the trans-
form domain samples. Those samples that are to be transmitted are
then quantized and coded. At the receiver the samples are decoded
and inversely transformed to form the reconstructed image f(j, k).

The following sections contain a general representation of a two dimen-
sional transform image coding system and definitions of the Fourier,
Hadamard, Haar and Karhunen-Loeve transforms. The definition of
the slant transform is deferred to the next chapter.

2.1 General Representation

Mathematically, a two dimensional transform maps a two

* Part of the theory in this chapter is abstracted from the second
chapter of USCEE Report 387, '"Transform Image Coding''.

9
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Hx N XN into a two dimensional

dimensional image array of dimension
array of the same dimension by
N-1 N-1
F(u,v) = 2 2 f(j, k) a(j, k, u, v) w,v=0,1,...N-1 (2-1)
j=0 k=0
where a(j, k, u, v) is the forward transform kernel. A reverse trans-
form is defined by
R N-1 N-1
£,k = 3 2 f(u,v)blj,ku,v) jok=0,1,...N-1  (2-2)
u=0 v=0
where b(j, k, u, v) is the reverse transform kernel. When the function
f(j, k) is equivalent to the original image £(j, k), the reverse transform
is called an inverse transform.

A forward (or reverse) transform kernel is said to be separable

.if it can be written as

a(j, k,u,v) = aj(j,u) a.k(k,v) (2-3)

A separable two dimensional transform can be computed in two steps:
a one dimensional transform along each row of the image f(j ,k);

N-1
F(u, k) = ) £(j, k) a.(j, v) (2-4)
j=0 !

and then a one dimensional transform along each column of F(u, k).
N-1

F(u,v) = Q. F(u, k) a, (k, v) (2-5)
k=0

**For simplicity all arrays are assumed to be square.
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It is often useful to express two dimensional transforms in
matrix form if the transform kernel is separable. Let [f] be an
image matrix representation of the array f(j, k) and [F] be a trans-
formed image matrix representation of F(u, v), then a two dimensional

transform can be written as
[F] = [4,](£](4,) (2-6)

where [dj] and [dk] are one dimensional transform matrices along
rows and columns of an image. If [dj:l and [dk] have inverses then a

two dimensional inverse transform can be written as

[£) = (217 (F1(2,]" (2-7)

2.2 Fourier Transform
The two dimensional Fourier transform [1, 2, 7] of an image

f(j, k) can be expressed in series form as

. 1 N-1 N-1 . . omi
(u,v) = N E Z f(j, k) exp "N (uj +vk)] (2-8)
j=0 k=0 :

The inverse Fourier transform can be written as
p N-1 N-d 2mi
f(j,k) = = ), ) F(uv)exp —(uj+vk)] (2-9)
N u=0 v=0 N

The two dimensional transform can be computed as two sequential one
dimensional transforms since the transform kernel is separable.
The two dimensional Fourier transform can be put into matrix

form by defining the symmetric unitary matrix
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(7] = ﬁ exp (- ZlNiju) (2-10)

Thus, the forward transform can be written as

[F]=[7)[£1(71" (2-11)

and the inverse transform can be written as

[0 = (77T (FILIY (2-12)

Figure 2-2 illustrates a sketch of the Fourier transform wave-
forms with N=16. Figure 2-6 shows the full size two dimensional
Fourier transform displays of the three original monochrome images
shown in Figure 1-1. In each display the original image has been
multiplied by the checkerboard function (-l)j.*'k in order to shift the
zero frequency of the transform to the center of the display such that
a photograph similar to the Fourier diffraction pattern of a coherent
optical system can be achieved [7]. In addition, the logarithm of the
absolute magnitude of each transform sample is displayed rather than
the absolute magnitude itself in order to reduce the dynamic range of
the display. From these displays it can be seen that most of the
larger transform samples or energy are concentrating around the zero
frequency region. The symmetrical property [7] of the Fourier
transform domain can also be seen from the displays.
2.3 Hadamard Transform

The Hadamard transform [3] is based on the Hadamard matrix

which is a square array of plus or minus ones. The lowest order
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Hadamard matrix can be written as

1
v,1= = (2-13)
2° V2Tl

and the construction of a Hadamard matrix of order N can be written

by the following recursive relation:

1 F 1
Ay
1
K. ]= —== 2 2 P (2-14)
N NZA H H
N N
2 2 - b -

n . . . . .
where N=2 and n is an integer. The matrix [P] is a permutation

matrix which permutes the rows of H__ such that the number of sign

N
changes of each row increases with the row index. This is the
sequency ordered Hadamard matrix.

Equation (2-6) and (2-7) can be used to express the two dimen-
sional Hadamard transform matrix form by noting that the Hadamard

matrix is real, symmetrical, and orthonormal. Therefore, the for-

ward transform can be written as

(F] = (%] [£][¥] (2-15)
and the inverse transform becomes

(£] = [¥1[F][¥] (2-16)

Figure 2-3 contains a sketch of the Hadamard transform wave-

forms of order 16. A sequency property and a constant basis vector

can easily be seen in the waveforms. Figure 2-7 shows the two
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dimensional Hadamard transform displays of the three original mono-
chrome images in Figure 1-1. As in the Fourier transform display,
the logarithm of the absolute value of each transform sample is dis-
played in order to reduce the dynamic range of transform samples.

In these displays a certain degree of energy compaction can be seen
on the upper-left corner of each display which is the low frequency
region of transform samples.
2.4 Haar Transform

The Haar transform [5] is based on the Haar matrix which is
a square array of elements plus one, minus one, and zero. A norma-

lized Haar matrix of order 16 X 16 can be written in the following form

[‘1 1 ¥ 11 1 1! 1 1 11 1 1 1 1 17
1 1 1 1 1 1 1 1 -1 1 <1 -1 -1 <1 -1 .}
VT JZ ST ST T 0 0 0 0 0 o0 0 0
0 0 0 0 0 0 0 0 JT JT JSZ JT T -JST-S7 ST
2 2 -2 -20 0 0 o0 0 0 0 O0 O o0 O O
o o o o0 2 2 -2 -2 0 0 0 o0 O0 0 O O
6 o o 0 0 O O ©0 2 2 -2 -2 0 0 O O
["16]=_='§ ¢ o o o o o0 0 o o0 o0 o 0 2 2 -2 -2])2.1m
2/2-2/2 0 0 6 0 6 ©0 0 ©0 O ©O0 O O O O
6 o0 2/2-2/20 o0 0 0 0o o 0 0 0 O O O
o o0 o o0 2/2-2/z 0 o 0 0 0o 6o o o0 o0 O
6 o o o o0 o02/Z-2/20 0 © o0 0 O0 O O
06 o o o0 0o o0 O o0 2/Z.2/20 0 0 o0 0 O
0o o 0 o0 O 0 O o o o0 2/2-2/20 0 0 O
0 o o0 0o o o 0 0o 0 o 0 0 2/2-2/7 0 0
6 o0 0 o 0o 0 0 o0 0 o0 O o0 O O 2/Z-2/Z]
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Based on this pattern the Haar Matrices of order N(=2n; n=1,2,3,...)
can easily be constructed. It can be seen that the Haar matrices are
real and orthonormal.

The two dimensional forward Haar transform can be written in

matrix form as

[F] = [RI[£1[R]T (2-18)

and the inverse transform can be written as

[£] = [R) " [£1[A]) (2-19)
A sketch of the Haar transform waveform of order 16 is shown
in Figure 2-4. Figure 2-8 shows the full size two dimensional Haar
transform displays of the three original monochrome images. Again,
the logarithm of the absolute value of each transform sample is dis-
played. The energy compaction property of Haar transform can also
be seen in the upper-left corner but it is not nearly as good as the
Hadamard or Fourier transform.
2.5 Karhunen-Loeve Transform
The Karhunen-Loeve transform is a special case of an eigen-
vector matrix transformation [9-13]. Let fj be a column vector
representing the rows of an image [f], then the covariance matrix of
this vector can be written as
1,1 = & {re -EmIen - T (2-20)

where i, ii=0,1,..., N-1 for the matrix of NXN. The eigenvectors of
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[Cj] are column vectors [?(j ], i=0,1,...,N-1, satisfying
i

[ch[Kji] = [, ][Kji] (2-21)

i
where [Xj ] are the eigenvalues of [Cj]. The Karhunen-Loeve

i
matrix constructed by the eigenvector columns which can be written as

J=[x, x. - X, -22
[KJ] [KJO XJI KJN-I] (2-22)

if the eigenvalues are located along the diagonal of a matrix [)\j],

then the following relation holds:

[CJ.J [Xj] = [XJ.J [kj] (2-23)

Similarly, the Karhunen-Loeve matrix of a column vector

representing those columns of the image can also be constructed by

the following relation:
= A -
[C I 0] = D 11N ] (2-24)

A two dimensional separable Karhunen-Loeve transform can then be

defined as
[F] = [9(j] [£] [?(k]T (2-25)

Figure 2-5 contains a sketch of the Karhunen-Loeve wave-
forms of order 16. These waveforms were obtained by assuming that
the covariance matrix along an original image line is the first order
Markov process with correlation coefficient p= 0.95. Figure 2-9

shows the two dimensional Karhunen-Loeve transform displays of the
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GIRL image. The transform was performed by brute force matrix
multiplication since there is no known fast computational algorithm

for the Karhunen-Loeve transformation.
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(b) (c)

Figure 2-6, Fourier Transform Domain Display:
(a) GIRL; (b) COUPLE; (c) MOON SCENE.
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(b) (c)

Figure 2-7. Hadamard Transform Domain Dis-

play:

(a) GIRL; (b) COUPLE; (c¢) MOON SCENE.
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(b) el

Figure 2-8. Haar Transform Domain Display:
(a) GIRL; (b) COUPLE; (c) MOON SCENE.

25



Figure 2-9. Karhunen-Loeve Transform
Domain Display of GIRL Image.
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3. DEVELOPMENT OF THE SLANT TRANSFORM

This chapter presents a detailed construction of the slant trans-
form matrix of order 2" (n is a positive integer). A fast computational
algorithm based on the matrix decomposition is also presented. A
computational flowchart of order four and eight which indicate steps of
additions and multiplications needed for the fast transformation is also
introduced. The chapter is summarized by introducing a class of slant
matrices which are constructed by a direct product of the various
orders of slant and Hadamard matrices.

3.1 Definition of the Slant Transform

The slant transform is based on the post multiplication of
image lines by a slant matrix which is defined as an orthonormal
matrix consisting of a constant basis vector, a slant basis vector, and
possessing the sequency property. Let [fi] be a column vector of an
image line composed of N pixels and [»/] be the slant matrix of size N

by N. Then the slant transform of this image line is

[F;] = [~4][f] (3-1)

Since the slant matrix is real and orthonormal, a two dimensional

slant transform can be written as

[F]= (L1(£1[~]" (3-2)

27
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and the inverse transform is
[£] = (27 £ () (3-3)
where [f] denotes image pixels in an NXN matrix, (/] denotes the

slant transform kernel in an NXN matrix, and [F] denotes the two

dimensional slant transform of [f].
3.2 The Construction of the Slant Transform Matrix

The slant transform matrix of order two consisting of a con-

stant and slant basis vector is simply

s = — b (3-4)
2 V2 |, g

The slant transform matrix of order four can be written as

[~ 1 1 1 1
, a,4+b4 a4-b4 -a,4+b4 -a -b4
S 1 -1 -1 1 (3-5)

a4—b4 -a4-b4 a.4+b4 -a4+b4

where a, and b4 are real constants to be determined by the conditions
that S4 must be orthogonal and that the step size of the slant basis
vector must be the same throughout its length. The step sizes
between adjacent elements of the slant vector are 2b4, 2a4-2b4, and
2b4. By setting these step sizes equal, there results

a4= 2b4 (3-6)

Hence, the slant matrix of order 4 can be rewritten as

i3
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1 1 1 1 ]
1 3, b, =-b, -3b,

S4% 77 1 1 -l 1 (3-7)
Lb4 -3b, 3b, -b4J

By the orthonormality condition [S4] [S4]T= [1], it is found that

- L
by = 7% (3-8)

2
2= 75 (3-9)
Thus, the slant matrix of order 4 becomes
1 1 1 1]
3 1 1 -3
BB BT
S4*7 |1 a1 a1 1 (3-10)
1303 oL
5 BB OB
It is easily seen that S4 is orthonormal. Furthermore, S4 possesses

the sequency property; each row has an increasing number of sign
reversals from 0 to 3.

An extension of the slant matrix to its next size of order 8 is

given by
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" - -
1 0 00 51 © 0 :
]
2 b8 0o 0 : -ag bs o 0 54 : 0
o o0 1 0 : o 1 0 |
1 o 0 o0 1 1 o 0 1 : (3-11)
A I S R e BN | R
- 0
bs ag 0 0 : b a 0 . : .
o o0 1 0 : -1 0 : 4
L o110 o -1 ) o

where ag and b8 are constants to be determined to satisfy the slant,

orthonormality, and sequency properties. It can be seen that in S8’
the slant vector is obtained by a simple scaling operation on S, ,. The
remaining terms in equation (3-11) are introduced to obtain the
sequency and orthogonality properties.

Equation (3-11) can be generalized to give the slant matrix of

order N(N= Zn, n=3,4,5,...) in terms of the slant matrix of order

N by the following recursive relation:

2
o | ar ' .
i bog g 1 bol :
NI _ o lTNN 0 |
T . !
s 0
L.’_J,. } T N :
. . 2
0 N ___' 1] ] |
. I A
1 1
s =L foomme H L, S () R S (3-12)
NTVZ ot | 0 -1] !
-b . a { b, ay
| CNCNE 0, _N_N __ 0 i
[ A !
L I (I I o 4 Sy
.. I -‘. ' .E,
I s i
a R A 1) L ! .

where I rep:resents a 2x2 identity matrix.

"w



A 16x16 slant matrix computed by this recursive relation is as

follows:

s (L1 s T8 3L
J8s 1s 15 15 15 15 15 15 15
? 5 3 1 -1 -3 -S
Jel (' 7757 77 7 V!
13519 3 :13 .28 45 ;61 |
J2Ix85 (17 77 17 17 17 17 17
3 1 -1 11
7 (x 33 15 o311
3 1 -1 211
B (' 33 V3 o3t
17 (7 1.9, 9 1 .17
Wi (11 17 17 17 17 17 17
- 3 .——.17 (-7_ .'_l. :.2 -1 1 i. 1 -1 1
S16° 7% T2 \17 17 17 17 17 17 17
(1 -1 1 1 -1 a1
(1 1 -1 1 1 -1 -1 1 -1
(1 -1 1 11 1 -1 -1
(1 <11 11 1 -1
3 1 -1 -1 1 1
V3 R R R R T S
3 1 1 -1 1 -1
75 ('3“ bl 3
3 1 .11 -1
V) (321 5 3 v 53
3 1 .11 11
7 (3 SR T R

(-] ) )y
- ~'l\.ﬂ mlw

-3 3 -
wn *'Iu U\lm

7l

L]
—

& -l

'
—
w

—
e bt

.
[
0

[] -3
- -

- R w]

1]
e e ul.—

[
wlL

L]
—

Wi ul.'.. e ul

-)
wi=

-] '
[= sl~ wl=

]

[} -
-

-

S~

—
N’ S N S S S N N SN N

-1
=J |0

3

L]
[

1] L}
wie u‘__ wi= Y

ul:_

(3-13)

L
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3.3 Slant Transform Fast Computational Algorithm
The fast computational algorithm of the slant transform is

based on the property of matrix decomposition. The 4 x4 slant matrix

can be reformed as

N1 0 o[l 0 0 17
3
00 = —=|]o1 1 o
, NVE
S4¥ 7 |1 -1 0o o 1 0 0 -1 (3-14)
13
21101 1
00 5 AL 0]

If S4 is post multiplied by a column data vector, the first computa-

tional pass requires 4 additions, the second pass requires 4 multipli-
cations (the elements % and JJ5=) and 4 additions. The total compu-
tational requirements, without counting the normalization factor ;/—lz ,

*
are 8 adds and 4 multiplies . Figure 3-1 contains a flowchart of the

computational operations for S4. The 8 X8 slant matrix can be written

as

— 1
1 0 o H 1 0 11 o0 0 !
0 bg ag O | 0100 ;01 |

I o I Sg 1 0
o0 o 1! 1000 -1 0 0 "
0 a; -by 0! 01 o a1 0 o :

8 8%, o

s‘ffl" el | Kbttt ettt | ; (3-15)

8 Je t1o000[loo10 oo 10 '
]
to1o0o0{loo1o0o o 0o -1 0 I

) ! ! o | S

foo1o 0001 1o o 1 I %

tooo1jlooo i 100 o 1 JL 1

The normalization factor will not be encountered here.

(L]
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1f 88 is post multiplied by a column data vector, the first and second
computational passes require two times the total computations of S4,
and the third and fourth passes require eight additions and four multi-
plications (the element ag and b8). The total computational require-
ments are 24 adds and 12 multiples. A flowchart of these computational
operations is shown in Figure 3-2.

The decomposition of a generalized NXN slant matrix is shown

in exhibit 3-1., If SN is post multiplied by a column data vector, the

total additions and multiplications can be computed by the recursive

relation:
KN= ZKE.+N (3-16)
2
and
(- ' -
K 2]&(H + 4 (3-17)
2

where KN and Ki\l are the number of additions and multiplications

respectively. These terms can be rewritten as®

- N
Ky=2 (2K +3) +N

N

4K _+2N

N}

8 K. .+ 3N

o|Z

*All logarithms are base two.
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N N
= 4K4+(log 4)N

- N N
= 2 8+Nlog4
N
= N(2 + log 2
= Nlog N (3-18)

1 = 1 4
Ki = 2( 2Ky +4) +

4

= '
4KN+8+4

4

= 1
8KN+16+8+4

8
—E I E— — e o o
= JK +5+ 7+ +8+4
N, N
= +—.. — )
N+ S+ 5+ +8+4
= 2N-4 (3-19)

Therefore, the total operations of an NXN slant transform is N log

N + 2N-4, For purpose of comparison an NXN Hadamard transform
requires N log N operations. It is seen that the total number of oper-
ations of the slant transform is only slightly more then those of the
Hadamard transform.

To determine the coefficients (a_,b_), one can proceed as

N °N
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follows: the first vector is a constant
S..(1,i) = L (3-20)
N VN
The second vector (slant vector) is a linear function of the column
index which is orthonormal to the first row. It must, therefore, be

of the form

Sy (1) = X+ (N +1-2i) (3-21)

Now, by the recursion indicated in equation (3-12), one obtains

L1 L1 .
Sn(21) = 7 2y Sy(Li) + 75 by S)(2.1) (3-22)
2 2
or
X - (N+1-2i) = == a._ + —=b_ X - (X +1-2i) (3-23)
N JNANT Z NNt T i
2

From this it is found that

_ 1
X\ = 75 Pn Xn (3-24a)
2
3
N 2
ay = J2 ¢ 3) XN (3-24b)

and by induction

a_=2b_a  (3-25)

Since SN( 1,.) and SN(Z, .) are orthonormal vectors in -1; dimensions

2 2
and SN(Z, .)'is a unit vector in N dimensions, the above recursion

“w
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implies
2 2
[ sN(z,.)n =agtb =1 (3-26)
These two relations can be used to obtain the coefficients, (a.N, bN),
recursively:
=1
%2
_ / 2
bN = l/ l14+4a N
2
a.N = ZbN aﬁ (3_27)
2

For the inverse transform the computational operations are
similar to the forward transform described above. The decomposition
of a generalized NXN inverse slant matrix is shown in exhibit 3-2.

If SN is post multiplied by a column vector it can easily be seen that

the total number of operations is exactly the same as for the forward

transform. Again the coefficients, (a_,b_ ), can be computed by

N’ °N
equation (3-27).
3.4 Summary

The slant transform matrix thus far discussed contains a
slant basis vector decreasing in uniform steps over its entire vector
length. There are a class of slant matrices that can be constructed

with the slant basis vector decreasing or increasing in steps a number

of times over its vector length. Taking a 16 X16 matrix as an example,
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there are two other type of matrices, in addition to the one shown on
equation (3-13), which can be constructed by the direct.product* of
slant and Hadamard matrices, namely, 58 X H2 and S4 X H4. In 58 X HZ'
the slant basis vector decreases in uniform steps to the middle point
of its vector length and then increases in uniform steps to the rest of
its vector length. In S4x H4, the slant basis vector decréases uni-
formly for the first quarter length, increases for the second quarter,
decreases for the third quarter, and increases again for the final
quarter. It can easily be shown that a matrix of order NXN has a
class of (logz N-1) matrices each containing a ''slant" basis vector.
Figures 3-3, 3-4 and 3-5 show the class of slant matrices of order 16.
It can be seen that all these matrices possess sequency and orthogona-

lity properties. The performance capability of these matrices has

not been investigated. From a purely mathematical point of view the

&
A direct product of a matrix A = aij » 1<i, j<m, and a matrix

B = bij , 1<i, j<n, is defined as
Abj,  Ab, cr AB)
Ab Ab ... Ab
AXB = 21 12 2m
Ab Ab -+ Ab
| ml m2 mm _|
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existence of a slant matrix of order other then Zn, n=1,2,3,..., may
also be an interesting topic to explore, though it will not be considered
here for image coding.

The next two chapters contain a general analysis of the slant

image transform.
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4. STATISTICAL ANALYSIS OF THE SLANT TRANSFORM

The development of efficient quantization and coding methods
for slant transform samples requires an understanding of the statis-
tical properties of the transform domain samples. This chapter pre-
sents a derivation of the statistical mean and variance of slant trans-
form samples, and also the development of stochastic probability
models for slant transform samples. The material introduced here
is generally applicable not only for slant transform but for all trans-
forms as well.

4.1 Statistical Mean and Variance

Suppose each sample of an original image, denoted by the func-

tion f(j, k) over spatial coordinates, is considered as a two dimen-

sional stochastic process. The spatial mean

E {f(j, k)} = £(j, k) (4-1)

and the covariance

are assumed known or at least estimable. Then, for a generalized
forward transform as shown in equation (2-1), the mean of the trans-

form samples can be written as

E{F(u,v)} = F(u,v) = £ T £, k) a(j, k, u, v) (4-3)
jk

46
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The covariance function of the transform samples is defined as

C{ul:uzv vlv VZ} = E{[F(ul’ Vl)' F(ula Vl)] [F(uzvvz)' F(u2' VZ)]}

(4-4)
Substitution of equation (2-1) and (4-3) into equation (4-4) gives
C {ul, U, Vi vz} = E {j: lZc [f(_]l, kl) - f(_]l, kl)] . a(Jl, kl’ul’ vl)
“3 T [Hiy ky) - Hiy ky)] - aliy, Ky u,yv,))
IPR)
or
C{ul,uz.vl.vz} =Xz i E{[f(Jl.kI)- f(Jl'kl)] [f(Jz, kz)'
ik kp
(4-6)
f3,, k)13 ai kp,up, v ) al,, ko, uy, vy)
Upon substitution of equation (4-2), the result is
C(ul, uz, Vl, Vz) = .Z f\: E 12( C(JI,JZ' klp kz) a(Jl’ kll ul,vl)
J1I2%172
(4-7)

The generalized expression for the variance of transform domain

samples is thus

oz(u,v): C(u,u,v,v) =2 L L X C(j1

k., k.) a(j,, k,,u, v)
2 2 17 <) 2l
J1izk1 kg

’ J2'
(4-8)
a(jz, kZ' u, v)

If the covariance matrix of the original image is separable in j and k
direction and if the transform kernel is separable, then the transform

domain variance can be computed as
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X (u,v) = o%(w) o%(v) (4-9)
Since the transform kernel of the slant transform in series form is
mathematically difficult to describe, it is desirable to introduce an
alternate matrix formulation.
A matrix formulation of a separable two dimensional slant

transform can be written as

[F] = [5] [fJ[S]T (4-10)
where [f] denotes an image pixel in NXN matrix, [S] denotes slant
transform kernel in NXN matrix, and [F] denotes the two dimensional
slant transform of [f]. Let [fj] and [fk] be column vectors repre-
senting the rows and columns of [f], respectively. Then the covari-

ance matrices of rows and columns are

(c; j] = E{0§-E10L-E17) (4-11)
and

[0 ] - E{(f -5 106 -E17 ) (4-12)
Now define

[F,] = [S1(,] (4-13)
and

[F,] = [SIIf,] (4-14)

Then the covariance matrices of [Fj] and [Fk} are respectively
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[cp ] = ELLF,-F)(F,-F,1" ) (4-15)
J
and
[CFk] = E([F -F,) [Fk-Fk]*T} (4-16)

substituting equation (4-13) into equation (4-15) gives

e |

E(([S][£1- [S1(F;D) ([S1(£;] - [S] [?j])*T}

*T

- —_%T
E{[S][fj-fj][fj-fj] (sl °}

o

)

Similarly, equation (4-16) can be reduced to

[s] [Cf.][S]*T (4-17)
i

[C ]= [S] [Cf ][S]'"T (4-18)
F

k k
The variances of the slant transform samples are, therefore,

RN
where [vFj]T = [ch(o, 0), CFj(l,l),...,CFj(N—l,N-l)]

T -
[ka} - [ch(O’ 0).’ CFk(l'l)“WCFk(N-l’N-l)J

4.2 Probability Densities
The probability density of slant transform samples is gener-
ally very difficult to obtain since the probability density of the original

image is not usually well defined, and also, the slant transform
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representation is mathematically complex. Nevertheless, since the
transform operation forms a weighted sum over all of the pixels in
the original image, one can evoke qualitative arguments based upon
the central-limit theorem [15-17] to determine probability densities
of transform domain samples.

A two dimensional slant transform in matrix form, shown in

equation (4-10), can be rewritten as

F(0,0) = [5,1[£1{5,]" (4-20a)

and

F(u,v) = [Si] (] [SJ.]T; u,v=0,1,2,...,N-1; (u,v) # (0,0) (4-20b)

“where [Sk] is kth vector of slant matrix [S], i.e., [Sk] = [S(k, 0)
S(k, 1) +--S(k,N-1)]. From equation (4-20a), since all elements of
the vector [SO] are positive constants and all pixels of [f] are non-
negative, the value of F(0, 0) is always non-negative. The probability
density of F(0, 0) will resemble the histogram of £(j, k) and generally

can be represented by a Rayleigh density, i.e.,

2 2
.pF(O, 0)(x) = j{i exp(-x /[2a ) U(x) (4-21)

The probability densities of the samples of F(u, v), for
(u, v) # (0,0), are generally indeterminable. By examining equation
(4-20b), since half the elements of [Si] (1#0) are positive and half are

negative, and also the magnitude of these elements are periodically
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defined, therefore, the only information that one can obtain is that
the probability densities of F(u, v), (u, v) # (0,0), are expected to be
symmetrical about the origin. Based upon this information two dif-
ferent types of probability models may be defined, namely, the
Gaussian and two-sided exponential models:

For the Gaussian model, the probability density can be

written as

9= 1 2, 2
pfxu,vfx)‘ J2no(u, v) exp (-x /20 (u, v))

(4-22)
u,v=0,1,...,N-1; (u,v) #(0,0)

and for the two-sided exponential model, the probability density can

~be written as

pF(u; V)(X) - a—’(%_\g EXP('Q’(U, V)X)

u, V=0’ 1:0":N'1; (un V) # (0: 0) (4—23)

Since the magnitude of F(0, 0) is always non-negative and the
magnitudes of the remaining transform samples fluctuate about the
origin, they will be termed respectively the dc and ac transform
domain samples.

Suppose that the ac samples, as defined in equation (4-20Db),
are independent and identically distributed, then from the central-

limit theorem the probability density of ¥ & F(u, v) will tend to be
uv

(u,v) #(0, 0)

Gaussian with mean zero and variance ¢ = ¥ X 6{u, v), i.e.,
uv

(u, v) #(0, 0)
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2
1 x

where X denotes the summation of the ac random variables, F(u, v),

(u, v) # (0, 0).



5. SLANT TRANSFORM MONOCHROME IMAGE CODING

Figure 5-1 contains a block diagram of the slant transform
coding system for monochrome images. In operation a two dimen-
sional slant transform is taken of the image pixels over the entire
image or repeatedly over subsections of the image called blocks. The
transform domain samples are then operated upon by a sample selec-
tor that decides which samples are to be transmitted. Those selected
samples are then quantized, coded, and transmitted over a channel.
At the receiver the received data is decoded angd an inverse slant
transformation is performed to reconstruct the original image.

The basic premise of an image transform coding system is
that the two dimensional transform of an image has an energy distri-
bution more amenable to coding than the spatial domain representation.
As a result of the inherent pixel to pixel correlation of natural images,
the energy in the transform domain tends to be clustered into a rela-
tively few number of transform samples. The slant transform of an
image has exactly the same property which can be exploited to achieve
a bandwidth reduction.

Figure 5-2(a), (b), and (c) shows the full size two dimensional
slant transform displays of the three original monochrome images

shown in Figure 1-1. The logarithm of the absolute value of each
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transform sample is displayed rather than the absolute value itself in
order to reduce the dynamic range of transform samples. Figure
5-2(d) and 5-2(e) show two different views of the threshold display of
Figure 5-2(a) where all samples whose magnitude is lzelow a specified
threshold are set to zero and all samples whose magnitude is above
the threshold remain unchanged. A typical energy distribution of the
slant transform canbe seen from these pictures. A high degree of
énergy compaction is seen on the upper-left hand corner of each pic-
ture which is the low frequency zone of the transform samples.

There are two bandwidth reduction factors that are often

stated as image coding performance measures [ 23]:

Sample number of original image samples
reduction = (5-1)
factor number of samples selected

to be coded and transmitted
Bit number of original image code bits
reduction = (5-2)
factor number of selected sample code bits

The sample and bit reduction factors are identical if the same number
of bits are assigned to both original and coded image samples.

A bandwidth reduction can be achieved with the transform
coding system in two basic ways: threshold sampling and zonal
sampling [14]. In threshold sampling the image reconstruction is
made with a subset of the samples which are larger than a specified

threshold. In zonal sampling the reconstruction is made with a subset



(c)

Figure 5-2. Slant Transform Domain Display: (a) GIRL;
(b) COUPLE; (c) MOON SCENE; (d) Transform Threshold
GIRL; (e) Perspective View of Transform Threshold GIRL.
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of samples which lie in a certain geometrical zone — usually the
lower frequency samples., This chapter will present the performance
of the slant transform for threshold and zonal samplings in an error
free channel. A derivation of the quantization and coding scheme as
well as a derivation of the mean square error between the original
image and its transform coded reconstruction will also be presented.
For threshold sampling a runlength coding technique is used and for
zonal sampling a bit allocation matrix based on the "maximum vari-
ance matrix'" and rate distortion theory is introduced. Again the
method introduced is generally applicable for all transforms,

5.1 Slant Transform Bandwidth Reduction

The slant transform sample reduction technique can be
analyzed by defining a two dimensional sample selector as a function
S(u, v) which takes on the value zero or one according to an apriori or
adaptive rule. The reconstructed image, with those selected trans-

form samples unquantized and uncoded, is then given by

£, k) = Z F(u,v) S(u, v) b(j, k, u, v) (5-3)
uv

where b(j, k, u, v) is the inverse transform Kernel.
The mean square error between this reconstructed image and
original is, therefore

€= —1-2- T E{[{j, k) -£ (j.k)]z] (5-4)
. k S

N J

Substituting equations (2-2) and (5-3) into (5-4) gives
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1

NZ

¢= %3 EDE{IIE Flu,v) (1-5(v) bli, K w v)]°) (5-5)
J

uv

Expanding the series and changing the order of operations gives

—1-2- T LT E{F(u,v)[1-S(u, v)]F(u', v') [1-S(u', v")]

N uu'vv'

€=
(5-6)
- T T b(j, k, u, v) b(j, k, u', v')}
j k
By the orthonormality of the slant transform Kernels the second set

of summations is non-zero only if u=u' and v=v'. Thus

€= —li T X E{F(u,v)[1-S(u, v)]F(u',v') [1-S(u’, v')]

N° uu'vv! '
(5-7)
+ §(u-u', va')}
or

1 2

€= —X1E {{F(u,v) (1-5(u, v))]"} (5-8)
N uv

Equation (5-8) shows that the mean square error between the original
image and its sample reduced reconstruction may be computed from
the transform domain samples.
5.1.1 Threshold Sampling

In threshold sampling the selection of transform domain sam-
ples is made after the transform has been taken on a particular
image. A threshold is established apriori or adaptively, and only
those samples whose magnitudes are greater than the threshold are
selected to be quantized, coded, and transmitted over a channel.

Figure 5-3 contains a plot of the percentage of transform



59
domain samples lying below a magnitude threshold level for the slant
transform of the three original monochrome images. The energy
compaction for the GIRL image for various transforms is illustrated
in Figure 5-4. In the figur.e it is seen that the energy compaction of
the slant transform is exceeded only by the Karhunen-Loeve trans-

form.

Figure 5-5 shows slant transform threshold sampling proces-
sed images of the original pictures. A two dimensional slant trans-
form was taken of the image pixels repeatedly over subsections of an
image in 16x16 pixel blocks. A threshold was assigned to make the
sample reduction and then these reduced samples were inversely
transformed immediately without any quantization and/or coding.

The purpose of these pictures is mainly to illustrate the threshold
sampling effect of the slant transform. It can be seen that the slant
transform threshold sampling provides good quality reconstructions
for sample reduction factors up to 12:1, For purposes of comparison
Figures 5-6 and 5-7 contain threshold sampling processed GIRL pic-
tures for the Hadamard, Haar, Fourier, and Karhunen-Loeve trans-
forms. The quality rating of these transforms, from the standpoint
of subjective quality, is the Karhunen-Loeve first, followed by the
slant, Haar, Hadamard, and Fourier transforms. The orders of
these ratings are exactly the same as the orders of those curves

shown in Figure 5-4. It is rather interesting that the performance
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6:1 Sample Reduction

6:1 Sample Reduction 12:1 Sample Reduction

Figure 5-5. Slant Transform Threshold Sampling
in 16 x 16 Pixel Blocks, Unquantized Transform.



Hadamard Transform Hadamard Transform
6:1 Sample Reduction 12:1 Sample Reduction

Haar Transform Haar Transform
6:1 Sample Reduction 12:1 Sample Reduction

Figure 5-6. Hadamard and Haar Transform Threshold
Sampling in 16 x 16 Pixel Blocks, Unquantized Transform.
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Fourier Transform Fourier Transform
6:1 Sample Reduction 12:1 Sample Reduction

Karhunen-Loeve Transform Karhunen-Loeve Transform
6:1 Sample Reduction 12:1 Sample Reduction

Figure 5-7. Fourier and Karhunen-Loeve Transform Threshold
Sampling in 16 x 16 Pixel Blocks, Unquantized Transform.
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of the Haar transform, with the fastest transform algorithm, is
better than either the Hadamard or Fourier transform. Table 5-1
exhibits the mean square errors between the original GIRL and its
threshold sampling reconstructions for the slant, Haar, Hadamard,
Fourier, and Karhunen-Loeve transforms with varioug sample reduc-
tions. As expected, the Karhunen-Loeve transform has the best mean
square error followed closely by the slant transform.
5.1.2 Zonal Sampling
In zonal sampling, rather than selecting those larger magni-
tude samples, a specific zone in the transform domain is established.
Those samples lying inside the zone are selected and transmitted over
a channel. Since the slant transform compacts energy over the upper-
left hand corner of the transform domain, it is possible to design a
special zone in this corner which covers most of the larger samples.
There are a number of zones that could be employed in the
transform domain samples:

(1) rectangular zone

S(u,v) =1 for usuc, VSVC
(5-9)
= 0. otherwise
(2) elliptical zone
u2 v2
S(u,v) =1 for—2+—251
u v
c c
(5-10)

=0 otherwise
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(3) triangular zone
S(u,v) =1 for (utv)€ K (5-11)
=0 otherwise

where S(u, v) denotes a sample selecting function, and u v and K
are constants. It could easily be seen from figure 5-2(d) and 5-2(b)
that for a full size slant transform none of the zones listed closely
resembles the energy distribution of transform samples. Neverthe-
less, the degradation is not too serious if a rectangular zone is used
for the slant transform of very high sample reductions (about 20:1),
and a circular or a triangular zone for medium sample reductions
(about 8:1).

There is a special zone termed '""maximum variance zone''
which is optimum for a mean square error criterion. Consider the
pixels along a row of an image as denoted by a sequence of random
variables fj(O), fj(l), cees fj(N-l). Then the autocc;variance function

may be expressed as a covariance matrix of the form

-
| fj]

E{[f 0)-F, 10T E{l£,(0)-

e

[f Jl]}
z

]
E{[f (1)- f (1)'[[f (0)- f (0)]} E{[fj(l) 1] cos

(0)
J
-f.(
j

.
* .

E{ff (N-1)-f.(N-1) 1.0 -£.(0 T} E{[£,(N-1)-F(N-DI[,(1)-£ (D]} ...
| j yod j j il

(5-12)
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If the image is considered a sample of a Markov process with a
correlation coefficient of p (0 < p < 1) between each adjacent pixels

and self correlation coefficient of unity, then equation (5-12) reduces

to
B 2 N-1]
1 o] p P
N-2
2 P 1 P p
[C ]= o* (5-13)
f. J L] * L e e 0 L]
J : X : : :
N-1 N-2 N-3
p e 1

2
where cj denotes the variance of pixels along the row. Similarly,
considering the pixels along a column of the image as a Markov

process, the covariance matrix can be written as

e 2 N_l—
1 p p ves P
N-2
2 p 1 p cee P
[Cf ] = ok . L] . * e 0 ] (5‘14)
k . . . cee o
N-1 N-2 N-3
p N |

. 2
where O is the variance of pixels along the column. With covariance
matrices of rows and columns as defined in equation (5-13) and (5-14)

the variance of the two dimensional slant transform samples may be

written as
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T
[Ve] - [VFj:H:VFk] (5-15)
where [VF']T= [CF.(O'O)' Cp (L1)...C (N-I,N-l)]
J ) j :

T
[ka] =[ch(o,0) CFk(l,l)...CFk(N-l,N-l)]

wa [op 1<[[e ][4

J

(e 1= [0e. )

By setting some smaller elements of [VF ] and [VF ] zero, a
j k

special zone in [VF] which is constructed by non-zero elements will
be formed. This special type of zone is called the '"maximum vari-
ance zone. "

Figure 5-8 contains a display of the covariance matrix, [CF ]

J
or [CF ], of the slant transform with correlation coefficient 0. 95
k

and matrix size of 256 x256. It can be seen that [VF -‘ or [VF :\
i k
are the diagonal elements of [CF ] or [CF ] which appear in
h] k

descending order. There are a few numbers of off diagonal elements
in this picture whose values are much smaller than those in the

diagonal. It should be noted that all these off-diagonal elements are
zero for the Karhunen-ILoeve transform. Figure 5-9 contains a plot

of the variance function [VF ] or [VF ] of the slant transform as a
x



(b)

Figure 5-8. Full Size Slant Transform of Covariance
Matrix - Markov Process (Correlation Coefficient =
0.95): (a) Transform; (b) Perspective View of Transform.
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function of frequency. The variance functions for the Hadamard,
Fourier, Haar and Karhunen-1l oeve transforms are included for
comparison. It is seen that the variance function for the slant trans-
form is reasonably close to the variance function of the Karhunen-
Loeve transform which is known to provide the best energy compaction
for the Markov source.

The statistical evaluation of the performance of various trans-
forms in a form of the "maximum variance' zonal sampling can be
specified in terms of the mean square error between the original
image and its reconstruction for a statistical class of images.
Figure 5-10 contains a plot of this mean square error as a function
of block size for various transforms. This plot was obtained for an
image statistically described by a Markov process. In the sampling
process 25% of the transform samples with the largest variances,
VF(u,v), were selected and the remainder were discarded according
to the maximum variance zone. From the figure it is seen that the
Karhunen-Loeve transform provides the best mean square error,
while the slant transform results in only a slightly greater error.
Also to be noted is that the rate of decrease in mean square error
for larger block sizes becomes quite small after a block size of
32 x32.

Figure 5-11 shows the slant transform "maximum variance'

zonal sampling of the original images. A two dimensional slant
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transform was taken of the image pixels repeatedly over subsections
in 16 x 16 pixel blocks. A maximum variance zone was assigned to
the transform samples by selecting only these samples inside the zone
and an inverse transform was taken to form the reconstruction.
Again, the reconstruction was formed without quantization or coding
of transform domain samples. For purposes of comparison a series
of experiments of the GIRL image have been performed for the
Hadamard, Haar, Fourier and Karhunen-I oeve transforms which
are shown in figures 5-12 and 5-13. It can be seen that the slant
transform generally performs better than the rest of the transforms
which possess a fast computational algorithm. Table 5-2 exhibits the
mean square errors between the original GIRL image and its
"maximum variance'' zonal sampling reconstructions for various
transforms with sample reductions of 2:1, 4:1, and 6:1. It can be
noted from this table that the Haar transform generally does not
perform very well under the maximum variance zonal sampling.

This is due to the fact that most larger transform domain samples
are not concentrated on the low frequency zone. It can also be noted
that the Fourier transform with the sample reduction of 4:1 does
rather well under the "maximum variance' zonal sampling. This
indicates that the "'maximum variance' model is particularly
favorable to the Fourier transform zonal sampling with the sample

reduction of 4:1. The slant transform generally performs well under



4:1 Sample Reduction 6:1 Sample Reduction

Figure 5-11, Slant Transform Zonal Sampling
in 16 x 16 Pixel Blocks, Unquantized Transform.



Hadamard Transform Hadamard Transform
4:1 Sample Reduction 6:1 Sample Reduction

Haar Transform Haar Transform
4:1 Sample Reduction 6:1 Sample Reduction

Figure 5-12. Hadamard and Haar Transform Zonal
Sampling in 16 x 16 Pixel Blocks, Unquantized Transform,
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Fourier Transform Fourier Transform
4:1 Sample Reduction 6:1 Sample Reduction

Karhunen-Loeve Transform Karhunen-Loeve Transform
4:1 Sample Reduction 6:1 Sample Reduction

Figure 5-13. Fourier and Karhunen-Loeve Transform Zonal
Sampling in 16 x 16 Pixel Blocks, Unquantized Transform.
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the "maximum variance' model. But better results could no doubt be

achieved if a better statistical model could be found.

5.2 Quantization Effect

There are two basic approaches to the quantization of trans-
form safnples: each sample could be quantized to the same number
of levels; or the number of levels could be varied from sample to
sample. Since the transform samples differ significantly in magni-
tude from sample to sample, the latter approach results in the most
efficient coding. The following subsections present analytic methods
of minimizing the mean square error between an original image and
its reconstruction with the reconstruction taking into account the
quantization effect in its transform samples. Two methods are
considered: an approximate and an exact method. The analysis
considers the quantization with various levels; quantization with the

‘same number of levels is simply a special case of this analysis.

5.2.1 Calculation of Optimal Mean Square Error - Approximate
Method
As denoted in equation (5-8) the mean square errér between
an original image and its reconstruction with a selected set of
samples, but without quantization, may be computed by

€ = Lz 22 E{[F(u,v) (l-S(u,v))]Z} (5-16)
N u v
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or
1 2
e = —; 22X EfF°(u,v)] (5-17)
N u v
S(u, v)=0

Now with those selected samples from the output of the sample
selector quantized, an additional quantization error will be introduced

and, therefore, the total mean square error may be written as

e = LZ- {3(0,0) + L efu, v) + PN E[Fz(u’v)]}

T N u v ua v 4
(u, v)#(0,0) S{u, v)=0 (5-18)
S(u, v)=1

where ¢(0,0) and ¢(u, v) denote the mean square quantization errors
of dc and ac samples respectively. Now let the dc samples be quan-

tized into L. levels by a set of decision levels, QK(O,O), and a set of

1
reconstruction levels, FK(O,O), as shown in figure 5-14. Then

€(0,0) in equation (5-18) may be written as

L, | QK(O.O)

c0,00=Z | [F(0,0)-F (0,0)1%p [F(0,0))dF(0,0) (5-19)
K=1
Q. ,(0,0)

where Py denotes the probability density of the dc samples. By the
method introduced in appendix D, ¢(0,0) can be minimized and written

as
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1
¢(0,0) = —2 (J p13 (F)dF> (5-20)

2
lZI_1 0

Let the ac samples be quantized into Lz(u, v) levels by a set of decision
levels, QK(u,v), and a set of reconstruction levels, FK(u, v), as shown

in figure 5-15. Then ¢(u,v) in equation (5-18) may be written as

I_Z(u.v)
2 Q. (u,v)
_ K 2
e(u,v) = 2: [ [F (4, v)-Fy (u,v)1°p,, [F(u, v)} dF (u, v)
-L (u,v)°
K= —2 V)
2 (5-21)

where P, denotes the probability density of ac samples. By the
method introduced in appendix D, equation (5-21) can be minimized

and written as

A (u,v) l 3

e(u,v) = o 2 (I P, (F)dF> (5-22)

With substitutions of equations (5-20) and (5-22), equation (5-18)

becomes
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A 1
1 2
€= —5 p (F)dF + 2z —_—
T 1\12{121_12 (I ! ) u v 31 2,y
(u,v)#(0,0)
S(u, v)=1
AZ(u,v) 1 3 ®
3
. F)dF ) + 2 2 d 5-23
(jo p, (F) dF) L [ Fop,(F)ar} (5-23)
S(u,v)=0 °

Example 5-1: Suppose the probability density of dc samples is

Rayleigh and ac samples is Gaussian. Then

eT=-1—2{12L2<I [— exp(- ] dF>
A (u v)
r 1

S A et G bt S )] ox)
(u, v)#(0, 0)

S(u, v)=1
! E% J.:m /2 o-(u,v)exp( 20‘ (a, v) >dF} (-24)
(u, v)#(0, 0)

S(u, v)=0

where 20:2 and oz(u,v) are variances of Rayleigh and Gaussian densi-

ties. Equation (5-24) can be simplified and rewritten as
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2 3
o sl ()
+ TZ 4/_2“" o) e PR (u'v)]3+z>: oz(u,v)}
(:,v‘;#(o,O) 2 () s s‘(lu,i)=o
S(u, v)=1 (5-25)
-4 3 y
where erf (x) = EI exp -—2—>dy (5-26)

Example 5-2: Suppose the probability density of dc samples is

Rayleigh and ac samples is two-sided exponential.

Then

w= {mzq T2 (- 5)] o)

A (u,v) }-
+ 2z Blu,v) exp(-B(u, v)F)| dF
2z S, [ ] er)
(u, v)#(0,0)
S(u,v)=1
+ T j Bv) p% exp (-F) aF } (5-27)
u v s
s{u, v)=0
where 20:2 and I are variances of Rayleigh and two-side,
B (u,v)

exponential densities respectively. Equation (5-27) can be simplified
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and rewritten as

1 = 2 3
_ 1 1 3 F
eT = = { —3 [ I F exp(- — dF]
o 6o

B(u. V)A (u. V) 3
9 2
+ T 5 > [1 - exp (— 3 )]
a v B (u,v) I_2 (u, v)
(u, V)#(ot 0)
S{u,v)=1

+ T 2 (5-28)
u v B (u,v)
S(u, v)=0
5.2.2 Calculation of Optimal Mean Square Error - Exact Method
The total mean square error shown in equation (5-23) is valid
if the number of quantization levels is large. This is always not the
case. In some applications as few as two quantizatioh levels are
assigned to transform samples. This has led to the necessity of
_deriving a more accurate equation which is applicable to any number
of quantization levels, The following paragraphs present a derivation
of- the optimal mean square error which could be applied to any
quantization level.
As denoted in equation (5-18) the total mean square error may

be written as
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1 . 2
€= —5{ €(0,00+ T T e(uv)+ Z L  E|F (u,v) (5-29)
T NZ{ u v u v [ ]}
(u, v)#(0, 0) S(u, v)=0
S(u, v)=1

where ¢(0,0) and ¢(u,v) are the mean square errors of dc and ac
samples respectively. Now suppose the dc samples are quantized into
L1 levels by a set of decision levels, QK, and a set of reconstruction

levels, FK’ as shown in Figure 5-14. Then €(0,0) may be written as

L QK
. 2
e(0,0) = L I (F-F )" p,(F) aF (5-30)
K=1 °Q,

In order to minimize ¢(0, 0) one may take the partial derivative of

equation (5-30) with respect to Qj and Fj and set the results to zero,

i.e.,

ae(O, 0) - 2 2 _

—-—an = = (Qj-Fj) pl(QJ.) - (Qj-Fj+1) pl(Qj) =0 (5-31)
and

M -ZJ‘ (F F)pl(F)dF-O j:]_,z’...,Ll (5_32)

Equation (5-31) and (5-32) may be rewritten as

Fig = 295 F, (5-33)
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and

Q.
J

J

(F-F,) p, (F) dF ji=1,2,...,L
j-1

(5-34)
Q

With the method suggested by Max (21), one can find the optimal
decision levels QK, K=0,1,.. ’Ll’ and reconstruction levels FK’

K=1,2,...,L ., that satisfy equations (5-33) and (5-34). With the

1
help of equation (5-34), equation (5-30) can be simplified as

L Q

® 2 L 2.k
e(0,0) = I Fp (F)dF - T F I p,(F) dF (5-35)
0 1 K=1 K Q 1
K-1
where QL = A1= « in this case. Similarly, suppose the ac samples
1

are quantized into Lz(u,v) levels by a set of decision levels, QK(u, v),
and a set of reconstruction levels, FK(u,v), as shown in figure (5-15).

Then the ac mean square error, €(u,v), may be written as

L, (u,v)
22 JQK(uaV)
_ 2
efu,v) = 2 221 QK-I(u,V)[F-FK(u,v)] p,(F)dF (5-36)

The optimal decision and reconstruction levels may then be calculated
by a method similar to the dc case which will satisfy the following

equations
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Fj+1(u,v) = ZQj(u,v) - Fj(u,v) j=1,2,...,I_2(u,v) (5-37)
Qj(u: v)

j [F-F.(s,v)] p,(F)AF=0  j=1,2,...,L,(a,v)  (5-38)
Q_,(uwv) g

With the help of equation (5-38) the optimal mean square error of ac

samples then can be written as

. L Q_(0,0)
l{[ F° p,(F) dF ZIFZJ"K (F) dF
€m -5 P - P
T NYY 1 k=1 X 4q (0,0)1
K-1
Lz(u,v)
o - QK(u’ v)
2 s 2
22 T [J" F*p.(F)dF - Z F (u,v)j o (F) dF]
2 _ K 2
u v 0 K=1 QK-I(u'V)
(u, v)#(0, 0)
S(u,v)=1
2 .
+ZZ E[Fuv]} (5-40)
u v
S(u, v)=0
Example 5-3: Suppose dc and ac probability densities of transform

domain samples are Rayleigh and Gaussian respec-

tively. Then the minimal total mean square error is
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1" B F = 2 k) F F
eT= —2{J 3 exp(— — )dF -2 FK I —5exp -—2—> dF
N 0 ¢ 20 K=1 QK 1(0,0) o 2o

+2 20 [f——zf—-— exp(--——Fi—>dF
0

u v fZ—ﬂo(u,v) 20'2(u,v)
(v, v)#(0,0)
S(u, v)=1
I_Z(u,v)
— Q. (u,v)
2 K 2
-z FKZ(u,v) ‘[ S S exp(- ——%———)dF]
K=1 QK-l(u’ v) fﬁ-c(u, v) 20 (u,v)
+ T2 Gz(u,v)} (5-41)
u v
S(u, v)=0

where Zaz and O'Z(ll,V) are the variances of Rayleigh and Gaussian
densities respectively. By carrying out the integrals, equation

(5-41) can be simplifed as

L

(0, 0) Q (o 0)
=-1—2{2cv -Z F (o 0)[exp< K 1 )-exp< )]
K=1
Lz(u,v)
2 Q (u,v)
+ LD oz(u,v) -2 X z (u,v) erf< )
_ o(u, v)
u v u v K=1
(u, v)#(0,0) (u, v)#(0,0)
S(u, v)=1

- erf ( a(u, v) >]} (5-42)
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Example 5-4: Suppose dc and ac probability densities of transform
domain samples are Rayleigh and two-sided exponen-

tial respectively. Then the minimal total mean

square error is

© 3 2 Ly Qg(0.0) 2
1 ¥ F 2 F F
er= 3 { [ SFew(—3)er- B Fy | 5 ow(-= )eF
N 0 o 2a K=1 QK-I(O’O) 2

) 2
+ 2z | jo &2")5— exp (-B(u, v) F) dF

u v
(u, v)#(0, 0)
S{u, v)=1
Lo(u,v)
—< Q, (a,v)
2 B (u, v) 1
- Z F__(u,v) I ——— exp (-B(u,v)F) dF
k=1 K Q. (wv) 2 .
K-1'""
+ X ——3—} (5-43)
u v Bz(u’v)
S(u, v)=0
where 2&2 and _TZ___ are the variances of Rayleigh and two-sided
B (u,v)

exponential densities respectively. Equation (5-70) can be simpli-

fied and rewritten as
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» ©0,0) %(0,0)
L (22 5 2o, more(- B, (S0,
2o
LZ (u, v)
2 2 2
+ 2 —— - zz 2z FK(u,v) exp(-B(u,v)QK 1(u,v))
u v B (u,v) u v K=1 -
(u, V)#(Oa 0) (u, V)#(oa 0)
S(u,‘v)=0
- exp (-B(u, v)Q (u,v)) |} (5-44)

5.3 Coding Effects

The coding techniques for quantized transform samples are
quite different for threshold sampling and zonal sampling. In
threshold sampling the locations of samples exceeding the threshold
varies from image to image. Therefore, it is necessary to code the
position of samples exceeding the threshold level. Position coding is
not necessary for zonal sampling since the location of samples to be

coded is known apriori.

5.3.1 Threshold Coding
There are a variety of ways that position coding could be
employed. The simplest method conceptually would be to code the
coordinates of each significant samples. However, higher coding

efficiency can be obtained by coding the number of non-significant
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samples between significant samples, This scheme, called run

length coding, is implemented as follows:

(1)

(@)

(3)

The first sample along each line is coded regardless
of its magnitude. A position code bits of all zeros
or all ones affixed to the amplitude provides a line
synchronization code group;

The amplitude of the second run length code word is
the coded amplitude of the next significant sample.
The position code is the binary count of the number
of samples of the significant sample from the
previous significant sample;

If a significant sample is not encountered after
scanning the maximum run length of samples, the
position and amplitude code bits are set to all ones

to indicate a maximum run length.

The advantage of including a line synchronization code group is that it

becomes unnecessary to code the line number and, also, it prevents

the propagation of channel errors over more than one line. A simple

code to implement this run length coding procedure is given as

follows:
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position amplitude

r A N r A N

XX ...X X YY ...Y Y

1 111111 0 0 000OO first sample of a line below
threshold

0 o... 00 YY...YY first sample of a line above
threshold

0 0... 01 YY ... YYX run length =1

0 0...10 YY ... YY run length = 2

1 111110 Y Y ... Y Y runlength =2N-2 (where N
is number of position code
bits)

1 111111 1 11111 1

pseudo-run of length 2N_2

This run length coding procedure for transform threshold coding has
been tested for the GIRL, COUPLE and MOONSCENE., Table 5-3
shows the relationship between sample reduction and average code
bits per pixel for the slant transform of the GIRL image with the
amplitude of each significant sample quantized and coded into six
bits. It can be seen that with a 4:1 sample reduction the best number
of position code bits is four, and with 6:1 and 12:1 sample reductions
the best number of position code bits are five and six respectively.
Figure 5-16 shows a plot of sample reduction versus average number
of code bits per pixel for the slant transformed GIRL image with vari-
ous numbers of position code bits. It can be seen that the number of

position code bits changes with the sample reduction in order to
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Figure 5-16, Sample Reduction Versus Average
Code Bits Per Pixel for Slant Transform Threshold
Sampling of GIRL Image in 16 x 16 Pixel Blocks.
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achieve the least average number of code bits per pixel. For a
sample reduction factor of less than 5:1 the best number of position
code bits is four, and for a sample reduction of from 5:1 to 9. 5:1 the
best number of position code bits is five, etc.

Figure 5-17 shows the quantized and coded versions of

Figure 5-5. A two dimensional slant transform was taken of the
image pixels repeatedly over subsections of an image in 16 X 16 pixel
blocks., A threshold was assigned to make the sample reduction, and
then these reduced samples were optimally quantized and coded.
Following the decoding, an inverse slant transform was taken to
reconstruct the original image. The quantization scheme used was
the one suggested by Max [21] where dc decision and reconstruction
levels were obtained by solving equations (5-33) and (5-34) and ac
decision and reconstruction levels were obtained by solving equations
(5-37) and (5-38). The dc probability density Py in equation (5-34)
and the ac probability density P, in equation (5-38) were assumed to
be Rayleigh and Gaussian, respectively. It was found experimentally
that, for the optimal reconstruction of test images, the variances of
P; and p, were 670 and 200, respectively. For the runlength coding
and decoding parts of the experiments a constant code word length of
six bits was assigned to the amplitude of each significant transform
sample and a constant code word length of four bits was assigned to

the position. As expected, quantization increases the mean square



1. 15 bits/pixel

1. 99 bits/pixel 1. 15 bits/pixel

1. 99 bits/pixel 1. 15 bits/pixel

Figure 5-17. Slant Transform Threshold Sampling
in 16 x 16 Pixel Blocks, Quantized Transform.
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1. 99 bits/pixel

1. 99 bits/pixel 1. 15 bits/pixel
Figure 5-18. Hadamard Transform Threshold Sampling
in 16 x 16 Pixel Blocks, Quantized Transform.
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error; but, subjectively, the reconstructed images appear to have
little visible degradation. Figure 5-18 illustrates the quantized and
coded pictures of the Hadamard transform. It is easily seen that the
slant transform in figure 5-17 performs better than those in
figure 5-18.

Table 5-4 exhibits the mean square errors of the slant trans-
formed GIRL image with sample reductions of 4:1, 6:1 and 12:1.
The corresponding thresholds and average code bits per pixel are also
included. Figure 5-19 shows a plot of sample reduction versus mean
square error between the original and its reconstructions for the
slant transform threshold sampled GIRL image. Since the dc samples
are much larger than the ac samples, the former are essentially all
quantized and, therefore, the mean square quantization error is
nearly constant. For ac samples, as the sample reduction factor
increases, the number of significant samples decrease and, there-
fore, the mean square quantization error decreases accordingly.
The mean square error after the sample reduction (unquantized) and
total mean square error are almost linearly related to the sample
reduction factor, which is expected for the slant transform threshold

sampled or coded images.

5.3.2 Zonal Coding and Bit Allocation

The quantization levels and code bit assignment for each
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Figure 5-19. Mean Square Error Versus Sample
Reduction Factor for the Slant Transform Threshold
Sampling of GIRL in 16 x 16 Pixel Blocks.
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significant dc or ac sample have been kept constant in the previous
section. For zonal sampling the quantization levels and code bit
assignment can be varied according to the statistics of the transform
domain samples. Since the magnitude of the transform domain
samples appears to be in descending order from low to high frequen-
cies, as can be seen in figure 5-2, the variation of quantization levels
and the allocation of code bits will certainly result in the most effi-
cient coding. The total mean square error between the original
image and the reconstructed image can easily be calculated . Suppose
a constant word length code of length
NB(u, v)
LC(u, v) = 2 (5-45)

is assigned to each quantization level and a total of

N, = zZ Ny (u,v) (5-46)
u v
S(u, v)=1

bits are allocated for transform domain samples. Then the minimum

total mean square error in equation (5-42) becomes
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N 5(0:0) Q,(0,0)
Fl p,(F) dF - Z F p, (F) dF
z{J 1 R S
K-1
Z[N (uov)']-] QK(U.,V)
2
+2 2 ¥ p.(F)dF - 2 F_ (a,v) p.(F) dF
2 [[Fumer ] ]
(u'v)#(oﬁo)
S(u, v)=1 :
+ T2 E[Fz(u,v)]} (5-47)
u v
S(u, v)=0

I et the probability densities of the dc and ac samples be modelled as
Rayleigh and Gaussian densities respectively. Eguation (5-47) then

can be written as

NB(O,O)
2 (0 0) Q (0 0)
1 2 K 1
€= —= {2a - 4 F(OO) exp —————-exp
L (222 oo [en( S0y (. 220
[NB(u,v)-l]
5 2 Qp (u,v)
+ 20 c (u,v)- 22 2z F (u v)[erf( )
a v u v K=1 ( DV)
(u, v)#(0, 0) (u, v)#(0,0)
S(u, v)=1
Q (u, v)
K1 YN
- erf (TV)_ )_' } (5-48)

where erf x =

J‘ exp(— Y2—>dy. It should be noted that the
J2n .=

constant code word length Lc(u,v) in equation {(5-45) is the same as
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the quantization levels L (u, v).
The bit aséignment NB(u, v) for each transform domain
sample has been based upon an algorithm of rate distortion théory

[19]. The number of bits is selected according to the relation
NB(u,v) = lanF(u, v)] - 4n[ D] (5-49) -

where VF(u,v) is the variance of a transform domain sample and D is
proportional to the mean square error of the coding process. A plot
of rate versus distortion for various transforms is shown in appendix
C. Figure 5-20 illustrates a typical assignment of code bits for the

slant transform zonal coding in 16 X 16 pixel blocks.

T O N N N N OT ST S B R . . 3
NIV NWWWWWWaoOwm- 0o
NNV NNNNDNNWWR BSOS ®
CO0OO0OO0OO0OO0OONNNNWIGOAI
OC 0000 OoOOCONINNNDNB O
COO0OO0OCOOCONININNDINB GO
COoOO0OO0CO0OOO0OO0OO0ONNNWWWMGM
COO0OO0OO0O0O0OOONNNWWM®M
COO00O0O0O0OO0OO0OO0O0ONWR
CO0O0O00O0OO0O0COO0O0ONWKR
OCO0O0O0O0D0COO0OOO0OO0O0ONWKR
CO0 000000000 ONWMR
COO0OOCOO0OO0OO0OO0OO0OOONNR
CO0O0O0O0O0O0OO0OO0OONNKR
ODO0OO0OO0CO0CO0OOO0OO0OOOONNSR
CcoOO0OO0COoOOOOOO0COO0ONN®

Figure 5-20, Typical Bit Assignments for the Slant
Transform Zonal Coding in 16 x 16 Pixel Block.
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The performance of the transform coding system can again be
evaluated in terms of the mean square error between the original
image, which is statistically described by a Markov process, and its
reconstruction. Figure 5-21 contains a refinement of the work which
has been done in Figure 5-10. Every sample inside the maximum
variance zone is quantized, and bit allocated according to the relation
shown in equation (5-49). The maximum variance zone is adjusted
such that an average of 1.5 bits/pixel is used to code the samples
inside the zone. Again from the figure it is seen that the Karhunen-
I oeve transform provides the minimum mean square error and the
slant transform results in only a slightly greater error. By
comparing figures 5-21 and 5-10 it is easily seen that the variation
of quantization levels and the allocation of code bits reduces the
mean square error for all transforms (with the exception of 4 x4
block size).

Figure 5-22 shows the optimally quantized and bit allocated
versions of figure 5-11. The quantization scheme used was again a
nonlinear quantization rule where dc decision and reconstruction
levels were obtained by solving equations (5-33) and (5-34) and ac
decision and reconstruction levels were obtained by solving equations
(5-37) and (5-38). The variance of dc samples, VF(O,O), is defined
in equation (5-15). In the process of finding VF(O,O), it was deter-

mined experimentally that the variance of pixels along the row (or
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2 2
column) in equation (5-13) (or equation (5-14))is 24, i.e., oj = crk=24.

The variance of ac samples, VF(u, v), is also defined in the variance

2 2
matrix [VF] where the experimental result of O’j or o, is dependent

upon the bandwidth reduction which can be summarized as follows:

Average 0.2 in equation (5-14) or
Code Bits JO‘jz in equation (5-15)
0.5 5.75
1.0 6.03
1.5 6.30
2.0 6. 58

From these figures it can be seen that the quantization and the bit
allocation improve the quality of picture substantially. For purposes
of comparison the Hadamard transform zonal coded pictures are
also shown in figure 5-23. It is easily seen that the slant transform
performs better than the Hadamard transform subjectively,

Figure 5-24 contains a plot of the mean square error of the
optimally quantized and bit allocated slant transform GIRL image for
threshold and zonal codings as a function of average code bits per
pixel. It is seen that threshold coding results in a better mean square
error for an average code bit per pixel of 1.9 or less. For an
average code bit per pixel of greater than 1.9 the zonal coding

appears to be favorable in the mean square sense.
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L
=

1. 0 bit/pixel

1. 5 bits/pixel 1.0 bit/pixel

1.5 bits/pixel 1.0 bit/pixel
Figure 5-22. Slant Transform Zonal Sampling in
16 x 16 Pixel Blocks, Quantized Transform.



1. 5 bits/pixel 1. 0 bit/pixel

1. 5 bits/pixel 1.0 bit/pixel

Figure 5-23. Hadamard Transform Zonal Sampling
in 16 x 16 Pixel Blocks, Quantized Transform.
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6, EFFECT OF CHANNEL ERROR FOR SLANT TRANSFORM
IMAGE TRANSMISSION

The preceding chapter has been devoted to a presentation of
the slant transform for image coding in an error free channel. Since
it is impossible for a practical communication system to possess such
a channel, it is necessary to study the noise effects on the transform
coded images. The inherent '"error averaging'' property of transform
coding has provided a means of image coding for which channel errors
are less deleterious than for conventional spatial coding of an image.
This chapter presents the results of computer simulations of noise
effects on the spatial and slant transform domain of the GIRL image.
Simulations of noise effects are also made for the bandwidth compres-
sed slant transform image of 1.5 bits/pixel for both threshold and
zonal coding. As expected, it is found that zonal coding has the pro-
perty of best noise immunity.

A binary symmetric channel is used as the noise model.
Figure 6-1 illustrates a classical representation of such a communi-
cation channel where the probability of receiving an incorrect symbol

is p and receiving a correct one is 1-p regardless of which symbol is

transmitted.
6.1 Channel Error Effects — Without Bandwidth Compression

A major advantage of transmitting the transform rather than
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Figure 6-1,

Model of a Binary Symmetric Channel.
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the spatial domain of an image is the fact that the channel noise intro-
duced in the transform domain tends to be distributed over the entire
channel [14]. Since the eye is more sensitive to the "salt and pepper"
effects of channel noise introduced in the spatial domain, the same
channel error rate in the transform domain is not so offensive.

Figure 6-2 illustrates the effects of channel error on the spa-
tial domain of the GIRL image with error rates of 10-4, 10-3, and
10-2. The '""salt and pepper' effect is quite evident in these pictures.
Figure 6-3 illustrates the effects of channel error on the slant trans-
form domain with the same error rates. Here the transform is per-
formed in 16 x16 pixel blocks and each transform sample is coded with
8 bits. It can be seen for error rates of less than 10-4, the trans-
formed image indicates little effect from the channel error. It can
also be seen, however, for larger error rates the transformed image
turns out to be '"'washed out'". This can be explained by the fact that
some of the bit assignment for the larger transform domain samples
are reversed for the larger error rates.

6.2 Channel Error Effects - With Bandwidth Compression

Figure 6-4 and 6-5 illustrate channel error effects on the
threshold and zonal coded GIRL image with a bandwidth reduction
coding of 1.5 bits per pixel (No error correction has been attempted).

It can be seen that threshold coding, which appears to be a bit better

than zonal coding in the error free channel, is much more affected by
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(b) Pe=10 3 (¢) Pe=10

Figure 6-2, Spatial Domain Coding Effects
of Channel Errors, 8 bits/pixel.
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(b) Pe=10" (c) Pe=10"

Figure 6-3. Slant Transform Coding Effects of
Channel Errors, 8 bits/coefficient,
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(c) Pe=10_2

(b) Pe=10"

Figure 6-4, Slant Transform Threshold Coding Effects of
Channel Errors, average coding of 1,5 bits/pixel.
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-2
(c) Pe=10

(b) Pe=10"

Figure 6-5. Slant Transform Zonal Coding Effects
of Channel Errors, average coding of 1.5 bits/pixel.
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channel errors. This is inevitable because position coding is neces-
sary in the threshold coding system. Once a position code bit is
reversed, the entire image line thereafter will be incorrectly decoded
which causes degradations in the reconstruction. Zonal coding

appears to be much less affected by channel errors.



7. SLANT TRANSFORM COLOR IMAGE CODING

Figure 7-1 shows a block diagram of the slant transform
color image coding system. In the system the color image is repre-
sented by three source tristimulus signals, R(j, k), G(j, k) and B(j, k)
which specify the red, green and blue content of an image pixel at
spatial coordinate (j, k), according to the NTSC receiver phosphor
primary system [26]. The source tristimulus signals are then
converted to a new three dimensional space Y (j, k), I(j,k), and Q(j, k)
which specify the luminance and the chrominance information of the
image pixel, according to the NTSC transmission primary system
[26]). The converted signals then individually undergo a two
dimensional slant transform over the entire image, or repeatedly
over subsections of the image called blocks, resulting in three trans-
form domain planes FY(u,v), FI(u, v), and FQ(u,v). Next, a sample
selection and quantization are performed on the three transform
domains. The resultant quantized transform signals are then coded
and transmitted over a channel. At the receiver, the channel output
is decoded, and an inverse slant transform and inverse coordinate
conversion operations are performed to reconstruct the source

tristimulus signals.,
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As discussed in Chapter 5, there are two methods of

achieving a bandwidth reduction in transform coding system--
threshold and zonal coding. The discussion in this chapter is limited
to zonal color image transform coding. However, it is expected that,
as in monochromatic image coding, threshold coding will perform
slightly better than zonal coding. But, it is also expected that
threshold coding will be affected by channel errors to a greater

degree than zonal coding.

7.1 Color Image Coordinate Conversion
There are a number of coordinate systems which could be
employed in color image coding and transmission [25]. The NTSC
transmission primary coordinate system has been used in this
study because:
(1) the NTSC transmission primary (YIQ) system is
the U.S. standard for color television transmission.
(2) the (YIQ) system includes a luminance (monochrome)
image signal.
(3) a previous study [247 has shown that the Y, I, and
Q signals are less correlated in comparison with
other standard coordinate systems so that they can
be processed separately without much loss in coding

performance.
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Conversion of tristimulus values from the NTSC receiver phosphor
primary system to NTSC transmission primary system can be

mathematically expressed by the matrix equation [25]

Y 0.299  0.587 0.114 R
1 | = 0.596 -0.274  -0.322 G (7-1)
Q 0.211 -0.253 0.312 B

The inverse coordinate conversion is given by

R 1.000  0.956 0. 621 Y
G | = 1.000 -0.272  -0.647 I (7-2)
B 1.000 -1.106 1.703 Q

7.2 Color Image Transform Coding
Consider the color image transform coding system of
Figure 7-1. The color coordinate conversion of equation (7-1) can

be rewritten here as

Y = 0.299R +0.587G + 0.114B
I = 0.596R - 0.274G - 0.322B (7-3)
Q = 0.211R - 0.523G +0.312B

Now each of these color signal planes is separately slant trans-

formed to produce three transform domain planes:
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[F.1l=(+1Ty)ls1T

= 0.299 LT RIW1T+0.587L SILRI[IT +0. 114
[1B1L+1F

[F.]=AL1s]T (7-4)

= 0.596 Lo JRI#IT - 0.274 L1 [G1 [T - 0.322
(21 (BIT

111"

,_.,

by

| -
1}

= 0.211 [LIIRI[21T- 0.523 (L 1GI~L1T+0.312

[#1lB1ls1T

It is apparent that the order of the color coordinate conversion and
two dimensional forward transformation processes is immaterial.
Next, each transform plane undergoes a sample selection
according to the '"'maximum variance zone'' as introduced in
Chapter 5. Those selected samples in each plane are then optimally
quantized. Again, the quantization scheme used is the same as the
monochromatic case where Rayleigh and Gaussian densities are
introduced in deriving the quantization levels. The variations of
quantization level are again tailored by a bit allocation matrix where
the assignment of bits is proportional to the logarithm of variance of

each transform domain sample and the percentage of energy
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distributed in each color plane. Figure 7-2 illustrates a typical
assignment of code bits for the slant transform samples of each
plane in 16 x 16 sample blocks. Special attention must be paid to the

quantization and coding of the F(0,0) samples in FI(u, v)and F_ (u, v)

Q
planes. Since pixels of I(j, k) and Q(j, k) are no longer all positive,
the ¥ (0, 0) transform samples are not necessarily all positive.
Therefore, a special code bit must be assigned for the sign of these
samples.

At the receiver, the received samples are decoded into three

transform planes and an inverse slant transform is performed in

each plane to reconstruct three color signals:

(Y] = [s17[F,10~]
(i1 = [J]T[f‘l][a‘] (7-5)

(41 = v ]T[§Q][JJ

~ ~

where F F, and f

v 5 denote three decoded transform planes at the

Q
receiver.
The inverse coordinate conversion at the final stage of the

color image transform coding system, as defined by equation (7-2),

is then performed to give
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8888886655554444

8886664444443333

8875443333332222

8653332222222222

8643332222220000

8643332222220000

6432220000000000

6432220000000000

5432220000000000

5432220000000000

5432220000000000
5432220000000000

4322000000000000

4322000000000000

4322000000000000

4322000000000000

(a) FY(u, v)

8653332222220000
6432220000000000

8864443322222222

8543222200000000

5322000000000000
3220000000000000
3200000000000000
3200000000000000
2000000000000000
2000000000000000
2000000000000000

6432220000000000

4320000000000000

4220000000000000
4220000000000000

3200000000000000

3200000000000000

2000000000000000

2000000000000000
2000000000000000
2000000000000000

2000000000000000

2000000000000000

2000000000000000

0000000000000000O0
00000000000000O00O0
0000000000000000

2000000000000000

2000000000000000

2000000000000000

0000000000000000O0

2000000000000000

(c) FQ(U. v)

(b) F(ua,v)

Figure 7-2 Typical Bit Assignments for the Slant

Transform Zonal Coding of Color Images.
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R= Y +0.956I +0.6210
G= Y -0.272I - 0.647Q (7-6)
B= ¥ -1.1060 +1.703Q

The energy compaction properties of FY(u,v), Fz(u,v), and
FQ(u,v) can be statistically evaluated if the covariance function of
R, G, B is known. Consider the case in which the second order
statistical variations of the tristimulus values R,G, B are spatially

identical and described by covariance matrices |'Cf ] and {Cf ] as

j k
denoted in equations (5-14) and (5-15). Suppose the covariance

matrix of the source tristimulus value is given by

- -
°r CRc  CrsB
} 2
[Crer) = | Cra % Con (7-7)
2
| kB S ‘B |

2 .
, O'B are the variances of the source tristimulus

C

whe cz o
Te % 9%

RB’ CGB are the correlations between pairs of

the source tristimulus values. Then it can easily be shown that the

values, and CRG'

covariance matrix of the Y,I,Q signals is

, _
%y Cy1 Cya
) 2
[Cyipd = | Cy1 9 Ci0 (7-8)
2
| %vo %0 % |
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2 2 2 2
'h . 0894 + 0. + 0.0130
where crY 0.089 O‘R 0.3446 OG o-B

+ 0. + 0,0682 + 0.
03510CRG 0.06 CRB 0.1338C

GB
0‘12 = 0.3552 oR2+ 0.0751 og +0.1037 0']:
- 0,3266 CRG- 0.3838 CRB+ 0. 1765CGB
0'(; = 0.0445 0'1_:' + 0. 0640 oé+ 0.0973 0‘;
- 0.1068 CRB+ 0.1317 CRG- 0.1579 CGB
CYI = 0,1728 o-RZ - 0.1608 o-G2 - 0.0367 O'BZ
+ 0.2678CRG- 0.0283 CRB— 0.2193 CGB
CYQ = 0.06310‘R2 - 0. 14850‘G2 + 0.0356 0']:
+ 0. 0482 CRG+ 0. 1179CRB+ 0. 1540CGB
CIQ = 0.1258 0'R2+ 0.0693 O‘GZ - 0. 10050’B2
- 0.2086CRG+ 0.1180 CRB- 0.040 CGB

From equation (5-15) the covariance matrices of rows and columns

of each transform plane are

[cFJ = [J][Cf 1M1t (7-9)
j J

[c_ 1= [s1c. 12T (7-10)
Fk fk
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Therefore, the variance of the transform planes may be written as

- T

[VF ] Y[VF | [VFk] (7-11)
i} T

[VFI] - cIZ[vFj]_ka] (7-12)
} T

[vFQ] - c;‘[v j_[VFk] (7-13)

T
where [V | =[c, (0,00 cp (1) ... ¢y -1,N-1)]
' j j j

T

[ka:‘ = [ch(o,O) ch(l, 1) ... CFk(N-l.N-l)]

A summary of the energy distribution between the color signal planes
of R, G, Band Y, I, Q, for the GIRL and COUPLE test images, is
given in Table 7-1. It can easily be seen that the YIQ system
provides a better energy compaction in comparison with the RGB
system.

In order to optimally design the slant transform image
coder it is necessary to specify some analytic measure of color
image fidelity. Unfortunately, there exists no standard ‘fidelity
measures. As a rational alternative, the design procedure selected
has been to design the transform domain quantization system to

minimize the mean square error between the Y,I,Q and Y,I,Q color
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planes. From eq. (5-40) the minimal mean square error in each

transform plane can be written as

.y Q. (0,0)
1 ) 2‘ 2 K
er = =3 {_[ F* p, (F)dF - Z FK(O,O)I p, (F) dF
i N 0 i K=1 Q (0, 0) i
K-1'""
) in(u,v)/z QK(u.v)
+2 22 Fz p, (F)dF - 2 Fz(u,v) p, (F) dF
u v ['[0 2i K=1 K '[QK_I(u,v)Zi ]
(u, v)#(0, 0)
S.(u,v)=1
1
+ TZ E[F.z(u,v)]} (7-11)
u v 1
S, (u,v)=0

where € is the mean square error in each transform plane;
i
Si(u,v) is a sampling function in each transform plane;

Py and p, are probability density functions of dc and ac
i i
samples;

I_1 and LZ (u,v) are numbers of dc and ac quantization
i i

levels;
QK(O, 0) and QK(u,v) are dc and ac decision levels;
FK(O, 0) and FK(u,v) are dc and ac reconstruction levels;
and F.l(u,v) are transform samples of a plane.

The total optimal relative mean square error then may be defined as
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€ = (7-12)

Figure 7-3 contains a plot of the mean square error versus the
average code bit assignments of FY (u,v) and a fixed total average
code of 2 bits/pixel for the GIRL image. The optimal average bit
allocation for this test image is the maximum point on an envelope
which is constructed by drawing through each peak point of the
curves shown. The value is found to be: 1.25 for FY(u,v), 0. 55
for Fl(u,v), and 0.20 for FQ(u,v). The optimum scale does not

change appreciably for the other image.

7.3 Experiment Results

A computer simulation has been performed to subjectively
evaluate the performance of the slant transform color image coding
system.

Figure 7-4 contains black-and-white photographs of the
R, G, B components of the original images shown in figure 1-2. It
can be seen that the R, G, B pixels are highly correlated. Figure 7-5
illustrates black-and-white versions of the Y,I,Q planes of the same
images. It is clearly seen that the degree of correlation among
these planes is much less than those in R, G, B planes.

The energy compaction properties of the slant transformed
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Y, I and Q planes can be seen from pictures of the three transform
domain samples. Figure 7-6 shows the slant transform planes,

FY (a,v), FI(u,v), and FQ(u,v), where the transform is performed
in 16 x16 pixel blocks over the entire plane. Again, in these
pictures, a logarithm has been taken for each transform sample in
order to compact the dynamic range of the transform samples. It
can easily be seen that most of the significant samples in each plane
are located around the maximum variance zone. It can also be seen
that the energy distribution in FI(u,v) and FQ(u, v) planes is quite
small in comparison with that of FY (u, v).

To illustrate the bandwidth reduction capability of the slant
transform for color image coding, two sets of experiments have
been performed for both the GIRL and COUPLE images. The first
set of experiments results in an average coding of 2 bits/pixel where
the transform samples of Y,I, and Q are coded with 1\.2, 0. 54, and
0.26 bits/pixel respectively. The second set of experiments results
in an average coding of 3 bits/pixel where the transform samples of
Y, I, and Q are coded, respectively, with 2.0, 0.6, and 0.4 bits/
pixel. The corresponding reproductions of Y,I,Q and R,G, B for the
first set of experiments are shown in figure 7-7 and 7-8. Figure
7-9 and 7-10 show the reproductions of the color images with channel
error rates of Pe=0, Pe= 10—4 and Pe = 10-2. It can be seen that

even with an average coding of 2 bits/pixel and channel error rate
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of Pe = 10_4, the result can still be considered as a good quality
reconstruction. Table 7-2 exhibits the mean square errors between
the original Y,I,Q planes and slant transform coded Y,I,Q planes
for the GIRL image. The reason that the mean square errors of
YIQ is presented rather than the mean square errors of RGB is that

the bandwidth compression has been made only to the YIQ signals.



100.0 — PERCENTAGE OF MEAN SQUARE ERROR
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Y+1+Q = 2bits
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Y = .00 bits
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4
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Figure 7-3., Mean Square Error for
Various Color Plane Bit Assignments.
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(c)
Figure 7-4. R, G, B Tristimulus Color Planes of
the Original Images: (a) R; (b) G; (c) B.
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(c)

Figure 7-5. Y, I, Q Tristimulus Color Planes
of the Original Images: (a) Y; (b) I; (c) Q.
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Figure 7-6. Slant Transform Domain
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(c)

Figure 7-7. SlantAT raniformAZonal Coding,
2 bits/pixel: (a) Y; (b) I; (c) Q.



Figure 7-8. Slant Transf\orm Zonal N
Coding, 2 bits/pixel: (a) R; (b) G; (c) B.



Figure 7-9. Slant Transform Zonal Coding, 2 bits/pi_}éel.
Channel Error Rates: (a) Pe=0: (b) Pe=10 ; (c) Pe=10 .



(b)

Figure 7-10. Slant Transform Zonal Coding, 3 bits/pixel.
Channel Error Rates: (a) Pe=0; (b) Pe=10-4; (c) Pe= 10-2,



8. SUMMARY

This dissertation has presented a theoretical development and
analysis of the two dimensional slant transform for image coding.
Various transforms which possess an energy compaction property
have also been briefly discussed.

The implementation of the slant transform coding system
appears feasible using the fast transform algorithm developed in this
dissertation. It has been found that for a slant transform of order N,
the total number of operations is N log N + 2N-4, which is only
slightly greater than the number of operations required for the
Hadamard transform.

The statistical properties of the slant transform have been
analyzed based upon the assumption that the original image is a
sample of a two dimensional process with knownmean and covariance.
The probability density functions of the transform samples have been
modelled as a Rayleigh density function for dc samples and as a
Gaussian density for ac samples.

The energy compaction property of the slant transform has
been exploited to achieve a sample reduction by two means:
threshold sampling and zonal sampling. Threshold sampling simply

entails the coding of each transform sample that exceeds a threshold

144
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level. In zonal sampling those samples with the largest expected
variance are coded. For purposes of comparison experiments have
also been performed on the Fourier, Hadamard, Haar, and Karhunen-
Loeve transforms. The conclusions are:

a) A significant sample reduction with slant transform
coding can be obtained by threshold alnd zonal sampling;

b) Threshold sampling provides a better performance than
zonal sampling for the same sample reduction factor. A higher
sample reduction can be obtained with threshold sampling without
seriously degrading the reconstruction.

c) The slant transform exhibits somewhat better performance
than the Fourier, Hadamard, or Haar transforms.

d) For block sizes larger than 16 x16, the improvement of
performance will not be significant.

An analysis has been performed to determine the quantization
effect of transform domain samples. A mathematical expression of
the mean square error between the original image and its transform
coded reconstruction has been derived.

Coding techniques for optimally quantized transform samples
have been implemented and evaluated for both threshold and zonal
processed samples. For threshold processed samples, a position
coding technique employing runlength coding has been introduced.

For zonal processed samples a maximum variance zonal coding
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technique has been introduced. The maximum variance zonal coding
technique appears to be much easier to implement than runlength
coding, since no position coding is required.

The effect of channel errors on slant transform coded images
has been simulated on a digital computer. All code bits were packed
into a long string of binary data, and a random noise generator was
introduced to generate bit reversals according to a specific error
rate. It has been shown that channel errors in the transform domain
tend to cause a small overall loss in resolution which is perferable to
the '"salt and pepper' errors introduced in spatial domain coding.
Comparing the effect of channel errors on threshold and zonal coding
techniques, it appears that zonal coding is less sensitive to channel
errors. It has been shown that zonal coding can tolerate an error
rate as high as Pe = 10-3 for a bandwidth reduced image of 1.5
bits/pixel without serious image degradation.

The studies of the slant transform for monochrome image
coding have also been extended to color images. First, a coordinate
conversion from RGB to YIQ has been made in order to compact the
image energy between color planes. Next, the slant transform coding
technique has been applied to each color plane. It has been shown
that relatively large bandwidth reductions may be obtained in the I
and Q planes without seriously effecting the color image reconstruc-

tion.
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The conclusions to be drawn from experiments that have been
performed in monochrome and color image coding are:

(2) A bandwidth reduction of 1 bit/pixel and 1.5 bits/pixel
can be made for a monochrome image by threshold and zonal coding
techniques respectively without seriously degrading the reconstruc-
tion quality. |

(b) For color images, a total coding of about 2 to 3 bits/pixel

can be realized while maintaining good quality reconstructions.



Appendix

SLANT TRANSFORM PROGRAMS

This appendix presents the programs of the one-dimensional
forward and inverse slant transform of size N=256. The transform

of sizes other than 256 can be obtained by a minor modification of

these programs.
(a) Forward Slant Transform:

C THIS PROGRAM PERFORMS ONE DIMENSIONAL
C SLANT TRANSFORM OF A 256 BY 256 IMAGE
C

DIMENSION A(256), B(256), C(256)
N=256

EN=N

ENN=SQRT(EN)

Bl=1. /SQRT(5.)

Al=3, *Bl

DO 79 M-=1,N

CALL DSKIO(C, 1024, M, 1, 4)

K1=N/4
DO 40 II=1, K1
IIA=4%(I1I-1)
DO 11 I=1,4
J=IIA+I

11  B()=C(J)

A(1)=B(1)+B(4)
A(2)=B(2)+B(3)
A(3)=B(1)-B(4)
A(4)=B(2)-B(3)
B(1)=A(1)+A(2)
B(2)=A1*A(3)+B1%A(4)
B(3)=A(1)-A(2)
B(4)=B1%A(3)-Al%A(4)

148



40

41

42

43

44

45

49

61

51

53

55

DO 40 I=1,4
J=IIA+I
C(J)=B(I)

K=8

L=3

GO TO 49

K=16

L=4

GO TO 49

K=32

L=5

GO TO 49

K=64

L=6

GO TO 49

K=128

L=7

GO TO 49

K=256

L=8

KK=K/2

K2=N/K

LL=L-1

SUM1=0.

DO 61 I=1, LL
SUM1=SUM1+2. ##(2%(I-1))
SUM2=SUM1+2, *%(2*LL)
A2=FLOAT (KK)/SQRT(SUM?2)
B2=SQRT(SUM1)/SQRT(SUM2)
DO 65 1I=1,K2
IIB=K*(II-1)

DO 51 I=1,K

J=IIB+I

B(I)=C(J)

DO 59 I=1, KK

DO 59 L2=1,2

T=0.

DO 57 L3=1,2
I1KK*(L3-1)+I

IF (L3+L2-4) 55, 53, 55
T=T-B(I1)

GO TO 57

T=T+B(I1)
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57 CONTINUE
IF (IAND(I, 1)) 52, 54, 52
52 Ll1=2%(I-1)
I12=L1+L2
GO TO 59
54 L1=2%I+1
I12=L1-L2
59. A(I2)=T

DD=A(4)
A(4)=A(3)
A(3)=A(2)
A(2)=DD

E2=B2%*A(2)+A2%A(3)
F2=A2%A(2)-B2*A(3)
A(2)=E2

A(3)=A(4)

A(4)=F2

63 DO 651=1,K
J=IIB+I
65 C(J)=A(I)
IF(K-16)41, 42, 67
67 IF(K-64)43,44,68
68 IF(K-256) 45,71,71
71 DO 751=1,N
75 C(I)=C(I)/ENN
CALL DSKIO(C, 1024, M, 0, 5)
79 CONTINUE
STOP
END

(b) Inverse Slant Transform:

THIS PROGRAM PERFORMS ONE DIMENSIONAL
INVERSE SLANT TRANSFORM OF A 256 BY 256
IMAGE

aoaoaaon

DIMENSION A(256), B(256), C(256)
N=256

S=BQRT(FLOAT(N))

Bl=1, /SQRT(5.)

Al=3,*B1
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33

44

55

141

149

161

151

DO 179 M=1, N

CALL DSKIO(C, 1024, M, 1, 4)
K=256

L=8

GO TO 149

K=128

L=1

GO TO 149

K=64

L=b

GO TO 149

K=32

L=5

GO TO 149

K=16

L4 GO TO 149

K-8

L=3

KK=K/2

K2-N/K

LL=L-1

SUM1=0.

DO 161 I=1, LL
SUM1=SUMI1+2, *%(2%(I-1))
SUM2=SUM1+2, *#%(2*LL)
A2=FLOAT (KK)/SQRT(SUM2)
B2=SQRT(SUM1)/SQRT(SUM2)
DO 165 1I=1, K2
IIQ=K*(II-1)

DO 151 1=1,K

J=I+1IQ

B(I)=C(J)

E2=B2*B(2)+A2%*B(4)
F2=A2%B(2)-B2%*B(4)
B(2)=E2

B(4)=B(3)

B(3)=F2

JK=KK+1

JKK=JK+1
A(1)=B(1)+B(3)
A(2)=B(2)+B(4)
A(JK)=B(1)-B(3)
A(JKK)=B(2)-B(4)
DO 159 1=3,KK
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155
157

159

160

165
66

77
105

111

144

179
99

IJ=241-1

DO 159 L2=1, 2
T=0.

DO 157 L3=1, 2
11=L3-1+1J
IF(L2+L3-4) 155, 153, 155
T=T-B(I1)

GO TO 157
T=T+B(I1)
CONTINUE
[2=KK#(L2-1)+I
A(I2)=T

JIK=KK+4
DO 160 IC=JJK, K, 2
A(IC)=A(IC)

DO 165 1=1,K

J=I+1IQ

C(J)=A(D)

IF(K-128) 66, 33, 22
IF(K-32) 77, 55, 44
IF(K-8) 99, 105, 141
K1=N/4

DO 144 II=1, K1
1IQ=4%(II-1)

DO 111 1=1,4

J=I+IIQ

B(I)=C(J)
A(1)=B(1)+B(3)
A(2)=B(1)-B(3)
A(3)=A1%*B(2)+B1%B(4)
A(4)=B1%B(2)-A1%B(4)
B(1)=A(1)+A(3)
B(2)=A(2)+A(4)
B(3)=A(2)-A(4)
B(4)=A(1)-A(3)

DO 144 1=1, 4

J=I+1IQ

C(J)=B(I)/S

CALL DSKIO(C, 1024, M, 0, 5)
CONTINUE

STOP

END
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Appendix B

PHOTOGRAPHIC DENSITY IMAGE REPRESENTATION

Results of an experiment of using the photographic density
rather than intensity for the slant transform image coding system are
presented in this appendix. The original digital image, f(j,k),.
defined as an array of samples of a continuous two dimensional
intensity pattern of light, has been converted to the photographic

density by [36]
£'(j, k) = log { £(j, k)} j,k=0,1,2,...,N-1

The samples of this conversion then undergo a two dimensional slant
transformation repeated over subsections of images in 16 x 16 pixel
blocks. The resultant transform samples are then quantized, coded,
and transmitted over a computer simulated channel. At the receiver
the received samples are decoded, inverse transformed, and recon-
verted back to the photographic intensity by

£G,k) = 1050:K)

Figure A shows the result of this experiment. Comparing this with
figure 4-35(a) it appears that the conversion of the photographic
density does not have any improvement for the slant transform image

coding system subjectively.
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1. 5 bits/pixel

Figure A. Slant Transform Zonal Coding
of GIRL Image; transform was performed
in 16 x 16 pixel blocks to the photographic
density rather than intensity.
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Appendix C

RATE DISTORTION MEASURE FOR TRANSFORM CODING

The rate distrotion function of information theory has proven
to be a useful measure of the performance of source coding methods
[19]. It has been shown that for a Gaussian source of independent
symbols and a mean square error fidelity criterion, the minimum
information rate R(D) that can be achieved while maintaining a fixed

distortion D is given parametrically by [19]

, N o,
R(D) = N -21 max { 0, 1og<—-e—>} (C-1)
1:
1 N
D = = 1221 min (e,ci) (C-2)

where O'iz is the variance of the i th sample and N represents the
number of symbols in a block. This result can be applied to trans-
form coding by treating the transform coefficients as being indepen-
dent (note: the coefficients are quantized and coded separately), and
by observing the probability density of the samples is well modelled
by a Gaussian density. Thus, the factor oi in eqs. (C-1) and (C-2)
can be assumed to be the standard deviation of the transform coeffi-

cients as given by eq. (4-17) or (4-18).
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Figure C-1 illustrates rate versus distortion curves for a
first order Markov process, with correlation coefficient p = 0, 95
and N=16. The curves show that the Karhunen-I oeve transform
gives the best rate over the whole range of distortion, while the slant
transform result is very close to the Karhunen-I oeve transform.
Figure C-2 contains rate versus distortion curves for the same
Markov process with N=256, The curves show that the Fourier
transform tends to become the Karhunen-Loeve transform for a

large size data vector.
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Figure C-1. Rate Versus Distortion for Various Trans-
forms for a First-Order Markov Process, N=16.
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Appendix D

AN APPROXIMATE METHOD OF
MINIMIZING THE QUANTIZATION ERROR AND FINDING THE
DECISION LEVELS OF THE DC AND AC TRANSFORM SAMPLES

This appendix presents a method of minimizing the quantization
error and finding the decision levels of the dc and ac transform
samples. The method described is s.imilar to the Panter and Dite
[20]. Let F and F(u,v) represent the dc and ac transform samples
respectively. Suppose F is quantized into I_i levels by a set of

decision levels, QK, and a set of reconstruction levels, F , as

k
shown in figure 5-14. Then the dc quantization error can be written

as

Q

[

L
K 2
I [F-F 1" p,(F) dF (D-1)
K=l "Qp

€1=

where Py is the probability density of the random variable F. In

order to minimize e, as shown in (D-1) consider

Qg

) 2
ey = _[ (F-F, )" p,(F)dF (D-2)
Q-1

Suppose pl(F) is nearly constant over the region of integral such that
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Q. +0Q
P ) = b (T
then ( QK+ QK_l >
PN 2
°K - : 3 [(QK'FK)3+ Fy- QK-1)3]

Differentiating ek with respect to FK

gives
de Q. +Q
K K K-1 2

Pl — PSSk ey - - + -

aF, p(—3 DL-@g- Fy) (Fy-Qy)

or
Fo= %1
K 2

LetQK-FK=FK-QK_1=AFK

Then ¢

K may be written as

3
.. Zpl(FK) AFK

K 3

Substituting this into equation (D-1) gives

where W= l_pl (F ) FK]

2

0
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(D-3)

and setting the result to zero

(D-4)

(D-5)

(D-6)

(D-7)

(D-8)
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If the number of quantization levels is sufficiently large so

that the definition of the integral is applicable, then

L L 1/3 A 1/3
§=IXK= 1?zl[pl(FK)] AFg = %Io[Pl(F)] dF = K,

(D-9)

where A1 is the maximum decision level of F and K1 is a constant

since the integral is a function of only its limit. The minimization of
equation (D-1) is now reduced to the minimization of equation (D-8)
subject to the constraint of equation (D-9). Using Lagrange's method

it is easily found that € is minimum when

el

1 2 ]..l I_1

(D-10)

By substituting equations (D-10) and (D-9) into (D-8) the minimum

quantization error becomes

A

0 = (] e -1

12 Ll 0

Suppose now that each ac sample F(u, V) is quantized into
Lz(u,v) levels by a set of decision levels, QK(u,v), and a set of
reconstruction levels, F.K(u,v). as shown in figure 5-15. Then the

ac quantization error can be written as
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I..Z(u,v)
> QK(U:V)
2
e. = 2. [F(u,v)-F_(u,v)] p, {F(u, v)1dF (u, v)
2 K 2
-1, (u, v) QK-I(u’ v)
K=——2——-—- (D-12)

where P, is the probability density of F{u,v). Following a similar
method as introduced in equations (D-2) to (D-8), the minimization of
equation (D-12) may be reduced to minimize

Lz(u,v) .

- 2 ;; [y 1k 13
R R A (D-13)
K_- 2(u,v
T2

subject to the condition

Lz(u, v)
-2z AZ(u’ v)
2z YK= -;— j pz[F(u, v)}dF(u,v) = Kz(u, v) (D-14)
Ly (w,v) -A_ (u,v)
K= —-2—— 2'7?

1/3
where YK= [pz [FK(u,v)]] AFK(u, v); Az(u,v) is the maximum
decision level of F(u,v), and Kz(u,v) is a constant., Using Lagrange's

method it is easily found that ¢, is minimum when

Kz(u,v)
Y- L Y_I-_-+l—--°—Yi1— Yl=~'-—Y£_1= YI; T_'Z(u_v) (D-15)
2 2 2 2

Substituting equations (D-15) and (D-14) into equation (D-13) the
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minimum ac quantization error becomes

A (u, v)

1/3 3
e, —— (] [p,(F)aF] ") (D-16)
12 L (u,v) A (u,v)
2 ?

A method of obtaining decision levels for dc samples may be

obtained by writing

QK= 2 AF1+2AF2+- o o +2AFK (D-17)
or
2K
- 1 -1/3 -1/3
QK- -I__[pl (Fl)+ (F Y+eeotp (F )] (D-18)

The series may be approximated by an integral

KA,
L, -1/3
(o, @1 2 ar (D-19)

where K =0,1,2,...,L. and C is a constant of proportionality so

1

Q. =A.. Hence

chosen that when K= I_l, 2o 1

KA,
T -1/3
A, j' 1 [p(m] dF
0 K=0,1 L
Q = = ) 4 .3
K A -1/3 1
I (e, ()] dF (D-20)

0
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The decision levels for ac sample may then be obtained in a similar

way which could be written as follows:

ZKAZ(u,v)
I_Z(u,v) -1/3
Az(u,v)j [p,(F)]  aF L)
QK(u,V)= A 0 K‘—'O,l,...,-—z——
Z(u’V) _1/3 2

(u, v)#(0, 0) J‘ [pz (F)] dF

0 (D-21)
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